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Summary. In oncology, progression-free survival time, which is defined as the minimum of the
times to disease progression or death, often is used to characterize treatment and covariate
effects.We are motivated by the desire to estimate the progression time distribution on the basis
of data from 780 paediatric patients with choroid plexus tumours, which are a rare brain cancer
where disease progression always precedes death. In retrospective data on 674 patients, the
times to death or censoring were recorded but progression times were missing. In a prospective
study of 106 patients, both times were recorded but there were only 20 non-censored progres-
sion times and 10 non-censored survival times. Consequently, estimating the progression time
distribution is complicated by the problems that, for most of the patients, either the survival time
is known but the progression time is not known, or the survival time is right censored and it
is not known whether the patient’s disease progressed before censoring. For data with these
missingness structures, we formulate a family of Bayesian parametric likelihoods and present
methods for estimating the progression time distribution. The underlying idea is that estimat-
ing the association between the time to progression and subsequent survival time from patients
having complete data provides a basis for utilizing covariates and partial event time data of other
patients to infer their missing progression times. We illustrate the methodology by analysing the
brain tumour data, and we also present a simulation study.
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1. Introduction

A clinical outcome that is commonly used to characterize the effects of treatments for cancers
and other potentially fatal diseases is the progression-free survival (PFS) time, which is defined
as the time from the start of treatment to disease progression (worsening) or death, whichever
occurs first. Denote the time to death without progression by T0, the time to progression by T1
and the time from progression to death by T2. Thus, aside from censoring, either T0 or .T1, T2/

is observed for each subject, the PFS time is min{T0, T1}, and overall survival (OS) time is
T = min{T0, T1 + T2}: For diseases where progression always precedes death, i.e. T0 is never
observed, T1 and the PFS time are identical and the OS time is T = T1 + T2. In this case, a
wide variety of time-to-event regression models and methods may be applied (Therneau and
Grambsch, 2000; Ibrahim et al., 2001; Klein and Moeschberger, 2003) for estimating the
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distributions of T1, T2 and T as functions of a vector Z= .Z1, . . . , Zq/ of covariates and treat-
ment variables. In this setting, the problem of estimating the distribution of [T1|Z] becomes
more difficult if, for some subjects, either T is known but T1 is not known, or T is right censored
and it is not known whether the subject’s disease progressed before the censoring time. For data
that have either of these missingness structures, we formulate a family of parametric likelihood
functions and present methods for estimating the progression time distribution. Intuitively, the
idea underlying our approach is that estimating the joint distribution of T1 and T2 from subjects
having complete data including Z provides a basis for utilizing the partial information in the
value of T or its censoring time and Z to infer T1 when data for T1 are missing in either of the
two ways that were described above.

Our research is motivated by a data set that arose from 780 patients with choroid plexus
tumours. These are rare brain tumours that typically occur in young children, subclassified
histologically by the World Health Organization as the comparatively more benign choroid
plexus papilloma, the intermediate atypical choroid plexus papilloma and the most malignant
histology choroid plexus carcinoma (CPC). Each patient received surgery, and possibly some
combination of radiation and chemotherapy. Surgery achieving gross total resection (GTR) is
traditionally believed to be of high prognostic relevance (Wolff et al., 2002), whereas the roles of
radiation and chemotherapy are less well understood (Wolff et al., 1999). As these tumours are
rare, sufficient prospectively collected data to evaluate PFS and OS reliably and thus to establish
benchmarks for treatment have not been available. Therefore, the data came from two sources:
literature and a prospective clinical study. A systematic literature search was undertaken to
collect and codify all published case reports (Wolff et al., 1999, 2002), resulting in 674 cases.
These case reports typically included the OS time but rarely included the PFS time. In contrast,
the data resulting from a prospective study of 106 patients (Wrede et al., 2009) did include both
PFS and OS times. Consequently, among the total of 780 patients, 674 patients had observed
or censored values of T without observing the value of T1, whereas 106 patients had observed
or censored values of T1 and T2.

Considerable research has been conducted for survival data analysis with missing failure
indicators. Dinse (1982) proposed a Kaplan–Meier-type estimator using the non-parametric
maximum likelihood method and the EM algorithm. Lo (1991) developed two alternative esti-
mators that are strongly consistent and converge to Gaussian processes. In the context of a com-
peting risks model, Goetghebeur and Ryan (1990) derived a modified log-rank test to compare
survival in two groups when failure types are missing for some individuals and later extended
that approach to proportional hazards regression models (Cox, 1972; Goetghebeur and Ryan,
1995). Lu and Tsiatis (2001) and Tsiatis et al. (2002) took a different approach and proposed
the use of multiple imputation to address the problem of missing information on the cause of
failure. More recently, Gijbels et al. (2007) introduced a class of estimating functions for the
regression parameter of the Cox proportional hazards model to allow unknown failure statuses
on some study subjects. Although related, the problem that we consider here is rather different
from the situations that were considered in the literature noted above. First, in our case the
missing information is more severe in the sense that, in addition to missing failure indicators,
T1 is completely missing for some patients, with only T observed. Moreover, we consider a
bivariate survival function for .T1, T2/, whereas the above literature focused on the univariate
case.

Our data structure also shares some similarity to semicompeting risks data (Fine et al., 2001)
in the sense that disease progression can be viewed as an intermediate non-terminating event,
with death a terminating event. However, there are some important differences. For the chor-
oid plexus tumour data, death must be preceded by disease progression owing to the nature
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of the disease; in other words, the terminating event cannot censor the non-terminating event.
This is different from semicompeting risks data, which are characterized by the feature that the
terminating event can censor the non-terminating event. In addition, in semicompeting risks
data, for subjects who experienced the terminating event it typically is known whether or not
they experienced the intermediate non-terminating event. However, in our data set, the status
of disease progression may be missing.

Section 2 describes a general probability model that accounts for missing information of
the forms that were described above and presents a family of accelerated failure time (AFT)
models for the marginals of T1 and T2. Numerical methods for model fitting and estimation
are presented in Section 3. In Section 4, the methods are illustrated by an analysis of the data
set that motivated this paper. In Section 5, we assess the goodness of fit of the proposed model
by using a Bayesian χ2-test, and we present sensitivity analyses to assess effects of between-
study heterogeneity, the copula that is assumed to obtain a bivariate distribution for .T1, T2/

and the values of prior parameters characterizing association between T1 and T2 as well as
location and scale in the marginal distributions. We evaluate the performance of the pro-
posed method by using a simulation study in Section 6, and we close with a brief discussion in
Section 7.

2. Probability model

2.1. General form of the likelihood
Let θ denote the vector of model parameters. For j = 1, 2, denote the marginal probability
density function, cumulative density function and survivor function of [Tj|Z] by fj.t|Z, θ/,
Fj.t|Z, θ/ and Sj.t|Z, θ/=1−Fj.t|Z, θ/: Denote the administrative right censoring time by C,
with observed times T o

1 = min{T1, C}, T o
2 = min{T2, C − T1} and T o = min{T , C}: In addi-

tion to right censoring, we account for the possibilities that either it is known that progression
occurred but the value of T1 is not known, or T o < T and it is not known at T o whether pro-
gression has occurred. To keep track of all possible cases, we define the following categorical
indicator variable:

Δ=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if T1 andT2 both are observed,
2 if T1 is observed and T2 is censored,
3 if T1 is censored,
4 if T is observed and T1 is unknown,
5 if T is censored and it is not known whether progression occurred:

We define the corresponding indicators δj = I.Δ = j/ for j = 1, . . . , 5. For brevity, we denote
To = .T o

1 , T o
2 , T o/ and δ = .δ1, . . . , δ5/:

Each subject’s likelihood contribution takes one of five possible forms. Denote the joint prob-
ability density function of [T1, T2|Z] by f1,2.t1, t2|Z, θ/: If T1 and T2 are both observed, then the
likelihood is

L1.To, δ|Z, θ/=f1,2.T o
1 , T o

2 |Z, θ/δ1 : .1/

If T1 is observed but T2 is censored, then the likelihood is

L2.To, δ|Z, θ/=
{∫ ∞

t2=T o
2

f1,2.T o
1 , t2|Z, θ/dt2

}δ2

: .2/
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If T1 is censored, then it is known that T1 > T o
1 but nothing is known about T2, and it follows

that the likelihood is

L3.To, δ|Z, θ/=S1.T o
1 /δ3 : .3/

The above three cases are those seen most commonly in practice. The next two cases may be
considered non-standard in that they are seen less often. If the time of death T o =T = T1 +T2
is observed but T1 is not known, possibly because T1 was not recorded, then the likelihood is

L4.To, δ|Z, θ/=
{∫ T o

t1=0
f1,2.t1, T o − t1|Z, θ/ dt1

}δ4

: .4/

This is the convolution of T1 and T2 evaluated at the observed survival time T =T o. The fifth
possibility is that the subject is known to be alive but it is not known whether disease progression
has occurred, formally, T >T o but T1 is not known. In this case, since

Pr.T >T o|Z, θ/=Pr.T1 �T o|Z, θ/Pr.T >T o|T1 �T o, Z, θ/

+Pr.T1 >T o|Z, θ/Pr.T >T o|T1 >T o, Z, θ/

=Pr.T1 +T2 >T o and T1 �T o|Z, θ/+Pr.T1 >T o|Z, θ/,

the likelihood contribution is

L5.To, δ|Z, θ/=
{∫ T o

t1=0

∫ ∞

t2=T o−t1

f1,2.t1, t2|Z, θ/ dt2 dt1 +S1.T o|Z, θ/

}δ5

: .5/

The likelihood thus is the product L.To, δ|Z, θ/=Π5
k=1Lk.To, δ|Z, θ/:

To obtain a joint distribution f1,2 for given marginals, we assume the Clayton (1978) copula,

S.t1, t2|Z, θ/={S1.t1|Z, θ/−1=φ +S2.t2|Z, θ/−1=φ −1}−φ, φ�0: .6/

Under this model, the correlation parameter φ is related to Kendall’s τ by the equation τ =
1=.2φ+1/. Either a large positive value of τ or a small value of φ corresponds to a large positive
correlation between T1 and T2, with τ = 1 if φ = 0. Independence of T1 and T2 corresponds
to τ = 0, which is obtained if φ→∞. Thus, the Clayton copula assumes that the correlation
between the time to progression T1 and the time from progression to death T2 is non-negative.
This assumption is quite reasonable here because choroid plexus tumour patients with longer
time to progression T1 are more likely to have a longer subsequent survival time T2, which also
is the case with many other types of cancer. Below, we shall assess the effects of assuming the
particular form (6) by repeating the model fit using a bivariate copula (Hougaard, 1986) that has
a very different form. Shih and Louis (1995) discussed inferences on the association parameter
in copula models for bivariate survival data.

To simplify the notation, we temporarily suppress the arguments Z and θ in f1, f2, S1 and S2,
and we denote ζ = .φ+ 1/=φ. Under the Clayton copula, the general forms of the likelihood
given by equations (1), (2), (4) and (5) take the following forms:

L1.To, δ|Z, θ/= [ζ{S1.T o
1 /−1=φ +S2.T o

2 /−1=φ −1}−φ−2f1.T o
1 /f2.T o

2 /{S1.T o
1 / S2.T o

2 /}−ζ ]δ1 ,

L2.To, δ|Z, θ/= [{S1.T o
1 /−1=φ +S2.T o

2 /−1=φ −1}−φ−1f1.T o
1 /S1.T o

1 /−ζ ]δ2 ,
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L4.To, δ|Z, θ/=[∫ T o

t1=0
ζ{S1.t1/−1=φ +S2.T o − t1/−1=φ −1}−φ−2f1.t1/f2.T o − t1/{S1.t1/ S2.T o − t1/}−ζ dt1

]δ4

and

L5.To, δ|Z, θ/=
[∫ T o

t1=0
{1+S1.t1/1=φS2.T o − t1/−1=φ −S1.t1/1=φ}−φ−1f1.t1/ dt1 +S1.T o/

]δ5

:

2.2. Specific distributional forms for the marginals
To incorporate covariates, we assume that each marginal belongs to the family of AFT models,
characterized by the hazard function

λ.t|Z, β/= exp.η/λ0{t exp.η/} for t> 0,

where the covariate and treatment effects are the parameters β= .β1, . . . , βq/ in the linear term
η =β1Z1 + . . .+βqZq. Under the AFT model, the cumulative hazard function is

Λ.t/= exp.η/

∫ t

0
λ0{u exp.η/}du

and the survivor function is S.t/ = exp{−Λ.t/}: The AFT family is quite broad, with a par-
ticular distribution obtained by assuming a specific form for the baseline hazard function λ0.
To obtain a good fit to the brain tumour data, we shall consider four possible distributional
forms for each of the baseline hazards corresponding to T1 and T2. These are the exponential,
Weibull, log-normal and log-logistic distributions, for a total of 16 possible models. To choose
a single best model for analysis of the data at hand, we shall assess the goodness of fit by using
the Bayesian information criterion (Schwarz, 1978).

Index the event times by j =1, 2 and denote the linear components ηj =βj,1Z1 + . . . +βj,qZq:

Since the exponential distribution is characterized by constant baseline hazard function λ0.t/≡γ
for γ > 0, the covariate-adjusted exponential AFT hazard of Tj is

λj,exp.t|Z, βj, γj/= exp.ηj/γj: .7/

The Weibull model has baseline hazard λ0.t/=γαtα−1, for γ, α> 0, so the covariate-adjusted
Weibull AFT hazard of Tj is

λj,weib.t|Z, βj, αj, γj/=γjαj exp.αjηj/tαj−1: .8/

Denoting the probability density function and survivor function of the log-normal distribution
having mean exp.μ+γ=2/ and variance {exp.γ/ − 1} exp.2μ+γ/ for real-valued μ and γ > 0
by fLN.t;μ, γ/ and SLN.t;μ, γ/, since the baseline log-normal hazard function is λ0.t;μ, γ/ =
fLN.t;μ, γ/=SLN.t;μ, γ/, it follows that the covariate-adjusted log-normal AFT hazard function
of Tj is

λj,log-norm.t|Z, βj, μj, γj/= exp.ηj/
fLN{t exp.ηj/;μj, γj}
SLN{t exp.ηj/;μj, γj} : .9/
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Finally, the log-logistic baseline hazard function is λ0.t/ = γαtα−1=.1 + γtα−1/, so the covari-
ate-adjusted log-logistic AFT hazard function of Tj is

λj,log-logist.t|Z, βj, αj, γj/= exp.ηj/
γjαj{t exp.ηj/}αj−1

1+γj{t exp.ηj/}αj−1 : .10/

3. Numerical methods and estimation

Although we adopt a parametric approach, the likelihood does not have a simple closed form
because the non-standard cases given by L4.To, δ|Z, θ/ and L5.To, δ|Z, θ/ involve integrals
that must be evaluated numerically. This makes it challenging to evaluate the first and second
derivatives of the likelihood, which is often needed for maximum likelihood methods such as
Fisher scoring. To avoid this difficulty, we fit the model by using the Gibbs sampler by gener-
ating unknown parameters sequentially from their full conditional posterior distributions. This
approach does not require evaluating the derivatives of the likelihood. Let p.θ/ denote the prior
distribution of θ. We assume that the components of θ are mutually independent a priori. Given
data from n subjects, the posterior distribution of θ is

p.θ|data/∝p.θ/
n∏

i=1

5∏
k=1

Lk.To, δ|Z, θ/:

Following Ibrahim et al. (2001), chapter 2, we assume independent improper priors on the
elements of β1 and β2, which we denote by βjr ∝ 1, for j = 1, 2 and r = 1, . . . , q: Thus, the
posteriors are determined mainly by the observed data. For the exponential distributions, we
assume gamma priors for the scale parameter, γj ∼Ga.a1, b1/, where Ga.a, b/ denotes a gamma
distribution with mean a=b and variance a=b2: For the Weibull baseline hazards, we assume
αj ∼Ga.a2, b2/ and γj ∼Ga.a3, b3/. For the log-normal baseline hazards, we assume a uniform
improper prior for the location parameter and a gamma prior for the scale parameter, μj ∝ 1
and γj ∼ Ga.a4, b4/. For the log-logistic baseline hazard, we assume that αj ∼ Ga.a5, b5/ and
γj ∼Ga.a6, b6/. We set aj =bj =0:01 for each j =1, . . . , 6, which is a gamma distribution with
mean 1 and variance 100, to reflect vague prior information on the unknown positive parameters.

Under these priors, because the posterior full conditional distributions of the parameters do
not have closed forms, we computed the posteriors by using the adaptive rejection Metropolis
sampling method of Gilks et al. (1995). We evaluated the integrals appearing in the likelihoods
L4 and L5 numerically by using adaptive Gaussian–Kronrod quadrature (Piessens et al., 1983).
In the Markov chain Monte Carlo algorithm we used 500 iterations to burn in the chains and
5000 iterations to compute the posterior samples. For initial values in the Markov chain Monte
Carlo algorithm, we used the maximum likelihood estimates of the parameters of the mar-
ginals for T1 and T2 based on the smaller data set consisting of 106 patients having complete data.

4. Analysis of the brain tumour data

In this section, we apply the proposed methodology to the brain tumour data. Although T1 and
T2 or their censoring times were recorded for 106 out of a total of 780 patients, the censoring
rate was very high. Among the smaller sample of 106, only 20 disease progression times T1 were
observed, with 81.1% of the T1-values censored. Because T2 is observable only if T1 is observed,
the information regarding T2 was even more limited. Among the 20 patients with observed
T1-values, 10 values of T2 were observed and 10 were censored. Among the 674 patients with
missing values of both T1 and T2, the sum T = T1 + T2 was observed for 182 patients and the



Estimating Progression-free Survival in Brain Tumour Patients 141

remaining 492 values of T were censored. Thus, although the total sample size was 780, most
of the information consisted of values of T1 +T2, with uncensored .T1, T2/ pairs fully observed
in only 10 patients. Consequently, our analyses relied heavily on covariate information, as well
as the strong assumption that the two data sets were exchangeable. Below, we shall conduct a
sensitivity analysis to assess potential between-study effects.

As noted above, we conducted a preliminary model selection and goodness-of-fit analysis to
choose one best parametric model by considering four distributional forms for each marginal,
including the exponential, Weibull, log-normal and log-logistic models, given by expressions
(7)–(10). For each regression model, the linear terms η1 and η2 each include four covariates: age
(z1), histology (z2 =1 for CPC and z2 =0 for atypical choroid plexus papilloma or choroid plexus

Table 1. Bayesian information criterion values for each of the 16 models
obtained from combinations of the marginal distributions for T1 and T2, assum-
ing the Clayton copula†

Distribution of T2 Results for the following distributions of T1:

Exponential Weibull Log-normal Log-logistic

Exponential 3901 2915 3358 2327
Weibull 3745 2721 3103 2153
Log-normal 4176 2484 3523 2739
Log-logistic 2472 2402 2978 2782

†The model that fits the data best is in italics.

Table 2. Posterior means, standard deviations SD and 95% credible intervals of the model parameters,
under the best fitting model with T1 log-logistic and T2 Weibull, using either all of the available data or only
the complete cases of the 106 patients with no missing values†

Covariate Parameter Results for available data (n=780) Results for complete cases (n=106)

Mean (SD) 95% credible Pr(β > 0) Mean (SD) 95% credible Pr(β > 0)
interval interval

Marginal distribution of T1
Age β11 −0:09 .0:06/ (−0.23, 0) 0.02 −0:02 .0:05/ (−0.13, 0.08) 0.40
Histology, CPC β12 2.24 .0:87/ (0.71, 4.15) 1 2.15 .0:56/ (1.16, 3.36) 1
Surgery, GTR β13 −1:29 .0:82/ (−3.04, 0.22) 0.05 −0.80 .0:61/ (−2.02, 0.4) 0.09
Metastases, yes β14 1.49 .1:02/ (−0.49, 3.57) 0.93 0.27 .0:73/ (−1.21, 1.72) 0.65

α1 0.69 .0:14/ (0.45, 0.98) 1.14 .0:22/ (0.74, 1.62)
γ1 0.03 .0:02/ (0.01, 0.08) 0.23 .0:13/ (0.07, 0.56)

Marginal distribution of T2
Age β21 0.08 .0:28/ (−0.51, 0.65) 0.63 0.09 .0:29/ (−0.48, 0.66) 0.64
Histology, CPC β22 6.86 .3:50/ (1.84, 15.82) 1 7.50 .3:97/ (2.19, 17.78) 1
Surgery, GTR β23 2.30 .2:17/ (−1.56, 7.30) 0.88 2.58 .2:31/ (−1.36, 7.94) 0.90
Metastases, yes β24 0.73 .2:44/ (−3.85, 6.09) 0.61 0.63 .2:47/ (−4.03, 6.04) 0.59

α2 0.47 .0:14/ (0.22, 0.78) 0.46 .0:15/ (0.22, 0.78)
γ2 0.88 .0:58/ (0.16, 2.43) 1.07 .0:74/ (0.24, 3.11)

φ 2.73 .2:57/ (0.28, 9.17) 2.54 .2:49/ (0.28, 9.00)

†A positive value of βjr corresponds to a higher hazard or, equivalently, a smaller value of Tj .
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(a) (b)

(c) (d)

Fig. 1. Posterior distributions of regression parameters ( , regression parameters for T1; - - - - - - - ,
regression parameters for T2): (a) age effect β11 and β21; (b) CPC effect β12 and β22; (c) GTR effect β13 and
β23; (d) metastases effect β14 and β24

papilloma), surgery group (z3 =1 for GTR and z3 =0 if less than GTR) and primary metastases
(z4 =1 if yes and z4 =0 if no). Table 1 shows the Bayesian information criterion values of the 16
models that were considered. On the basis of this analysis, the model that fits the data best has
log-logistic baseline hazard for T1 and Weibull baseline hazard for T2: The posterior parameter
estimates under this model are given in Table 2, and Fig. 1 shows the posterior distributions of
the covariate parameters.

In the model, for each outcome j =1, 2, a positive value of the coefficient βj,k corresponds to
a larger hazard and thus on average a smaller value of Tj: Table 2 shows that, for T1, a CPC his-
tology and presence of metastatic disease are prognostic factors for faster progression, whereas
older age and achieving a GTR with surgery are both desirable. This is shown graphically by
Fig. 1. The posteriors of β11 for age and β13 for GTR are mostly below 0, and the posteriors of β12
for CPC and β14 for metastases are mostly above 0. For the covariate parameter estimates of the
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distribution of T1 in Table 2, the magnitude of the negative posterior mean effect of age is larger
when using all available data compared with the complete-case analysis, with Pr(β11 > 0|data)
decreasing from 0.40 based on the fit using only the 106 complete cases to 0.02 based on the fit
using all 780 cases. Similarly, going from the complete cases to the full data set, the magnitude
of the positive posterior mean effect of metastases is larger, with (β14 > 0|data) increasing from
0.65 to 0.93. The posterior standard deviations of all four covariate parameters were larger in
the fit using all available data, probably because of the extra variability that is introduced by the
heterogeneous observations collected from the literature. In contrast, there were no substantive
differences between the fits for any of the covariate parameters of T2 by using the complete cases
versus using all available cases. This result might be expected on the basis of the consideration
that the information regarding T2 in the combined data set essentially came from the smaller
data set, since T2 was never observed directly in the larger data set.

5. Model diagnostics and sensitivity analyses

We assessed the goodness of fit of the proposed model by using the Bayesian χ2-test for censored
data that was proposed by Cao et al. (2010). The Bayesian χ2-test is based on squared differ-
ences between observed and expected frequencies for a given partition of the sample space and
assesses the adequacy of the posited model by graphically comparing the posterior distribution
of the squared difference with its null χ2-distribution. Specifically, to construct the Bayesian
χ2-test statistic, we first defined a uniform residual r for each of the observed failure times, T o

1
and T o

2 , as follows. Given T o
s and C,

r =Pr.Ts �T o
s |Ts <C, θ̃/=Fs.T

o
s |θ̃/=Fs.C|θ̃/, s=1, 2, .11/

where θ̃ is a posterior draw of θ. For patients with observed failure times, since their censoring
time C was not unobserved it was sampled from its posterior distribution according to the pro-
cedure that is described in Cao et al. (2010). It follows that the residuals are independent and
follow a uniform distribution when the model assumed is correctly specified. We partitioned the
unit interval into K =3 equiprobable subintervals. Letting Ok denote the number of r-values in
the kth cell, and m the total number of observed failure times, the χ2-test statistic is given by

S =
3∑

k=1

.Ok −m=3/2

m=3
: .12/

If the model assumed is correctly specified, S approximately follows a χ2-distribution with
2 degrees of freedom, χ2

2. Fig. 2 shows the histogram estimates of the posterior distribution
of S, which was very close to its null distribution χ2

2, suggesting that the model provides an
adequate fit to the data.

Although the model diagnostic does not indicate any significant lack of fit, given the high
rate of censoring, the power of the diagnostic is limited. Therefore, it is also useful to examine
the sensitivity of our analyses to the model assumptions. An important assumption underlying
our analyses is that the 674 observations from the literature and the 106 from the prospective
study are exchangeable. This assumption is quite reasonable because clinical practice in treating
choroid plexus tumours has not changed substantively over the time period encompassing the
two data sets. Still, it is important to investigate potential effects of between-study heterogeneity.
Although one may attempt to account for possible between-study heterogeneity by specifying
distinct regression parameters for the prospective study and the literature review data in each
of the marginal regression models of T1 and T2, unfortunately such a model is not identifiable.
This is because, since only T1 + T2 is observed in the literature review data set, the marginal
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Fig. 2. Histogram estimate of the posterior distribution of the χ2-test statistic S: , χ2-distribution with
2 degrees of freedom for reference

distributions of T1 and T2 are not identifiable for the literature review data. Intuitively, adding
an arbitrary value Δ to T1 and then subtracting Δ from T2 does not change the value of T1 +T2.
Consequently, parameters that characterize the between-study effects are not identifiable.

To address this issue, we conducted a sensitivity analysis to investigate how the inferences are
affected when the homogeneity assumption is violated. Let λjk, j, k =1, 2, denote the hazard of
Tj for the literature data set (k =1) and the prospective study (k =2). Our sensitivity analysis is
based on the following Bayesian hierarchical model for the marginal distributions of T1 and T2.
Denoting ηjk =βj1kZ1 + . . . +βjqkZq, the model for the hazard of Tj in data set k for a patient
with covariates Z is

λjk.t|Z, β/= exp.ηjk/λ0{t exp.ηjk/},

βjrk ∼N.β̃jr, σ̃2
jr/, r =1, . . . , q,

β̃jr ∝1

where σ̃2
jr is a known parameter that shrinks the literature data set parameter βjr1 and the pros-

pective study parameter βjr2 towards the common hyperparameter β̃jr, i.e. σ̃2
jr characterizes

the heterogeneity between the literature data set and the prospective study. A large value of
σ̃2

jr corresponds to high between-study heterogeneity, whereas if σ̃2
jr → 0 the covariate effects

are homogeneous between the two data sets, i.e. βjr1 = βjr2 for all j and r. To accommodate
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different scales of {βjrk} and to facilitate the sensitivity analysis, we set σ̃jr = τ β̂jr where β̂jr is
the estimate of βjr under the homogeneity assumption (see Table 2) and τ can be interpreted
as the coefficient of variation, i.e. the ratio of the standard error to the mean. We fitted the
above Bayesian hierarchical model, with the Clayton copula (6), using a range of values of
τ . Fig. 3 shows how the posterior mean estimates of the βjrs vary with τ , the between-study
heterogeneity. Although some covariate effects (e.g. β12 and β22 for histology) appear relatively
more sensitive to τ than others (e.g. β11 and β21 for age), overall the covariate effects are not
particularly sensitive to between-study heterogeneity.

To investigate the sensitivity of our results to the assumed Clayton copula, we also fitted the
data by using the Gumbel–Hougaard copula (Hougaard, 1986),

S.t1, t2|Z, θ/= exp{−.[−log{S1.t1|Z, θ/}]ϕ + [−log{S2.t2|Z, θ/}]ϕ/1=ϕ}:

We chose this copula because its functional form is very different from that of the Clayton
copula. Under this model, the association parameter ϕ is related to Kendall’s τ via the for-
mula τ =1−1=ϕ. A summary of the fitted model under the Gumbel–Hougaard copula model
is given in Table 3. With the exceptions of γ2 and β24, the posterior parameter estimates are
very similar to those obtained under the Clayton copula. This indicates that, for this data set,
inferences are not sensitive to the choice of copula that is used to obtain a bivariate survival
model for the given marginals. Although the estimate of the association parameter ϕ under the
Gumbel–Hougaard copula model is numerically similar to that of the association parameter

Fig. 3. Sensitivity analysis of covariate effects with respect to the study heterogeneity
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Table 3. Sensitivity analyses†

β11 β12 β13 β14 α1 γ1 β21 β22 β23 β24 α2 γ2 φ ϕ

Gumbel–Hougaard copula model using gamma priors with aj =bj =0.01
Mean −0.09 2.26 −1.25 1.30 0.67 0.04 0.05 6.65 1.80 3.30 0.53 0.24 — 1.97
Standard error 0.06 0.91 0.81 1.01 0.14 0.02 0.22 2.83 2.13 2.57 0.20 0.31 — 0.70

Clayton copula model using gamma priors with aj =bj =0.1
Mean −0.09 2.28 −1.31 1.45 0.68 0.04 0.10 6.93 2.22 0.70 0.47 0.82 2.36 —
Standard error 0.14 0.90 0.81 1.01 0.28 0.02 0.06 3.50 2.20 2.47 0.14 0.55 2.29 —

Clayton copula model using gamma priors with aj =bj =0.01
Mean −0.09 2.24 −1.29 1.49 0.69 0.03 0.08 6.86 2.30 0.73 0.47 0.88 2.73 —
Standard error 0.06 0.87 0.82 1.02 0.14 0.02 0.28 3.50 2.17 2.44 0.14 0.58 2.57 —

Clayton copula model using gamma priors with aj =bj =0.0001
Mean −0.09 2.27 −1.30 1.45 0.68 0.04 0.10 6.85 2.27 0.73 0.47 0.84 2.63 —
Standard error 0.06 0.89 0.81 1.01 0.14 0.02 0.29 3.43 2.21 2.46 0.14 0.58 2.56 —

†To assess sensitivity to the assumed variance 100 for the gamma priors (aj = bj = 0:01), the model was refitted
by using gamma priors for the shape and scale parameters assuming variances of 10 (aj = bj = 0:1) or 10000
(aj =bj = 0:0001). To assess sensitivity to the assumed Clayton copula, the model was refitted by using a Gum-
bel–Hougaard copula. To facilitate comparisons, the estimates under the Clayton copula with gamma priors from
Table 2 are repeated.

φ under the Clayton copula model, the estimated associations between T1 and T2 are quite
different under the two models. This is because the association parameters of the two models
have different meanings, with Kendall’s τ -value 0.16 under the Clayton copula and 0.49 under
the Gumbel–Hougaard copula. Such a difference is not completely unexpected, however, since
data typically contain much less information about association parameters compared with co-
variate effect parameters. In the present setting, information about the association parameter
comes mainly from the small data set of 106 patients for whom both T1 and T2 were observed.
Moreover, given the small number of events in this data set, it is difficult to estimate the asso-
ciation parameter reliably, as demonstrated by the large posterior standard deviations of these
parameters.

We conducted another sensitivity analysis by refitting the model, assuming the Clayton cop-
ula, for each of a series of values of the prior mean of φ. This strategy was advocated by Rotnitzky
et al. (1998, 2001). We assumed informative gamma distributions for φ with a small variance of
0.004 and the mean fixed, successively, at the values 0.1, 0.2, 0.5, 1, 2, 4, 8 and 16. Fig. 4 shows
the resulting posterior mean model parameter values as functions of the prior mean of φ. Fig. 4
shows that all parameters, except γ2, are robust to the prior mean of φ. The sensitivity of γ2 to
the prior mean of φ is consistent with the observation that the value of γ̂2 is different under the
Clayton and Gumbel–Hougaard copulas, since these two models yielded different estimates of
the association between T1 and T2 in terms of Kendall’s τ .

We also assessed the sensitivity of our results to prior specifications of the location and
scale parameters under the log-logistic model and to the shape and scale parameters under
the Weibull model. To do this, we considered two more priors for these positive parameters:
a relatively informative prior Ga.0:1, 0:1/, which has variance 10, and a very diffusive prior
Ga.0:0001, 0:0001/, which has variance 10000. The results under these priors, which are given
in Table 3, are quite similar to those displayed in Table 2. This suggests that our results are
not sensitive to the gamma prior’s variances in this range, when the prior mean is set equal
to 1.
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Fig. 4. Sensitivity analysis by assigning informative gamma distributions with a small variance of 0.004 and
mean fixed successively, at the values 0.1, 0.2, 0.5, 1, 2, 4, 8 and 16, and as the prior distribution of φ
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Table 4. Simulation results

α1 λ1 α2 λ2 β1 β2 β3 β4 φ

True parameter value 0.45 0.03 0.30 0.12 0.50 0.50 0.50 0.25 1.00
Empirical bias 0.002 0.005 0.001 −0.006 −0.031 −0.044 −0.064 −0.034 −0.066
Standard error 0.076 0.014 0.052 0.040 0.483 0.893 0.589 0.992 0.899
Coverage probability 0.931 0.940 0.942 0.935 0.941 0.948 0.951 0.961 0.985

6. Simulation study

We conducted a simulation study to evaluate the performance of the proposed method when
the data are heavily censored, as in the case of the motivating example. We generated bivariate
time-to-event data .T1, T2/ based on the Clayton copula with T1 and T2 marginally following
the log-logistic and Weibull AFT models respectively. In the AFT models, we included two
covariates: a continuous covariate Z1 generated from a standard normal distribution and a
binary covariate Z2 generated from a Bernoulli distribution with probability parameter 0.5.
In the log-logistic AFT model .10/ for T1, we set α1 = 0:45, λ1 = 0:03 and the two regression
coefficients β1 =β2 = 0:5. In the Weibull AFT model .8/ for T2, we set α2 = 0:3, λ2 = 0:12 and
the two regression coefficients β3 =0:5 and β4 =0:25. We set the copula association parameter
φ= 1, corresponding to moderate correlation between T1 and T2 with Kendall’s τ equal to 1

3 .
We assumed a total of 206 patients, with 106 patients having observed or censored values of T1
and T2 and the remaining 100 patients having missing progression statuses. We chose a uniform
censoring distribution with the percentage of censoring in the simulated data matching that
seen in the brain tumour data, i.e., in the simulated data, on average about 20 patients had T1
observed (i.e. 81.1% of the T1-values were censored), 10 patients had T2 observed (i.e. 90.6% of
the T2-values were censored) and 28 patients had T =T1 +T2 observed (i.e. 72.0% of the T -values
were censored). We simulated 1000 data sets. Table 4 summarizes the simulation results, includ-
ing the empirical bias, standard error and coverage probability of the 95% credible interval.
The simulations show that the estimates of all parameters had small biases, with the coverage
of all 95% credible intervals, except for that of φ, close to the nominal value. The 98.5% mean
coverage of the posterior credible interval for the association parameter is not surprising, given
the general difficulty of estimating such parameters reliably, as well as the structure and high
level of missingness that are imposed in the simulation study. These simulation results suggest
that the methodology proposed performs well with heavily censored data of the form that is
considered here.

7. Discussion

We have proposed a Bayesian model-based method to estimate PFS when the progression status
of some subjects is unknown. Our approach models the marginal distributions of the time to
progression and the time from progression to death separately by using AFT models and then
links these marginals to obtain a joint distribution by using a copula. Under the Bayesian par-
adigm, our method incorporates all available information, including both completely observed
and partially observed time-to-event data, to make inferences about PFS time. Our sensitivity
analyses indicated that the approach proposed is robust to the choice of both the copula model
and the prior specification in settings with this type of missing value structure, even when there
are high levels of censoring and missingness.
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