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Abstract

A sequentially adaptive Bayesian design is presented for a clinical trial of cord blood

derived natural killer cells to treat severe hematologic malignancies. Given six prog-

nostic subgroups defined by disease type and severity, the goal is to optimize cell dose

in each subgroup. The trial has five co-primary outcomes, the times to severe toxicity,

cytokine release syndrome, disease progression or response, and death. The design
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assumes a multivariate Weibull regression model, with marginals depending on dose,

subgroup, and patient frailties that induce association among the event times. Utilities

of all possible combinations of the nonfatal outcomes over the first 100 days following

cell infusion are elicited, with posterior mean utility used as a criterion to optimize

dose. For each subgroup, the design stops accrual to doses having an unacceptably

high death rate, and at the end of the trial selects the optimal safe dose. A simulation

study is presented to validate the design’s safety, ability to identify optimal doses, and

robustness, and to compare it to a simplified design that ignores patient heterogeneity.

Keywords: Cellular Therapy; Dose Finding; Natural Killer Cells; Precision Medicine;

Phase I-II Clinical Trial.

1 Introduction

This paper describes a sequentially adaptive Bayesian design for an early phase clinical trial

of umbilical cord blood derived natural killer (NK) cells as therapy for advanced hematologic

diseases. NK cells are lymphocytes that can be used for cancer immunotherapy because they

play a critical role in natural immune surveillance and are the body’s first line of defense

against viruses and newly transformed cancer cells (Rezvani and Rouce, 2015). Patients

may have chronic lymphocytic leukemia (CLL), acute lymphocytic leukemia (ALL), or non-

Hodgkin’s lymphoma (NHL), with either low or high bulk disease (LBD or HBD), so disease

type and bulk determine six prognostic subgroups. The trial’s primary goal is to identify an

optimal NK cell dose for each subgroup. Rather than monitoring one toxicity as in phase I

trials (Cheung, 2011) or bivariate (efficacy, toxicity) as in phase I-II (Yuan et al., 2016), there

are five co-primary outcomes. These are the times from cell infusion to death (D), disease

progression (P ), response (R), severe toxicity (T ), and severe cytokine release syndrome

(C). Since T and C are most likely to occur soon after cell infusion, they are monitored
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for LT = LC = 100 days, while P,R, and D are monitored for LP = LR = LD = 365 days.

The time Yj to event j is independently censored at Lj for each j ∈ {P,R, T, C,D}, death

informatively censors all other events, and YP and YR are competing risks. Based on clinical

experience, the Yj’s are interdependent, the distribution of Y = (YR, YC , YP , YT , YD) varies

between subgroups, and the adverse event times (YC , YP , YT , YD) are positively associated.

Denote NK cell dose by d, subgroup by g, and the probability of death prior to day 100 by

πD(d, g) = Pr(YD ≤ 100 | d, g) for all (g, d) pairs. In the design, if πD(d, g) is unacceptably

high compared to an elicited fixed upper limit π̄D(g) for subgroup g, then d is discontinued

in g. A conventional safety rule ignoring subgroups would discontinue d for all patients if an

interim estimate of πD(d) = Pr(YD ≤ 100 | d) is unacceptably high. This rule produces a

design with high probabilities of making incorrect decisions within subgroups. For example,

given historical values π̄D(1) = 0.10 and π̄D(2) = 0.40 with standard therapy for subgroups

g = 1 (low risk) and g = 2 (high risk), if the interim estimate π̂D(d) = 0.25, obtained by

ignoring subgroups, triggers the decision to stop all accrual to dose d, this is likely to be

correct for subgroup g = 1 but incorrect for g = 2.

A major logistical problem in trial conduct is that each patient’s outcome is based on five

event times monitored up to 365 days. Each outcome is fully evaluated at its occurrence time,

or censored by death or administratively at the end of its 100 or 365 day follow up period.

To choose a dose adaptively for a new patient, it is likely that some outcomes of previous

patients have not been evaluated fully, and it is not feasible to suspend accrual to wait for full

evaluation of all previous patients’ data. This problem was solved for phase I trials by the

time-to-event continual reassessment method (TiTE-CRM) (Cheung and Chappell, 2000).

Phase I-II designs based on bivariate (efficacy, toxicity) event times have been proposed by

Zhou et al. (2006) Thall et al. (2013), and Jin et al. (2014), among others.

In the NK cell trial, it is assumed that Pr(CLL) = Pr(ALL) = Pr(NHL) = 1/3, and

Pr(LBD) = 1/3 and Pr(HBD)= 2/3. Thus, given maximum sample size Nmax = 60, ap-
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proximate expected subgroup sample sizes are (7, 7, 7, 13, 13, 13), and these subsamples

are divided further among the NK cell doses. This limits the reliability of subgroup-specific

safety monitoring and optimal dose selection. Based on current knowledge about NK cell

biology, the six hazard functions may not be monotone in NK cell dose. Finally, given the

five event time outcomes, what is meant by “optimal NK cell dose” in each subgroup is not

obvious. We present a design that addresses all of these problems.

To provide a basis for dose-finding, we assume a Bayesian multivariate parametric re-

gression model for Y , with Weibull marginals having scale parameters that vary with (d, g).

A vector of patient frailties is introduced, with one frailty acting multiplicatively on the

marginal hazard of each event time. The frailty vector accounts for additional variability

not accounted for by subgroup, and also induces dependence between the elements of Y .

Frailty models have been used widely for multivariate failure time data, including the multi-

variate log-normal distribution (Ripatti and Palmgren, 2000), competing risks (Gorfine and

Hsu, 2011), and semi-competing risks (Lee et al., 2016).

Our design is nominally phase I-II since it includes the desirable event R and adverse

events {P, T, C,D}, and is an example of precision medicine since decisions are subgroup-

specific. Reviews of phase I-II designs are given by Zohar and Chevret (2007) and Yuan

et al. (2016). Our use of posterior mean utility is similar to, for example, the phase I-II

designs of Houede et al. (2010), and Thall et al. (2013), and the randomized trial design

of Murray et al. (2016). Phase I-II designs accounting for patient heterogeneity have been

given by Thall et al. (2008), Chen et al. (2016), and Guo and Yuan (2017).

Section 2 presents the probability model underlying the design. Section 3 describes

utility computation, and Section 4 presents the design. In Section 5, a simulation study is

presented to evaluate the design’s safety, ability to identify optimal doses, and robustness,

and to compare it to a simplified design ignoring patient heterogeneity. We close with a brief

discussion in Section 6.
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2 Probability Model

2.1 Recording Event Times

For interim sample size n(t) ≤ Nmax at trial time t, index patients in order of enrollment by

i = 1, · · · , n(t), with trial entry times 0 ≤ e1 ≤ e2 ≤ · · · ≤ en(t). For patient i, the trial time

of event j for patient i is ei + Yi,j, if it is observed. For j = P,R or D, Yi,j is followed until

ei + 365, and Yi,T and Yi,C are followed until ei + 100. Let Y o
i,j denote the time of observation

of Yj or right-censoring, with δi,j = 1 if Y o
i,j = Yi,j and 0 otherwise. At trial time t > ei, if

Yi,D > t− ei or Yi,D > 365, then Y o
i,D is the time of independent right censoring (δi,D = 0). If

Yi,D < min(t−ei, 365), then Y o
i,D = Yi,D is the observed time of death (δi,D = 1). For nonfatal

events j = T,C, if Yi,j < min{t − ei, Lj, Yi,D}, then Y o
i,j = Yi,j (δi,j = 1) and otherwise Y o

i,j

is the time of right-censoring (δi,j = 0). If Yi,P < min{t − ei, LP , Yi,R, Yi,D}, i.e. Yi,P is

observed, then Y o
i,P = Y o

i,R = Yi,P and (δi,P , δi,R) = (1, 0). If Yi,R < min{t− ei, LR, Yi,P , Yi,D},

then Y o
i,P = Y o

i,R = Yi,R and (δi,P , δi,R) = (0, 1). If neither YP nor YR occurs, (δi,P , δi,R) =

(0, 0). Since P and R are competing risks, (δi,P , δi,R) = (1, 1) is not possible. If censoring

is due to the fact that Yi,j > min{t − ei, Lj} and the patient is alive at trial time t, then

censoring is independent. For j 6= D, if censoring of Yi,j is due to death, i.e. Yi,D < Yi,j,

then the censoring is not independent and Y o
i,j = Y o

i,D (δi,j = 0).

2.2 Sampling and Frailty Models

Index NK cell doses by d = 1, 2, 3, and define Z = 0 for LBD and Z = 1 for HDB.

Index r = 1, 2, 3, for disease types CLL, ALL, NHL. Denote Z = (Z, r), which replaces

the subgroup index g. For i = 1, · · · , n(t), denote dose by di and covariates by Zi = (Zi, ri).

Generalizing the description of two semi-competing risks given by Fine et al. (2001), here the

joint distribution of Y is defined on the set YD = {y ⊂ [0,∞)5 : max(yP , yR, yC , yT ) < yD},

since death censors any nonfatal event but not conversely. On YD, YR and YP have the
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usual competing risks structure, with at most one observed. Thus, hR and hP are subhazard

functions (cause-specific hazards) where hj(y), j = R,P is interpreted as the hazard of R

or P occurring at time y and being j, and hR(y) + hP (y) is the hazard of either P or R on

YD. In the sequel we will abuse conventional terminology by referring to either hazards or

subhazards as “hazard functions,” and do the same for survivor functions Sj(y).

We assume Weibull marginal event time distributions,

Yi,j | αj, λi,j
indep∼ Weibull(αj, exp(λi,j)), i = 1, . . . , n(t) and j ∈ {P,R, T, C,D}, (1)

with shape parameter αj > 0 and scale exp(λi,j), which has hazard and survival functions

hj(y | αj, λi,j) = αj exp(λi,j)y
αj−1 and Sj(y | αj, λi,j) = exp{− exp(λi,j)y

αj} for y > 0.

The joint conditional likelihood for all observable outcomes on YD is the product of the

individual likelihoods, p(yoi , δi | α,λ) =
∏

j∈{P,...,D}{hj(yoj | αj, λi,j)}δjSj(yoi,j | αj, λi,j) for

observed (yoi , δi), (Prentice et al., 1978; Kalbfleisch and Prentice, 2011).

Given the form (1) of the marginals, we formulate a joint model to account for effects of

dose and subgroup on each Yij, by including dose-subgroup parameters in each λi,j. Let ui,j

be a latent frailty associated with patient i for outcome j, with ui = (ui,P , · · · , ui,D). The

relationship between Yi,j, di, and Zi = (Zi, ri) is based on the regression model

λi,j(Zi, di, ui,j) = βjZi + ξjψri,di + ui,j, (2)

with ξD ≡ 1 to ensure identifiability. Thus, ψr,d is the effect of d on the death rate for disease

type r. Since ψr,d describes the relationship between r, d, and Yj for all j, it combines

information across outcomes. Larger ψr,d implies a higher risk of death for patients with

disease type r and dose d. If ξj > 0 (ξj < 0), this implies a higher (lower) risk for outcome

j. The parameter βj is the additive effect of HBD (Z = 1) on log(hj), with βj > 0 reflecting

a higher rate, equivalently smaller E(Yj), for HBD versus LBD. The regression model in (2)
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reduces the number of parameters, from 6× 3× 5 = 90 if ψZ,r,d,j were used to 5 + 9 + 4 = 18.

The model is parsimonious to allow adaptive subgroup specific decision making to be done

tractably even with the trial’s limited sample size, yet it is still quite flexible to accommodate

possible relationships between d, Z and Y .

For the patient frailties, we assume ui
iid∼ N5(0,Ω) with Ω ∼ inverse-Wishart(ν,Ω0)

for fixed ν > J − 1 and 5× 5 positive definite hyper-parameter matrix Ω0. We incorporate

{ui, i = 1, · · · , n} into the five hazard functions to account for possible heterogeneity between

patients beyond that due to the prognostic subgroups. The correlations among the ui,j’s also

induce dependence among the outcomes of each patient. Combining (1) and (2), conditional

on ui,j, the hazard function j for Yij is

hj(y | αj, ξj, ψri,di , Zi, ui,j) = αj exp(βjZi + ξjψri,di + ui,j)y
αj−1, y > 0,

and we assume conditional independence of the elements of Yi given ui and θ on the set

on YD. Suppressing patient index i, the joint survival function for y ∈ YD is obtained by

averaging over the frailty distribution,

S(y′, yT , yC , yD | α, ξ, ψr,d, Z, ν,Ω0) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

∏
j∈{P,R}

Sj(y
′ | αj, ξj, ψr,d, uj)

×
∏

j∈{T,C,D}

Sj(yj | αj, ξj, ψr,d, uj)p(u,Ω | ν,Ω0)du.

In this model, the hazard functions of all outcomes, including the competing risks P and R,

are estimable (Prentice et al., 1978; Kalbfleisch and Prentice, 2011).

2.3 Prior Distributions and Posterior Computation

We specify priors for the model parameters α = (αj, j = P, . . . , D), β = (βj, j = P, . . . , D),

ξ = (ξj, j = P,R, T, C), and ψ = (ψr,d, r = 1, . . . , K, d = 1, . . . ,m) as follows. We assume
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αj
indep∼ Ga(aj, bj) where Ga(aj, bj) represents gamma distributions with mean aj/bj and

variance aj/bj
2, and let ξj

indep∼ N(ξ̄j, ω
2
j ) for each j, with ξD ≡ 1. We assume ψr,d

indep∼

N(ψ̄r, τ
2
r ) to allow the diseases CLL, ALL, NHL (r = 1, 2, 3) to have different outcome rates.

To reflect higher hazards of adverse outcomes for patients with HBD, we assume that their

effects follow normal distributions truncated below at 0, thus p(βj) ∝ exp{−(βj−β̄j)2/(2σ2
j )}

for βj > 0, j = T,C,D, where β̄j and σ2
j denote fixed hyperparameters for all j. The priors

express no information on the directions of the HBD effects on the hazards of the sub-

distributions of Yi,P and Yi,R, so βj ∼ N(β̄j, σ
2
j ) for j = P,R. We denote θ = (α,β, ξ,ψ,Ω),

and hyperparameter vector θ∗ = (a, b, ξ̄,ω2, ψ̄, τ 2, β̄,σ2, ν,Ω0) where (a, b) = {(aj, bj), j =

P, . . . , D}, (ξ̄,ω2) = {(ξ̄j, ω2
j ), j = P, . . . , C}, (ψ̄, τ 2) = {(ψ̄r, τ 2

r ), r = 1, . . . , K}, (β̄,σ2) =

{(β̄j, σ2
j ), j = P, . . . , D}.

To establish θ∗, we elicited probabilities of the 12 joint events occurring within follow of

30 days for C and 100 days for each j 6= C (Table 1), chosen by the clinical investigators.

Denote L′ = (L′P , L
′
R, L

′
T , L

′
C , L

′
D) = (100, 100, 100, 30, 100). We then solved sets of equations

under the assumed model to obtain prior means, and calibrated dispersion parameters to

reflect vague prior knowledge. Details of prior calibration are given in Supplementary §3.

Given θ∗ and interim data Dn(t) at trial time t, the joint posterior of all parameters θ

and patient specific random effects u = {ui, i = 1, . . . , n(t)} is

p(θ,u | Dn(t),θ
∗) ∝

n(t)∏
i=1

p(yoi , δi | θ,ui)p(θ,u | θ∗)

=

n(t)∏
i=1

∏
j∈{P,...,D}

(
hj(y

o
i,j | αj, λi,j)

)δi,j(t)
Sj(y

o
i,j | αj, λi,j)p(θ,u | θ∗). (3)

We use Markov chain Monte Carlo (MCMC) simulation to generate posterior samples of

θ and u. Details of posterior computation are given in Supplementary §1. A computer

program “NKcelldosefinding” for implementing this methodology is available from https:
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//users.soe.ucsc.edu/~juheelee/.

3 Computing Utilities

Denote δ′ = (δ′P , δ
′
R, δ

′
T , δ

′
C , δ

′
D), where δ′j = 1 if Yj is observed by L′j, and 0 otherwise. Since

(δ′P , δ
′
R) = (1,1) is impossible, there are 3×23 = 24 possible outcomes δ′ ∈ ∆. Denote by ∆0

the subset of ∆ with δD = 0, for patients who survive 100 days. As a practical approach, we

elicited utilities on the set δ′ ∈ ∆0, rather than for all possible Y , by first fixing minimum

utility U(δ′) = 0 if δ′D = 1, i.e. if a patient dies before day 100. There are |∆0| = 12 possible

early event combinations in ∆0, so computation of the posterior mean utility for each (d,Z)

only requires evaluation of π(δ′ | d,Z,θ) for each of the 12 indicator vectors δ′ ∈ ∆0. The

elicited utilities U(δ′) for all δ′ ∈ ∆0 are given in Table 2.

To compute mean utilities, we use the fact that the distribution of [δ′ | d,Z] is induced

by that of [Y | d,Z], for each (d,Z). For example,

π((1, 0, 1, 0, 0) | d,Z,θ) = Pr(YP ≤ L′p, YR > YP , YT ≤ L′T , YC > L′C , YD > L′D | d,Z,θ)

=

∫ L′
P

0

∫ ∞
YP

∫ L′
T

0

∫ ∞
L′
C

∫ ∞
L′
D

∫
R5

p(y | d,Z,u,θ)p(u | θ)du dy.

Given θ, the mean utility of assigning dose d to a patient with covariates Z is

Ū(d,Z,θ) =
∑
δ′∈∆0

U(δ′) π(δ′ | d,Z,θ). (4)

To estimate Ū(d,Z,θ), a frequentist approach might plug in an estimator, θ̂, and use

Ū(d,Z, θ̂). We exploit the Bayesian structure to compute posterior predictive mean util-

ities for use as dose selection criteria. Given the final data, DNmax , when all Nmax patients

have been followed up fully, for a future patient with covariates Z, the posterior predictive
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mean utility of giving dose d to that patient is

u(d,Z | DNmax) =

∫
θ

Ū(d,Z,θ)p(θ | DNmax)dθ. (5)

This is used as an optimality criterion for dose selection at the end of the trial. While utilities

are elicited over the early follow up intervals L′, all of the follow up information on (Yi, δi),

for i = 1, · · · , Nmax over L is used to compute u(d,Z | DNmax), using a posterior MCMC

sample of θ ∼ p(θ | DNmax ,θ
∗). Details are given in Supplementary §1.

4 Trial Design

To ensure ethical conduct of the NK cell trial, subgroup-specific safety monitoring rules are

used. For each (d,Z), we denote πD(d,Z,θ) = Pr(YD ≤ L′D | d,Z,θ) = Pr(δ′D = 1 | d,Z,θ).

Let π̄D(Z) be an elicited fixed upper limit on πD(d,Z,θ) for subgroup Z, and let pD,1 be a

fixed cut-off probability. At trial time t, if

Pr{πD(d,Z,θ) > π̄D(Z) | Dn(t)} > pD,1 (6)

then d is considered unsafe for subgroup Z, and is no longer administered to patients in

that subgroup. Elicited values of π̄D(Z) are given in Table 3. To obtain a design with high

subgroup-specific probabilities of stopping a truly unsafe dose and selecting the best safe

dose for each Z, we investigated cut-offs 0.80 and 0.90, and chose pD,1 = 0.80.

The design is defined in terms of possible actions A = {0, 1, 2, 3}, where any d ≥ 1 is a

dose and d = 0 is the action to not administer any NK cells. Let A(Z,Dn(t)) be the subset

of acceptable actions for a patient with covariates Z at trial time t based on interim data

Dn(t). If no doses are safe for Z, i.e. A(Z,Dn(t)) = {0}, then no patient in subgroup Z is

treated. The acceptable dose sets A(Z1,Dn(t)) and A(Z2,Dn(t)) may differ for Z1 6= Z2 at
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time t during the trial, and these sets may change adaptively as data accumulate.

During trial conduct, for each disease type r, patients are randomized among the three

doses in order of entry to the trial by randomly permuting the integers (1, 2, 3). Safety

monitoring is begun for each disease type r when nine patients have been enrolled in r and

at least five of the nine have died or been followed for 100 days. For each disease type r,

we define action sets, A((0, r), t) and A((1, r), t), for the two disease bulk subgroups. E.g.,

suppose the initial permuted dose blocks are (3, 1, 2), for r = 1, (3, 2, 1) for r = 2, and

(2, 1, 3) for r = 3. Once safety monitoring is begun, unsafe doses are eliminated from each

block adaptively. For example, if the design gives doses (3, 1, 2) for a cohort with disease

type r, the following two possible cases illustrate details of trial conduct.

1. Suppose the first patient in the cohort has Z = (0, r). We first update A((0, r), t). If the

updated A((0, r), t) = {0}, i.e. no dose is safe for this subgroup, we do not give any NK

cells to the patient. If 3 ∈ A(Z, t), the patient is treated at d = 3. If not, we move on to a

dose in the permutation that has not been used and is safe for Z.

2. Suppose d = 3 is given to the previous patient in the cohort, and the next patient in the

cohort has Z = (1, r). We update A(1, r) based on the most recent data. If A((1, r), t) =

{0}, we do not give any NK cells to the patient. If 1 ∈ A((1, r), t), then we give d = 1 to the

patient. If not, we proceed to d = 2. If d = 2 is not safe, then d = 3 is the only safe dose for

Z = (1, r), since all doses in (3, 1, 2) have been used. A new cohort is started by randomly

permuting (1, 2, 3). Suppose this gives (1, 3, 2). Since d = 1 must be skipped since it is not

safe, d = 3 is given to the patient. At this point, only d = 2 is left in that block for the next

patient with disease type r.

An additional rule imposed by a regulatory agency also is included. The regulator re-

quired a safety rule that ignores Z and stops the trial if the probability of death within

30 days at d = 1 is too high. To comply with this requirement, we formulated a sim-
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plified model for this safety rule only, assuming δD(30) | qD ∼ Ber(qD), where qD(30) =

Pr(YD < 100 | d = 1) for all Z, and qD ∼ Be(0.4, 0.6) a priori. If Pr(qD > .40 | Dn(t)) > .90,

then this rule stops the trial and concludes that no dose is safe for any patient. Thus, the

trial can be stopped either by the regulator’s rule or the subgroup-specific safety rules.

To determine a final optimal action for each Z when Nmax = 60 at Tmax, we identify

A(Z, Tmax) using the safety rule in (6). If A(Z, Tmax) = {0}, then no dose is selected for Z,

denoted by dsel(Z) = 0. If A(Z, Tmax) 6= {0}, then the selected optimal dose is

dsel(Z) = arg max
d∈A(Z,Tmax)

u(d,Z | DNmax).

5 Simulation Study

5.1 Simulation Design

We simulated the NK cell trial under six scenarios to evaluate the design’s performance. For

Scenario 1, we used the prior occurrence probabilities {π(e)
j,Z,r} elicited from the clinicians in

Table 1 to simulate data, with fixed “true” parameter values αTR
j and λ̄TR

j,Z,r,d determined by

solving the equations

π
(e)
j,Z,r = 1− S(L′j | αTR

j , λ̄TR

j,Z,r,d) = 1− exp{− exp(λ̄TR

j,Z,r,d)(L
′
j)
αTR
j } (7)

for (j, Z, r). In Scenario 1, we assumed dose has no effect, with the same λ̄TR
j,Z,r,d for all d and

no regression relationship in (2) for λ̄TR. We simulated data from the Weibull distribution,

yi,j | αTR

j , λ̄TR

j,Z1i,ri,di
, uTR

i,j

indep∼ Weibull(αTR

j , exp(λ̄TR

j,Z1i,ri,di
+ uTR

i,j )),
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where uTR
i

iid∼ N5(0,ΩTR), with ΩTR
j,j = 0.001, ΩTR

j,R = −0.5 × 0.001, j 6= R and ΩTR

j,j′ =

0.5 × 0.001, j 6= j′, j, j′ 6= R. For Scenarios 2–6, we assumed the same ΩTR and specified

αTR and true marginal probability of death by L′D = 100 for LBD (Z = 0), disease type

r and dose d, πTR
D,0,r,d = Pr(YD ≤ L′D | d, Z = 0, r). The survival function in (7) with

αTR
D and πTR

D,0,r,d gives λ̄TR
D,0,r,d. For subgroups with Z = 1 and the other outcomes, we

specified ξ̄TR
j and simulated ξTR

j,r,d

indep∼ N(ξ̄TR
j , 0.012) for all combinations of (j, r, d) with

ξTR
D,r,d = 1. Similarly, we specified β̄TR

j and simulated βTR
j,r,d

indep∼ N(β̄TR
j , 0.012), j = P,R, and

log(βTR
j,r,d)

indep∼ N(log(β̄TR
j ), 0.052), j = T,C,D, to ensure that βTR

j,r,d > 0 for adverse outcomes.

We set λ̄TR
j,Z,r,d = βTR

j,r,dZ + ξTR
j,r,dψ

TR
D,r,d and λTR

i,j = λ̄TR
j,Zi,ri,di

+ uTR
i,j . We generated event time Yi,j

for a patient with Zi from Weibull(αTR
j , λTR

i,j ). Under the model assumed for the simulation

truth, βTR and ξTR are indexed by j, r and d. This more complex model includes the design’s

assumed Weibull model as a special case by letting βTR
j,r,d = βj and ξTR

j,r,d = ξj for all (r, d).

The assumed true probabilities of death, πTR
D,Z,r,d for each (Z, r, d), are shown on the first lines

of the simulation scenario boxes in Table 3, with the probabilities exceeding the subgroup-

specific upper limits π̄D(Z) marked in grey. The second lines give the true expected utilities

ŪTR for each (Z, d), and the maximum utility for each Z is underlined. For example, all

doses are safe for all Z under Scenario 1, while all doses unsafe for all Z under Scenario

3. Under Scenario 1, all doses are equally good, while under Scenarios 2, 4, 5, and 6, the

optimal safe doses vary with Z and using patient subgroup information is critical. Under

Scenario 4, doses 2 and 1 are optimal for patients with Z = 0 and Z = 1, respectively,

regardless of r. Under Scenario 5, the optimal doses vary with disease type r but not with

disease bulk Z. Under Scenario 6, the true mean utilities vary with (d, Z, r), and the set of

acceptable doses varies with Z. Values of αTR, β̄TR, ξ̄TR assumed for the scenarios are given

in Supplementary Table 2. A total of M = 1000 trials were simulated under each scenario.

We examined the design’s robustness by simulating the Yi,j’s from a log-logistic distri-

bution. To obtain fair comparisons, in each scenario, given πTR
j,Z,r,d values under the Weibull
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distribution we solved for true parameter values under the log-logistic distribution by match-

ing the πTR
j,Z,r,d’s, so the marginal probabilities of occurrence during follow-up were identical

for the two models, and truly unsafe doses remained unsafe regardless of the assumed true

model used to simulate the data. In contrast, the rates of occurrence over time under the

two models necessarily differed, which caused the mean utilities to change, due to P and

R being competing risks and the semi-competing risks structure between D and the other

outcomes on YD. The true mean utilities under the log-logistic are given in Supplementary

Table 6. Most differences in true mean utilities are minor, although in some cases there are

non-trivial differences. For example, under the Weibull distribution d = 1 clearly is optimal

for Z = 1 in Scenario 4, but under the log-logistic distribution differences between expected

utilities for the three doses are much smaller. Details of the simulation design are given in

Supplementary §3.

As a comparator, we considered a simplified version of the design that does not use co-

variates or make subgroup-specific inferences. For this design, we assumed a simpler model

ignoring Z but still accounting for the five event times and their competing risks and semi-

competing risks relationships. This model assumes each Yi,j | α′j, λ′i,j
indep∼ Weibull(α′j, exp(λ′i,j)),

where λ′i,j = ξ′jψ
′
di

+ u′i,j with ξ′D = 1 and u′i
iid∼ N5(0,Ω). Similar to the full model, for the

simpler model we assumed a gamma prior for α′j, normal priors for ξ′j and ψ′d and an inverse

Wishart prior for Ω. Under the simpler design, we defined A(t) as a function of t only, so

if a dose was declared unsafe this pertained to all patients. A similar randomization with

blocks of size m = 3 was used for allocating patients to doses in A(t), and a dose d was

declared unsafe if Pr(π′D(d,θ′) > .25 | Dn(t)) > .80, where π′D(d,θ′) is the probability of

death by L′D with d and θ′ = (α′,ψ′, ξ′). Fixed prior hyperparameters under the simpler

model were specified, by using the elicited probabilities in Table 1, but ignoring any effects

of Z. Posterior mean utility, for each d but ignoring Z, was used as a criterion to choose an

optimal dose for any future patient.
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We evaluated the designs using two criteria, the probabilities of identifying doses with

truly excessive probabilities of death and of selecting the true optimal safe dose for each

Z. For each simulated trial ` = 1, . . . ,M , and each Z, each design selects a dose dsel,`(Z),

with dsel,`(Z) ≡ dsel,` for all Z under the simpler design. We let κ1,`(d,Z) = 1 if dose d is

identified as unsafe for a patient with Z in simulated trial `, or 0 if not. We let κ2,` = 1 if

trial ` is not terminated by the regulator’s safety rule, and 0 otherwise. For I(·) the indicator

function, we summarized simulation results using the empirical proportions among trials not

stopped by the regulator’s safety rule, given for each d and Z by

Pr(Stop | d,Z) =

∑M
`=1 κ2,`κ1,`(d,Z)∑M

`=1 κ2,`

and Pr(Select | d,Z) =

∑M
`=1 κ2,`I(d = dsel,`(Z))∑M

`=1 κ2,`

.

5.2 Simulation Results

Simulation results are summarized in Table 3, including the simulation truth to facilitate

evaluation, with Pr(Stop | d,Z) and Pr(Select | d,Z) shown in the third and fourth lines

for each Z. Overall, the design reliably identifies unsafe doses and selects optimal doses for

each subgroup, based on Nmax = 60. Large Pr(Stop | d,Z) is achieved for Z and d with

large πTR
D . When πTR

D is clearly greater than π̄D(Z), Pr(Stop | d,Z) is particularly high,

such as in the cases with r = 1 in Scenario 3. Cases where πTR
D,Z,r is slightly greater than

π̄D(Z) tend not to achieve high Pr(Stop | d,Z), in part due to the small sub-sample size

per subgroup. The design makes more accurate decisions for Z = 1 compared to Z = 0, due

to the prevalences Pr(Z = 1) = 2/3 and Pr(Z = 0) = 1/3. For example, in Scenario 3, πTR
D

exceeds π̄D by approximately the same difference for Z = (0, 1) and Z = (1, 1), but Pr(Stop)

is much larger for Z = (1, 1) due to there being more data on HBD patients (Z = 1). Truly

optimal safe doses have large Pr(Select | d,Z), shown on the fourth lines for each Z in the

table. In Scenario 1, doses have the same true expected utilities for each Z, and doses are

selected with almost equal probabilities for all (Z, r). When there are clearly optimal doses,
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as in Scenario 2, the design has large Pr(Select | d,Z) for those doses. When two doses have

similar expected utilities, such as cases with Z = 0 in Scenario 6, the design selects both

doses with large Pr(Select | d,Z). When no dose is safe, as in Scenario 3, Pr(Select | d,Z)

is small for all d. Scenario 6 is complex in that the pattern of the true utilities varies with

both Z and r. The design captures this pattern well and makes correct decisions with high

probabilities.

The proportions of patients treated in trials for each dose and subgroup are summarized

in Supplementary Table 5, showing the design reliably identifies unsafe doses for each sub-

group and assigns fewer patients to doses declared unsafe. If all doses are identified as safe

for a subgroup, patients in the subgroup will be assigned to a dose at random, as in Scenario

1. Proportions of trials terminated by the regulator’s safety rule are summarized in Supple-

mentary Table 7. The regulator’s safety rule rarely terminates the trial, even for Scenario

3 where πTR
D exceeds q̄D for all Z. This is because, under Scenario 3, a trial is terminated

earlier by the subgroup-specific safety rule since all doses are unsafe for all subgroups. When

d = 1 is unsafe, it is likely that the subgroup-specific safety rule identifies this and stops

further allocation of patients to d = 1, so no more deaths occur at d = 1. This helps to

prevent the regulator’s safety rule from incorrectly terminating the entire trial when only

d = 1 is unsafe, thus continuing accrual for safe doses and improving evaluation of outcomes

for those doses.

Stopping and dose selection probabilities under the simpler design that ignores Z are

compared to those under the design with subgroup specific decisions in Figure 1 and sum-

marized in Supplementary Tables 3 and 4. Panels (a) and (b) of the figure give histograms

of the differences, Pr(Stop | d,Z) − Pr(Stop | d), for truly safe doses and unsafe doses, re-

spectively, for all (d,Z) and all scenarios. Panel (a) shows that the design accounting for Z

often has much smaller Pr(Stop | d,Z) for truly safe doses (thus negative differences). This

advantage is substantial in cases like Scenario 2, where the true safety of a dose varies greatly
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across subgroups, and most doses are unsafe. The histogram in (b) shows that the simpler

design often stops truly unsafe doses with higher probability (thus negative differences). This

is mainly due to Scenario 3 where all doses are unsafe for all subgroups. However, when a

dose is unsafe only for some subgroups, as in Scenarios 4 and 5, the design accounting for

Z greatly increases the probability of correctly stopping truly unsafe doses, shown by the

large cluster above 0.40. Panel (c) gives the histogram of differences in empirical proportions

Pr(select | d,Z) − Pr(select | d), for truly optimal doses for all (d,Z) across Scenarios 2-6.

The design accounting for Z is much more likely to select truly optimal doses (thus many

more positive differences). Doses assigned to patients under the simpler design are sum-

marized in Supplementary Table 5. The table shows that when unsafe doses vary between

subgroups, as in Scenario 2, more patients are treated at unsafe doses under the simpler

design. A detailed discussion is given in Supplementary §4.

Results of the robustness study are summarized in Supplementary Table 6. When data are

simulated from the log-logistic distribution, some correct stopping and selection probabilities

are decreased under Scenarios 3 and 4 in the LBD subgroups, since Pr(LBD) = 1/3. In the

other cases, differences in the patterns of the hazard functions over time affect the design’s

performance only slightly. Thus, the design appears to be robust.

To examine how much the design’s performance is improved by a larger sample size,

we re-ran the simulations using Nmax = 120. Supplementary Tables 5 and 8 illustrate the

results for Nmax = 120 under all scenarios, showing that subgroup-specific dose assignments

are improved (Table 5) and probabilities of correctly stopping unsafe doses and selecting

optimal doses are greatly increased for many combinations of (d,Z) (Table 8). For example,

in Scenario 6, for patients with NHL, Pr(Stop | d,Z) values increase from 0.51 to 0.67 (LBD)

and from 0.91 to 0.99 (HBD) for d = 3. For subgroups with HBD, the truly optimal doses

are selected with higher rates for Nmax = 120. It thus appears that a larger Nmax is highly

desirable for designs making subgroup-specific decisions.
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We also investigated how the performance of the proposed design changes with shorter fol-

low up, by reducing follow up fromL = (365, 365, 100, 100, 365) toL′ = (100, 100, 100, 30, 100).

The results are summarized in Supplementary Table 9. The design’s performance greatly de-

teriorates with shorter follow up, on average, for both Pr(Stop | d,Z) and Pr(Select | d,Z).

For example, the probability that dose 1 is correctly identified as unsafe decreases from 0.76

to 0.53 for (CLL, LBD) in Scenario 6. Thus, incorporating data from patients monitored for

a longer period greatly enhances the design’s performance.

6 Discussion

We have presented a clinical trial design that does subgroup-specific safety monitoring and

dose selection for a clinical trial of NK cells as therapy for severe hematologic diseases.

Decisions are based on five time-to-event outcomes by formulating a utility-based dose opti-

mization criterion. Our simulations show that the design performs well under a wide variety

of dose-subgroup-outcome scenarios, and that accounting for patient heterogeneity in this

setting is very important, since failure to do so is likely to produce a design with extremely

large incorrect decision probabilities in many subgroups. The results in Supplementary Ta-

ble 8 strongly suggest that trials that make subgroup-specific decisions should have larger

sample sizes than conventional trials. A general conclusion is that phase I-II designs should

do precision medicine and have larger sample sizes than used conventionally.

To apply this methodology if some outcome hazards are known to increase with dose, a

monotonicity assumption would be needed, and the block randomization would be replaced

by a sequentially adaptive within-subgroup dose assignment procedure. The trial would be

more difficult to conduct, since the resulting imbalance in dose-subgroup sample sizes would

reduce reliability. If the prevalence for one or more subgroups is very low, the proposed

design may not be feasible due to unacceptably small sample sizes for those subgroups.
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Thus, it may be more appropriate to exclude rare subgroups.

Our use of five outcomes shows large variability in the elicited utilities of the 12 possible

nonfatal elementary events in Table 2. If R were considered to be efficacy and toxicity were

defined as any of the four adverse events, this would combine adverse events with utilities

ranging from 0 to 70. Thus, our more refined utility structure appears warranted.
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Disease Bulk Disease Type Progression Response Severe Toxicity Death

Low Bulk CLL (r = 1) 0.05 0.20 0.25 0.02
Disease ALL (r = 2) 0.15 0.50 0.25 0.10
(Z = 0) NHL (r = 3) 0.10 0.35 0.25 0.05

High Bulk CLL (r = 1) 0.20 0.35 0.25 0.10
Disease ALL (r = 2) 0.40 0.60 0.40 0.20
(Z = 1) NHL (r = 3) 0.40 0.40 0.25 0.15

Table 1: Elicited probabilities π
(e)
j,Z,r provided by the clinicians. The probabilities are used

to establish values for fixed prior hyperparameters, ψ̄, β̄, ξ̄ and a.

(δ′P , δ
′
R) (δ′P , δ

′
R)

δ′C δ′T (1,0) (0,0) (0,1) δ′C δ′T (1,0) (0,0) (0,1)

0 0 20 50 90 1 0 10 30 70
1 10 30 70 1 5 20 50

Table 2: Elicited utilities of all possible combinations of discrete outcomes for patients who
survive 100 days, U(δ′) for δ′ with δ′D = 0. For any δ′ with δ′D = 1, U(δ′) = 0. The set
∆ of all possible values does not include any δ′ with (δ′P , δ

′
R) = 1(1, 1), since P and R are

competing risks.
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Bulk (→) LBD (Z = 0) HBD (Z = 1)
Types (↓) Dose (→) d = 1 d = 2 d = 3 π̄D d = 1 d = 2 d = 3 π̄D

Scenario 1 CLL πTR
D 0.02 0.02 0.02 0.15 0.10 0.10 0.10 0.30

(r = 1) ŪTR 46.32 46.32 46.32 44.04 44.04 44.04
Pr(Stop) 0.00 0.00 0.00 0.00 0.00 0.00

Pr(Select) 0.33 0.37 0.30 0.33 0.34 0.33
ALL πTR

D 0.10 0.10 0.10 0.20 0.25 0.25 0.25 0.40
(r = 2) ŪTR 50.52 50.52 50.52 37.97 37.97 37.97

Pr(Stop) 0.00 0.01 0.00 0.03 0.03 0.02
Pr(Select) 0.33 0.35 0.32 0.32 0.36 0.33

NHL πTR
D 0.05 0.05 0.05 0.20 0.15 0.15 0.15 0.40

(r = 3) ŪTR 49.18 49.18 49.18 38.35 38.35 38.35
Pr(Stop) 0.00 0.00 0.00 0.00 0.00 0.00

Pr(Select) 0.33 0.34 0.33 0.35 0.31 0.34

Scenario 2 CLL πTR
D 0.02 0.45 0.60 0.15 0.04 0.70 0.84 0.30

(r = 1) ŪTR 42.34 22.86 16.00 39.73 9.49 4.63
Pr(Stop) 0.00 0.89 0.97 0.00 0.98 1.00

Pr(Select) 1.00 0.00 0.00 1.00 0.00 0.00
ALL πTR

D 0.40 0.60 0.05 0.20 0.64 0.84 0.10 0.40
(r = 2) ŪTR 23.81 15.82 40.41 10.99 4.62 36.02

Pr(Stop) 0.67 0.92 0.00 0.81 0.98 0.00
Pr(Select) 0.00 0.00 1.00 0.00 0.00 1.00

NHL πTR
D 0.65 0.05 0.35 0.20 0.88 0.10 0.58 0.40

(r = 3) ŪTR 14.03 40.47 26.31 3.46 36.08 13.26
Pr(Stop) 0.95 0.00 0.55 1.00 0.00 0.68

Pr(Select) 0.00 1.00 0.00 0.00 1.00 0.00

Scenario 3 CLL πTR
D 0.42 0.38 0.37 0.15 0.66 0.62 0.60 0.30

(r = 1) ŪTR 40.33 44.40 44.55 20.71 24.52 24.81
Pr(Stop) 0.88 0.85 0.82 0.96 0.95 0.94

Pr(Select) 0.07 0.11 0.13 0.03 0.05 0.05
ALL πTR

D 0.52 0.58 0.65 0.20 0.77 0.83 0.88 0.40
(r = 2) ŪTR 33.99 29.43 24.52 14.34 11.01 7.57

Pr(Stop) 0.93 0.96 0.98 0.99 0.99 1.00
Pr(Select) 0.06 0.03 0.01 0.01 0.01 0.00

NHL πTR
D 0.40 0.42 0.45 0.20 0.64 0.67 0.70 0.40

(r = 3) ŪTR 42.49 40.21 38.79 22.61 20.32 18.95
Pr(Stop) 0.73 0.77 0.84 0.85 0.87 0.94

Pr(Select) 0.19 0.16 0.07 0.12 0.11 0.04

Table 3: Simulation Truth and Results. πTR
D = true probability of death within 100 days

for each combination of disease type (r), dose level (d), disease bulk (Z), with π̄(Z) = the
fixed safety threshold. Unsafe doses are given in grey. ŪTR = true expected utility for each
(r, d, Z). Optimal doses are underlined.
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Bulk (→) LBD (Z = 0) HBD (Z = 1)
Types (↓) Dose (→) d = 1 d = 2 d = 3 π̄D d = 1 d = 2 d = 3 π̄D

Scenario 4 CLL πTR
D 0.01 0.10 0.25 0.15 0.01 0.11 0.27 0.30

(r = 1) ŪTR 48.99 58.91 45.84 38.03 24.74 14.45
Pr(Stop) 0.00 0.00 0.26 0.00 0.00 0.13

Pr(Select) 0.04 0.95 0.01 1.00 0.00 0.00
ALL πTR

D 0.01 0.09 0.27 0.20 0.01 0.10 0.29 0.40
(r = 2) ŪTR 48.82 58.66 43.95 37.54 26.47 14.55

Pr(Stop) 0.00 0.00 0.14 0.00 0.00 0.05
Pr(Select) 0.02 0.98 0.00 1.00 0.00 0.00

NHL πTR
D 0.01 0.08 0.30 0.20 0.01 0.09 0.33 0.40

(r = 3) ŪTR 48.87 58.22 40.45 40.28 26.92 11.70
Pr(Stop) 0.00 0.00 0.29 0.00 0.00 0.12

Pr(Select) 0.01 0.99 0.00 1.00 0.00 0.00

Scenario 5 CLL πTR
D 0.01 0.09 0.30 0.15 0.01 0.12 0.38 0.30

(r = 1) ŪTR 44.30 33.82 22.05 41.40 27.18 14.33
Pr(Stop) 0.00 0.00 0.48 0.00 0.00 0.44

Pr(Select) 1.00 0.00 0.00 1.00 0.00 0.00
ALL πTR

D 0.12 0.03 0.18 0.20 0.16 0.04 0.23 0.40
(r = 2) ŪTR 30.68 40.15 27.96 23.62 35.88 20.52

Pr(Stop) 0.00 0.00 0.02 0.00 0.00 0.01
Pr(Select) 0.00 1.00 0.00 0.00 0.99 0.00

NHL πTR
D 0.10 0.15 0.01 0.20 0.13 0.20 0.01 0.40

(r = 3) ŪTR 32.73 28.73 44.09 26.24 21.60 41.22
Pr(Stop) 0.00 0.01 0.00 0.00 0.00 0.00

Pr(Select) 0.00 0.00 1.00 0.00 0.00 1.00

Scenario 6 CLL πTR
D 0.35 0.03 0.13 0.15 0.75 0.10 0.37 0.30

(r = 1) ŪTR 41.74 59.80 57.69 14.53 55.48 40.90
Pr(Stop) 0.76 0.00 0.09 0.99 0.00 0.34

Pr(Select) 0.00 0.56 0.44 0.00 0.99 0.01
ALL πTR

D 0.08 0.45 0.02 0.20 0.24 0.86 0.06 0.40
(r = 2) ŪTR 57.75 34.95 57.83 47.19 7.81 55.07

Pr(Stop) 0.00 0.82 0.00 0.02 0.99 0.00
Pr(Select) 0.80 0.00 0.20 0.04 0.00 0.96

NHL πTR
D 0.05 0.10 0.30 0.20 0.16 0.29 0.70 0.40

(r = 3) ŪTR 59.50 57.18 46.28 52.57 44.10 18.84
Pr(Stop) 0.00 0.01 0.51 0.00 0.03 0.91

Pr(Select) 0.53 0.47 0.01 0.89 0.11 0.00

Table 3 (continued): Simulation Truth and Results. πTR
D = true probability of death

within 100 days for each combination of disease type (r), dose level (d), disease bulk (Z),
with π̄(Z) = the fixed safety threshold. Unsafe doses are given in grey. ŪTR = true expected
utility for each (r, d, Z). Optimal doses are underlined.

24



 

Diff

F
re

qu
en

cy

−0.8 −0.6 −0.4 −0.2 0.0

0
5

10
15

20
25

30
35

 

Diff

F
re

qu
en

cy

−0.4 −0.2 0.0 0.2 0.4

0
2

4
6

8
10

12

 

Diff

F
re

qu
en

cy

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

(a) Pr(Stop | d,Z)− Pr(Stop | d) (b) Pr(Stop | d,Z)− Pr(Stop | d) (c) Pr(Select | d,Z)− Pr(Select | d)

for truly safe doses for truly unsafe doses for truly optimal doses

Figure 1: Comparison to the simpler design ignoring subgroups (Z): Panels (a) and (b) give
histograms of differences in empirical proportions Pr(Stop | d,Z) − Pr(Stop | d) for truly
safe doses and unsafe doses, respectively, for all (d,Z) and all scenarios. Panel (c) gives the
histogram of differences in empirical proportions of correctly selecting a truly optimal dose,
Pr(Select | d,Z)− Pr(Select | d) for all Z and all scenarios.
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Supplementary Materials: Optimizing Natural Killer

Cell Doses for Heterogeneous Cancer Patients Based on

Multiple Event Times

1 Posterior Computation

Recall that we denote the random parameter vector θ = (α,β, ξ,ψ,Ω) and the fixed hy-

perparameter vector θ∗ = (a, b, ξ̄,ω2, ψ̄, τ 2, β̄,σ2, ν,Ω0). We use the Markov chain Monte

Carlo (MCMC) simulation to draw a sample of θ values and patient random effects u from

the following posterior distribution.

p(θ,u | Dn(t)) ∝
n(t)∏
i=1

p(yoi , δi | θ,ui)p(θ,u)

=

n(t)∏
i=1

∏
j∈{P,...,D}

(
hj(y

o
i,j | αj, λi,j)

)δi,j(t)
Sj(y

o
i,j | αj, λi,j)p(θ,u),

where Dn(t) denotes data of n(t) patients at trial time t, {Zi,y
o
i , δi}

n(t)
i=1 . Recall that patient

i has covariate Zi = (Zi, ri) and treatment at dose di. The parameters are estimated by

iteratively drawing samples from the full conditional distributions given the data and the

other parameters. Recall that λi,j = βjZi + ξjψri,di + ui,j.

1. Full conditional of βj

1



Let θ−βj denote the vector of all random parameters, excluding βj. For j ∈ {P,R, T, C,D},

p(βj | Dn(t),u,θ−βj ) ∝
n(t)∏
i=1

{f(yoi,j(t) | θ,ui, di,Zi)}δi,j(t){S(yoi,j(t) | θ,ui, di,Zi)}1−δi,j(t)

×p(βj | β̄j , σ2
j )

∝ exp

n(t)∑
i=1

{
δi,j(t)λi,j − exp(λi,j)(y

o
i,j(t))

αj
} exp

{
− (βj − β̄j)2

2σ2
j

}
.

Let θ−ψr,d
denote the vector of all random parameters, excluding ψr,d. For r = 1, . . . , K

and d = 1, . . . ,m,

p(ψr,d | Dn(t),u,θ−ψr,d) ∝
n(t)∏

i=1|di=d,ri=r

∏
j

{f(yoi,j(t) | θ,ui, di,Zi)}δi,j(t){S(yoi,j(t) | θ,ui, di,Zi)}1−δi,j(t)

×p(ψr,d | ψ̄, τ2)

∝ exp

 n(t)∑
i=1|di=d,ri=r

∏
j

{
δi,j(t)λi,j − exp(λi,j)(y

o
i,j(t))

αj
}× exp

{
− (ψr,d − ψ̄)2

2τ2

}
,

.

2. Full conditional of ξj

Let θ−ξj denote a vector of all random parameters, excluding ξj. For j ∈ {P,R, T, C},

p(ξj | Dn(t),u,θ−ξj ) ∝
n(t)∏
i=1

{f(yoi,j(t) | θ,ui, di,Zi)}δi,j(t){S(yoi,j(t) | θ,ui, di,Zi)}1−δi,j(t)

×p(ξj | ξ̄j , w2
j )

∝ exp

n(t)∑
i=1

{
δi,j(t)λi,j − exp(λi,j)(y

o
i,j(t))

αj
}× exp

{
− (ξj − ξ̄j)2

2w2
j

}
,

.

3. Full conditional of αj

2



Let θ−αj
denote a vector of all random parameters, excluding αj. For j ∈ {P,R, T, C,D},

p(αj | Dn(t),u,θ−αj ) ∝
n(t)∏
i=1

{f(yoi,j(t) | θ,ui, di,Zi)}δi,j(t){S(yoi,j(t) | θ,ui, di,Zi)}1−δi,j(t)

×p(αj | aj , bj)

∝ α
∑
i δi,j(t)

j exp

n(t)∑
i=1

{
δi,j(t)(αj − 1) log(yoi,j(t))− exp(λi,j)(y

o
i,j(t))

αj
}

×αaj−1j exp(−bjαj),

.

4. Full conditional of ui

For i = 1, . . . , n(t),

p(ui | Dn(t),θ) ∝
∏

j∈{P,R,T,C,D}

{f(yoi,j(t) | θ,ui, di,Zi)}δi,j(t){S(yoi,j(t) | θ,ui, di,Zi)}1−δi,j(t)

×p(ui | Ω)

∝ exp

 ∑
j∈{P,R,T,C,D}

{
δi,j(t)λi,D(t)− exp(λi,j)(y

o
i,j(t))

αj
}

× exp

{
−1

2
u′iΩ

−1ui

}
,

.

5. Full conditional of Ω

p(Ω | Dn(t),θ) ∝
n(t)∏
i=1

p(ui | Ω)p(Ω | ν,Ω0)

∝
n(t)∏
i=1

|Ω|−1/2 exp

(
−1

2
u′iΩ

−1ui

)
|Ω|

ν+J+1
2 exp

{
−1

2
tr(Ω0Ω−1)

}
.

Thus, the full conditional distribution is Ω ∼ inverse-Wishart(ν+n(t),Ω0+
∑n(t)

i=1 uiu
′
i).

We generate a posterior sample of θ values through posterior MCMC simulation and use it

to evaluate quantities needed for decisions in the trial, such as criteria for selecting an optimal

3



dose and declaring a dose unsafe. For selecting an optimal dose, we proceed as follows: We

generate a Mote Carlo sample according to θ ∼ p(θ | DNmax ,θ
∗), where DNmax is the final

data from the trial and θ∗ fixed hyperparameters, and evaluate the posterior predictive mean

utility of dose d for each Z u(d,Z | DNmax) in (5) of the main text using the sample. It

may appear that numerical computation of u(d,Z | DNmax) is prohibitively difficult, since

it is defined in terms of Ū(d,Z,θ) in (4) of the main text, which requires evaluation of a

10-dimensional integral to obtain each π(δ | d,Z,θ). Once the posterior sample has been

obtained, however, computation of u(d,Z | DNmax) for each d and Z is straightforward, using

the following algorithm. Denote the posterior sample from the MCMC simulation by {θ(q),

q = 1, . . . , Q}. For each d and Z, the computation proceeds as follows:

1. For each q = 1, . . . , Q and m = 1, . . . ,M

(a) Simulate u(q,m) from p(u | θ(q)).

(b) Simulate y(q,m) from p(y | d,Z,u(q,m),θ(q)).

(c) Determine δ(q,m) from y(q,m) and evaluate U(δ(q,m)).

2. Use sample the mean 1
QM

∑Q
q=1

∑M
m=1 U(δ(q,m)) to estimate u(d,Z | DNmax).

The values Q = 5000 and M = 5 are used for our simulation study in §5 of the main text.

2 Computing Prior Hyperparameters

Recall that θ and θ∗ denote random model parameters and fixed hyper-parameters, re-

spectively, where θ = (α,β, ξ,ψ,Ω) and θ∗ = (a, b, ξ̄,ω2, ψ̄, τ 2, β̄,σ2, ν,Ω0). To establish

numerical values of the prior hyperparameters θ∗, we first use probabilities elicited from

the clinicians to determine location parameters, and then calibrate dispersion parameters to

obtain suitable prior uncertainty so that the data will dominate adaptive decisions. Recall
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that we use the early follow up times L′ = (100, 100, 100, 30, 100) for hyperparameter spec-

ification. Denote πj,Z,r(θ) = Pr(Yj ≤ L′j | Z, r,θ), for each (j, Z, r). Elicited prior means

of these probabilities for the NK cell trial, which we denote by π
(e)
j,Z,r, are given in Table 1

of the main text. To obtain additional prior information about patterns of the hazards hT

and hC over these early time periods, we also elicited Pr(e)(YT ≤ 20 | YT ≤ 100) = 0.65,

Pr(e)(YC ≤ 30) = 0.25, and Pr(e)(7 ≤ YC ≤ 14 | YC ≤ 30) = 0.90, which are average values

in that they do not vary with Z = (Z, r). We use the information in the elicited values by

first replacing αj and λi,j in Sj(y | αj, λi,j) with the prior means ᾱj and λ̄j,Z,r = β̄jZ + ξ̄jψ̄r,

respectively, to obtain the approximate survival probabilities

S̃j(y | ᾱj, β̄j, ξ̄j, ψ̄r, Z) = exp{− exp(β̄jZ + ξ̄jψ̄r)y
ᾱj}. (1)

In this approximation, we set ui,j = 0, ignore i and d, and replace αj, βj, ξj and ψr,d with

their respective prior means ᾱj, β̄j, ξ̄j and ψ̄r. To solve for numerical values of the prior

means, we treated elicited values as outcome variables and prior means as parameters in a

set of nonlinear regression equations of the form

π
(e)
j,Z,r = 1− S̃j(L′j | ᾱj, β̄j, ξ̄j, ψ̄r, Z)

= 1− exp{− exp(β̄jZ + ξ̄jψ̄r)(L
′
j)
ᾱj}, (2)

for each (j, Z, r). Similar equations were formed using the elicited prior conditional prob-

abilities for YT and YC , given above. This is an application of the general approach for

establishing prior mean hyperparameters described by Yuan et al. (2016), Section 3.3.1.

To solve for the means {ᾱj, j = P,R,D, T, C}, we note that these are shape parameters,

since αj determines the time varying pattern of the hazard hj of Yj under the Weibull

distribution. Since the elicited values π
(e)
j,Z,r for j = P,R,D given in Table 1 of the main

5



text are probabilities of occurrence in the interval (0, 100], they provide no prior information

about change in the hazards hP , hR, or hD over time. Thus, we fix ᾱP = ᾱR = ᾱD = 1. In

contrast, the elicited conditional probabilities given above provide prior information about

how hT and hC change over time, and thus allow us to solve (2) for ᾱT and ᾱC . Details are

as follows;

• ᾱT : The elicited probability Pr(e)(YT ≤ 20 | YT ≤ 100) = 0.65 does not condition on

(Z, r) different from π
(e)
T,Z,r in the table. We take the weighted average of π

(e)
T,Z,r across

(Z, r) assuming that patients have one of the three disease types with equal probability

and either of LBD and HBD with probabilities 1/3 and 2/3 and find Pr(e)(YT ≤ 100) =

0.283. We use (4) of the main text, drop covariate index (Z, r) and obtain the following

equation;

S̃T (y | ᾱT , λ̄T ) = exp
{
− exp(λ̄T )yᾱT

}
. (3)

Plugging the elicited probabilities Pr(e)(YT ≤ 20 | YT ≤ 100) = 0.65 and Pr(e)(YT ≤

100) = 0.283 into (3) yields the nonlinear equations

exp
{
− exp(λ̄T )100ᾱT

}
= 1− 0.283,

exp
{
− exp(λ̄T )20ᾱT

}
= 1− (0.283× 0.65).

Solving the equations for ᾱT yields ᾱT = 0.306.

• ᾱC : The elicited prior probabilities for outcome C are Pr(e)(YC ≤ 30) = 0.25 and

Pr(e)(7 ≤ YC ≤ 14 | YC ≤ 30) = 0.90. We first approximate the marginal probability
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Pr(e)(YC ≤ 14) as follows:

(e)

Pr(YC < 14) =
(e)

Pr(YC ≤ 14 | YC ≤ 30)
(e)

Pr(YC ≤ 30)

= {
(e)

Pr(7 ≤ YC ≤ 14 | YC ≤ 30) +
(e)

Pr(YC < 7 | YC ≤ 30)}(YC ≤ 30)

= {0.9 + 0.1× 6/22︸ ︷︷ ︸
= A

} × 0.25 = 0.232.

The term A is from the approximation Pr(e)(YC < 7 | YC ≤ 30) ≈ 0.1× 6/22 under the

assumption that the probability of occurring outcome C is equal for days less than 7 (6

days) or between 15 and 30 inclusive (16 days). Similar to ᾱT , we solve the following

equations,

exp
{
− exp(λ̄C)30ᾱC

}
= 1− 0.25,

exp
{
− exp(λ̄C)7ᾱC

}
= 1− 0.232.

Solving the equations yields ᾱC = 0.114.

Recall that αj
indep∼ Ga(aj, bj). To express vague prior information, we fix bj = 0.1 for all j

and let aj = ᾱjbj. We next use the elicited probabilities in Table 1 of the main text and

elicit β̄j, ξ̄j with ξ̄D = 1 and ψ̄r. By using π
(e)
j,Z,r and rearranging (1), we obtain

β̄jZ + ξ̄jψ̄r = log

{
−

log(1− π(e)
j,Z,r)

(L′j)
ᾱj

}
. (4)

We next determine numerical values of prior means, β̄j, ξ̄j, ψ̄r.

• ψ̄r: Under the assumed model, we set ξD = 1 and ψ̄r quantifies the effect of disease type

r on death for a patient with low bulk disease Z = 0. We plug in the corresponding

elicited probabilities, π
(e)
D,0,r, r = 1, 2, 3 from Table 1 of the main text for (2); with
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Z = 0 and ξ̄D = 1,

ψ̄1 = log

{
− log(1− 0.02)

100ᾱD

}
,

ψ̄2 = log

{
− log(1− 0.10)

100ᾱD

}
,

ψ̄3 = log

{
− log(1− 0.05)

100ᾱD

}
,

which yields -8.507, -6.856, and -7.575 for disease types r = 1, 2, 3, respectively, with

the elicited ᾱD = 1.

• ξ̄j, j 6= D: Under the assumed model ξj is the parameter that modifies the effect of

disease type r on death to quantify the effect on outcome j. For example, consider

j = P and use π
(e)
P,0,r. We obtain the following equations using (4), with Z = 0 and

j = P :

ξ̄P ψ̄1 = log

{
− log(1− 0.05)

100ᾱP

}
,

ξ̄P ψ̄2 = log

{
− log(1− 0.15)

100ᾱP

}
,

ξ̄P ψ̄3 = log

{
− log(1− 0.10)

100ᾱP

}
.

Using the values of ψ̄r, r = 1, 2, 3 above, we find ξ̄P for the equations, which gives

0.890, 0.937, and 0.905 for disease types r = 1, 2, 3, respectively. These three values are

different since the elicited probabilities do not necessarily satisfy the model assumption,

λ̄j,Z,r = β̄jZ+ξ̄jψ̄r. We have the value across the disease types, ξ̄P = 0.911. We solve for

ξ̄j for the remaining outcomes R, T and C similarly. The elicited values are ξ̄j = 0.721,

0.771, 0.214 for outcomes j = R, T and C, respectively.
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• β̄j, j = P, . . . , D: Consider j = D. For each r with Z = 1,

β̄D1 + ψ̄1 = log

{
− log(1− 0.10)

100ᾱD

}
,

β̄D1 + ψ̄2 = log

{
− log(1− 0.20)

100ᾱD

}
,

β̄D1 + ψ̄3 = log

{
− log(1− 0.15)

100ᾱD

}
.

By plugging in ᾱD = 1 and ψ̄r from the above, we have β̄D = 1.651, 1.00 and 1.153 for

r = 1, 2 and 3, respectively. Since the elicited probabilities may not satisfy the model

assumption, the solutions β̄D are different for disease types r. We take the value of

β̄D averaged across r, which gives the value β̄D = 1.270. For the remaining outcomes

j = P,R, T and C, we similarly find β̄j. The elicited β̄j are 1.398, 0.369, 0.191 and

0.000 for j = P,R, T and C, respectively.

The resulting numerical values of a, b, ψ̄, β̄, and ξ̄ are given in Table 1.

To reflect vague prior information about dose-specific effects for each (Z, r), the disper-

sion hyperparameters were set to σ2
j = τ 2

r = ωj = 100. Similarly, we express vague prior

information on the time-varying pattern of the hazard function by letting bj = 0.1 and

aj = ᾱjbj for αj ∼ Ga(aj, bj). The resulting numerical values of a, b, ξ̄, ψ̄ and β̄ are given

in Table 1 of the Supplementary Materials. In addition, we specify ν and Ω0 for the prior

distribution of the covariance matrix Ω of ui. We let Ω0
j,j = 0.05, Ω0

j,j′ = 0.025 for j′ 6= j and

(j, j′) 6= (j, R), and Ω0
j,R = −0.025 for j 6= R. This specification of Ω0 a priori implies the

negative relationship between YR and the other four outcomes, and the positive relationships

between the four adverse outcomes. We let ν = 6 to express weak prior information about Ω.

The specified Ω0 was calibrated through a preliminary simulation study and implies a priori

correlation 0.5 or -0.5. In the preliminary study, we compared posterior predictive probabil-

ities of outcomes occurring during the follow-up intervals with the corresponding empirical
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probabilities based on simulated data, and found that their differences are reasonably small.

3 Simulation Design

3.1 Simulation Set-up

We assume six different simulation scenarios to examine the performance of the proposed

design. Scenario 1 assumes the elicited probabilities to simulate data (explained below in

detail). We construct the other five scenarios as follows:

1. We specify the true marginal probabilities of death within the short follow-up L′D =

100 days for Z = 0 (LBD) for all (r, d), denoted by πTR
D,Z,r,d with Z = 0. Also, specify

αTR
j for all j. Using αTR

D and πTR
D,Z,r,d, we solve the equation

πTR

D,0,r,d = 1− exp
{
− exp(ψTR

r,d)(L′D)α
TR
D

}
(5)

for ψTR
r,d .

2. We specify ξ̄TR
j , j 6= D and β̄TR

j for all j. We simulate ξTR
j,r,d

indep∼ N(ξ̄TR
j , 0.01), j 6= D

and set ξTR
D,r,d = 1 for all (r, d). We simulate βTR

j,r,d

indep∼ N(β̄TR
j , 0.05), j = P,R. To

reflect information that HBD (Z1 = 1) increases the probability of adverse outcomes,

we use log(βTR
j,r,d)

indep∼ N(log(β̄TR
j ), 0.05), j = T,C,D. We let

λ̄TR

j,Z,r,d = βTR

j,r,dZ + ξTR

j,r,dψ
TR

r,d . (6)

3. We assume ΩTR
j,j = 0.001, ΩTR

j,R = −0.5 × 0.001, j 6= R and ΩTR

j,j′ = 0.5 × 0.001, j 6= j′,

j, j′ 6= R and the same ΩTR is used for all scenarios, and simulate uTR iid∼ N(0,ΩTR). Fi-

nally, we simulate yj with Z and d from the Weibull distribution with shape parameter
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αTR
j and scale parameter exp

(
λ̄TR
j,Z,r,d + uTR

j

)
, that is,

yj | αTR

j , ψTR

j,Z,r,d, u
TR

j

indep∼ Weibull(αTR

j , exp(λ̄TR

j,Z,r,d + uTR

j )). (7)

The proposed design assumes Yj follows a Weibull distribution with shape parameter αj and

scale parameter λj = βjZ + ξjψr,d + uj for patient with Z and d. By allowing ξTR
j,r,d and

βTR
j,r,d in (6) indexed by r and d as well as j, the regression relationship between outcomes,

covariates, and doses assumed in (2) of the main text no longer holds for the simulation

truth. Compared to the proposed model, the simulation truth is more general and includes

the proposed model as a special case. The specified true probabilities of death within the

follow-up (LD) are listed in Table 3 of the main text for Scenarios 2-6. The values of αTR
j , ξ̄TR

j

and β̄TR
j are listed in Table 2. With all simulated λ̄TR

j,Z,r,d and ΩTR , probabilities of occurrence

of outcome Yj within the follow-up for patients with Z, d and λ̄TR
j,Z1,r,d

can be easily found.

For Scenario 1, we test the proposed design using the probabilities provided by clinicians

(Table 1 of the main text). The clinicians have no information on dose effects and we assume

that λ̄TR
j,Z,r,d is the same for all d, but only differs by Z, resulting in no difference in ŪTR.

Specifically, we let πTR
j,Z,r,d equal the corresponding probabilities in the table for all d. Using

the additional information described in the main text, we find αTR
j as given in Table 2. We

use (5) and find λ̄TR
j,Z,r,d for all j, Z, r and d. Use the same ΩTR specified above, and simulate

Yj from (7).

3.2 Simulation Set-up for Robustness

We examine robustness of the proposed design by simulating Yi,j from a log-logistic distri-

bution, which is different from the Weibull distribution assumed for the design. We use

the same true marginal probabilities πTR
j,Z,r,d specified in Section 3.1 for the Weibull model.

Although the probabilities that outcomes occur during the follow-up period are the same
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under the two distributions, the rates of occurrences become different according to the haz-

ard functions of the distributions, and the true expected utilities of outcomes evaluated for a

fully followed patient may differ due to the competing and semi-competing risks properties.

For example, the log-logistic distribution allows a non-monotonic hazard function, such as

a ∩-shaped function that is not possible under the Weibull distribution. Specifically, the

models in (5) and (7) are changed to reflect the different distributions for Yj as follows. For

the log-logistic distribution we let αLL,TR

j = αTR
j and find λ̄LL,TR

j,Z1,r,d
using the survival function

for the log-logistic model,

1

1 + exp(λ̄LL,TR

j,Z1,r,d
)L

αLL,TR
j

j

= 1− πTR

j,Z1,r,d
.

We simulate uTR
i

iid∼ N5(0,ΩTR) and yj | αTR
j , λ̄TR

j,Z1,r,d
, uj

indep∼ Log-logsitic(αTR
j , exp(λ̄TR

j,Z1,r,d
+

uj)) for a patient with Z and d.

4 Additional Simulation Results

Tables 3 and 4 give stopping and dose selection probabilities under the simpler model that

ignores Z, respectively. For easy comparison, the results under the proposed design that

utilizes Z are also included in the tables. Note that πTR
D and ŪTR are listed in Table 3 of the

main text. The design with Z outperforms the simpler design when optimal doses or unsafe

doses vary substantially across subgroups. For example, under Scenario 6, the stopping

probabilities in the (LBD, CLL) subgroup are far too large for d = 2 and d = 3 under the

simpler design, which both have high true mean utilities ŪTR = 59.80 and 57.69, and the

selection probabilities 0.24 and 0.34 are far smaller than the corresponding values 0.56 and

0.44 obtained by the design with subgroup-specific decisions. In the (HBD, NHL) subgroup,

the incorrect stopping probabilities 0.50 and 0.50 are far too large for the safe doses d = 1
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and d = 2, compared to the values 0.00 and 0.03 obtained by the subgroup-specific design.

The full design correctly selects the best dose d = 1 in that subgroup, which has ŪTR =

52.57 compared to 44.10 for d = 2 and 18.84 for d = 3, with probability 0.89 compared to

0.23 with the simpler design. Other comparisons give similarly large differences, leading to

the general conclusion that failure to account for heterogeneity may lead to decisions having

extremely large false positive and false negative rates.

Table 5 summarizes the proportions of patients treated in a trial, by dose, for each

subgroup. The proposed design with sample sizes N = 60 and N = 120 and the design

ignoring patient subgroups are compared. Under the design accounting for patient subgroups,

fewer patients are treated at unsafe doses, and as the sample size increases, the design

more accurately identifies unsafe doses. For example, in Scenario 2 where unsafe doses are

different for different subtypes, patients are more likely to be assigned to safe doses under the

proposed design that uses patient subgroups, and the proportions of patients treated at safe

doses increase for N = 120. In the case where all doses are truly unsafe and no treatment is

optimal for all subgroups, the design assigns fewer patients to any dose.

We simulated Y from the log-logistic distribution to examine robustness of the proposed

design that assumes a Weibull distribution. The results are summarized in Table 6. From

comparison to the results in Table 3 of the main text, the proposed model works reason-

ably well under the true log-logistic model, in terms of identification of unsafe doses and

optimal doses, even when the true model is different from the assumed Weibull model. The

performance of the proposed design slightly deteriorates for some scenarios. For example,

under Scenario 4 in Table 6, Pr(Stop) only slightly changes compared to those in Table 3

of the main text. However, dose 1 tends to have larger Pr(Select) for patients with Z = 0

in Scenario 4. For the subgroups with Z = 0, d = 1 is safe but has smaller true expected

utilities than d = 2.

In addition to the subgroup-specific safety rule, the proposed design includes the regula-
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tor’s safety rule described in Section 4 of the main text. Recall that the regulator’s safety

rule monitors the probability of death at the lowest dose and does not account for patient’s

covariates and other doses. The proportions of trials terminated by the regulator’s safety

rule are summarized in Table 7. As noted in the main text, the regulator’s safety rule rarely

stops trials even when all doses are truly unsafe. The probabilities with Nmax = 60 and

with Nmax = 120 in Columns 1 and 3 of the table, respectively, are identical, which implies

that trials were not terminated by the regulator’s safety rule after n = 60. For the last two

columns, the log-logistic distribution is used to simulate data but the Weibull is used for

the design. Compared to the probabilities under the Weibull distribution, it tends to have

slightly fewer terminations when the model is misspecified.

For increased maximum sample size Nmax = 120, the results are summarized in Tables 5

and 8. Compared to the results in Table 3 of the main text, the sample size increase from

60 to 120 improves design performance substantially. Especially when unsafe doses and/or

optimal doses are not clear in a scenario, as in Scenario 4, the amount of improvement is

substantial. This implies that when a trial is complicated due to covariates, sample size

plays an important role to achieve correct selection decisions. With a larger sample size,

the probabilities of subgroup-specific safety decisions are greatly improved, as shown in

Table 5. For example, in Scenario 2 the proportions of patients treated at doses 1, 2 and 3

are 0.49, 0.27 and 0.21 for (CLL, LBD) with N = 60, since doses 2 and 3 are unsafe. The

corresponding proportions are 0.68, 0.17 and 0.12 for N = 120. This shows that, as a trial

proceeds, the design is more likely to correctly identify doses 2 and 3 as unsafe and stop

assigning patients to those doses.

14



References

Yuan, Y., Nguyen, H. Q., and Thall, P. F. (2016). Bayesian Designs for Phase I–II Clinical

Trials. Chapman & Hall/CRC: New York.

15



Hyperparameter

ψ̄r -8.51, -6.86, -7.58 for r = 1, 2, 3
β̄j 1.40, 0.37, 0.19, 0.00, 1.27 for j = P,R, T, C,D
ξ̄j 0.91, 0.72, 0.77, 0.21 for j = P,R, T, C
aj 0.10, 0.10, 0.03, 0.01, 0.10 with fixed bj = 0.1 for j = P,R, T, C,D

Table 1: [Prior Elicitation] Elicited hyperparameter values.
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Scenarios True Parameter P R T C D

Scenario 1 αTR
j 1.000 1.000 0.306 0.114 1.000

Scenario 2
αTR
j 0.700 0.700 0.300 0.200 0.700

ξ̄TR
j 1.000 1.000 0.600 0.250

β̄TR
j 0.500 -0.300 0.001 0.250 0.700

Scenario 3
αTR
j 0.700 1.300 0.300 0.200 1.000

ξ̄TR
j 1.000 1.000 0.600 0.250

β̄TR
j 0.500 -0.300 0.001 0.250 0.700

Scenario 4
αTR
j 0.500 1.400 0.200 1.500 1.000

ξ̄TR
j 0.600 0.800 0.100 1.000

β̄TR
j 2.500 0.800 3.000 2.000 0.100

Scenario 5
αTR
j 0.500 0.800 0.700 1.500 1.000

ξ̄TR
j 0.600 0.900 0.500 1.000

β̄TR
j 0.500 -0.200 0.400 0.600 0.300

Scenario 6
αTR
j 0.800 1.000 1.500 0.800 1.200

ξ̄TR
j 0.700 0.600 1.500 0.500

β̄TR
j -0.200 0.200 1.500 0.800 1.200

Table 2: [Simulation Set-up] Values of αTR
j , ξ̄TR

j and β̄TR
j used for simulation scenarios are

listed.
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Scenario Dose
Design with Subgroup No

(L, C) (L, A) (L, N) (H, C) (H, A) (H, N) Subgroup
Scenario 1 d = 1 0.00 0.00 0.00 0.00 0.03 0.00 0.00

d = 2 0.00 0.01 0.00 0.00 0.03 0.00 0.01
d = 3 0.00 0.00 0.00 0.00 0.02 0.00 0.01

Scenario 2 d = 1 0.00 0.67 0.95 0.00 0.81 1.00 0.82
d = 2 0.89 0.92 0.00 0.98 0.98 0.00 0.90
d = 3 0.97 0.00 0.55 1.00 0.00 0.68 0.87

Scenario 3 d = 1 0.88 0.93 0.73 0.96 0.99 0.85 0.98
d = 2 0.85 0.96 0.77 0.95 0.99 0.87 0.98
d = 3 0.82 0.98 0.84 0.94 1.00 0.94 0.98

Scenario 4 d = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
d = 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00
d = 3 0.26 0.14 0.29 0.13 0.05 0.12 0.33

Scenario 5 d = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
d = 2 0.00 0.00 0.01 0.00 0.00 0.00 0.00
d = 3 0.48 0.02 0.00 0.44 0.01 0.00 0.03

Scenario 6 d = 1 0.76 0.00 0.00 0.99 0.02 0.00 0.50
d = 2 0.00 0.82 0.01 0.00 0.99 0.03 0.50
d = 3 0.09 0.00 0.51 0.34 0.00 0.91 0.43

Table 3: Simulation Results of the Design Ignoring Subgroups for Unsafe Dose
Identification. The probabilities that a dose is identified as unsafe are shown under the
proposed design with subgroups (Left) and the simpler model without subgroups (Right).
Unsafe doses in the truth are given in grey. The first letters L and H in each subgroup
stand for disease bulks, Low and High, respectively. The second letters C, A and N in each
subgroup stand for disease types, CLL, ALL and NHL, respectively.
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Scenario Dose
Design with Subgroup No

(L, C) (L, A) (L, N) (H, C) (H, A) (H, N) Subgroup
Scenario 1 d = 1 0.33 0.33 0.33 0.33 0.32 0.35 0.34

d = 2 0.37 0.35 0.34 0.34 0.36 0.31 0.34
d = 3 0.30 0.32 0.33 0.33 0.33 0.34 0.33

Scenario 2 d = 1 1.00 0.00 0.00 1.00 0.00 0.00 0.15
d = 2 0.00 0.00 1.00 0.00 0.00 1.00 0.08
d = 3 0.00 1.00 0.00 0.00 1.00 0.00 0.10

Scenario 3 d = 1 0.07 0.06 0.19 0.03 0.01 0.12 0.02
d = 2 0.11 0.03 0.16 0.05 0.01 0.11 0.02
d = 3 0.13 0.01 0.07 0.05 0.00 0.04 0.02

Scenario 4 d = 1 0.04 0.02 0.01 1.00 1.00 1.00 0.51
d = 2 0.95 0.98 0.99 0.00 0.00 0.00 0.49
d = 3 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Scenario 5 d = 1 1.00 0.00 0.00 1.00 0.00 0.00 0.70
d = 2 0.00 1.00 0.00 0.00 0.99 0.00 0.24
d = 3 0.00 0.00 1.00 0.00 0.00 1.00 0.06

Scenario 6 d = 1 0.00 0.80 0.53 0.00 0.04 0.89 0.23
d = 2 0.56 0.00 0.47 0.99 0.00 0.11 0.24
d = 3 0.44 0.20 0.01 0.01 0.96 0.00 0.34

Table 4: Simulation Results of the Design Ignoring Subgroups for Dose Selection.
The probabilities that a dose is selected as an optimal dose are shown under the proposed
design with subgroups (Left) and the simpler model without subgroups (Right). True
optimal doses are underlined and in bold. The first letters L and H in each subgroup stand
for disease bulks, Low and High, respectively. The second letters C, A and N in each
subgroup stand for disease types, CLL, ALL and NHL, respectively.
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Bulk (→) LBD (Z = 0) HBD (Z = 1)
Types (↓) Dose (→) d = 1 d = 2 d = 3 π̄D d = 1 d = 2 d = 3 π̄D

Scenario 1 CLL πTR
D 0.02 0.02 0.02 0.15 0.10 0.10 0.10 0.30

(r = 1) N = 60 0.33 0.33 0.34 0.33 0.34 0.33
N = 120 0.33 0.33 0.34 0.33 0.33 0.33

No Z 0.34 0.33 0.33 0.33 0.34 0.33
ALL πTR

D 0.10 0.10 0.10 0.20 0.25 0.25 0.25 0.40
(r = 2) N = 60 0.33 0.34 0.33 0.33 0.33 0.33

N = 120 0.34 0.33 0.33 0.33 0.33 0.34
No Z 0.34 0.33 0.33 0.33 0.33 0.33

NHL πTR
D 0.05 0.05 0.05 0.20 0.15 0.15 0.15 0.40

(r = 3) N = 60 0.33 0.34 0.33 0.33 0.33 0.33
N = 120 0.33 0.33 0.33 0.33 0.33 0.33

No Z 0.34 0.32 0.34 0.33 0.34 0.33

Scenario 2 CLL πTR
D 0.02 0.45 0.60 0.15 0.04 0.70 0.84 0.30

(r = 1) N = 60 0.53 0.25 0.19 0.65 0.18 0.15
N = 120 0.72 0.15 0.10 0.81 0.10 0.08

No Z 0.15 0.14 0.14 0.13 0.11 0.13
ALL πTR

D 0.40 0.60 0.05 0.20 0.64 0.84 0.10 0.40
(r = 2) N = 60 0.30 0.21 0.44 0.23 0.16 0.55

N = 120 0.23 0.11 0.61 0.14 0.08 0.71
No Z 0.15 0.12 0.16 0.13 0.11 0.13

NHL πTR
D 0.65 0.05 0.35 0.20 0.88 0.10 0.58 0.40

(r = 3) N = 60 0.19 0.42 0.30 0.15 0.48 0.24
N = 120 0.10 0.55 0.26 0.08 0.62 0.18

No Z 0.16 0.13 0.16 0.14 0.13 0.14

Scenario 3 CLL πTR
D 0.42 0.38 0.37 0.15 0.66 0.62 0.60 0.30

(r = 1) N = 60 0.20 0.20 0.22 0.21 0.23 0.25
N = 120 0.09 0.10 0.11 0.13 0.15 0.16

No Z 0.08 0.08 0.07 0.07 0.07 0.07
ALL πTR

D 0.52 0.58 0.65 0.20 0.77 0.83 0.88 0.40
(r = 2) N = 60 0.25 0.23 0.20 0.26 0.24 0.22

N = 120 0.18 0.15 0.13 0.18 0.16 0.15
No Z 0.09 0.08 0.09 0.07 0.07 0.07

NHL πTR
D 0.40 0.42 0.45 0.20 0.64 0.67 0.70 0.40

(r = 3) N = 60 0.21 0.20 0.16 0.22 0.20 0.17
N = 120 0.10 0.09 0.07 0.12 0.11 0.08

No Z 0.08 0.08 0.08 0.07 0.07 0.07

Table 5: Simulation Results - Proportions of Assigned Doses (1). The proportions of
doses assigned to patients in a trial are illustrated for the proposed design with N = 60 and
N = 120 and the simpler design that ignores patient subgroups (no Z). It is more desirable
that fewer patients are treated at unsafe doses.
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Bulk (→) LBD (Z = 0) HBD (Z = 1)
Types (↓) Dose (→) d = 1 d = 2 d = 3 π̄D d = 1 d = 2 d = 3 π̄D

Scenario 4 CLL πTR
D 0.01 0.10 0.25 0.15 0.01 0.11 0.27 0.30

(r = 1) N = 60 0.34 0.33 0.33 0.34 0.35 0.31
N = 120 0.36 0.35 0.28 0.34 0.35 0.31

No Z 0.37 0.35 0.28 0.36 0.36 0.28
ALL πTR

D 0.01 0.09 0.27 0.20 0.01 0.10 0.29 0.40
(r = 2) N = 60 0.34 0.34 0.32 0.34 0.34 0.33

N = 120 0.35 0.35 0.30 0.34 0.34 0.33
No Z 0.36 0.36 0.28 0.36 0.36 0.28

NHL πTR
D 0.01 0.08 0.30 0.20 0.01 0.09 0.33 0.40

(r = 3) N = 60 0.34 0.35 0.31 0.34 0.34 0.32
N = 120 0.37 0.37 0.26 0.34 0.34 0.32

No Z 0.36 0.34 0.29 0.36 0.36 0.28

Scenario 5 CLL πTR
D 0.01 0.09 0.30 0.15 0.01 0.12 0.38 0.30

(r = 1) N = 60 0.34 0.35 0.31 0.36 0.36 0.27
N = 120 0.38 0.37 0.24 0.38 0.38 0.23

No Z 0.35 0.33 0.32 0.34 0.34 0.32
ALL πTR

D 0.12 0.03 0.18 0.20 0.16 0.04 0.23 0.40
(r = 2) N = 60 0.33 0.34 0.33 0.34 0.33 0.33

N = 120 0.33 0.34 0.33 0.33 0.33 0.33
No Z 0.34 0.34 0.32 0.33 0.34 0.33

NHL πTR
D 0.10 0.15 0.01 0.20 0.13 0.20 0.01 0.40

(r = 3) N = 60 0.32 0.34 0.33 0.34 0.33 0.33
N = 120 0.33 0.34 0.33 0.33 0.33 0.33

No Z 0.34 0.33 0.33 0.34 0.34 0.32

Scenario 6 CLL πTR
D 0.35 0.03 0.13 0.15 0.75 0.10 0.37 0.30

(r = 1) N = 60 0.26 0.35 0.38 0.17 0.48 0.35
N = 120 0.18 0.38 0.43 0.09 0.58 0.34

No Z 0.29 0.28 0.30 0.27 0.25 0.29
ALL πTR

D 0.08 0.45 0.02 0.20 0.24 0.86 0.06 0.40
(r = 2) N = 60 0.38 0.26 0.36 0.41 0.17 0.43

N = 120 0.42 0.17 0.41 0.45 0.08 0.47
No Z 0.29 0.26 0.30 0.29 0.27 0.29

NHL πTR
D 0.05 0.10 0.30 0.20 0.16 0.29 0.70 0.40

(r = 3) N = 60 0.33 0.35 0.31 0.41 0.39 0.20
N = 120 0.36 0.36 0.28 0.45 0.43 0.11

No Z 0.30 0.26 0.31 0.28 0.26 0.29

Table 5 (continued): Simulation Results - Proportions of Assigned Doses (2). The
proportions of doses assigned to patients in a trial are illustrated for the proposed design
with N = 60 and N = 120 and the simpler design that ignores patient subgroups (no Z). It
is more desirable that fewer patients are treated at unsafe doses.
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Bulk (→) LBD (Z = 0) HBD (Z = 1)
Types (↓) Dose (→) d = 1 d = 2 d = 3 π̄D d = 1 d = 2 d = 3 π̄D

Scenario 1 CLL πTR
D 0.02 0.02 0.02 0.15 0.10 0.10 0.10 0.30

(r = 1) ŪTR 46.23 46.23 46.23 43.91 43.91 43.91
Pr(Stop) 0.00 0.00 0.00 0.00 0.00 0.00

Pr(Select) 0.32 0.34 0.34 0.34 0.31 0.35
ALL πTR

D 0.10 0.10 0.10 0.20 0.25 0.25 0.25 0.40
(r = 2) ŪTR 50.85 50.85 50.85 38.20 38.20 38.20

Pr(Stop) 0.01 0.00 0.00 0.04 0.02 0.03
Pr(Select) 0.32 0.35 0.33 0.33 0.33 0.34

NHL πTR
D 0.05 0.05 0.05 0.20 0.15 0.15 0.15 0.40

(r = 3) ŪTR 49.29 49.29 49.29 38.19 38.19 38.19
Pr(Stop) 0.00 0.00 0.00 0.00 0.00 0.00

Pr(Select) 0.32 0.35 0.33 0.33 0.33 0.34

Scenario 2 CLL πTR
D 0.02 0.45 0.60 0.15 0.04 0.70 0.84 0.30

(r = 1) ŪTR 42.49 22.40 15.88 39.89 8.88 4.48
Pr(Stop) 0.00 0.81 0.94 0.00 0.95 0.99

Pr(Select) 1.00 0.00 0.00 1.00 0.00 0.00
ALL πTR

D 0.40 0.60 0.05 0.20 0.64 0.84 0.10 0.40
(r = 2) ŪTR 23.81 15.98 40.46 10.42 4.16 35.74

Pr(Stop) 0.56 0.89 0.00 0.75 0.97 0.00
Pr(Select) 0.00 0.00 1.00 0.00 0.00 1.00

NHL πTR
D 0.65 0.05 0.35 0.20 0.88 0.10 0.58 0.40

(r = 3) ŪTR 14.44 40.36 26.02 3.14 35.96 13.38
Pr(Stop) 0.93 0.00 0.44 0.99 0.00 0.62

Pr(Select) 0.00 1.00 0.00 0.00 1.00 0.00

Scenario 3 CLL πTR
D 0.42 0.38 0.37 0.15 0.66 0.62 0.60 0.30

(r = 1) ŪTR 40.03 44.32 44.64 21.51 24.41 25.37
Pr(Stop) 0.77 0.73 0.69 0.91 0.87 0.83

Pr(Select) 0.12 0.16 0.20 0.07 0.09 0.14
ALL πTR

D 0.52 0.58 0.65 0.20 0.77 0.83 0.88 0.40
(r = 2) ŪTR 34.19 30.44 25.59 14.69 11.00 8.09

Pr(Stop) 0.87 0.91 0.96 0.94 0.98 1.00
Pr(Select) 0.12 0.06 0.02 0.06 0.01 0.00

NHL πTR
D 0.40 0.42 0.45 0.20 0.64 0.67 0.70 0.40

(r = 3) ŪTR 43.51 42.20 39.20 22.57 21.09 19.31
Pr(Stop) 0.56 0.61 0.74 0.66 0.73 0.86

Pr(Select) 0.31 0.23 0.11 0.26 0.19 0.07

Table 6: Simulation Results - Robustness. Log-logistic distributions are assumed to
simulate data and the Weibull distribution is assumed for the design. The true marginal
probabilities of outcomes occurring within their follow-up remain the same.
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Bulk (→) LBD (Z = 0) HBD (Z = 1)
Types (↓) Dose (→) d = 1 d = 2 d = 3 π̄D d = 1 d = 2 d = 3 π̄D

Scenario 4 CLL πTR
D 0.01 0.10 0.25 0.15 0.01 0.11 0.27 0.30

(r = 1) ŪTR 48.65 60.71 49.24 37.79 32.70 28.95
Pr(Stop) 0.00 0.00 0.58 0.00 0.00 0.36

Pr(Select) 0.61 0.39 0.00 1.00 0.00 0.00
ALL πTR

D 0.01 0.09 0.27 0.20 0.01 0.10 0.29 0.40
(r = 2) ŪTR 49.04 59.35 47.58 37.67 32.31 31.00

Pr(Stop) 0.00 0.00 0.54 0.00 0.00 0.29
Pr(Select) 0.54 0.46 0.00 1.00 0.00 0.00

NHL πTR
D 0.01 0.08 0.30 0.20 0.01 0.09 0.33 0.40

(r = 3) ŪTR 48.92 58.83 44.54 40.53 30.89 28.73
Pr(Stop) 0.00 0.00 0.74 0.00 0.00 0.54

Pr(Select) 0.46 0.54 0.00 1.00 0.00 0.00

Scenario 5 CLL πTR
D 0.01 0.09 0.30 0.15 0.01 0.12 0.38 0.30

(r = 1) ŪTR 44.02 34.12 21.74 41.61 27.04 14.12
Pr(Stop) 0.00 0.00 0.44 0.00 0.00 0.40

Pr(Select) 0.99 0.01 0.00 1.00 0.00 0.00
ALL πTR

D 0.12 0.03 0.18 0.20 0.16 0.04 0.23 0.40
(r = 2) ŪTR 30.67 40.07 28.05 23.24 35.70 20.14

Pr(Stop) 0.00 0.00 0.02 0.00 0.00 0.02
Pr(Select) 0.01 0.99 0.00 0.01 0.99 0.00

NHL πTR
D 0.10 0.15 0.01 0.20 0.13 0.20 0.01 0.40

(r = 3) ŪTR 32.81 28.83 44.29 26.24 21.60 41.02
Pr(Stop) 0.00 0.01 0.00 0.00 0.01 0.00

Pr(Select) 0.00 0.00 1.00 0.00 0.00 1.00

Scenario 6 CLL πTR
D 0.35 0.03 0.13 0.15 0.75 0.10 0.37 0.30

(r = 1) ŪTR 42.63 59.91 58.41 15.66 55.39 41.60
Pr(Stop) 0.74 0.00 0.09 0.97 0.00 0.31

Pr(Select) 0.00 0.74 0.26 0.00 0.98 0.02
ALL πTR

D 0.08 0.45 0.02 0.20 0.24 0.86 0.06 0.40
(r = 2) ŪTR 58.39 36.62 57.72 47.53 8.12 54.71

Pr(Stop) 0.00 0.83 0.00 0.02 0.98 0.00
Pr(Select) 0.59 0.00 0.41 0.05 0.00 0.95

NHL πTR
D 0.05 0.10 0.30 0.20 0.16 0.29 0.70 0.40

(r = 3) ŪTR 59.74 57.00 48.00 53.30 44.20 19.60
Pr(Stop) 0.00 0.02 0.51 0.00 0.04 0.86

Pr(Select) 0.64 0.36 0.00 0.86 0.14 0.00

Table 6 (continued): Simulation Results - Robustness. Log-logistic distributions are
assumed to simulate data and the Weibull distribution is assumed for the design. The true
marginal probabilities of outcomes occurring within their follow-up remain the same.
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Truth Weibull Log-logistic Log-normal

Design Proposed No Covariate
Proposed with

Proposed Proposed
Nmax = 120

Scenario 1 0.002 0.000 0.002 0.002 0.000

Scenario 2 0.076 0.029 0.076 0.136 0.060

Scenario 3 0.058 0.015 0.058 0.168 0.043

Scenario 4 0.000 0.000 0.000 0.000 0.000

Scenario 5 0.002 0.000 0.002 0.002 0.000

Scenario 6 0.003 0.000 0.003 0.005 0.002

Table 7: Pr(A trial is termiated by the regulator’s safety rule) under simulation scenarios.
Three different distributions, Weibull, Log-logistic and Log-normal distributions are used to
simulate data as indicated in the first row. Three designs, the proposed design (“Proposed”),
the design without covariate (“No Covariate”) and the proposed design with Nmax = 120
(“Proposed with Nmax = 120) are used. All designs assume the Weibull distribution.

24



Bulk (→) LBD (Z = 0) HBD (Z = 1)
Types (↓) Dose (→) d = 1 d = 2 d = 3 π̄D d = 1 d = 2 d = 3 π̄D

Scenario 1 CLL πTR
D 0.02 0.02 0.02 0.15 0.10 0.10 0.10 0.30

(r = 1) ŪTR 46.32 46.32 46.32 44.04 44.04 44.04
Pr(Stop) 0.00 0.00 0.00 0.00 0.00 0.00

Pr(Select) 0.34 0.35 0.32 0.32 0.34 0.34
ALL πTR

D 0.10 0.10 0.10 0.20 0.25 0.25 0.25 0.40
(r = 2) ŪTR 50.52 50.52 50.52 37.97 37.97 37.97

Pr(Stop) 0.00 0.00 0.00 0.02 0.02 0.01
Pr(Select) 0.32 0.35 0.33 0.32 0.34 0.34

NHL πTR
D 0.05 0.05 0.05 0.20 0.15 0.15 0.15 0.40

(r = 3) ŪTR 49.18 49.18 49.18 38.35 38.35 38.35
Pr(Stop) 0.00 0.00 0.00 0.00 0.00 0.00

Pr(Select) 0.31 0.35 0.34 0.33 0.33 0.34

Scenario 2 CLL πTR
D 0.02 0.45 0.60 0.15 0.04 0.70 0.84 0.30

(r = 1) ŪTR 42.34 22.86 16.00 39.73 9.49 4.63
Pr(Stop) 0.00 0.98 0.99 0.00 1.00 1.00

Pr(Select) 1.00 0.00 0.00 1.00 0.00 0.00
ALL πTR

D 0.40 0.60 0.05 0.20 0.64 0.84 0.10 0.40
(r = 2) ŪTR 23.81 15.82 40.41 10.99 4.62 36.02

Pr(Stop) 0.86 0.99 0.00 0.95 1.00 0.00
Pr(Select) 0.00 0.00 1.00 0.00 0.00 1.00

NHL πTR
D 0.65 0.05 0.35 0.20 0.88 0.10 0.58 0.40

(r = 3) ŪTR 14.03 40.47 26.31 3.46 36.08 13.26
Pr(Stop) 0.99 0.00 0.80 1.00 0.00 0.87

Pr(Select) 0.00 1.00 0.00 0.00 1.00 0.00

Scenario 3 CLL πTR
D 0.42 0.38 0.37 0.15 0.66 0.62 0.60 0.30

(r = 1) ŪTR 40.33 44.40 44.55 20.71 24.52 24.81
Pr(Stop) 0.96 0.94 0.93 0.99 0.98 0.98

Pr(Select) 0.03 0.04 0.06 0.01 0.02 0.02
ALL πTR

D 0.52 0.58 0.65 0.20 0.77 0.83 0.88 0.40
(r = 2) ŪTR 33.99 29.43 24.52 14.34 11.01 7.57

Pr(Stop) 0.98 0.98 1.00 0.99 1.00 1.00
Pr(Select) 0.02 0.01 0.00 0.01 0.00 0.00

NHL πTR
D 0.40 0.42 0.45 0.20 0.64 0.67 0.70 0.40

(r = 3) ŪTR 42.49 40.21 38.79 22.61 20.32 18.95
Pr(Stop) 0.88 0.90 0.95 0.94 0.96 0.98

Pr(Select) 0.10 0.08 0.04 0.05 0.04 0.02

Table 8: Simulation Truth and Results with Nmax = 120. The maximum number of
patients in a trial is increased from 60 to 120. The simulation results under the proposed
design are summarized in Pr(Stop) and Pr(Select). For easy evaluation, the simulation truth
is included.
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Bulk (→) LBD (Z = 0) HBD (Z = 1)
Types (↓) Dose (→) d = 1 d = 2 d = 3 π̄D d = 1 d = 2 d = 3 π̄D

Scenario 4 CLL πTR
D 0.01 0.10 0.25 0.15 0.01 0.11 0.27 0.30

(r = 1) ŪTR 48.99 58.91 45.84 38.03 24.74 14.45
Pr(Stop) 0.00 0.00 0.48 0.00 0.00 0.12

Pr(Select) 0.01 0.99 0.00 1.00 0.00 0.00
ALL πTR

D 0.01 0.09 0.27 0.20 0.01 0.10 0.29 0.40
(r = 2) ŪTR 48.82 58.66 43.95 37.54 26.47 14.55

Pr(Stop) 0.00 0.00 0.28 0.00 0.00 0.04
Pr(Select) 0.00 1.00 0.00 1.00 0.00 0.00

NHL πTR
D 0.01 0.08 0.30 0.20 0.01 0.09 0.33 0.40

(r = 3) ŪTR 48.87 58.22 40.45 40.28 26.92 11.70
Pr(Stop) 0.00 0.00 0.53 0.00 0.00 0.12

Pr(Select) 0.00 1.00 0.00 1.00 0.00 0.00

Scenario 5 CLL πTR
D 0.01 0.09 0.30 0.15 0.01 0.12 0.38 0.30

(r = 1) ŪTR 44.30 33.82 22.05 41.40 27.18 14.33
Pr(Stop) 0.00 0.00 0.78 0.00 0.00 0.56

Pr(Select) 1.00 0.00 0.00 1.00 0.00 0.00
ALL πTR

D 0.12 0.03 0.18 0.20 0.16 0.04 0.23 0.40
(r = 2) ŪTR 30.68 40.15 27.96 23.62 35.88 20.52

Pr(Stop) 0.00 0.00 0.02 0.00 0.00 0.01
Pr(Select) 0.00 1.00 0.00 0.00 1.00 0.00

NHL πTR
D 0.10 0.15 0.01 0.20 0.13 0.20 0.01 0.40

(r = 3) ŪTR 32.73 28.73 44.09 26.24 21.60 41.22
Pr(Stop) 0.00 0.00 0.00 0.00 0.00 0.00

Pr(Select) 0.00 0.00 1.00 0.00 0.00 1.00

Scenario 6 CLL πTR
D 0.35 0.03 0.13 0.15 0.75 0.10 0.37 0.30

(r = 1) ŪTR 41.74 59.80 57.69 14.53 55.48 40.90
Pr(Stop) 0.92 0.00 0.10 1.00 0.00 0.44

Pr(Select) 0.00 0.62 0.38 0.00 1.00 0.00
ALL πTR

D 0.08 0.45 0.02 0.20 0.24 0.86 0.06 0.40
(r = 2) ŪTR 57.75 34.95 57.83 47.19 7.81 55.07

Pr(Stop) 0.00 0.93 0.00 0.01 1.00 0.00
Pr(Select) 0.86 0.00 0.14 0.00 0.00 1.00

NHL πTR
D 0.05 0.10 0.30 0.20 0.16 0.29 0.70 0.40

(r = 3) ŪTR 59.50 57.18 46.28 52.57 44.10 18.84
Pr(Stop) 0.00 0.01 0.67 0.00 0.02 0.99

Pr(Select) 0.56 0.44 0.00 0.98 0.02 0.00

Table 8 (continued): Simulation Truth and Results with Nmax = 120. The maximum
number of patients in a trial is increased from 60 to 120. The simulation results under
the proposed design are summarized in Pr(Stop) and Pr(Select). For easy evaluation, the
simulation truth is included.
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Bulk (→) LBD (Z = 0) HBD (Z = 1)
Types (↓) Dose (→) d = 1 d = 2 d = 3 π̄D d = 1 d = 2 d = 3 π̄D

Scenario 1 CLL πTR
D 0.02 0.02 0.02 0.15 0.10 0.10 0.10 0.30

(r = 1) ŪTR 46.32 46.32 46.32 44.04 44.04 44.04
Pr(Stop) 0.00 0.00 0.00 0.00 0.00 0.00

Pr(Select) 0.33 0.36 0.32 0.34 0.32 0.33
ALL πTR

D 0.10 0.10 0.10 0.20 0.25 0.25 0.25 0.40
(r = 2) ŪTR 50.52 50.52 50.52 37.97 37.97 37.97

Pr(Stop) 0.01 0.00 0.01 0.03 0.04 0.04
Pr(Select) 0.33 0.29 0.38 0.32 0.34 0.34

NHL πTR
D 0.05 0.05 0.05 0.20 0.15 0.15 0.15 0.40

(r = 3) ŪTR 49.18 49.18 49.18 38.35 38.35 38.35
Pr(Stop) 0.00 0.00 0.00 0.00 0.01 0.01

Pr(Select) 0.35 0.32 0.33 0.33 0.35 0.32

Scenario 2 CLL πTR
D 0.02 0.45 0.60 0.15 0.04 0.70 0.84 0.30

(r = 1) ŪTR 42.34 22.86 16.00 39.73 9.49 4.63
Pr(Stop) 0.00 0.79 0.93 0.00 0.97 0.99

Pr(Select) 1.00 0.00 0.00 1.00 0.00 0.00
ALL πTR

D 0.40 0.60 0.05 0.20 0.64 0.84 0.10 0.40
(r = 2) ŪTR 23.81 15.82 40.41 10.99 4.62 36.02

Pr(Stop) 0.54 0.86 0.00 0.78 0.98 0.00
Pr(Select) 0.01 0.00 0.99 0.00 0.00 1.00

NHL πTR
D 0.65 0.05 0.35 0.20 0.88 0.10 0.58 0.40

(r = 3) ŪTR 14.03 40.47 26.31 3.46 36.08 13.26
Pr(Stop) 0.89 0.00 0.48 0.99 0.00 0.68

Pr(Select) 0.00 0.99 0.01 0.00 1.00 0.00

Scenario 3 CLL πTR
D 0.42 0.38 0.37 0.15 0.66 0.62 0.60 0.30

(r = 1) ŪTR 40.33 44.40 44.55 20.71 24.52 24.81
Pr(Stop) 0.77 0.73 0.71 0.94 0.94 0.91

Pr(Select) 0.11 0.16 0.18 0.04 0.05 0.08
ALL πTR

D 0.52 0.58 0.65 0.20 0.77 0.83 0.88 0.40
(r = 2) ŪTR 33.99 29.43 24.52 14.34 11.01 7.57

Pr(Stop) 0.85 0.89 0.92 0.98 0.99 0.99
Pr(Select) 0.11 0.06 0.04 0.02 0.01 0.01

NHL πTR
D 0.40 0.42 0.45 0.20 0.64 0.67 0.70 0.40

(r = 3) ŪTR 42.49 40.21 38.79 22.61 20.32 18.95
Pr(Stop) 0.61 0.63 0.75 0.81 0.82 0.91

Pr(Select) 0.26 0.21 0.09 0.15 0.14 0.05

Table 9: Simulation Truth and Results with Different Follow Up Period. The
follow up period for monitoring patients are reduced from L = (365, 365, 100, 100, 365) to
(100, 100, 100, 30, 100). The simulation results under the proposed design are summarized in
Pr(Stop) and Pr(Select). For easy evaluation, the simulation truth is included.
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Bulk (→) LBD (Z = 0) HBD (Z = 1)
Types (↓) Dose (→) d = 1 d = 2 d = 3 π̄D d = 1 d = 2 d = 3 π̄D

Scenario 4 CLL πTR
D 0.01 0.10 0.25 0.15 0.01 0.11 0.27 0.30

(r = 1) ŪTR 48.99 58.91 45.84 38.03 24.74 14.45
Pr(Stop) 0.00 0.00 0.12 0.00 0.00 0.15

Pr(Select) 0.04 0.92 0.04 0.99 0.01 0.00
ALL πTR

D 0.01 0.09 0.27 0.20 0.01 0.10 0.29 0.40
(r = 2) ŪTR 48.82 58.66 43.95 37.54 26.47 14.55

Pr(Stop) 0.00 0.00 0.08 0.00 0.00 0.10
Pr(Select) 0.03 0.94 0.03 0.99 0.01 0.00

NHL πTR
D 0.01 0.08 0.30 0.20 0.01 0.09 0.33 0.40

(r = 3) ŪTR 48.87 58.22 40.45 40.28 26.92 11.70
Pr(Stop) 0.00 0.00 0.17 0.00 0.00 0.19

Pr(Select) 0.03 0.96 0.01 0.99 0.01 0.00

Scenario 5 CLL πTR
D 0.01 0.09 0.30 0.15 0.01 0.12 0.38 0.30

(r = 1) ŪTR 44.30 33.82 22.05 41.40 27.18 14.33
Pr(Stop) 0.00 0.01 0.22 0.00 0.01 0.39

Pr(Select) 0.98 0.02 0.00 0.98 0.02 0.00
ALL πTR

D 0.12 0.03 0.18 0.20 0.16 0.04 0.23 0.40
(r = 2) ŪTR 30.68 40.15 27.96 23.62 35.88 20.52

Pr(Stop) 0.00 0.00 0.02 0.01 0.00 0.03
Pr(Select) 0.03 0.96 0.01 0.03 0.96 0.00

NHL πTR
D 0.10 0.15 0.01 0.20 0.13 0.20 0.01 0.40

(r = 3) ŪTR 32.73 28.73 44.09 26.24 21.60 41.22
Pr(Stop) 0.00 0.01 0.00 0.01 0.01 0.00

Pr(Select) 0.02 0.01 0.98 0.02 0.00 0.98

Scenario 6 CLL πTR
D 0.35 0.03 0.13 0.15 0.75 0.10 0.37 0.30

(r = 1) ŪTR 41.74 59.80 57.69 14.53 55.48 40.90
Pr(Stop) 0.53 0.00 0.07 0.96 0.00 0.27

Pr(Select) 0.02 0.53 0.45 0.00 0.95 0.05
ALL πTR

D 0.08 0.45 0.02 0.20 0.24 0.86 0.06 0.40
(r = 2) ŪTR 57.75 34.95 57.83 47.19 7.81 55.07

Pr(Stop) 0.01 0.57 0.00 0.03 0.97 0.00
Pr(Select) 0.66 0.01 0.32 0.12 0.00 0.88

NHL πTR
D 0.05 0.10 0.30 0.20 0.16 0.29 0.70 0.40

(r = 3) ŪTR 59.50 57.18 46.28 52.57 44.10 18.84
Pr(Stop) 0.00 0.01 0.34 0.00 0.03 0.82

Pr(Select) 0.53 0.45 0.03 0.79 0.21 0.00

Table 9 (continued): Simulation Truth and Results with Different Follow Up Period
The follow up period for monitoring patients are reduced from L = (365, 365, 100, 100, 365)
to (100, 100, 100, 30, 100). The simulation results under the proposed design are summarized
in Pr(Stop) and Pr(Select). For easy evaluation, the simulation truth is included.
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