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1. Introduction

Allogeneic stem cell transplantation (allo-SCT) is an established treatment for various hema-

tologic diseases, including acute myelogenous and lymphocytic leukemia and non-Hodgkins

lymphoma. Intravenous (IV) busulfan has been established as a desirable component of the

preparative regimen for allo-SCT, due to its absolute bioavailability and dosing accuracy, lead-

ing to improved patient survival (Andersson et al., 2002; Wachowiak et al., 2011; Nagler et al.,

2013; Copelan et al., 2013; Bredeson et al., 2013). The patient’s busulfan systemic exposure

(Bu-SE) represented by the area under the plasma concentration versus time curve, AUC, is

crucial, as serious adverse events are associated with an AUC that is either very high or too

low. Higher AUC values are associated with neurologic toxicity (grand mal seizures), hepatic

veno-occlusive disease, mucositis, and/or gastro-intestinal toxicity (Dix et al., 1996; Ljungman

et al., 1997; Kontoyiannis et al., 2001; Geddes et al., 2008). Lower AUC is associated with an

increased likelihood of disease recurrence and thus shorter survival time (Slattery et al., 1997;

McCune et al., 2002; Bartelink et al., 2009; Russell et al., 2013; Andersson et al., 2016).

Consequently, it is important to define an optimal AUC interval of busulfan exposure that

maximizes survival while minimizing risk. Studies of fixed-dose oral busulfan regimens suggest

that inter-individual variations in Bu-SE exposure may be as high as 10- to 20-fold. In contrast,

IV delivery of busulfan is more consistent and reliable for controlling delivered dose (Andersson

et al., 2000), and thus is better suited for obtaining optimal busulfan AUC intervals. Andersson

et al. (2002) showed that an optimal interval of IV Bu-SE had AUC values approximately 950

to 1520 µMol-min from one representative dose in a typical 16-dose treatment course, or

a total course AUC of 15,200 – 24,400 µMol-min, yielding longer survival times and lower

toxicity rates compared with values outside this interval. More recently, Bartelink et al. (2016)

reported that, in children and young adults, the optimal daily AUC range in a prototype 4-day

Bu-based regimen was 78-101 mg*h/L (corresponding to a total course AUC of about 19,100

– 21,200 µMol-min), regardless of the type or stage of underlying disease and whether the

patients were in complete remission (CR) if they had an underlying malignancy.

In this paper, we account for patient heterogeneity to assess the joint impact of patient

age, CR status, and AUC on patient survival, with the goal to determine covariate-specific

optimal daily AUC intervals. To evaluate possible interactions between covariates and Bu-

SE, and their association with treatment outcome, we analyzed a dataset of 151 patients who

underwent allo-SCT for acute myelogenous leukemia (AML) and myelodysplastic syndrome

(MDS). It has been demonstrated that many different comorbidity conditions may affect the

patient’s risk for developing complications with these procedures (Sorror et al., 2005, 2014).

Additionally, there commonly is a correlation between the severity of comorbidities and patient

age. Therefore, we analyzed the outcome of our patients using age as a continuous covariate.

We also included the indicator of whether the patient was in CR or had active disease at time

of allo-SCT, since patients transplanted in CR have, on average, more favorable outcomes

(De Lima et al., 2004; Kanakry et al., 2014). Our goal was to find patient-specific optimal

AUC ranges that maximize expected survival time given the patient’s age and CR status.

The results of this analysis may provide specific guidelines for so-called “personalized” or

2



”precision” medicine in clinical practice.

Andersson et al. (2002) estimated the optimal AUC range by fitting a Cox proportional

hazards regression model for overall survival (OS) time and smoothing a martingale resid-

ual plot, which showed that the hazard of death was approximately a quadratic function of

log(AUC). Bartelink et al. (2016) used a fourth-order polynomial model to estimate the associ-

ation between AUC and OS. Both of these methods assumed specific parametric distributions

for survival time, and the latter analysis assumed a specific polynomial function for the rela-

tionship between AUC and OS. For our data set, Figure 1 shows histograms and estimated

density plots of the patients’ OS times in weeks, with and without a log transformation of

OS. The figure clearly presents a long-tailed distribution that might result from a mixture of

several unknown distributions. Alternatively, the long-tailed distribution might be due to the

fact patients who have survived at least four years from transplant are at risk of death from

natural causes, rather than leukemia or transplant related causes. Consequently, the specific

models and strong parametric assumptions made by Andersson et al. (2002) and Bartelink

et al. (2016) may not be suitable to fit the current data set well. In particular, the propor-

tional hazards assumption underlying the Cox model may not be valid. Even given a survival

distribution that fits the data reasonably well, an additional problem is determining functional

relationships between AUC, prognostic covariates, and the risk of death.

We present a flexible Bayesian nonparametric (BNP) survival regression model to estimate

the relationship between survival time, AUC, and baseline covariates. Based on our analysis of

the allo-SCT dataset, we determined personalized optimal AUC ranges based on patient’ age

and CR status. An important advantage of BNP models is that they often fit complicated data

structures better than parametric model-based methods because BNP models can accurately

approximate essentially any distribution or function, a property known as “full support.” An-

other important advantage of BNP models is that they often identify unexpected structures in

a dataset that cannot be seen using conventional statistical models and methods. BNP models

have been used widely for survival analysis. Hanson and Johnson (2002) proposed a mixture of

Polya tree priors in semiparametric accelerated failure time (AFT) models, while Gelfand and

Kottas (2003) developed the corresponding Dirichlet process (DP) mixture approach. Zhou

and Hanson (2017) presented a unified approach for modeling survival data by exploiting and

extending the three most commonly-used semiparametric models: proportional hazards, pro-

portional odds, and accelerated failure time. Despite the flexibility of these approaches for

modeling baseline survival distributions, they are restricted in the way that covariates may

affect the baseline distribution. Fully nonparametric tree-based survival models have been

developed, such as the use of random forests (Ishwaran et al., 2008) and Bayesian additive

regression trees (Sparapani et al., 2016). De Iorio et al. (2009) proposed an unconstrained

survival regression model with a dependent Dirichlet process (DDP) (MacEachern, 1999) prior

in order to incorporate covariates in a naturally interpretable way. Xu et al. (2016) developed

a DDP prior with Gaussian process as the base measure, the DDP-GP model, to evaluate

overall survival (OS) times of complex dynamic treatment regimes including multiple transi-

tion times. However, a non-trivial limitation of the DDP-GP model in Xu et al. (2016) is that

it gives the same fixed weight to all covariates, regardless of their numerical domains, when
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Figure 1: Histograms of overall survival time in weeks (top) and log overall survival time
(bottom), with nonparametric density estimates.

quantifying dependence between patients. Such a restriction may cause posterior inferences to

be inconsistent (Tokdar and Ghosh, 2007).

Building on the work in Xu et al. (2016), in this paper we propose a flexible survival regres-

sion framework by formulating a DDP with a more general covariance function for the GP prior

that includes an individual scale parameter for each covariate and additional hyperparameters

for model flexibility and robustness. The proposed model provides easy-to-implement posterior

inferences in settings where the proportional hazards assumption, specific parametric models

such as AFT models, or semi-parametric models may not fit the data well. Currently, the R

package survival, which is limited to such models, remains a standard tool for statistical and

medical researchers. One of the main contributions of our paper is to provide a new, easy-to-

use R package, DDPGPSurv, that implements the proposed DDP-GP survival regression model

for a broad range of survival analyses. A major goal is that DDPGPSurv will become a new
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standard computational tool for implementing this generalized DDP-GP to conduct survival

analysis in medical research.

The rest of the paper is organized as follows. In Section 2 we review the motivating dataset.

We present the DDP-GP survival regression model in Section 3. Section 4 gives a brief in-

troduction to the R package DDPGPSurv. Extensive simulation studies with comparison to

alternative methods are conducted in Section 5. We analyze our dataset in Section 6, and

conclude with a brief discussion in Section 7.

2. Motivating Study

When total body irradiation was replaced with high-dose oral busulfan (Santos et al., 1983;

Tutschka et al., 1987), it quickly became clear that unpredictable, often lethal, toxicities limited

the use of a busulfan-based conditioning program. Several retrospective studies indicated an

association between systemic drug exposure and clinical treatment outcome (Dix et al., 1996;

Slattery et al., 1997). This spawned an interest in exploring pharmacokinetic dose guidance,

but the erratic bioavailability of oral busulfan prevented its successful implementation in a

prospective fashion. The advent of IV Busulfan, which guarantees complete bioavailability

with absolute assurance for systemic dose delivery has changed this. Routine application of

therapeutic dose guidance for IV busulfan in pre-transplant conditioning therapy now makes

it possible to accurately deliver a predetermined systemic exposure dose in terms of AUC,

thereby optimizing treatment. This is important, since in (myeloid) leukemia the cytotoxic

drug dose and accurate dose delivery are associated with clinical treatment outcome (Andersson

et al., 2002; De Lima et al., 2004; Russell et al., 2013; Bartelink et al., 2016; Andersson et al.,

2016). A question that has not yet been resolved satisfactorily is what optimal systemic

exposure dose to target in an individual patient. To address this decisively, we have retrieved

data in The University of Texas MD Anderson Cancer Center from 151 AML/MDS patients

who received a standardized 4-day fludarabine-IV busulfan combination, with both agents

administered based on body surface area. Pharmacological studies of busulfan were performed

as an optional procedure, but the information was not used for busulfan dose-adjustments.

The dataset includes overall survival (OS) times and the covariates age, CR status, and AUC.

Table 1 summarizes the characteristics of the study population at baseline.

3. Probability Model

3.1. Dependent Dirichlet process-Gaussian process prior
Denote the log time to death by Y and censoring time on the log(time) domain by C, with

T = Y ∧ C the observed log time of the event or censoring, and δ = I(Y ≤ C). Indexing

patients by i = 1, · · · , n, the observed outcome data for patient i are (Ti, δi), and we let xi

denote the baseline covariate vector, including age, CR status, and AUC.

We construct a Bayesian nonparametric (BNP) survival regression model for F (Y | x), the

distribution of [Y | x], as follows. We start with a model for a discrete random distribution

G(·), then use a Gaussian kernel to extend this to a prior for a continuous random distribution,
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Patients(n = 151)
Age(years)

≤ 25 12 (8%)
26− 35 22 (15%)
36− 45 32 (21%)
46− 55 50 (33%)
≥ 56 35 (23%)

Sex
Male 77 (51%)

Female 74 (49%)

In CR at transplantation
Yes 80 (53%)
No 71 (47%)

AUC quantile
10% 3,928
25% 4,328
50% 5,077
75% 5,754
90% 6,371

Table 1: Patient characteristics at time of transplantation.

and finally we replace the kernel means by a regression structure to define the desired prior

on {F (Y | x), x ∈ X}. The constructions of G(·) and F (·) are elaborated below, by way

of a brief review of BNP models. See, for example, Müller and Mitra (2013) and Müller and

Rodriguez (2013) for more extensive reviews.

First proposed by Ferguson et al. (1973), the Dirichlet process (DP) prior has been used

widely in Bayesian analyses as a prior model for random unknown probability distributions.

A DP(α0, G0) involves a positive scaling parameter α0 and a base probability measure G0.

A constructive definition of a DP is provided by Sethuraman (1994), the so-called “stick-

breaking” construction, given by G =
∑∞

h=1whδθh , where θh ∼ G0, and wh = vh
∏
l<h(1− vl)

with vh ∼ be(1, α). Here, δθh(·) denotes the Dirac delta function, which is equal to 1 at θh and

is equal to 0 everywhere else. In many applications, the discrete nature of G is not appropriate.

To deal with this, a DP mixture model extends the DP model by replacing each point mass

δ(θh) with a continuous kernel, such as a DP mixture of normals G =
∑

hwh N(θh, σ
2), where

N(θh, σ
2) denotes a normal distribution with mean θh and standard deviation σ.

To include regression on covariates, MacEachern (1999), extended the DP mixture model

by replacing each mean parameter θh in the sum with a function θh(x) of covariates x. This

is called a dependent Dirichlet process (DDP), obtained by assuming the regression model

F (y | x) =

∞∑
h=1

wh N(y; θh(x), σ2),

where one can specify a stochastic process prior for {θh(x)}. As a default assumption MacEach-
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ern (1999) proposed a Gaussian process (GP) prior. Here, the GP is indexed by x. Tem-

porarily suppressing the subindex h, a GP prior is characterized by the marginal distribution

for any n-tuple (θ(x1), . . . , θ(xn)) being a multivariate normal distribution with mean vector

(µ(x1), . . . , µ(xn)) and (n× n) covariance matrix with (i, j) element C(xi,xj), for any set of

n ≥ 1 covariate vectors x1, · · · ,xn. We denote this model by θ(x) ∼ GP(µ,C). Extensive

reviews of the GP are given by MacKay (1999) and Rasmussen and Williams (2006).

In the context of modeling each patient’s transition times between successive disease states

in a dataset arising from multi-stage chemotherapy of acute leukemia, Xu et al. (2016) mod-

eled {θh(x)} ∼ GP(µh(·), C(·, ·)), h = 1, 2, . . . with µh(xi;βh) = xiβh and C(xi,x`) =

exp{−
∑D

d=1(xid − x`d)
2} + δi`J

2. Here, D is the dimension of the covariate vector, with

δi` = I(i = `) = 1 if i = ` and 0 otherwise. The term J2 is jitter added to provide numerical

stability by avoiding singular covariance matrices, with a small value such as J = 0.1 typically

used.

A non-trivial limitation of this covariance function is that it gives the same weight to

all covariates, regardless of their numerical domains, when quantifying dependence between

patients. This implies that different covariates xd and xd′ contribute the same to the correlation

between patients i and l as long as (xid − x`d)2 and (xid′ − x`d′)2 are the same. Furthermore,

without including hyperparameters with prior distributions in the covariance function, the

posterior inference using a Gaussian process prior may not be consistent. Technical proofs can

be found in Tokdar and Ghosh (2007). To avoid these limitations, we extend the DDP-GP

model by including an additional scale parameter, λd, for each covariate xd and also an overall

multiplicative scale parameter σ20 in the covariance function:

C(xi,x`) = σ20 exp

{
−

D∑
d=1

(xid − x`d)2

λ2d

}
+ δi`J

2. (3.1)

The multiplicative scale parameter σ20 accounts for variability in the data that is not accom-

modated by the variance σ2 of the normal component distributions.

The model can be summarized as

p(yi | xi, F ) = Fxi
(yi)

{Fx} ∼ DDP-GP
{
{µh}, C;α, {βh}, {λ2d}, σ20, σ2

}
. (3.2)

We use the acronym DDP-GP to refer to the proposed model with the DDP mixture of normals

with this particular GP prior on the mean of the normal kernel. Thus,

Fx(y) =

∞∑
h=0

whN(y; θh(x), σ2) with {θh(x)} ∼ GP(µh(·), C(·, ·)), (3.3)

where h = 1, 2, . . ., µh(xi) = xiβh, and C(·, ·) is defined in (3.1).
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3.2. DDP-GP survival regression model

Denote the vector of all model parameters by Θ and the data by Dn = {Ti, δi,xi}ni=1. The

likelihood function is the usual form

L(Θ | Dn) =

n∏
i=1

fxi
(ti | Θ)δi{1− Fxi

(ti | Θ)}1−δi ,

where fx(·) and Fx(·) denote the density and cumulative distribution function of Y for an

individual with covariates x. Given the assumed DDP-GP prior on Fx(·), shown in (3.2),

we complete the model by assuming the priors βh ∼ N(β0,Σ0), 1/σ2 ∼ Gamma(a1, b1),

the precision parameter α ∼ Gamma(a2, b2), σ0 ∼ N(0, τ2σ), and the covariate scale pa-

rameters λd ∼ iid N(0, τ2), d = 1, · · · , D. Thus, the DDP-GP’s hyperparameters are θ∗

= (β0,Σ0, a1, b1, a2, b2, , τ
2
σ , τ

2).

To implement the DDP-GP model, one first must determine numerical values for the hy-

perparameters θ∗. We introduce default choices for fixing θ∗ in our DDPGPSurv package below,

although users can define their own preferred values, if desired. We suggest using an empirical

Bayes method to obtain β0 by fitting a normal distribution for patient response on the log

scale, log(Y ) | x ∼ N(xβ0, σ̂
2) and assuming Σ0 to be a diagonal matrix with all diagonal

values 10. Once an empirical estimate σ̂2 of σ2 is obtained, one can tune (a1, a2) so that the

prior mean of σ2 matches the empirical estimate and the variance equals 10 or a suitably large

value to ensure a vague prior. The total mass parameter α in the stick-breaking construction

determines the number of unique clusters in the underlying DP Polya urn scheme. Usually,

the DP yields many small clusters, therefore changing the prior of α does not significantly

alter posterior predictive inference, which we will use for estimating the survival function and

optimal AUC ranges. We assume a2 = b2 = 1 to ensure a vague prior on α. Lastly, we assume

τ = τσ = 10 so that the ranges of λd’s and σ0 in the covariance function are large enough to

cover variability in the data.

To obtain posterior inference for a DDP-GP survival regression model, we first marginalize

(3.2) analytically with respect to the random probability measures Fx(·). To do this, we first

rewrite (3.3) equivalently as a hierarchical model with a set of new latent indicator variables

γi as

(Yi | γi = h,xi) ∼ N(θh(xi), σ
2) and p(γi = h) = wh, (3.4)

for i = 1, · · · , n. If clusters of patients are defined as Sh = {i : θ̃i = θh}, then the γi’s

are interpreted as cluster membership indicators. Posterior simulation makes use of these

indicators and the vectors θh = (θh(x1), . . . , θh(xn)). After marginalization with respect to Fx,

we are left with the marginal model for {γi, θh(xi); i = 1, . . . , n, h = 1, . . .}. We implement

posterior sampling based on the collapsed Gibbs sampler (Escobar and West, 1995) in the

R package DDPGPSurv. Details of the MCMC computations are provided in the supplement

Section 1.
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3.3. Personalized optimal AUC range estimation
Let ρn = (S1, . . . , SH) denote the partition of the n patients, determined by the clusters induced

by the γi’s. A key advantage of the proposed BNP model is that we can easily write down the

posterior predictive distribution of the outcome Yn+1 for a future patient with covariate vector

xn+1, given by

p(Yn+1 | xn+1,Dn) =
∑
ρn

p(ρn | Dn)

∫
p(Θ | ρn,Dn)

×
{H+1∑
h=1

p(Yn+1 | n+ 1 ∈ Sh, θh(xn+1),Θ)p(n+ 1 ∈ Sh | xn+1,Dn, ρn,Θ)
}
dΘ.

(3.5)

The innermost sum averages with respect to the cluster membership for the (n+ 1)st patient

during the MCMC. The term h = H + 1 corresponds to the case that this new patient may

form his/her own singleton cluster. The posterior average with respect to p(ρn | D) and

p(Θ | ρn,Dn) is evaluated as an average over the MCMC sample.

For the IV busulfan allo-SCT data, x includes the key treatment variable AUC, which

quantifies the patient’s delivered dose of IV busulfan and thus may be targeted by the treating

physician. From (3.5), based on our analysis of the IV busulfan data using the DDP-GP, we

can use the predictive distribution to compute the optimal AUC for the future patient n + 1

as that which maximizes expected log survival time,

ÂUCn+1 = argmaxAUCE(Yn+1 | xn+1,Dn), (3.6)

where xn+1 includes patients’ age, CR status, and AUC. The laboratory-based method for

determining the median specific daily Bu-SE has about a 3% error when sampling is carried

over 12-14 hours (or about 3-4 drug half-lives). However, if sampling is restricted to 4-6 hours

(1.0 - 1.5 drug half-lives), as is done with many PK evaluation methods, the error increases to

at least 6%. Based on these considerations, we decided to use optimal AUC +/- 10% as an

reasonable interval for targeting, since it is not possible to detect any difference in covariate

impact on outcome between patients with AUC values falling within this narrow Bu-SE interval.

Therefore, we define the optimal AUC interval for future patient n+ 1 as[
0.9× ÂUCn+1, 1.1× ÂUCn+1

]
,

bearing in mind that ÂUCn+1 depends on the patient’s covariates xn+1.

4. R package: DDPGPSurv

One of the main contributions of this paper is that we have developed an R package, DDPGPSurv,

that implements the proposed DDP-GP model as a general tool for survival analysis. The

functions in the package perform inference via MCMC simulations from the posterior dis-

tributions based on a DDP-GP prior using a collapsed Gibbs sampler (mcmc_DDPGP). The

9



outputs from mcmc_DDPGP are then used as the inputs for the other functions to evaluate

and plot the estimated posterior predicted density, survival, and hazard functions for new

observations/patients. The package also includes a function for evaluating posterior mean

survival for specified values of the covariate vector. For example, this allows the user to

determine the optimal value of a specific covariate (with the other covariates fixed) that max-

imizes posterior expected survival time. The R package DDPGPSurv can be downloaded from

https://cran.r-project.org/web/packages/DDPGPSurv/index.html.

Current standard methods for survival analysis typically involve the Kaplan-Meier (KM)

estimator for unadjusted survival times with independent right censoring, accelerated failure

time (AFT) models, or the Cox proportional hazards (PH) model. The KM estimator is a

non-parametric statistic and is constructed using a finite number of conditional probabilities

of survival at successive time intervals. To analyze the effects of specific covariates using the

KM estimator, the most common approach is simply to compute the KM for particular patient

subsets that may be defined from x, which reduces reliability. AFT regression models are fully

parametric, which may be problematic if the baseline hazard function does not fit the specified

AFT distribution. Comparisons between the DDP-GP and AFT models via simulations show

that the DDP-GP is more robust, with much more accurate predictions across a range of various

distributions (Weibull, lognormal, exponential). That is, if the distribution selected for the

AFT model does not match the truth, the predictions will be inaccurate. The Cox model,

which is semi-parametric, relies on the PH assumption, which states that the each covariate

has a constant effect on the hazard function that does not vary over time. This assumption

may not always be true, and it is not required by the DDP-GP model. Additionally, as with

any BNP model, the DDP-GP accommodates irregularly shaped survival distributions, for

example having multiple modes. Thus, the DDP-GP, implemented by the DDPGPSurv package,

provides many advantages over these conventional methods, including robustness and accuracy

across a wide range of possible distributions.

5. Simulation Studies

We conducted simulation studies to evaluate the DDP-GP model in terms of estimation of

survival densities and optimal personalized AUC ranges, with the data simulated to mimic the

structure of the allo-SCT dataset. We generated T=survival time, the covariates x1 = age, x2

= AUC, and x3 = CR status for each patient, as follows. Let LN(m, s) denote a log normal

distribution with location and scale parameters m and s, and let xi = (xi,1, xi,2, xi,3) denote the

covariates for patient i. Patients’ ages and AUC values were sampled with replacement from

the actual ages and AUC values in the allo-SCT dataset. We generated patients’ CR statuses

as independently and identically distributed (i.i.d.) binary variables from a Bernoulli(0.5). We

simulated the Yi’s from a lognormal distribution, Yi | xi ∼ LN(µ(xi), σ
2
0), where the location

parameter is the following function of xi,

µ(xi) = 4− 0.1xi,1 + 0.7xi,2 + 0.3xi,3 − 0.07x2i,2 − 0.1xi,1xi,2 + 0.2xi,2xi,3 − 0.18xi,1xi,2xi,3,
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for i = 1, · · · , n, and σ0 = 0.4. We deliberately designed the form of µ(xi) based on clinical

knowledge, including a quadratic term for AUC to reflect the fact that a Bu-SE that is either

too high or too low is associated with shorter survival time. We also included interaction

terms between AUC and covariates so that the relationship between survival and AUC may

vary depending on each patient’s age and CR status.

We considered two scenarios, one with n = 200 observations without censoring and the

other with n = 200 and 25% censoring. For each scenario, B = 100 trials were simulated,

and the proposed DDP-GP survival regression model was fit to each simulated dataset. The

MCMC sampler was implemented for posterior inference and run for 5,000 iterations with

an initial burn-in of 2,000 iterations, thinned by 10. We used the R package coda to check

convergence, and both traceplots and autocorrelation plots (not shown) to check mixing of the

Markov chain, which showed no convergence problems.

5.1. Survival density estimation
For simulated trials indexed by b = 1, · · · , B, let Sb(t | x) = p(Yn+1 ≥ t | xn+1 = x, data)

denote the posterior predicted probability that a future patient n+ 1 with covariate x in trial

b survives beyond time t. To estimate Sb(t | x) using our package DDPGPSurv, we first run the

MCMC using the function mcmc_DDPGP. Then, the output from the function mcmc_DDPGP serves

as the input to the function DDPGP_Surv, which returns the mean and 95% credible intervals for

the survival function across the saved MCMC posterior samples. Using the empirical covariate

distribution 1
n

∑n
i=1 δxi

to marginalize w.r.t. xn+1 and averaging across simulations, we get

S(t) =
1

B

B∑
b=1

1

n

n∑
i=1

Sb(t | xi).

For comparators, we considered six alternative methods. First, we fit AFT regression models

using either lognormal or Weibull distributions by assuming

log(Yi) = β0 + β1xi,1 + β2xi,2 + β3xi,3 + β4x
2
i,2 + β5xi,1xi,2 + β6xi,2xi,3 + β7xi,1xi,3 + σεi.

(5.1)

Here, assuming a normal distribution on εi implies that Yi follows a lognormal distribution,

while the extreme value distribution assumption on εi implies that Yi follows a Weibull dis-

tribution. We also considered two flexible semiparametric survival methods that model the

baseline survival using a Polya Trees (PT) prior (Hanson and Johnson, 2002) or a transformed

Bernstein polynomials (TBP) prior (Zhou and Hanson, 2017), respectively. Both models were

implemented in the R package spBayesSurv. We assumed the AFT regression model as the

frailty model in both the PT and TBP methods with the same setup as in (5.1). Lastly,

we compared the proposed DDP-GP model to two fully nonparametric survival models using

random forests (RF) (Ishwaran et al., 2008) and Bayesian additive regression trees (BART)

(Sparapani et al., 2016). We used the R packages randomForestSRC and BART to implement

the RF method and the BART method, respectively.
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Figure 2 compares S(·) estimated under the DDP-GP model to the simulation truth,

S0(t) =
1

B

B∑
b=1

1

n

n∑
i=1

S0(t | xi),

the maximum likelihood estimates (MLEs) obtained under each of the two AFT models, and

the estimated survival curves under the PT, TBP, BF, and BART methods. In each scenario,

the true curve is given as a solid black solid line and the posterior mean survival function

under the DDP-GP model as a solid red line with point-wise 95% posterior credible bands as

two dotted red lines. In both scenarios, the DDP-GP model based estimate, as well as the RF
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(a) n = 200 without censoring (b) n = 200 with 25% censoring

Figure 2: Survival function estimates for the simulated data, with survival time on the log scale. True

survival functions are in black, and estimated posterior mean survival functions under the DDP-GP

model are in red with point-wise 95% credible bands as two dotted red lines, for n = 200 (left) and

n = 200 with 25% censoring (right). For comparators, we also show the survival function estimates

under AFT regression models using the lognormal and Weibull distributions, TBP, PT, RF, and BART.

and BART methods, reliably recovered the shape of the true survival function, while the four

other methods (AFT Lognormal, AFT Weibull, TBP, and PT) showed substantial bias.

5.2. Personalized optimal AUC estimation
For the simulated data, we next evaluated the ability of the DDP-GP survival regression model

to estimate optimal personalized AUC ranges, computed by (3.6). This estimation can be

performed by the function DDPGP_meansurvival in our R package DDPGPSurv. This function

takes the output from mcmc_DDPGP and calculates the posterior mean survival times and 95%

credible intervals for patients of interest. Figure 3 compares the simulated true optimal AUC

and the optimal AUC range estimates for a 30-year old patient with two different CR statuses,
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under each of seven models: the DDP-GP model, and the lognormal or Weibull AFT models

in (5.1), TBP, PT, RF, and BART. Since the RF and BART methods do not have closed-

forms for mean survival times and only provide the estimated survival probabilities at the

time points observed in the original data, we estimated the mean survival time as the area

under the survival curve in the interval (0, tmax), where tmax is the largest observed time point

in the data. In Figure 3, the numbers in parentheses in the legend represent the simulated

true optimal AUC and the optimal AUC range estimated by the DDP-GP survival regression

model. The figure shows that the DDP-GP model accurately estimates the mean survival

function and identifies the optimal AUC, with the simulated true AUC being in the estimated

optimal AUC range. In contrast, the mean survival functions and the optimal AUC estimates

given by the AFT models, PT, and TBP are considerably different from the simulation truth.

For instance, when CR=No with 25% censoring, the AFT models with lognormal or Weibull

distributions estimate the optimal AUC to be 4.4 and 4.5, respectively, while the true AUC is

3.9. While the RF and BART methods are able to accurately estimate the survival function,

the estimates of mean survival are biased, especially when the data are censored.

In summary, the DDP-GP is more robust than alternative methods in the sense that it

can better fit the survival functions and more accurately estimate personalized optimal AUC

ranges, even while only including the main effects (β0 +β1xi,1 +β2xi,2 +β3xi,3) in the mean of

the Gaussian process prior. In contrast, the alternative parametric and semiparametric models

which do not perform as well as the DDP-GP, include not only main effects but also quadratic

terms and interactions between covariates as in (5.1). This illustrates an important advantage

of the DDP-GP model. It allows one to include covariates as simple linear combinations,

but still is able to identify quite general interactions that are not limited to conventional

multiplicative interaction terms, such as β1AUC × age + β2AUC × CR, that typically are

included in the linear components of conventional Cox or AFT models. Such a construction is

extremely useful especially when the covariates are high-dimensional, in which case including

all the interactions among covariates in the regression model is infeasible. We also present

one additional simulation study with ten covariates and a more complex mean structure in

the supplement Section 2, demonstrating that the DDP-GP model can accurately recover

the simulation truth under more complicated scenarios and compare favorably to alternative

methods.

6. IV busulfan Data Analysis

While an optimal AUC interval has been determined previously for use in all patients (Ander-

sson et al., 2002), the underlying statistical analyses motivating this assume homogeneity, and

thus do not allow the possibility that the optimal interval may vary non-trivially with patient

characteristics. Here, we approach the problem differently by estimating mean survival time

as a function of (age, CR status, AUC), allowing the possibility that the effect of AUC on

survival may vary with age and CR.

The AUC values in our analysis are in units of thousands of mean daily µM/∗min. An initial

analysis of the IV Bu dataset using Kaplan-Meier estimates is given in Figure 4. We divided
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Figure 3: Optimal AUC estimation for the simulated data, with both survival time and AUC on the

log scale. True mean survival functions versus AUC are in black and estimated mean survival functions

under the DDP-GP model are in red with point-wise 95% credible bands as two dotted red lines for

n = 200 (left plots) and n = 200 with 25% censoring (right plots). For the comparators, we also show

the mean survival function estimates under AFT regression models using the lognormal and Weibull

distributions, TBP, PT, RF, and BART. The numbers in parentheses in the legend are the true and

estimated optimal AUC values.

patients into four groups based on CR status and age, dichotomized as being above or below the

median age of 49, and plotted their survival probabilities. Figure 4 illustrates the well-known
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fact that being in CR at transplant yields higher survival probabilities. Similarly, younger

patients are also expected to have higher survival probabilities. The p-value obtained from

the log rank test comparing the survival distributions between the four groups is significant,

indicating that CR and age are important covariates for any survival regression model. The

cut-off 49 for dichotomizing age was chosen for convenience, however, as is commonly done

in survival analyses. In addition to loss of information about the joint effect of age and CR

status on survival caused by dichotomizing age, the reliability of each Kaplan-Meier estimate

is reduced because it is based on a subsample.
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Figure 4: Kaplan Meier Plots. The time in weeks (log scale) versus probability of survival for four

different groups are plotted. The p-value from the log rank test for comparison between the survival

distributions between the four groups is given at the top of the figure.

We fit the DDP-GP survival regression model to the allo-SCT dataset with 10,000 Gibbs

sampler iterations and a burn-in of 5,000 iterations. The estimated posterior survival distribu-

tions with 95% credible intervals under the DDP-GP for patients with different CR statuses

and ages 30, 40, 50, or 60, given AUC=5, are shown in Figure 5, respectively. For each (CR

status, age) combination, the optimal AUC range is defined as the AUC value that maximizes

estimated posterior mean survival, ± 10%. Given CR status and AUC, Figure 5 shows that

the estimated posterior mean survival function decreases for older patients, agreeing with what

was seen in the preliminary Kaplan-Meier estimates.

For the eight combinations of CR status and Age, we calculated predicted posterior mean

survival time as a function of AUC, to address the primary goal of the analyses. These plots
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Figure 5: Estimated survival functions under the DDP-GP survival regression model for patients with

different CR status (Yes or No) and ages (30, 40, 50, 60). The patients are assigned AUC=5. The

dashed lines represent the point-wise 95% credible intervals for each survival curve.

are given in Figure 6. Our analyses confirm the existence, for each combination of CR status

and Age, of an optimal AUC range that yields higher expected survival times compared to an

AUC that is either below or above the optimal range. A very important inference is that these

optimal AUC ranges differ substantially between many of the (CR status, Age) combinations.

This has extremely important therapeutic implications when choosing an individual patient’s

targeted AUC. For example, the optimal AUC interval for a patient not in CR with Age=50

is 4.7 ± 0.47 = [4.23, 5.17] compared with the optimal interval 5.8 ± 0.58 = [5.22, 6.38] for

a patient in CR with Age=40. Since these intervals are disjoint, they suggest that these two

patients should have very different targeted AUC values to maximize their expected survival

times. The estimated mean survival times versus AUC under the alternative methods, PT,

TBP, RF, and BART, are included in the supplement Section 3. There are no meaningful

patterns we can observe in these figures.

In contrast with our inferences, (Bartelink et al., 2016) concluded that CR status has a

negligible effect on the optimal AUC However, the results reported by Bartelink et al. (2016)

were based on data from a large number of different medical centers, many different pretrans-

plant conditioning regimens were used, the PK-data were obtained from different laboratories,

with a very heterogeneous pediatric patient population having a large number of different di-

agnostic categories, including patients with malignant and non-malignant genetic disorders. In

contrast, our analyses are based on a much more homogeneous dataset. Our results indicate

that CR status is an important covariate, and that the optimal dose of AUC is higher for

patients who are in CR at transplant. Furthermore, the increased optimal AUC for patients

in CR at transplant versus patients not in CR is much larger in older patients, whereas these
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Figure 6: Mean log survival time estimates under the DDP-GP model, as a function of AUC,
for each of eight (CR status, Age) combinations. The gray area in each plot represents the
95% credible interval for estimated mean survival, and the tick marks on the horizontal axis
(rug plot) indicate the AUC values for patients in the data set. The red area represents the
optimal AUC range, defined as the estimated mean ±10%.
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differences appear negligible in adolescents or young adults, similar to what was reported by

Bartelink, et al. (2016). Our results also demonstrate that, across all ages, mean survival time

for patients in CR is larger compared with those not CR.

To further illustrate how the optimal AUC ranges change with both CR and Age, we plotted

the optimal AUC ranges as Age is varied continuously, for CR=Yes and CR=No, in Figure

7. The negative association between optimal AUC and Age is clearly shown by this figure. It

also shows that, while CR status has virtually no effect on the optimal AUC interval for very

young patients with Age ≤ 28, the optimal AUC for patients in CR at transplant is increasingly

higher as Age increases, with the optimal intervals for CR = Yes versus CR = No becoming

completely disjoint for patients above 55 years of age. Thus, the lower portions of the curves

in Figure 7 for Age ≤ 28, agree with the conclusion of (Bartelink et al., 2016) for pediatric and

adolescent patients, while the higher portions for Age > 28, provide news insights. Again, this

demonstrates the importance of considering both CR status and Age when planning a targeted

AUC for a patient with a diagnosis of AML or MDS.
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Figure 7: Optimal AUC ranges versus age given CR status. The blue and red lines represent
the optimal AUC for CR=Yes and No, respectively. The optimal AUC ranges are represented
by the shaded regions above and below the optimal AUC.

7. Conclusions

We have proposed an extended Bayesian nonparametric DDP-GP model for survival regres-

sion having a generalized covariance structure, studied it by simulation, and applied it to

estimate personalized optimal dose intervals for IV busulfan in allo-SCT for AML/MDS. Our

simulations, constructed to mimic the dataset, show that the DDP-GP model provides more
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accurate survival function estimates and optimal AUC range estimates compared with conven-

tional parametric to AFT models. Our analyses of the IV busulfan allo-SCT dataset identified

optimal AUC intervals, varying with the patient’s CR status and Age, that previously have

not been known for this treatment. Our results may have profound therapeutic implications,

since they provide a basis for personalized medicine by enabling physicians to prospectively

assign an optimized therapeutic target interval for each patient based on his/her CR status

and age.

More generally, we have developed an R package, DDPGPSurv, that implements the DDP-GP

model for a broad range of survival regression analyses. While the DDP-GP is more complex

than conventional survival regression models, its robustness and broad applicability make it

an attractive methodology for survival analysis. The DDP-GP based data analysis reported

here, while important in its own right, identified a nonlinear three-way interaction between age,

CR status, and AUC in their joint effect on survival time, as shown by Figures 6 and 7. This

pattern was identified despite the fact, noted above, that only the main effects were included in

the mean of the Gaussian process prior via the linear term β0 +β1Age+β2CR+β3AUC. This

is because the DDP-GP is essentially a mixture model, hence it can identify complex patterns

in the data that may be missed by conventional models. For the allo-SCT IV busulfan data,

this may be related to the multi-modality of the survival time distribution, seen in Figure 1.

This illustrates the practical advantage that, when applying the DDP-GP, one need not guess

or search for complex patterns in the linear term of the covariates, as is done routinely when

applying conventional survival regression models.
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