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SUMMARY

A description of the conventional paradigm for early phase clinical evaluation of a new
agent is given, followed by a list of this paradigm’s logical and practical flaws. This is
provided initially to motivate the use of phase I-II clinical trial designs. The main body
of the paper consists of a review of several practical Bayesian phase I-II designs for se-
quentially adaptive dose-finding based on efficacy and toxicity. These include designs tak-
ing two general approaches. The first approach uses elicited efficacy–toxicity probability
pair trade-offs as decision criteria. Designs accommodating bivariate binary and trinary
outcomes are discussed, as well as an elaboration that uses patient covariates to choose
individualized doses. The second approach uses elicited joint utilities of ordinal (efficacy,
toxicity) outcomes as a decision criterion, also including adaptive randomization to im-
prove performance. Several illustrative applications of the methods are provided.

Keywords and phrases: Adaptive design; Clinical trial; Design; Phase I-II clinical trial;
Utility

1 Introduction
This article reviews several practical Bayesian designs for dose-finding based on efficacy and tox-
icity in early phase clinical trials. Such designs are known as “phase I-II” to reflect the fact that
they are hybrids, combining what conventionally are two separate, consecutive phases in the clinical
evaluation of a new agent. Phase I-II designs are relatively new in clinical trials, developed over
the past 15 years. Section 2 will provide a brief, preliminary review of the conventional phase I
→ phase II paradigm for evaluating a new agent. This preliminary review will include a list of the
conventional paradigm’s logical and practical flaws, with the aim to motivate the use of phase I-II
designs.

There is a large and growing literature on early phase clinical trial designs. Interested readers
may refer to the articles cited here, the reviews of Zohar and Chevret (2007) and Le Tourtneau, Lee,
and Siu (2010), the books by Chevret (2006) and Cheung (2011), and the bibliographies therein.
The remainder of the paper will describe two general Bayesian approaches to phase I-II designs that
may be used as practical tools for conducting dose-finding trials. The first approach, presented in
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Section 3, is based on elicited efficacy–toxicity probability trade-offs (Thall and Russell, 1998; Thall
and Cook, 2004; Thall Cook and Estey, 2006). Versions accommodating bivariate binary or trinary
outcomes will be discussed, and an elaboration that uses patient covariates to choose individualized
doses (Thall, Nguyen and Estey, 2008) also will be described. The second approach, presented
in Section 4, is based on elicited joint utilities of bivariate ordinal or binary (efficacy, toxicity)
outcomes. The design also includes outcome-adaptive randomization among nearly optimal doses
to improve performance (Thall and Nguyen, 2012). Illustrative applications of the methods will be
presented.

2 The Conventional Phase I→ Phase II Paradigm

New agents with possible anti-disease effects in humans first are developed through a complex
process of pre-clinical laboratory experiments involving manipulation and study of molecules, then
cells, and then small animals or primates. If the results of such studies are sufficiently promising,
evaluation of the agent then may proceed with clinical trials, which are medical experiments with
human subjects. The conventional approach for clinically evaluating a new agent begins with a phase
I trial to determine an acceptably safe dose, usually called the “maximum tolerable dose” (MTD),
based on toxicity. In phase I, anti-disease effect (“efficacy”) usually is observed but is not used by
the dose-finding algorithm.

Phase I clinical trial designs had their origins in evaluation of new cytotoxic agents, generally
known as “chemotherapy”, for treating cancer. This seems to have motivated the pervasive idea that
higher doses of any agent are more likely to be toxic and also more likely to kill cancer cells and thus
be efficacious. Dose-finding methods also are used in many areas outside oncology. Some examples
are fibrinolytic agents for treating stroke (Whelan, et al., 2008; Thall et al. 2011), anesthetics used in
surgery (Dougherty, et al., 2000), antiemetics, and anti-hypertensive agents for high blood pressure.
For the purpose of dose-finding, “dose limiting toxicity” (DLT, or simply “toxicity”) usually is
defined as a binary indicator that any of several specified adverse events occur. Most phase I designs
are based on empirical evaluation of how toxicity rates vary with dose, and they ignore treatment
efficacy. In a typical phase I trial, the starting dose is chosen by the investigator based based in vitro
or animal data. During the trial, doses are chosen adaptively for successive cohorts, typically of 1,
2, or 3 patients. This sequential approach is taken for ethical reasons, primarily due to the fear of
overdosing patients. Otherwise, such as in animal experiments, a much more informative approach
would be simply to randomize subjects among doses, or possibly use adaptive rules to optimize
estimation of a dose-toxicity curve (cf. Atkinson, Donev, and Tobias, 2007). Decisions to escalate
or de-escalate dose levels are made using using any of a wide variety of adaptive rules. Phase I trials
usually are very small, enrolling about 12 to 30 patients. This is motivated by the common belief
that conducting small phase I trials is a good idea, and that it is acceptable when summarizing phase
I results to ignore the basic statistical practice of quantifying estimation reliability.

After a putatively safe MTD has been determined in phase I based on toxicity, a phase II trial
is conducted to decide whether the treatment’s efficacy is sufficiently promising to warrant further
evaluation of the agent. Most often, efficacy is characterized in phase II by a binary indicator of an
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event, called “response”, thought to be associated with long term patient benefit. Examples of re-
sponse include ≥50% shrinkage of a solid tumor, complete remission of acute leukemia, successful
engraftment of a stem cell transplant, lowering blood pressure by a specified amount, or dissolv-
ing the arterial blood clot that caused an acute ischemic stroke. Most phase II designs in oncology
are single-arm and based only on treatment efficacy, although some designs also include toxicity
(Bryant and Day, 1995; Conaway and Petroni, 1995; Thall, Simon and Estey, 1995). Randomization
in phase II oncology trials remains controversial (cf. Simon, Wittes, and Ellenberg, 1985; Taylor,
Braun and Li, 2006; Rubinstein, et al., 2009), although randomized phase II trials are more common
outside oncology. Phase II designs usually include futility rules to stop the trial early if the interim
data show that the agent is not promising (Fleming, 1982; Simon, 1989; Thall and Simon, 1994).
Phase II sample sizes vary widely. If it is decided in phase II that a treatment is promising, then it
is evaluated in a large, confirmatory, randomized phase III trial based on a long-term outcome, most
often survival time or disease-free survival time.

This paradigm has the following logical, scientific, and ethical flaws:

(1) While efficacy almost always is recorded in phase I, ignoring it when doing dose-finding
wastes valuable information on how anti-disease effects may vary with dose.

(2) Ignoring efficacy in phase I dose-finding is at odds with the fact that the primary purpose of
treatment is to achieve anti-disease effect.

(3) For non-cytotoxic agents, such as targeted, cytostatic, or biologic agents, if the probability of
efficacy is not monotonically increasing with dose, then the premise of higher efficacy with
higher dose that implicitly underlies nearly all phase I toxicity-based methods is just plain
wrong.

(4) Despite the fact that commonly used “3+3” algorithms are well known to be greatly inferior to
model-based procedures such as the continual reassessment method (O’Quigley, et al., 1990;
Cheung, 2011), variants of the 3+3 algorithm are used most often in phase I.

(5) Because most phase I trials are small, regardless of method, they fail to estimate the dose-
toxicity probability curve reliably. The consequence is that the chosen MTD is likely to be
either unacceptably toxic or ineffective. For example, if one patient in six treated at an MTD
has toxicity, then from a Bayesian viewpoint assuming a beta(.25, .75) prior, the posterior 95%
credible interval for Pr(toxicity at the MTD) is .01 – .51. A frequentist confidence interval is
similarly very wide for such small samples. In terms of statistical reliability, to declare that
“an MTD has been determined” based on such data is nonsense.

(6) Since phase II trial protocols often include provisions for informal dose adjustments to deal
with unacceptably high toxicity, a phase II design based on efficacy that ignores this common
practice is a fictional account of what actually is done during trial conduct.

(7) The conventional practice of evaluating efficacy and toxicity separately is at odds with the
routine considerations of efficacy-toxicity trade-offs that are the basis for most physicians’
decision-making in treatment of severe or life-threatening diseases.
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(8) If in fact an agent at a chosen MTD is ineffective but a higher dose has a substantive anti-
disease effect and also is acceptably safe, then failure to explore such an efficacious higher
dose is a scientific, medical, and ethical disaster. This is closely related to point (7), above,
and is one of the strongest motivations for conducting phase I-II trials.

The phase I-II designs reviewed here address all of the above flaws inherent in the conventional
paradigm. These phase I-II designs share the following features:

(1) They use both efficacy and toxicity to choose doses adaptively.

(2) They account explicitly for efficacy-toxicity trade-offs, either through probability trade-off
functions or utilities of joint (efficacy, toxicity) outcomes.

(3) The underlying probability models allow flexible, possibly non-monotone dose-efficacy and
dose-toxicity relationships.

(4) Computer simulation is used to establish each design’s properties, including sample size dis-
tributions and selection probabilities for each dose, and to calibrate design parameters on that
basis.

(5) The methods are Bayesian.

3 Trade-Off-Based Designs

3.1 Bivariate Binary Outcomes

Denote efficacy by E, and toxicity by T . Let YE = 1 if the patient experiences efficacy, and 0
otherwise. Let YT be the corresponding outcome for toxicity. Denote YYY = (YE , YT ). Given a set of
doses, d1 < d2 < · · · < dk, let Dn = {(YYY 1, d[1]), · · · , (YYY n, d[n])} denote the data from the first n
patients in the trial. The phase I-II problem is to choose a dose for each new patient or cohort during
the trial, adaptively based on the most recent data Dn, and recommend an optimal dose at the end of
the trial.

For a patient given dose d, denote πj(d,θθθ) = Pr(Yj = 1 | d,θθθ), and denote the joint probabilities
π(a, b | d,θθθ) = Pr(YE = a, YT = b | d,θθθ), for (a, b) = (1,1), (1,0), (0,1), or (0,0), where θθθ is the
model parameter vector. For brevity, d or θθθ will be suppressed when no meaning is lost. To specify
a model, let g be a suitable link function (e.g. logit, probit, or complementary log-log), with linear
terms ηj = g(πj). A model may be constructed by specifying the marginals πE = g−1(ηE) and πT =
g−1(ηT ), and assuming a copula to obtain a joint distribution for π(a, b). There are many bivariate
copulas (Nelsen, 1999). The Gumbel-Morgenstern copula is quite tractable, and is given by

π(a, b) = πaE (1−πE)1−a πbT (1−πT )1−b+(−1)a+b
(
eψ − 1

eψ + 1

)
πE (1−πE)πT (1−πT ), (3.1)

for a, b ∈ {0, 1} and real-valued association parameter ψ. To stabilize computation, a standardized
dose x usually is used, e.g. x = log(d) or x = d/dk, possibly centered at the mean to avoid



Bayesian Adaptive Dose-Finding Based on Efficiency . . . 191

covariance with the constant term. A simple quadratic linear term ηE = βE,0 + βE,1x + βE,2x
2

is reasonably flexible and allows non-monotone dose-response. If it is appropriate to assume that
πE(d,θθθ) is increasing in d, this may be achieved by setting βE,2 = 0 and requiring βE,1 > 0. For
toxicity, πT (d,θθθ) is increasing in d, and ηT = βT,0 + βT,1x with βT,1 > 0. This gives a model with
p = either 5 or 6 parameters, θθθ = (βE,0, βE,1, βE,2, βT,0, βT,1, ψ). Many other functional forms for
πT (d) and πE(d) may be used (cf. Bretz, Pinheiro, and Branson, 2005).

The efficacy-toxicity trade-off method (Thall and Russell, 1998; Thall and Cook, 2004; Thall,
Cook and Estey, 2006) is based on a family of contours partitioning the two-dimensional set of
possible marginal outcome probability pairs, πππ = (πE , πT ). For bivariate binary outcomes, this
set is [0, 1]2. For a trinary outcome where E and T are disjoint, the set of possible πππ pairs is the
triangular subset {πππ ∈ [0, 1]2 : πE + πT ≤ 1}. On each contour, the trade-off between πE and πT
is characterized as a single number, δ(πππ), the desirability of πππ. The contours are constructed by first
eliciting several equally desirable target probability pairs from the physician. An target efficacy-
toxicity trade-off contour, C, is obtained by fitting a curve to the elicited target pairs such that,
moving along C, as πT increases πE also must increase. A family of trade-off contours partitioning
[0, 1]2 is generated from C, and a desirability, δ, is assigned to each contour in such a way that
contours closer to the ideal point (πR, πT ) = (1,0) have larger δ and contours farther away from
(1,0) have smaller δ.

There are many way to construct a family of trade-off contours from C. A simple method is as
follows. For given πππ, let πππC denote the point where the straight line from πππ to (1,0) intersects C.
The desirability of πππ is defined as the Euclidean distance from πππ to (1,0) divided by the Euclidean
distance from πππC to (1,0), formally δ(πππ) = ‖πππC− (1, 0)‖/‖πππ− (1, 0)‖. To avoid infinite values, δ(πππ)

may be replaced by 1− e−δ(πππ). Let Cδ∗ = {πππ : δ(πππ) = δ∗} denote the contour on which all πππ have
desirability δ∗. This gives an ordering of all πππ pairs in terms of δ(πππ). To use this construction for
dose-finding, note that the above construction induces desirabilities δ∗ on {d1, · · · , dk} in terms of
the desirabilities of their pairs of posterior means,

δ∗(dr) = δ[E{πE(dr, θθθ) | D}, E{πT (dr, θθθ) | Dn}], r = 1, · · · , k.

An alternative approach would be to use contours that are linear in the πππ = (πE , πT ) domain, so
that if δ(πππ(1)) = δ(πππ(2)) then all linear combinations λπππ(1) + (1 − λ)πππ(2), for 0 < λ < 1, on the
straight line connecting πππ(1) and πππ(2) also must have desirability δ. However, requiring linearity in
the πππ domain does not seem to make sense since, for example, the desirabilities in the real domain
(logit(πE), logit(πT )) would not be linear. An important point is that is that, in this approach, the
desirabilities are assigned to pairs of parameters, not to the pairs (YE , YT ) of observables. Designs
that take this latter approach are discussed below, in Section 4.

Since it is possible that no dose is both acceptably safe and efficacious, the following two accept-
ability criteria are imposed. Given upper limit π̄T on πT (dr, θθθ) and lower limit πE on πE(dr, θθθ), a
dose dr is (1) unacceptably inefficacious if Pr{πE(dr, θθθ) < πE |Dn} > pU,E , and (2) is unaccept-
ably toxic if Pr{πT (dr, θθθ) > π̄T |Dn} > pU,T , where pU,E and pU,T are probability cut-offs such as
.90 or .95. During the trial, based on the posterior from the most recent data, only acceptable doses
are administered.
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Table 1: Operating characteristics of the stem cell transplantation trial design.

Dose of L

25 50 75 100 None

Scenario 1

True (πT , πE) (.05, .15) (.065, .20) (.085, .28) (.10, .40)

πE − πT Trade-off .96 1.00 1.07 1.20

% Selected 13 11 19 56 1

# Treated 11.5 8.3 10.9 28.9

Scenario 2

True (πT , πE) (.05, .15) (.065, .45) (.085, .20) (.10, .10)

πE − πT Trade-off .96 1.33 .98 .85

% Selected 31 40 17 8 4

# Treated 18.2 17.7 11.5 10.7

Scenario 3

True (πT , πE) (.15, .15) (.20, .20) (.35, .30) (.40, .35)

πE − πT Trade-off .85 .83 .73 .70

% Selected 61 25 0 2 12

# Treated 29.6 17.6 4.7 3.0

To implement the methodology, a non-informative prior p(θθθ | θ̃θθ) must be established. This can
be done by (i) assuming each parameter (or its log if it is positive-valued) is normally distributed,
θl ∼ N(µ̃l, σ̃

2
l ), (ii) eliciting 2k prior means µ(e)

j,r of πj(dr, θθθ) for j = E, T and doses r = 1, · · · , k,
and (iii) solving for the prior mean vector µ̃µµ. This can be done by treating the 2k elicited means like
outcomes and E(πj(dr, θθθ) | θ̃θθ) as a function of µ̃µµk×1 and using nonlinear least squares (Thall and
Cook, 2004, section 5.1). Alternatively, a sampling-based method that simulates pseudo data from
the elicited means µ(e)

j,r may be used (Houede, et al., 2010; Thall and Nguyen, 2012). With either
approach, the hyper-variances σ̃2

r then must be calibrated to obtain a suitably small prior effective
sample size (ESS) and a design with good properties. The ESS may be computed by approximating
the prior of each πj(dr, θθθ) with a beta(a, b), and using the prior mean and variance of πj(d,θθθ) to
solve for a+ b, as ESSj,r(θ̃θθ) ≈ µj,r(θ̃θθ){1−µj,r(θ̃θθ)}/var{πj(dr, θθθ) | θ̃θθ}− 1. The mean over j and
r then gives an overall ESS. If desired, the formal method of Morita, Thall and Mueller (2010) may
be used.
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3.2 Illustration: A Stem Cell Transplantation Trial

A phase I/II trial was conducted using Melphalan and an experimental agent, L, as a preparative
regimen for myeloma patients undergoing an autologous stem cell transplant (SCT). Each patient
received a fixed dose of Melphalan (100 mg/m2 IV on days -3 and -2) plus one of the four doses
{25, 50, 75, 100} mg of L given orally on each of days -8 to -2. The goal was to determine an
optimal dose of L. Toxicity was defined as regimen-related death, graft failure, or grade 3,4 atrial
fibrillation, deep venous thrombosis, or pulmonary embolism from the start of treatment to day 30
post transplant. Efficacy was the event that the patient was alive with complete response (CR) at day
30. The design specified a maximum of 60 patients to be treated in cohorts of 3, starting at d = 25. A
dose d was unacceptably inefficacious if Pr{πE(d,θθθ) < .15|Dn} > .90, and had unacceptably high
toxicity if Pr{πT (d,θθθ) > .20|Dn} > .90. Each cohort after the first was treated with the d having
largest posterior mean efficacy-toxicity trade-off, subject to the safety constraint that no untried dose
level may be skipped when escalating. The trial would be terminated and no dose selected if it was
found that no dose was acceptable. The elicited prior mean marginal efficacy probabilities at the
four L doses were .15, .20,.25, .30, and the elicited prior mean marginal toxicity probabilities were
.05, .065, .085, .10. The trade-off contours derived from the equally desirable elicited target pairs
(πE , πT ) = (.15, 0), (.30, .15), (1, .50). The efficacy-toxicity target contour is illustrated in Figure 1.
Operating characteristics of the design are summarized in Table 1.

Figure 1: Trade-off contours used by the stem cell transplantation trial design.
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3.3 Trinary Outcomes

The method also accommodates settings with trinary outcomes where E and T are disjoint. De-
noting N = (E ∪ T )c, the event that neither E nor T occurs, (YE , YT ) takes on the three possible
values (1,0), (0,0), (0,1) corresponding to {E,N, T}, and {πππ : πE + πT ≤ 1} is the triangular
subset of [0, 1]2 comprising the possible πππ pairs. This was the original case treated by Thall and
Russell (1998). In this case, πE and πT determine all joint probabilities, with πN = 1− πE − πT .
One may assume the p = 4 parameter continuation ratio model, with logit−1{πT (x,θθθ)} = ηT (x,θθθ)

= βT,0 +βT,1x and logit−1{Pr(E | T c, x,θθθ)} = ηE(x,θθθ) = βE,0 +βE,1x, subject to the constraints
βT,1 > 0 and βE,1 > 0. Thus θθθ = (βE,0, βE,1, βT,0, βT,1). This gives the three outcome probabilities

πT (x,θθθ) =
eηT (x,θθθ)

{1 + eηT (x,θθθ)}

πE(x,θθθ) =
eηE(x,θθθ)

{1 + eηT (x,θθθ)}{1 + eηE(x,θθθ)}

πN (x,θθθ) =
1

{1 + eηT (x,θθθ)}{1 + eηE(x,θθθ)}

For this model, as x increases πT (x,θθθ) must increase since βT,1 > 0, but πE(x,θθθ) is not monotone
in dose. As noted by Thall and Cook (2004) and Mandrekar, Cui and Sargent (2007), the p =
3 parameter proportional odds model with the same πT (d,θθθ) but logit−1{πE(d,θθθ) + πT (d,θθθ)} =
βT,0 + βE + βT,1x with βE > 0 used by Thall and Russell (1998) may be inadequate in this case.
A four-parameter model usually is preferable, although this is not true in all cases.

As a simple illustration of the method in this case, suppose that, in the SCT trial described above,
efficacy is re-defined as the patient being alive with CR at day 30, without toxicity. Thus, T ∩ E
is empty by definition, i.e., what was previously “E and T ” is now scored as T . To implement
the design using this trinary outcome, one must elicit the prior, numerical acceptability criteria for
πE(d,θθθ) and πT (d,θθθ), and trade-off contour appropriate for these outcomes. For example, if the
equally desirable (πE , πT ) = targets were (.15, 0), (.25, .10), (.65, .35), this would give the trade-off
contours illustrated in Figure 2.

3.4 Individualized Dose-Finding

A very useful elaboration of this design (Thall, Nguyen and Estey, 2008; Thall and Nguyen, 2010)
incorporates patient prognostic covariates, Z = (Z1, · · · , Zq), known to have substantive effects on
πE and πT . The linear terms are generalized to include covariate effectsβββjZ = βj,1Z1+· · ·+βj,qZq
and dose-covariate interactions xγγγjZ = x(γj,1Z1 + · · · + γj,qZq). For standardized dose x in the
trial,

ηj(x,Z, θθθ) = fj(x,αααj) + βββjZ + xγγγjZ. (3.2)

The function fj(x,αααj) characterizes the main dose effects on πj , for j = E, T, and is chosen to
reflect the particular application. E.g. for a cytotoxic agent, fT (x,αααT ) = αT,0 + αT,1x subject to
αT,1 > 0. The key point is that ηj(x,Z, θθθ) includes a dose effect term fj(x,αααj), covariate main
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Figure 2: Trade-off contours used by the stem cell transplantation trial design with a trinary outcome.

effects, βββjZ and dose-covariate interactions xγγγjZ. As show by Thall, Nguyen and Estey (2008), if
the interaction terms are omitted, then the method may perform very poorly if such effects actually
are present.

The key steps for constructing a design are as follows. First, a historical data setH must be fit to
obtain an informative distribution on βββ = (βββE ,βββT ) and ψ, which is used as the prior on these param-
eters for the trial. For historical treatment l = 1, ...,m, it is assumed that ηj(τl,Z, θθθ) = µj,l+βββjZ, so
the covariate-adjusted historical treatment effects on Yj are µµµj = (µj,1, · · · , µj,m). The trial data are
used to learn about the dose main effectsααα = (αααE ,αααT ) and dose-covariate interactions γγγ = (γγγE , γγγT ).

For each interim decision in the trial, quantities computed from the posteriors p(ααα,γγγ,βββ, ψ | Dn∪H)

are used for adaptive decision making. Two criteria for choosing doses are used. The first criterion
is the desirability of each ξξξ = (πE , πT ), using trade-offs as before. The second criterion is used to
determine whether x is acceptable for given Z, and is defined as follows. A lower bounding func-
tion πE(Z) on πE(x,Z, θθθ) and an upper bounding function πT (Z) on πT (x,Z, θθθ) as Z is varied
are obtained constructively from elicited values. Given Dn, the set of acceptable doses for a patient
with covariates Z is all x such that

Pr{πE(x,Z, θθθ) < πE(Z) | Dn ∪H} > pU,E and Pr{πT (x,Z, θθθ) > πT (Z) | Dn ∪H} > pU,T .

(3.3)
During the trial, a patient with covariates Z is given the most desirable acceptable dose, or is not
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Table 2: Hypothetical recommended covariate-specific doses for the AML trial. IND denotes the
number of prior induction regimens.

CR duration < 52 weeks CR duration > 52 weeks

Age IND=2 IND=1 IND=2 IND=1

18 – 33 1600 2200 3000 4100

34 – 42 1600 2200 2200 3000

43 – 58 1600 2200 2200 2200

59 – 66 1100 1600 1600 2200

> 66 No Dose 1100 1600 1600

treated on protocol if no dose is desirable. The key operational difference is that patients with
different covariates may receive different doses, and the final result of the trial is not one selected
dose, but rather and algorithm for assigning the best x based on Z. That is, the dose assignment is
individualized.

This method was applied to design and conduct a phase I/II trial of a new agent for patients with
advanced AML, studying seven doses { 1100, 1600, 2200, 3000, 4100, 5600, 7600} mg/m2. The
covariates were age, and binary indicators of whether the patient’s number IND of previous induction
regimens was one or two, and whether the previous CR duration was > 52 weeks. While space
limitations do not permit a detailed account of this trial, it is worthwhile to illustrate possible trial
results. Hypothetical recommended covariate-specific doses are given in Table 2, which illustrates
that the final recommendations of this design are very different from choosing one optimal dose for
all patients.

4 Utility Based Designs

A different approach to phase I-II dose-finding is based on elicited utilities of the possible outcome
pairs (Houede, et al, 2008; Thall and Nguyen, 2012). This methodology accommodates bivariate
ordinal (efficacy, toxicity) outcomes, including bivariate binary outcomes as an important special
case. A simple illustrative example of joint utilities for such outcomes is given in Table 3. The
method described below uses such numerical values to compute the posterior mean utility of each
dose as a basis for adaptive dose selection. In Table 3 note that, for example, U(SD, Mild) =
U(CR, High) = 75, quantifying the intuitive notion that a higher level of toxicity is an acceptable
trade-off for a higher level of efficacy. Another important point is that, if a dose-finding method
based on only a binary toxicity defined as {High or Severe} were used, then the utility of “toxicity”
could be anything from 0 to 75, while the utility of “no toxicity” could be anything from 20 to 100.
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Table 3: Joint utilities for a hypothetical clinical trial to treat solid tumors with ordinal efficacy and
toxicity outcomes. The efficacy levels are PD = progressive disease, SD = stable disease, PR =
partial response, CR = complete response.

Toxicity Severity

Efficacy Mild Moderate High Severe

PD 30 20 10 0

SD 75 50 30 15

PR 90 80 50 25

CR 100 90 75 45

4.1 Probability Models

Index doses by x ∈ {1, · · · , k}. Let Yj = 0, 1, · · · ,mj identify the ordinal levels of outcome j =
E, T. Let YT = 0 be the least severe level and mT the most severe level of toxicity, and let YE = 0
the worst level and mE the best level of efficacy. Denote

λj,y,x = Pr(Yj ≥ y | Yj ≥ y − 1, x,θθθj) and πj,y,x = Pr(Yj = y | x,θθθj) (4.1)

for j = E, T, y = 1, · · · ,mk, and dose x. Given monotone increasing link function g, such as
the logit, probit, or complementary log-log, a marginal model is determined by g(λj,y,x) = θj,y,x,
for real-valued θj,y,x. Denote θθθj = (θθθj,1, · · · , θθθj,mj ), and θθθj,y = (θj,y,1, · · · , θj,y,k). This marginal
model is saturated, with mj parameters for each x, and dim(θθθj) = kmj , the number of πj,y,x’s
needed to specify the k marginals of Yj for all x. Denoting λj,mj+1,x ≡ 1 for convenience, the
marginal probabilities are given by

πj,y,x = (1− λj,y+1,x)

y∏
r=1

λj,r,x, y = 1, · · · ,mj . (4.2)

To reduce computation, obtain monotonicity of π̄j,y,x = Pr(Yj ≥ y | x,θθθj) in x, and borrow strength
between doses, the model may be re-parameterized as

θj,y,x = µj,y +

x∑
z=2

γj,y,z for all x = 2, · · · , k (4.3)

for real-valued µj,y ≡ θj,y,1 and γj,y,x ≥ 0 for all j, y, and x = 2, · · · , k. The marginal parameter
vectors are now θθθj,y = (µj,y, γj,y,2, · · · , γj,y,k), with θθθ = (µµµ,γγγ).

As before, a joint model πππ(yyy| x,θθθ) = Pr(Y = yyy | x,θθθ) may be obtained from the marginals
by using a 1-parameter copula. The number of model parameters, p = k(mT + mE) + 1, may
seem large for a dose-finding design model. For example, if (k,mE ,mT ) = (5,3,3), then p = 31.
In fact, the method based on this model performs quite well in practice. Implementing MCMC for
computing posteriors is not problematic, and the design has good properties well across a wide set
of dose-outcome scenarios.
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A simpler, more conventional alternative marginal model for ordinal Yj is given by g(π̄j,y,x) =
αj,y + βjx, where αj,y decreases in y for each k. This is the proportional odds model (McCullagh,
1980) if g is the logit link. For example, in the case of four levels for each outcome, mT = mE = 3
and p = 9.

4.2 Computing Expected Utilities

Denoting the elicited utility of outcome y by U(y), the mean utility of dose x given θθθ is

u(x,θθθ) =

m1∑
y1=0

m2∑
y2=0

U(yyy)πππ(yyy | x,θθθ).

Since u(x,θθθ) is a theoretical quantity depending on the parameter vector θθθ, to obtain a statistic that
can be used for decision-making the posterior mean of u(x,θθθ) is computed for each x. The posterior
mean utility of dose x given data Dn is

ξ(x,Dn) = Eθθθ{u(x,θθθ) | Dn} =

m1∑
y1=0

m2∑
y2=0

U(yyy)

∫
θθθ

πππ(yyy | x,θθθ)p(θθθ | Dn)dθθθ. (4.4)

This combines the physician’s utilities and the data in terms of a single numerical criterion quanti-
fying the desirability of x. We denote the dose that maximizes ξ(x,Dn) by xoptn .

4.3 Safety

To control the risk of toxicity, let y∗ be the level of toxicity considered to be unacceptable elicited
from the physician, and π∗1 a fixed limit on π̄1,y∗,x. A dose x is unacceptably toxic if

Pr(π̄1,y∗,x > π∗1 | Dn) > pU , (4.5)

where pU is an upper probability cut-off, such as .90. The set of acceptably safe doses, An(π̄), is
defined to be all x ∈ X for which (4.5) is not the case.

An additional safety constraint is that an untried dose may not be skipped when escalating.
Essentially, this limits extrapolation based on the model to one dose level above the highest dose at
which patients have been treated.

4.4 Adaptive Randomization

A common practical problem when selecting doses adaptively is that, in some cases, little or no in-
formation may be obtained for the dose that actually has the highest true mean utility. The algorithm
that simply assigns xoptn is an example of a “greedy algorithm” and it may get stuck, repeatedly
assigning a suboptimal dose and failing to find the true optimal dose. This property of greedy se-
quential decision procedures is well-known. A solution to this problem is to randomly assign some
patients to nearly optimal treatments, which distributes patients more evenly and thus allows the one
to learn more about the treatment space, with a resulting improvement in the procedure’s reliability.
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Table 4: Operating characteristics of the malignant melanoma B-RAF inhibitor design

x = 1 x = 2 x = 3 None

Scenario 1

True (πE , πT ), u (.45, .05), 48.9 (.60, .10), 60.3 (.75, .15), 71.2

% Selected 5 18 74 3

# Treated 8.4 10.2 16.7

Scenario 2

True (πE , πT ), u (.45, .05), 48.9 (.65, .08), 65.4 (.67, .25), 56.9

% Selected 9 69 18 4

# Treated 9.9 15.3 9.9

Scenario 3

True (πE , πT ), u (.50, .45), 40.9 (.55, .50), 42.7 (.60, .55), 44.7

% Selected 4 1 0 95

# Treated 9.6 3.7 1.8

To do this ethically in dose-finding trial, the following adaptive randomization (AR) procedure may
be applied.

Given a sequence δδδ = {δn, n = 1, · · · , Nmax} of non-increasing utility differences, the set of
δn-optimal doses is

An(π̄, δ) = {x ∈ An(π̄) : ξ(x,Dn) ≥ ξ(xoptn ,Dn)− δn}. (4.6)

In words, An(π̄, δ) is the set of safe doses having posterior mean utility within δn of the maximum.
The sequence δδδ is chosen to be non-increasing with n to accommodate the decreasing variability
in the posterior mean utilities. Patients are randomized among the doses in An(π̄, δ). The AR
probabilities can be chosen in many ways, but a simple and reliable approach is to weight the doses
in An(π̄, δ) equally. The use of AR is motivated by both ethical considerations and the fact that
the posteriors of the utilities {u(x,θθθ), x ∈ An(π̄)} may be quite disperse. Extensive simulations
(Thall and Nguyen, 2012) show that, perhaps counter-intuitively, it often is more ethical to treat
some patients at suboptimal doses having ξ(x,Dn) near ξ(xoptn ,Dn). This is because, on average,
application of AR causes more patients in the trial to be treated at doses having higher true utilities.

For trial conduct, the first cohort is treated at a starting dose chosen by the physician. For all
subsequent cohorts, patients are randomized among the acceptable doses using the updated AR
probabilities given Dn. If An(π̄, δ) is empty then the trial is stopped and no dose is chosen. A rule
superseding the above is that no untried dose may be skipped when escalating. At the end of the
trial, if An(π̄, δ) is not empty, xoptNmax

is selected.
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4.5 Illustration: A Dose-Finding Trial in Malignant Melanoma

It is believed that mutations of the B-RAF gene may cause cancer. A phase I/II trial was designed
to optimize dose of a new B-RAF inhibitor, given with tumor infiltrating lymphocytes, to treat
malignant melanoma. Three doses of the B-RAF inhibitor were considered, { 320, 640, 960} mg
given twice daily. Toxicity was defined as any grade 3 or 4 non-hematologic toxicity occurring
within four weeks from the start of treatment and not resolved therapeutically within two weeks.
Efficacy was defined as immunological response. The outcome thus was bivariate binary, with
indicators YT and YE . The method was applied with cohorts of size three, starting at x = 1, choosing
xoptn for each cohort until 9 patients were treated, with AR was applied thereafter, up to a maximum
of 36 patients.

In the bivariate binary outcome case, m1 = m2 = 1, and p = 2k + 1. The only marginal prob-
abilities are πE,x and πT,x for x = 1,2,3, and θθθj = (θj,1, · · · , θj,k), for j = 1, 2. Here, p =7 since
k = 3. The elicited prior means were E(πE,1, πE,2, πE,3) = (.45, .65, .75) and E(πT,1, πT,2, πT,3)

= (.05, .10, .15). Given the two best and worst elementary event utilities fixed at U1,0 = 100 for
(YE , YT ) = (1,0) and U0,1 = 0 for (YE , YT ) = (0,1), the elicited utilities of the remaining two
intermediate elementary events were U1,1 = 50 and U0,0 = 10. For safety monitoring, a dose x
was considered unacceptably toxic if Pr(πT,x > .25|Dn) > .80, and unacceptably inefficacious if
Pr(πE,x < .35|Dn) > .80. The operating characteristics of this design are summarized in Table 4.
The simulations show that the method does a good job of selecting doses having the highest utilities
with high probabilities (Scenarios 1 and 2), and stopping with high probability when no dose is safe
(Scenario 3).
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