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A Bayesian design is presented that does precision dose finding based on time to
toxicity in a phase I clinical trial with two or more patient subgroups. The design,
called Sub-TITE, makes sequentially adaptive subgroup-specific decisions while
possibly combining subgroups that have similar estimated dose-toxicity curves.
Decisions are based on posterior quantities computed under a logistic regres-
sion model for the probability of toxicity within a fixed follow-up period, as a
function of dose and subgroup. Similarly to the time-to-event continual reassess-
ment method (TITE-CRM, Cheung and Chappell), the Sub-TITE design down-
weights each patient's likelihood contribution using a function of follow-up
time. Spike-and-slab priors are assumed for subgroup parameters, with latent
subgroup combination variables included in the logistic model to allow differ-
ent subgroups to be combined for dose finding if they are homogeneous. This
framework can be used in trials where clinicians have identified patient sub-
groups but are not certain whether they will have different dose-toxicity curves.
A simulation study shows that, when the dose-toxicity curves differ between
all subgroups, Sub-TITE has superior performance compared with applying the
TITE-CRM while ignoring subgroups and has slightly better performance than
applying the TITE-CRM separately within subgroups or using the two-group
maximum likelihood approach of Salter et al that borrows strength among the
two groups. When two or more subgroups are truly homogeneous but differ from
other subgroups, the Sub-TITE design is substantially superior to either ignoring
subgroups, running separate trials within all subgroups, or the maximum like-
lihood approach of Salter et al. Practical guidelines and computer software are
provided to facilitate application.
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1 INTRODUCTION

Most phase I clinical trial designs use adaptive rules to choose doses for successive patient cohorts based on a binary
indicator of toxicity.1-5 In practice, toxicity is evaluated for each patient over a follow-up period of specified length, T. If T is
large relative to the trial's accrual rate, then a severe logistical problem may arise when attempting to apply adaptive rules
that use the (dose, toxicity) data of previous patients to choose doses for new patients. This sometimes is called a “late
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onset toxicity” setting. For example, suppose T = 12 weeks, the accrual rate is one patient per week, and the cohort size
is three. Since a patient's outcome can be scored definitively as “No toxicity” only if the patient is followed for 12 weeks,
roughly nine to 12 patients may be accrued before the first cohort's toxicity outcomes are fully evaluated. The question
arises of how to treat each of patients #4 through #12 when they are enrolled. If some previously treated patients' outcomes
have not been fully evaluated when a new patient is enrolled, possible approaches include making each cohort wait until
all previous patients' toxicity outcomes have been evaluated before choosing their dose, not waiting and treating the new
patient at the current recommended dose, not waiting and treating the new patient one dose level below the current
recommended dose, or treating newly accrued patients off protocol. A discussion of problems with these approaches is
given by Jin et al6 in the phase I-II dose-finding setting. Thall et al7 proposed a very simple approach, the so-called look
ahead method, wherein if the outcomes of patients treated but not yet evaluated will not alter the adaptive rule's decision,
then that decision is made immediately. In practice, however, the look-ahead rule is of little use early in the trial. Bekele
et al8 proposed a Bayesian method based on predictive probabilities of toxicity, but this approach is impractical because
it may require repeatedly suspending accrual.

Cheung and Chappell9 provided a practical solution to the late onset toxicity problem in phase I trials by propos-
ing the time-to-event continual reassessment method (TITE-CRM). This method generalizes the CRM introduced by
O'Quigley et al10 by accounting for patients who have been treated recently but whose outcomes have not been fully
evaluated as either time of toxicity, or last follow-up time without toxicity. Since its introduction, the TITE-CRM has
been studied and extended in several ways, including evaluation of model sensitivity,11 refinement to accommodate both
early and late onset toxicities,12 use of the expectation-maximization algorithm to predict future toxicities13 called the
expectation-maximization–CRM, and a computer simulation study.14

The current paper was motivated by the desire to account for patient heterogeneity in trials with late onset toxicity. If
patients are classified into putatively heterogeneous subgroups and the dose-toxicity relationship may differ between sub-
groups, the adaptive dose finding problem becomes more complex, since the optimal dose may differ between subgroups.
If so, then simply ignoring heterogeneity and applying the TITE-CRM to select one “optimal" dose risks choose a subop-
timal dose in one or more subgroups. If, instead, the TITE-CRM is used to conduct separate trials within the subgroups,
this may be inefficient due to small subgroup sample sizes, particularly if two or more subgroups are truly homogeneous
in that they have the same dose-toxicity curves. Our proposed method is similar to that of Salter et al,20,21 who general-
ized the TITE-CRM by proposing a maximum likelihood–based method assuming a two parameter model, with the goal
to choose subgroup-specific doses in the case of two subgroups.

For short term binary toxicity outcomes, methods that account for settings where the probability of toxicity increases
with risk subgroup have been proposed by Mehta et al,15 O'Quigley and Paoletti,16 Yuan and Chappell,17 and Ivanova and
Wang.18 O'Quigley and Paoletti16 included an additional subgroup-specific intercept parameter in the usual TITE-CRM
skeleton parameterization to perform dose-finding in a priori ordered subgroups. Morita et al19 provided a simulation
study of hierarchical and nonhierarchical model–based subgroup-specific versions of the CRM.

In the late onset toxicity setting, we propose a method that deals with the problem that prespecified subgroups may
have either different or similar dose-toxicity curves. To do this, we extend the TITE-CRM to do subgroup-specific dose
selection while also possibly combining subgroups found to have the same dose-toxicity curve. The method, which we
call the Sub-TITE design, is based on a working likelihood and downweighting scheme similar to that of Cheung and
Chappell.9 We assume a Bayesian logistic regression model for the probability of toxicity by follow-up time T, with a lin-
ear component including effects of dose, subgroup, and dose-subgroup interaction. We assume spike-and-slab priors on
subgroup-specific parameters to allow adaptive dose selection to be done within all subgroups, or for sets of subgroups
combined if they are found to be homogeneous. This model provides a formal basis for implementing the Sub-TITE
method's main practical generalization, which is to choose optimal subgroup-specific doses while permitting some sub-
groups to be pooled if the data suggest it is appropriate. This provides a method for conducting a single trial that borrows
strength between subgroups, rather than conducting separate trials within the subgroups. We also include safety rules
that suspend accrual within a subgroup for which the lowest dose is found to be too toxic but continue accrual in the other
subgroups where the lowest dose is considered safe. To facilitate application, we provide algorithms for using elicited tox-
icity probabilities for each dose within each subgroup to calibrate prior means and variances, and we use simulation to
determine subgroup specific cutoffs for stopping accrual in a subgroup. Computer code to simulate and conduct a trial
using Sub-TITE is available on CRAN in the package SubTite.

While both our proposed method and that of Salter et al20,21 generalize the TITE-CRM to choose subgroup-specific doses,
there are several important differences. Our proposed method (1) adaptively combines subgroups that have empirically
similar dose-toxicity curves, thus choosing the same dose for the combined subgroups, (2) accommodates more than two
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subgroups, (3) includes rules to stop accrual and choose no dose in subgroups for which the lowest dose is found to be
excessively toxic, and (4) is based on Bayesian model and computational algorithms.

This research was motivated by a phase I trial to select subgroup-specific optimal doses of radiation therapy (RT) for
advanced non–small cell lung cancer. The subgroups in this trial corresponded to two different radiation modalities:
proton beam or non–proton beam (conventional). The modality was chosen for each patient by the attending physician
based on the patient's insurance coverage and the location, type, and extent of disease. The clinician hypothesized that
patients receiving proton beam RT might have lower toxicity probabilities but was not certain that this was true and did
not want to impose this as a restriction in the trial. Ideally, it would have been desirable to allow the design to either
choose different optimal doses within the modality subgroups, or combine the modalities and choose one optimal dose
if they were found to have the same dose-toxicity curve. No methodology for doing this existed at the time of the trial,
however. The patient's nodal mediastinal disease, located in the esophagus, spinal cord, or large blood vessels surrounding
the heart, was to be treated with an RT dose chosen from the set of five possible levels {10, 20, 30, 50, 70 } Gy, where Gy
denotes a Gray unit, which is 1 J of radiation absorbed per kilogram of the tumor. Toxicity was defined as any of several
common adverse effects due to the RT, occurring over a T = 6 months of follow-up period, with target toxicity probability
0.30. We developed the Sub-TITE methodology with this trial in mind.

We compared the operating characteristics (OCs) of Sub-TITE to either using the TITE-CRM while ignoring subgroups,
or the approach of using a TITE-CRM design to conduct a separate trial within each subgroup, which we call Sep-TITE.
Our simulations showed that, when the true dose-toxicity curves differ substantively between subgroups, the Sub-TITE
design has superior OCs compared with the TITE design that ignores subgroups and slightly better OCs than the Sep-TITE
approach. When two or more subgroups are truly homogeneous, the Sub-TITE design is substantially superior to run-
ning separate trials within subgroups. In the case of two subgroups, we also compared our method with the maximum
likelihood–based approach of Salter et al,20,21 which we refer to as SOCA-TITE. We also performed a robustness study to
examine the performance of Sub-TITE and its comparators under different time-to-toxicity distributions and to evaluate
each design's sensitivity to the number of subgroups, maximum sample size, and proportions of patients within sub-
groups. Our simulations, presented in Section 4, show that Sub-TITE provides more reliable within-subgroup decisions
than either ignoring heterogeneity or conducting separate trials within subgroups.

The remainder of the paper is organized as follows. The probability model and prior distributions for time to toxicity as a
function of dose and subgroup are given in Section 2. Section 3 describes how to elicit expected toxicity probabilities from
clinicians for each subgroup and dose considered in the trial. It also describes how to use these expected toxicity prob-
abilities to obtain the hyperparameters used for the design. Section 4 describes how the trial is designed and conducted
using Sub-TITE, including step-by-step guidelines. The simulation study is presented in Section 5, including comparison
of Sub-TITE to the three alternative approaches. We close with a brief discussion in Section 6.

2 DOSE-TOXICITY MODEL

Let d1 < d2 < · · · < dK denote the raw doses to be studied in the trial and define the standardized doses x𝑗 =
(d𝑗 − d̄)∕s(d), for j = 1, · · · ,K, where d̄ is the mean and s(d) is the standard deviation of the raw doses. We denote  =
{x1, · · · , xK} and an arbitrary standardized dose by unsubscripted x. We index subgroups by g = 0, · · · ,G − 1, with g = 0
an arbitrarily chosen baseline subgroup, and consider settings where K ≥ 3 and G = 2, 3,… ,6. Let T denote a fixed follow
up time for evaluating toxicity, specified by the clinical investigators. At trial time t, let ai ≤ t denote the accrual time of
the ith patient, with follow up time ui(t) = min{t − ai,T}, and define Yi(ui(t)) to be the binary indicator that patient i has
experienced toxicity by t. Thus, Yi(T) = Yi is the indicator that the ith patient has toxicity within the specified follow-up
period.

Let Wi ∈ {0, 1, … ,G − 1} denote the ith patient's subgroup. We define a latent patient subgroup variable Zi ∈
{0, … ,G − 1} and use Zi in the likelihood in place of Wi. The Markov chain Monte Carlo (MCMC) posterior sampling
scheme uses (Z1, · · · ,Zn) as a device to allow different subgroups to be combined for dose finding. We define Zi = 0 if
Wi = 0, and for G ≥ 2,

Zi =
G−1∑
g=1

I[Wi = g]𝜁g. (1)
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This definition implies that the baseline group is always included in the likelihood, although other subgroups may
be combined with it. The elements of the vector 𝜻 = (𝜁1, … , 𝜁G− 1) are random latent variables taking on values in
{0, 1, … ,G − 1}, with each 𝜁 g endowed with a prior, given below. In the MCMC algorithm, 𝜻 is used to determine what
other subgroups, if any, with which each subgroup should be combined for dose finding via the likelihood. Since Zi is a
function of Wi and 𝜻 , as 𝜻 changes throughout the MCMC, so does Zi via (1). If 𝜁 g = g then the logistic model used for
dose finding includes subgroup specific parameters for g, but if 𝜁 g = k for some k ≠ g, then for any Wi = g, in the
likelihood Zi = k.

Since phase I sample sizes are limited, we require a model that is reasonably parsimonious and tractable. It also must
include appropriate regression structure to account for the effects of dose, subgroup, and dose-subgroup interactions
as a basis for adaptive subgroup-specific decision making. Temporarily suppressing the patient index i for simplicity,
let 𝜂(x,Z,𝜽) = logit−1{𝜋(x,Z,𝜽)} denote the linear term in a logistic regression model with parameter vector 𝜽, where
𝜋(x,Z,𝜽) =Pr(Y = 1|x,Z,𝜽). We assume that

𝜂(x,Z,𝜽) = 𝛼 +
G−1∑
g=1

𝛼gI(Z = g) + exp

[
𝛽 +

G−1∑
g=1

𝛽gI(Z = g)

]
x, (2)

so 𝛼 and 𝛽 are the intercept and dose effect parameters for subgroup g = 0, and 𝛼g and 𝛽g are the subgroup g–versus–0
intercept and dose effects. Thus, the 2G dimensional model parameter vector is 𝜽 = (𝛼, 𝛼1, … , 𝛼G− 1, 𝛽, 𝛽1, … , 𝛽G− 1).
This model is invariant to the choice of the baseline subgroup 0, and the operating characteristics do not change for
the trial for different baseline subgroups. We parameterize the linear component in this way so that the model borrows
strength across both subgroups and dose levels. We exponentiate 𝛽 and 𝛽 + 𝛽g to ensure that the probability of toxicity
increases with dose for each subgroup.

For priors, we assume that 𝛼 ∼ N(�̃�, 𝜎𝛼) and 𝛽 ∼ N(𝛽, 𝜎𝛽). We introduce a binary random variable 𝜌g to allow for the
possibility that the subgroups are truly homogeneous and place a spike-and-slab prior on (𝛼g, 𝛽g), of the form

𝛼g ∼ 𝜌gN(𝛼g, 𝜎𝛼) + (1 − 𝜌g)𝛿0(𝛼g)

𝛽g ∼ 𝜌gN(𝛽g, 𝜎𝛽) + (1 − 𝜌g)𝛿0(𝛽g)

P[𝜌g = 1] = .9,

(3)

where 𝛿0(·)denotes the probability function with point mass at {0}. We set the prior probability of heterogeneous subgroups
to 0.9 to favor subgroup specific dose finding, while allowing the possibility that some subgroups are homogeneous.

We define a prior on each latent subgroup parameter 𝜁 g as follows. Denote S = {0} ∪ {𝜁g ∶ 𝜌g = 1}, with |S| its
cardinality.

1. If 𝜌g = 1, then Pr(𝜁g = g) =1.
2. If 𝜌g = 0, then Pr(𝜁 g = k) = 1/|S| for each k ∈ S.

That is, if 𝜌g = 0, then the probability that subgroup g is truly a member of any other current latent subgroup is
uniform on S. This construction allows two or more subgroups to be combined adaptively during the trial. If, for example,
𝜁1 = 𝜁2 = 𝜁3 = 1, then subgroups 1, 2, and 3 are combined. Thus, the parameter vector used in the likelihood is
𝜽 = (𝛼, 𝛽, {(𝛼g, 𝛽g)}G−1

g=1 ), while 𝜻 determines the values of Z given the observed subgroups W.

To illustrate how the parameters 𝜽, 𝜻 ,𝝆 work together in the likelihood, for example, suppose that G = 3 and 𝜌1 =
𝜌2 = 0. By definition of the conditional prior, S = {0} hence both 𝜁1 = 𝜁2 = 0 and the subgroup parameters are
𝛼1 = 𝛼2 = 𝛽1 = 𝛽2 = 0. If 𝜌1 = 0 and 𝜌2 = 1, then 𝜁2 = 2, 𝛼2 ≠ 0 and 𝛽2 ≠ 0 and 𝛼1 = 𝛽1 = 0. In this case, S = {0,
2}. If 𝜁1 = 0, then patients in subgroup Wi = 1 will have latent subgroup Zi = 0, while if 𝜁1 = 2, patients in subgroup
Wi = 1 will have latent subgroup Zi = 2.

A key point is that the subgroup combination algorithm is applied at every iteration of the MCMC. Thus, for example,
two different subgroups g = 2 and g = 3 be may combined but later separated in the course of the MCMC. Consequently,
the resulting posterior sample may have subgroups g = 2 and g = 3 combined as {2, 3} for, say, 90% of the posterior
sample values and distinct for the remaining 10%. This reflects the stochastic nature of (𝜌g, 𝜁 g), for g = 0, · · · ,G − 1.
Hyperparameter calibration including prior elicitation from clinicians is discussed in Section 3 in detail.

Let nt denote the number of patients enrolled and treated up to study time t and index patients by i = 1, · · · ,nt. To
choose each patient's dose adaptively, at study time t when a new patient is enrolled, a personalized dose is chosen based
on that patient's subgroup and the posterior distribution for 𝜽, 𝜻 given the current data
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nt = {Yi(ui(t)),Wi,ui(t), i = 1, · · · ,nt}

for all previously enrolled patients. We follow the approach of Cheung and Chappell9 by including the weight function
𝜔i(t) = ui(t)∕T in the likelihood for patients who have been partially followed but not experienced toxicity, resulting in
the approximate (working) likelihood

(𝜽, 𝜻 ,nt ) =
nt∏

i=1
{𝜋(x[i],Zi,𝜽)}Yi(ui(t)) {1 − 𝜔i(t)𝜋(x[i],Zi,𝜽)}1−Yi(ui(t)), (4)

where x[i] denotes the standardized dose given to patient i. The weights {𝜔i(t)} serve the purpose of downweighting
censored outcomes for patients who have not been followed for long past their accrual in the study. Without this weighting
scheme, dose escalation would be far too aggressive. We did not consider other forms of weights because it has been shown
that using different weighting schemes does not improve the TITE-CRM design's performance.22 Additionally, we did
not use subgroup specific weight functions because preliminary simulations showed that this causes some subgroups to
have too much influence on dose-finding decisions in the other subgroups, and it also disrupts the subgroup combination
process, producing a design with poor properties.

We also considered using a full likelihood for the time-to-toxicity distribution as a function of subgroup and dose. How-
ever, this decreased accuracy in the estimation of 𝜋(x,Z,𝜽), and the design performed poorly in settings with increasing
hazards. For example, assuming either a lognormal or Weibull time-to-toxicity distribution, if the true distribution is
Weibull with increasing hazard, so that toxicities are likely to occur late in the follow up interval [0,T], the design per-
forms poorly compared with the downweighting approach. Since the posterior distribution for 𝜽 under the logistic model
(2) does not have a closed form, we perform Metropolis-Hastings steps for each 𝜃m within the MCMC sampling scheme
including moves on 𝝆, 𝜻 , and on 𝜻|𝝆. The posterior distribution for 𝛼, 𝛽, 𝛼g, 𝛽g are functions of the latent subgroup vector
𝜻 , and posterior toxicity probability estimates are computed using both the posterior parameter vector 𝜽 and the posterior
latent subgroup vector 𝜻 . Details are described in Appendix S1.

3 ESTABLISHING PRIORS

In this section, we explain how one may obtain numerical values of the hyperparameters �̃� that characterize the
prior p(𝜽 | �̃�) of the logistic regression model parameter vector 𝜽. We write �̃� = (�̃�1, �̃�2) where �̃�1= (�̃�, 𝛽, �̃�1, · · · , �̃�G−1,

𝛽1, · · · , 𝛽G−1) is the subvector of 2G hypermeans and �̃�2 = (𝜎2
𝛼, 𝜎

2
𝛽
) is the subvector of two hypervariances. The first step

is to elicit the prior mean probability of toxicity, 𝜋e(x,W), for each combination of dose x and subgroup W. This may
be done by providing the clinician with a table with dose and subgroup cross-classified that has empty cells and asking
them to fill in their expected toxicity probability for each cell. The physician should be reminded that 𝜋(x,W) increases
with x. When collaborating with two or more physicians, a consensus may be reached in various ways, with the simplest
approach being to ask the physicians to work together to provide a table of values that they agree upon. In practice, we
have found that this works quite well. Once the JG values {𝜋e(x,W)} are elicited, a general approach for establishing �̃� is
to proceed in two steps. First, since JG > 2G for J > 2 dose levels, one may treat the 𝜋e(x,W)'s like outcomes and �̃�1 like
the parameter vector in a conventional nonlinear regression model and use nonlinear least squares (NLS) to solve for �̃�1.
Given these values, the hypervariances then may be calibrated to obtain a suitably noninformative prior p(𝜽|�̃�). For our
application, prior mean toxicity probabilities for each dose and subgroup were elicited from a single radiation oncologist
at MD Anderson. Table 1 displays elicited prior expected 𝜋e(x,W) for each dose and subgroup. For the sub-TITE model,
we assume that the hypermeans �̃�1 satisfy the equation

logit{𝜋e(x,W)} = �̃� +
G−1∑
g=1

�̃�gI(W = g) + exp

[
𝛽 +

G−1∑
g=1

𝛽gI(W = g)

]
x

for all (x,W) pairs. We use the Newton-Raphson method to solve for the NLS estimates, although other iterative proce-
dures, such as the Nelder-Mead algorithm, could be used. This computation is done using the function GetPriorMeans().
A key point here is that these hypermeans are based on the patient subgroups and not latent patient subgroups.
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TABLE 1 Elicited prior mean dose-toxicity
probabilities for each subgroup.

Subgroup Elicited toxicity probabilities

0 (0.10, 0.25, 0.35, 0.50, 0.60)
1 (0.04, 0.15, 0.20, 0.30, 0.40)
2 (0.04, 0.10, 0.15, 0.25, 0.35)
3 (0.01, 0.05, 0.10, 0.22, 0.32)

We then calibrate the hypervariances �̃�2 = (𝜎2
𝛼, 𝜎

2
𝛽
) iteratively by first fixing them at some initial values, subject to

the constraint 𝜎2
𝛼 > 𝜎2

𝛽
, such as 𝜎2

𝛼 = 2 and 𝜎2
𝛽

= 1. The current prior p(𝜽|�̃�) then is used to generate a sample of
(𝛼, 𝛽, {𝛼g, 𝛽g}G−1

g=1 ) values, and we compute the resulting prior sample of 𝜋(x,W,𝜽) values for each (x,W). We then approxi-
mate the prior effective sample size (ESS) of the distribution of 𝜋(x,W,𝜽) by matching the sample mean 𝜇x,W and sample
variance 𝜎2

x,W of the 𝜋(x,W,𝜽) values to the corresponding values of a beta(a, b) distribution, which has ESS = a + b. This
gives the approximate ESS of the prior on 𝜋(x,W,𝜽) as

𝜇x,W (1 − 𝜇x,W )
𝜎2

x,W
− 1.

We then obtain an overall approximate ESS for p(𝜽|�̃�), corresponding to the assumed fixed 𝜎2
𝛼 and 𝜎2

𝛽
, as the average over

(x,Z) of these JG prior ESS values,

1
G

1
J
∑
x∈

G−1∑
W=0

(
ax,W + bx,W

)
= 1

G
1
J
∑
x∈

G−1∑
W=0

{
𝜇x,W (1 − 𝜇x,W )

𝜎2
x,W

− 1

}
.

We iterate this process using different numerical values of (𝜎2
𝛼, 𝜎

2
𝛽
) until we obtain an average ESS of about 1. Generally,

it only takes a few minutes to calibrate the two hypervariances using the function GetPriorESS(), which does the above
steps and returns a single value for the approximate prior ESS.

4 TRIAL DESIGN AND CONDUCT

4.1 Trial design
Computer software that implements the proposed methodology is available in the package SubTite on CRAN at http://
cran.r-project.org. To start the design process, the physician must define toxicity and specify T, the doses to be studied,
the starting dose, and a fixed target toxicity probability 𝜋∗, or possibly different subgroup-specific targets {𝜋∗

g }G−1
g=0 . Addi-

tionally, prior means of 𝜋(xj, g,𝜽) must be elicited from the physician for all GK pairs of (xj, g) in order to determine prior
hyperparameters, as described above. Our proposed design generalizes the TITE-CRM by determining, for each subgroup
g = 0, 1, … ,G − 1, the dose xopt

g such that 𝜋(xopt
g , g,𝜽) has posterior mean closest to the target 𝜋∗

g . Formally, given the
data nt , if the newly accrued patient at t has W = g, we choose the optimal dose so that

xopt
g (nt ) = argmin

x∈
||E{𝜋(x, g,𝜽)|nt} − 𝜋∗

g || . (5)

If desired, different starting doses may be used within the subgroups. Although in our simulations we consider the case
where all 𝜋∗

g = 𝜋∗, with the same starting dose x1 in each subgroup, the package SubTite accommodates the more general
design features given above. For each g, computation of the posterior optimality criterion (5), as well as the posterior
safety stopping criterion, given below, reflect the possibility that some subgroups may be combined in some proportions
of the MCMC sample.

To apply Sub-TITE to design and conduct a phase I trial, there must be sufficient evidence of subgroup heterogeneity to
warrant the increased sample size in order to avoid the small loss in reliability in the truly homogeneous case. The prior
parameter means are computed using the GetPriorMeans() function in the SubTite package, which applies NLS to the
elicited toxicity probabilities. After the prior means are obtained, these are used in the function GetPriorESS() to calibrate
𝜎𝛼 and 𝜎𝛽 to obtain a desired approximate prior ESS.

http://cran.r-project.org.
http://cran.r-project.org.
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Before conducting the trial, a simulation study should be done to calibrate design parameters to ensure desirable OCs.
This requires an expected accrual rate and proportion of patients in each subgroup to be elicited from the clinician.
Depending on the number of doses, K, several potential values of NMax may be evaluated to assess the design's sensitivity
to sample size. NMax should be large enough so that the trial would assign at least one cohort of patients in each subgroup
and dose if they were completely randomized. This ensures that there will be enough exploration among the doses within
each subgroup. During the trial, accrual is suspended in a subgroup if the lowest dose is found to be too toxic. Formally,
if at least three patients have been treated at the lowest dose x1 and been fully evaluated in subgroup g and

Pr{𝜋(x1, g,𝜽) > 𝜋∗|nt} > pg,U ,

then accrual is suspended in that subgroup. If all subgroups are suspended at any interim time, then the trial is terminated.
Calibrating NMax and the cutoffs pg,U, g = 0, · · · ,G − 1, for suspending accrual within subgroups is done via simulation

using the function SimTrial() in the SubTite package. This should be done under a reasonably wide range of different true
dose-toxicity–subgroup scenarios and time-to-toxicity distributions. This function supports the gamma, Weibull, lognor-
mal, exponential, and uniform distributions for time to toxicity. Calibration of the pg,U's should include simulation of the
trial under a scenario where one subgroup is excessively toxic at x1. The design should stop this subgroup early with high
probability, but without stopping safe subgroups too frequently.

In summary, the following steps should be taken when designing a trial using Sub-TITE:

1. Working with the physician(s) planning the trial, establish (a) the K doses to be evaluated, (b) definition of tox-
icity, (c) follow up time T, (d) anticipated accrual rate (d) definitions of the subgroups, (e) anticipated subgroup
proportions, (f) the starting dose for each subgroup, and (g) the target toxicity probability 𝜋∗, or subgroup-specific
targets.

2. Elicit the GK prior subgroup-specific mean dose-toxicity probabilities from the physician(s) and input these to com-
pute the hyperparameter means �̃�, 𝛽, {�̃�g, 𝛽g}G−1

g=1 using the GetPriorMeans() function. Calibrate 𝜎𝛼 and 𝜎𝛽 with the
function GetPriorESS() to obtain approximate prior ESS 1.

3. Calibrate NMax and {pg,U}G−1
g=0 , by simulation.

4.2 Trial conduct
The steps for trial conduct are as follows. While these are given in terms of the initial G distinct subgroups, the posterior
dose selection and stopping criteria reflect the subgroup combination process in the MCMC sample.

1. Treat the first patient in each subgroup enrolled into the trial at that subgroup's starting dose.
2. In each subgroup g, for each successive patient enrolled after the first patient, choose xopt

g (nt ), subject to the
additional constraints given in the steps below.

3. In each subgroup, an untried dose may not be skipped when escalating.
4. In each subgroup g, after at least three patients have been enrolled and fully evaluated at the lowest dose, if the

lowest dose is unacceptably toxic in the sense that

Pr{𝜋(x1, g,𝜽) > 𝜋∗|nt} > pg,U , (6)

then accrual to subgroup g is temporarily suspended with no dose selected for patients accrued in that subgroup until
(6) does not hold. In practice, it may be more appropriate to treat these patients off protocol rather than delaying
therapy. We fully evaluate the first subgroup cohort at the lowest dose to avoid stopping due to chance if the lowest
dose is not truly toxic.

If at some point during the trial, (6) holds for all g = 0, · · · ,G − 1, then (6) is reevaluated for each g based on the
data in that subgroup only before subgroup the trial is stopped. This mitigates the possibility that x1 is so toxic for one
subgroup g that all subgroups are stopped, when in fact not all of the other subgroups g′ ≠ g are truly excessively
toxic at x1.

5. Unless the trial is terminated early, it ends after NMax patients have been enrolled and evaluated. The final optimal
dose for each subgroup g that has not been terminated is xopt

g (NMax ).

In practice, the values pg,U = 0.90 to 0.99 typically work well for the safety stopping rule (6). The Sub-TITE methodology
does not impose the constraint that 𝜋(x,W, 𝜃) is increasing in subgroup W, although this can be done by adding additional
constraints.
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5 SIMULATION STUDY

In this section, we describe a simulation study conducted to evaluate the Sub-TITE method and to compare it using the
TITE-CRM while ignoring subgroups, the approach of running separate trials using the TITE-CRM within each subgroup
(Sep-TITE), and the two group maximum likelihood method introduced by Salter et al20 (SOCA-TITE). We designed the
simulations to mimic the motivating RT trial, hence T = 6 months, 𝜋∗ = 0.30, and the maximum sample size is NMax =
60; we assume an accrual rate of two patients per month, the subgroups are equally likely, and all designs considered
start at x1. For the true time-to-toxicity distribution, we assumed a Weibull parameterized as −log{Pr(time to toxicity >

t)} = (t∕𝜆)𝜙, with shape parameter 𝜙 = 4 to ensure late onset toxicities and scale parameter 𝜆 set in each scenario to give
the assumed true toxicity probability 𝜋(x,Z) at the reference time T. Recall that the raw dose levels in consideration for the
radiation therapy are {10, 20, 30, 50, 70 } Gy, where Gy denotes a Gray unit, which is 1 J of radiation absorbed per kilogram
of the tumor. Elicited toxicity probabilities for each subgroup and dose obtained from the clinician are listed in Table 1.

The hypermeans for the Sub-TITE prior based on the clinician elicited toxicity probabilities were �̃� = −0.70, 𝛽 = −0.04,
�̃�1 = −0.81, and 𝛽1 = 0.009, with variances 𝜎2

𝛼 = 5 and 𝜎2
𝛽
= 1 giving approximate prior ESS = 1. We used the baseline

subgroup's elicited dose-specific toxicity probabilities as the prior dose-toxicity skeleton in the TITE-CRM design and the
subgroup specific elicited dose-specific toxicity probabilities for each subgroup's dose-toxicity skeleton for the Sep-TITE
design. The model assumed for the TITE-CRM design was logit−1(𝜋(x𝑗 , 𝛽)) = 3 + exp(𝛽)D1,𝑗 and for the Sep-TITE trial
designs was logit−1(𝜋(x𝑗 , g, 𝛽)) = 3 + exp(𝛽)Dg,𝑗 , where Dg,j = logit−1(sg,j) − 3, with sg,j is the elicited prior reference
probability for subgroup g and dose level j. We assumed that 𝛽 ∼ N(0, �̃�2). To ensure comparability with the Sub-TITE
design in terms of prior information, we calibrated this hypervariance to obtain approximate prior ESS = 1, which resulted
in �̃�2 = 0.86.

We used the titecrm function from the dfcrm package23 in R to perform the comparative simulations for the TITE
and Sep-TITE designs using the logit link function with the default parameter value for the intercept of 3. Since the
Sub-TITE design has within-subgroup early stopping rules, again for comparability, when implementing the TITE-CRM
and Sep-TITE designs, we used the lower credible interval (CI) bound on the lowest dose-toxicity probability to stop a
subgroup or trial if this value was greater than the target toxicity probability. For the Sep-TITE design, these CIs were
constructed such that if the 0.90 CI lower bound on the probability of toxicity at x1 was greater than 𝜋∗, that subgroup
was stopped. If all subgroups in the Sep-TITE trial were stopped after fully evaluating a cohort at the lowest dose in each
subgroup, the trial was ended. For the TITE design, only the one group considered needs to be stopped for the trial to end.
We calibrated the early stopping cutoffs for Sub-TITE {pg,U} under scenario 5 so that subgroup 0 has a stopping probability
and each subgroup g ≠ 0 has a optimal dose selection probability near the values seen for the Sep-TITE trial. This upper
cutoff vector was determined to be (0.95, 0.99) for G = 2 and (0.95, 0.99, 0.99, 0.99) for G = 4. Since the available SAS
software for the SOCA-TITE design does not allow one to simulate trials as done in our simulation study, we implemented
this design in R using C++ with an efficient grid search to find maximum likelihood estimates, assuming the logistic link
function and linear term with intercept parameter equal to 3, to ensure comparability with Sep-TITE.

We studied five different simulation scenarios. The first four were defined by specifying four different dose-toxicity
probability curves, one corresponding to each subgroup. Only two dose-toxicity curves are displayed for scenario 5, which
differs from the other scenarios in that we do not examine this scenario in the vase of G = 4 subgroups. The dose-toxicity
probability curves for scenarios 1,2,3, and 5 are given graphically in Figure 1, and the numerical toxicity probabilities are
given in Table S1.

The five scenarios represent a variety of possible subgroup-specific dose-toxicity probability functions that may be seen
in practice. In scenario 1, the optimal dose vector for the two subgroup case is (2, 3). The average probability of toxic-
ity across subgroups for dose 2 is 0.20, while this average for dose 3 is 0.375. We expect the TITE-CRM to do well in
this case, but we note that the TITE-CRM can never pick the optimal dose for both subgroups, since the true optimal
within-subgroup doses are different. Scenario 5 represents a case where the lowest dose is unacceptably toxic for sub-
group 0, with true toxicity probability 0.50, but in subgroup 1, the lowest dose is optimal. In this scenario, the SOCA-TITE
design will continue to treat patients at the excessively toxic lowest dose for subgroup 0 since this method does not have
a subgroup-specific stopping rule.

When looking at the four subgroup scenarios in Figure 1, which have solid dots when two or more subgroups share a
toxicity, we see that scenario 1 represents a case where all four patient subgroups have different dose-toxicity probabilities,
with optimal doses (2, 3, 4, 5). In scenario 2, subgroups 1 and 2 are homogeneous, while subgroups 0 and 3 are different
from the other subgroups, with optimal doses (1, 3, 3, 4). In scenario 3, subgroups 0, 2 and 3 are truly homogeneous,
and subgroup 1 has a different dose-toxicity probability vector, with optimal doses (4, 5, 4, 4). Again, scenario 4 is not
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FIGURE 1 Simulation study: Assumed dose-toxicity probability curves for the four subgroup design. The first two subgroups are used in
trials with two subgroups. The horizontal solid line is the targeted probability 𝜋∗. Solid dots represent that two or more subgroups share that
dose-toxicity curve. Scenario 4 is not shown, since all subgroups in this scenario have the same toxicity probability vector, (.05, .10, .15, .30, .50).
Only two subgroups are shown for scenario 5 since we do not investigate this scenario's operating characteristics with four subgroups.

depicted because all four subgroups have the same dose-toxicity curves. In an additional set of simulations, we evaluated
the sensitivity of the Sub-TITE design to the proportions of patients in the subgroups, different families of time-to-toxicity
distributions, and maximum sample size of the trial. All simulations were based on 5000 replications.

5.1 Simulation results for trials with two subgroups
We first compare the Sub-TITE design with the TITE-CRM design that ignores subgroups, the Sep-TITE design, and the
SOCA-TITE design, in the case of two subgroups (G=2). For each subgroup g = 0, 1, we evaluated the average absolute
difference Δg between the toxicity probabilities of the selected and optimal doses, the proportion of times Pselg that each
method selected the optimal dose, the number of toxicities Ntoxg, and the stopping probability Pstopg. Let 𝜋true(x, g, 𝜃)
denote the true toxicity probability by time T for subgroup W = g and dose x and xopt

g denotes the truly optimal dose for
subgroup W = g. If we run B simulations and for the bth iteration, xb

g is the dose chosen for subgroup g, then we calculate
Δg as

Δg =
1
B

B∑
b=1

||| 𝜋(xb
g , g, 𝜃) − 𝜋(xg, g, 𝜃) ||| .

Larger values of Psel0 + Psel1 and smaller values of Δ0 + Δ1 and Ntox0 + Ntox1 indicate superior design performance.
The results of the simulation study with two subgroups and a late onset Weibull distribution for time to toxicity are given
in Table 2. Figure 2 displays the dose-selection probability for each dose within each subgroup across scenarios 1 to 4. In
Figure 2, the symbol * denotes the optimal dose within the (PTox) parenthesis. This facilitates evaluating how frequently
each method selects the optimal dose within each subgroup under each scenario. In scenario 1, the Sep-TITE and TITE
designs pick the optimal dose for subgroup 0 most often, but the Sub-TITE design picks the optimal dose for subgroup
1 with a much higher probability than all other competitors. In scenario 2, the optimal dose for subgroup 0 is picked
by the Sep-TITE design most often, but again, the Sub-TITE design performs best for subgroup 1. The TITE design that
ignores patient heterogeneity here does a very poor job of picking the optimal dose for both subgroups in scenario 2. In
scenario 3, the TITE design picks the optimal dose for subgroup 0 with the highest probability, slightly higher than that
of the Sub-TITE design. However, for subgroup 1, the TITE design performs poorly, and the SOCA-TITE design performs
best. We note the important point that, when considering both subgroups, the total probability of selecting the optimal
dose for the two subgroups, denoted by the sum Psel0 + Psel1, is higher for the Sub-TITE design than for all of the three



10 CHAPPLE AND THALL

TABLE 2 Simulation study with two subgroups comparing the Sub-TITE, TITE, Sep-TITE, and
SOCA-TITE designsa

Scen Method Δ0 Δ1 Psel0 Psel1 Ntox0 Ntox1 Pstop0 Pstop1 Dur

1 Sub-TITE 0.07 0.06 0.53 0.64 11.7 10.4 0 0 2.96
Sep-TITE 0.06 0.09 0.59 0.47 10.9 10.2 < 0.01 < 0.01 2.96

TITE 0.08 0.09 0.59 0.39 12.2 8.3 0 0 2.95
SOCA-TITE 0.07 0.08 0.49 0.32 10.4 10.3 0 0 2.96

2 Sub-TITE 0.04 0.06 0.86 0.46 13.4 9.5 0.01 0 2.97
Sep-TITE 0.04 0.07 0.88 0.39 12.1 10.1 0.03 0 2.97

TITE 0.19 0.14 0.42 0.02 15.7 6.7 < 0.01 < 0.01 2.96
SOCA-TITE 0.03 0.07 0.91 0.38 12.1 10.1 0 0 2.97

3 Sub-TITE 0.05 0.05 0.75 0.74 10.3 7.1 0 0 2.96
Sep-TITE 0.09 0.05 0.60 0.74 9.4 7.6 0 0 2.97

TITE 0.05 0.14 0.79 0.19 12.5 6.5 0 0 2.96
SOCA-TITE 0.13 0.05 0.38 0.75 9.4 7.7 0 0 2.96

4 Sub-TITE 0.04 0.04 0.75 0.76 9.2 9.8 0 0 2.96
Sep-TITE 0.07 0.08 0.61 0.54 9.2 9.4 0 0 2.95

TITE 0.04 0.04 0.77 0.77 9.2 9.3 0 0 2.95
SOCA-TITE 0.10 0.10 0.40 0.42 9.3 9.3 0 0 2.95

5 Sub-TITE — 0.04 — 0.84 13.5 14.6 0.72 0.04 3.42
Sep-TITE — 0.04 — 0.85 14.2 14.0 0.69 0.08 3.32

TITE — 0.17 — 0.43 15.6 10.6 0.57 0.57 2.35
SOCA-TITE — 0.02 — 0.92 16.6 12.9 0 0 2.96

aFor each subgroup g = 0, 1, Δg is the mean absolute difference between the true toxicity probabilities of the optimal
dose and the selected dose, Pselg is the probability of selecting the optimal dose, Ntoxg is the mean number of toxicities,
and Pstopg = P[Stop subgroupg]. Dur is the average trial duration, in years. In scenario 5, where the lowest dose is too
toxic for subgroup 0, the symbol “—” is used for Δ0 and Psel0 since no optimal dose exists.

competitors across all scenarios 1 to 3. In scenario 4, where the subgroups are homogeneous, the TITE design performs
best in each subgroup, followed closely by the Sub-TITE design. The TITE design performs better in scenario 4 because it
correctly assumes one dose-toxicity curve for the trial.

In the case of G = 2 subgroups, across all five scenarios, the Sub-TITE design performed better than all three com-
parators in terms of Psel0 + Psel1, the probability of selecting the optimal dose for both subgroups, with the exception
that the TITE-CRM has superior performance in scenario 4, where the subgroups are truly homogeneous. In scenario 1,
where the optimal doses are 2 and 3, the Sub-TITE design has a smaller Psel0 than the Sep-TITE and TITE designs but
has larger values of Psel1, with sum Psel0 + Psel1 that is at least 0.11 higher than any of the three comparators. Similarly,
the value of Δ1 + Δ2 for the Sub-TITE design is at least 0.02 smaller than each of the other designs. In scenario 2, where
the optimal doses are 1 and 3, the SOCA-TITE method has the highest optimal dose selection probability for subgroup 0
with Psel0 = 0.91, due in part to the SOCA-TITE design's inability to stop subgroup 0. The Sub-TITE method has a value
of Psel0 + Psel1 that is 0.03 higher than its closest competitor, SOCA-TITE. In scenario 3, where the optimal doses are 4
and 5, the Sub-TITE design provides improvements of 0.15, 0.36, and 0.52 in Psel0 + Psel1 compared with the Sep-TITE,
SOCA-TITE, and TITE designs, respectively. Similarly, the Sub-TITE design provides improvements of 0.04, 0.08, and 0.09
in Δ0 + Δ1 compared with the Sep-TITE, SOCA-TITE, and TITE designs.

Scenarios 4 and 5 are important special cases. In scenario 4, the two subgroups are truly homogeneous, and in scenario 5,
the lowest dose is too toxic for subgroup 0 but not for subgroup 1. In scenario 4, the Sub-TITE design accurately combines
the two subgroups, thus providing improvements in Psel0 + Psel1 of 0.36 and 0.69, and in Δ0 + Δ1 of 0.07 and 0.12,
compared with the Sep-TITE and SOCA-TITE designs, respectively. As may be expected in this scenario, the Sub-TITE
design does not perform as well as the TITE-CRM design, which ignores patient heterogeneity, losing by 0.03 in terms of
Psel0 + Psel1. However, this loss in total optimal dose selection probability is not nearly as large as those of two competing
designs that account for subgroups. This indicates that the Sub-TITE design provides a good compromise between running
separate trials within subgroups and ignoring heterogeneity. In scenario 5, the SOCA-TITE design has the highest optimal
dose selection probability Psel1, with advantages of 0.07 and 0.08 compared with the Sep-TITE and Sub-TITE designs,
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FIGURE 2 Simulation study: Dose selection probabilities in each of the two subgroups in scenarios 1 to 4. PTox denotes the true toxicity
probability for each dose within each subgroup and * denotes the dose toxicity probability closest to the target of 0.3.

respectively. It also has the lowest value of Δ1 by 0.02. However, again, SOCA-TITE can not stop accrual to subgroup 0,
which has a toxicity probability of 0.50 at the lowest dose in scenario 5, resulting in SOCA-TITE having 3.1 more patient
toxicities on average than the Sub-TITE design.

5.2 Sensitivity to trial design parameters
We also examined sensitivity of the Sub-TITE design's OCs to Nmax = 30, 60, 90 and the expected proportions of patients in
each subgroup. Here, we only consider scenarios 1 to 4 since scenario 5 represents a special case where the lowest dose is
too toxic for subgroup 0 but not for subgroup 1. Figure 3 displays plots of the differences DPsel, defined as Psel0 + Psel1 for
the Sub-TITE design minus this sum for each of the TITE, SOCA-TITE, and Sep-TITE designs. Since Sub-TITE sometimes
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FIGURE 3 Total difference in optimal dose selection probability, DPsel, of Sep-TITE versus each comparator, for different maximum
sample sizes.

outperforms Sep-TITE or SOCA-TITE in one subgroup but not the other, DPsel provides a useful overall index of the
Sub-TITE design's ability to select optimal doses within subgroups compared with each of the other designs.

When comparing the three designs as a function of Nmax, Sub-TITE design outperforms the TITE design further as the
sample size increases, except in scenario 4 where the subgroups are homogeneous. The Sep-TITE and SOCA-TITE designs
have improved operating characteristics as the sample size increases compared with the Sub-TITE design. However, the
sum of the optimal dose selection probabilities is never greater than that of Sub-TITE for any sample size or scenario. In
a small sample size of Nmax = 30, where we expect about 15 patients in each subgroup, we see large improvements in
Psel0 + Psel1 of at least 0.10, 0.04, 0.22, and 0.47 for scenarios 1 to 4, respectively, compared with the SOCA-TITE and
Sep-TITE designs. In scenario 4, where the subgroups are homogeneous, the Sub-TITE design has DPsel values at least
0.23 greater than that of the Sep-TITE design and 0.57 of that of the SOCA-TITE design for any sample size. Here, the DPsel
values for the comparison with the TITE design are (0.11, − 0.03, − 0.15), so the Sub-TITE design loses some efficiency
in larger trials in the homogeneous case, but not nearly as badly as the Sep-TITE design.

Figure 4 shows the differences in Psel0 + Psel1 for the Sub-TITE design compared with the Sep-TITE, SOCA-TITE, and
TITE designs for scenarios 1 to 4, for different subgroup proportions. Other than scenario 2 for P(Subgroup0) = 0.20,
the Sub-TITE design has substantially larger total optimal dose selection probability compared with the SOCA-TITE and
Sep-TITE designs. In scenario 2, the two subgroup specific optimal doses are not adjacent, so the Sub-TITE method has
a harder time recognizing this with only 12 patients, on average, in subgroup 0. In scenario 4, we see that when the
subgroups are homogeneous, the Sub-TITE design outperforms the Sep-TITE and SOCA-TITE designs regardless of the
proportions of patients in the subgroups. In this scenario, the Sub-TITE design DPsel ≥ .35 compared with the Sep-TITE
design and DPsel ≥ .59 compared with the SOCA-TITE design. These results suggest that, for large or small trials and for
balanced or unbalanced subgroups, the Sub-TITE design provides a desirable compromise between the TITE-CRM that
ignores subgroups and the Sep-TITE or SOCA-TITE design.

5.3 Robustness study
To assess robustness, in addition to the late onset Weibull distribution, we examined the OCs of the Sub-TITE design
in each scenario for an exponential, uniform, and a lognormal distribution. For the uniform distribution, indicators of
toxicity first were generated from the scenario subgroup specific dose-toxicity probabilities, and if a patient experienced
a toxicity, their toxicity time was generated from a uniform[0,T] distribution. For the exponential distribution, the rate
parameters were calibrated to give the simulation scenario's cumulative toxicity probabilities at the reference time T. For
the lognormal distribution, we simulated data with variance parameter 𝜎2 = 1 and calibrated the mean for each dose
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FIGURE 4 Total difference in optimal dose selection probability, DPsel, of Sep-TITE versus each comparator, for different proportions of
patients in subgroup 0.

and subgroup to have each scenario's specified cumulative toxicity probabilities by time T. No other aspects of the trial
were changed, in order to isolate the effects of different time-to-toxicity distributions. The results for the Sub-TITE design
are given in Table S2, with the results for the Sep-TITE, TITE, and SOCA-TITE designs shown in Tables S3, S4, and S5,
respectively.

In general, the OCs of the Sub-TITE design change very little for the different distributions considered. The values for
(Δ0,Δ1) differ by at most 0.01, while the largest difference in selection probability for one subgroup is 0.06, which took
place in subgroup 1 in scenarios 1 and 2 for the Weibull increasing and exponential. Since the two subgroup probabilities
of optimal dose selection do not differ by more than 0.01 between the two subgroups in the homogeneous case for any
distribution considered, it appears that the Sub-TITE design is likely to correctly identify that only one subgroup is needed.
The average trial times for the different distributions considered were about the same except for in scenario 5, where the
lowest dose is too toxic, with a difference of about 1.8 months between the Weibull increasing hazard and the uniform
distribution. In general, the exponential distribution had the fewest patient toxicities, while the Weibull distribution with
an increasing hazard had the most toxicities in each scenario.

When comparing the results for Sub-TITE with the Sep-TITE and TITE designs for different distributions, we see the
same results as in Table 2, namely, that Sub-TITE has superior performance compared with the TITE design when patient
heterogeneity is present and is superior to Sep-TITE and SOCA-TITE designs when subgroups are homogeneous. This
is shown by the DPsel values since, as in the homogeneous case, DPsel ≥ .15 when comparing Sub-TITE with either
Sep-TITE or SOCA-TITE.

For scenario 3, where doses 4 and 5 are optimal, for g = 0 and 1, the Sub-TITE design had a slight decrease in perfor-
mance compared with the Sep-TITE design for other distributions considered, having DPsel values of −0.04 and −0.02 for
the exponential and uniform distributions. In these cases, the values of Δ1 + Δ0 were the same and the Sub-TITE design
had about 0.8 less patient toxicities. The average DPsel values comparing Sub-TITE with Sep-TITE for scenarios 1, 2, 3,
and 4 are 0.15, 0.07, 0.03, and0.21 and comparing Sub-TITE with SOCA-TITE are 0.17, 0.08, 0.13, and 0.42. For scenario
5, where subgroup 0 is too toxic, the Sep-TITE design stopped this subgroup (0.04, 0.01, 0.05, and −0.03) more often than
the Sub-TITE design for the exponential, uniform, lognormal, and Weibull increasing hazards, respectively, but chose the
optimal dose for subgroup 1 with the same probability on average as the Sep-TITE design. For subgroup 1, SOCA-TITE
picked the optimal dose 0.06, 0.06, 0.06, and 0.04 more often than Sep-TITE, but never stopped the truly toxic subgroup
0, resulting in 3.9 more toxicities for this subgroup on average over the four extra distributions considered. Thus, across
all scenarios and time-to-toxicity distributions,in general, the Sub-TITE design has superior performance compared with
both the Sep-TITE and SOCA-TITE designs. The Sub-TITE design is greatly superior to the TITE design that ignores sub-
groups in terms of DPsel in all scenarios, except in the homogeneous case, losing by an average of 0.15. The Sub-TITE
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design had about 0.4 more total patient toxicities in each scenario compared with the TITE and Sep-TITE designs and
had similar trial durations in all but scenario 5, with about a month longer trial duration than the Sep-TITE design due
to skipping more patients in subgroup 0.

5.4 Simulation results for four subgroups
We next performed a simulation study to evaluate the Sub-TITE method in the case of G = 4 subgroups for scenarios 1
to 4 compared with the Sep-TITE and TITE designs. Scenario 5 was not used because it is a special case where subgroup
0 has an unacceptably high-toxicity probability at the lowest dose. The SOCA-TITE design was not included because it
cannot accommodate more than two patient subgroups. The four assumed true subgroup-specific dose-toxicity vectors
are given in Figure 1 and listed numerically in Table S1. We assumed that a patient was equally likely to be in any of the
four subgroups. We increased Nmax to 90 to ensure a sufficient number of patients to do dose finding reasonably reliably
in each subgroup. The simulation results for the Sub-TITE, Sep-TITE, and TITE designs are summarized in Table 3. The
additional hypermeans here are �̃�2 = −1.77, 𝛽2 = −0.05, �̃�3 = −2.35, and 𝛽3 = 0.35.

Let Psel+(Method) =
∑G−1

g=0 Pselg(Method) denote the sum of the optimal dose selection probabilities and Δ+(Method) =∑G−1
g=0 Δg(Method) denote the sum of the Δg's for a given Method ∈ {Sub-TITE, Sep-TITE,TITE}. Larger values of

Psel+(Method) and smaller values ofΔ+(Method) are more desirable. In each of the four scenarios considered, the smallest
difference

Psel+(Sub-TITE) − Psel+(Sep-TITE)

was 0.12 in scenario 1, where all subgroups are heterogeneous, and the largest difference of 0.61 was in scenario 4, where
the subgroups are homogeneous. On average, Psel+(Sub-TITE) − Psel+(Sep-TITE) = 0.34 over the four scenarios consid-
ered, and Δ+(Sub-TITE) - Δ+(Sep-TITE) = −0.08, with a maximum value of −0.03 in scenario 2 and minimum value of
−0.12 in scenarios 3 and 4. The Sub-TITE design again had slightly more total toxicities over the four scenarios, with an
average 0.5 more toxicities than Sep-TITE. In scenarios 1, 2, and 3, where at least two subgroups are heterogeneous, the
Sub-TITE design had much better OCs than the TITE design, with Psel+(Sub-TITE) − Psel+(TITE) = 1.14, 1.82, and 0.58
and Δ+(Sub-TITE) − Δ+(TITE) of −0.24, −0.52, and −0.13, respectively.

TABLE 3 Simulation study with four subgroupsa

Sub-TITE Sep-TITE TITE
g Δg Pselg Ntoxg Δg Pselg Ntoxg Δg Pselg Ntoxg

Scenario 1
0 0.09 0.46 8.4 0.07 0.53 7.6 0.23 0.05 11.6
1 0.07 0.60 7.9 0.10 0.43 7.1 0.04 0.77 8.5
2 0.06 0.55 6.6 0.08 0.45 6.7 0.09 0.18 5.7
3 0.05 0.53 4.9 0.06 0.61 5.1 0.09 0 4.0

Scenario 2
0 0.07 0.80 9.5 0.05 0.84 8.6 0.38 < 0.01 14.7
1 0.06 0.48 7.1 0.08 0.34 7.0 0.06 0.41 14.7
2 0.06 0.45 7.1 0.08 0.37 7.1 0.06 0.41 6.4
3 0.07 0.58 6.1 0.08 0.55 6.6 0.18 0.01 4.1

Scenario 3
0 0.07 0.68 6.4 0.13 0.57 6.6 0.01 0.94 8.1
1 0.06 0.67 5.1 0.05 0.73 5.3 0.17 0.03 4.0
2 0.06 0.72 7.4 0.10 0.55 6.9 0.01 0.94 8.1
3 0.05 0.75 7.3 0.09 0.56 6.8 0.01 0.94 8.1

Scenario 4
0 0.05 0.67 6.0 0.08 0.53 6.4 0.02 0.90 7.1
1 0.06 0.68 7.0 0.09 0.52 6.6 0.02 0.90 7.1
2 0.05 0.69 7.0 0.08 0.53 6.7 0.02 0.90 7.1
3 0.05 0.69 7.0 0.08 0.54 6.5 0.02 0.90 7.1

aFor each g = 0, 1, 2, 3, Δg is difference between the true optimal dose toxicity prob-
ability and the true toxicity probability of the dose chosen, Pselg is the probability of
selecting the optimal dose, and Ntoxg is the mean number of toxicities.
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In scenarios 3 and 4, where three and four subgroups are homogeneous, respectively, the Psel+(Sub-TITE) − Psel+(TITE)
values are −0.23 and −0.47, and values of Δ+(Sub-TITE) − Δ+(TITE) values are 0.04 and 0.13. In scenario 4, where all
four subgroups are homogeneous, we see the same qualitative result as with two subgroups, namely, that the TITE design
outperforms the Sub-TITE design. However, in the heterogeneous subgroups cases, again, the TITE design has extremely
small Pselg values for some subgroups, eg, Psel0 = 0.05 and Psel3 = 0 in scenario 1. In scenarios 3 and 4, the differences
Psel+(Sub-TITE) − Psel+(Sep-TITE) were 0.32 and 0.61, and Δ+(Sub-TITE) − Δ+(Sep-TITE) were −0.13 and −0.12.

These results indicate that, when two, three, or four of G = 4 subgroups are homogeneous, because the Sub-TITE
design can accurately combine these subgroups for dose selection, it greatly outperforms Sep-TITE. This advantage also
is seen in scenario 2, where two subgroups are homogeneous, and in scenario 1, where all four subgroups are different,
demonstrating how Sub-TITE borrows strength flexibly among subgroups. In general, although the values of Pstopg are
not listed, they are all 0 or < 0.01, except for in scenario 2, subgroup 0, where the stopping probability is 0.02 for both the
Sub-TITE and Sep-TITE designs. Similarly, the average durations of the trials did not differ by more than 0.01 between
the three competing methods.

We also compared the three methods for Nmax = 60 and 120 in the four subgroup case. When comparing the Sub-TITE
and Sep-TITE designs, we see the same trend, namely, that increasing the sample size decreases the margin of advantage
for Sub-TITE in terms of the Psel+, but Sub-TITE always outperforms Sep-TITE, regardless of sample size. This difference
is striking in scenario 4, where all subgroups are homogeneous, with a difference Psel+(Sub-TITE) − Psel+(Sep-TITE) =
0.73 for Nmax = 60 and Psel+(Sub-TITE) − Psel+(Sep-TITE) = 0.18 for Nmax = 120. Likewise, in scenario 3, where 3 of
the subgroups are homogeneous, Psel+(Sub-TITE) − Psel+(Sep-TITE) = 0.51 for Nmax = 60 and 0.27 for Nmax = 120. In
scenarios 1 and 2, where none and two of the subgroups are homogeneous, respectively, we see a substantial improvement
for both sample sizes, with respective differences Psel+(Sub-TITE) − Psel+(Sep-TITE) = 0.18 and 0.21 for Nmax = 60, and
0.06 and 0.13 for Nmax = 120. Thus, the Sub-TITE design provides large improvements with any sample size compared
with the Sep-TITE design and compared with the TITE design with heterogeneous subgroups.

6 DISCUSSION

We have presented a subgroup specific phase I dose finding design based on a time-to-toxicity outcome that adaptively
allows some subgroups to be combined if they are found to have similar dose-toxicity probability curves. This is imple-
mented as part of the MCMC posterior computation using latent subgroup membership variables and spike-and-slab
priors. This methodology provides a compromise between the Sep-TITE design, which applies the TITE design to do
dose-finding separately in the subgroups, and the TITE design that ignores subgroups. In cases where some subgroups are
heterogeneous, the Sub-TITE design performs at least as well as running separate trials, outperforms the TITE design that
ignores subgroups. In the two subgroup case, Sep-TITE performs favorably compared with the two group maximum likeli-
hood approach of Salter et al, with values of Pselg and Δg that are either similar or greatly superior to those of SOCA-TITE,
depending on scenario and subgroup. When the subgroups are homogeneous, the Sub-TITE design selects the correct
dose much more frequently than Sep-TITE, and performs nearly as well as the TITE design that ignores subgroups.

In cases where some but not all subgroups have the same dose-toxicity curve, the ability of Sub-TITE to combine some
subgroups provides a substantial advantage over SOCA-TITE in the two subgroup case (scenario 4 in Table 2) and the
Sep-TITE approach in the four subgroup case (scenarios 3 and 4, Table 3). Essentially, this is because these two compara-
tors do not have the ability to combine homogeneous subgroups. This seems to be a generally desirable property of any
adaptive precision medicine design, since subgroups identified at the start of a trial may in fact not differ regarding the
distribution of outcome as a function of treatment. Thus, this is an important area for future research in other precision
medicine settings.
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