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Summary

When designing phase II clinical trials, it is important to construct interim

monitoring rules that achieve a balance between reliable early stopping for

futility or safety and maintaining a high true positive probability (TPP), which

is the probability of not stopping if the new treatment is truly safe and effec-

tive. We define and compare several methods for specifying early stopping

boundaries as functions of interim sample size, rather than as fixed cut-offs,

using Bayesian posterior probabilities as decision criteria. We consider bound-

aries with constant, linear, or exponential shapes. For design optimization

criteria, we use the TPP and mean number of patients enrolled in the trial.

Simulations to evaluate and compare the designs' operating characteristics

under a range of scenarios show that, while there is no uniformly optimal

boundary, an appropriately calibrated exponential shape maintains high TPP

while limiting the number of patients assigned to a treatment with an inferior

response rate or an excessive toxicity rate.
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1 | INTRODUCTION

Before proceeding to a large-scale confirmatory phase III trial to compare a potential new anti-disease agent or combi-
nation treatment regimen, E, to standard treatment, S, pharmaceutical companies and medical research institutes usu-
ally conduct one or more single-agent phase II trials. The aim of phase II is to screen new treatments and identify
promising candidates before investing the resources required by a phase III trial. In about two-thirds of phase II trials,
E fails to achieve a pre-specified minimum level of efficacy. In many settings, a maximum tolerable dose (MTD) of a
new agent first is chosen in a small phase I trial, hence at the start of phase II any estimate of the probability of toxicity
has low reliability, and excessive toxicity at the MTD is not unlikely.1 Phase II trial designs thus require carefully con-
structed monitoring rules for early stopping due to either futility or excessive toxicity.2,3 There always is a tension
between the goals of avoiding the waste of human and financial resources by continuing to give patients a new treat-
ment E that is either ineffective or excessively toxic, and incorrectly discarding a truly effective and acceptably safe new
treatment. Futility and safety stopping rules are especially important in phase oncology II trials, which may have small
sample sizes of about 30 to 80 patients and slow patient accrual rates, often one to two patients per month. It is not
uncommon for a single-arm phase II oncology trial to take 2 to 3 years to complete. Ethical concerns may make early
stopping rules for futility especially important if fatal outcomes are likely for cancer patients who do not achieve early
response because they are given an ineffective experimental treatment. Efficient monitoring rules can (a) reduce the
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number of patients who receive ineffective or unsafe treatments, (b) reduce the financial cost of the trial, and (c) save
patients for enrollment in other competing trials.

Any early stopping rules for futility or safety unavoidably cause some reduction of the true positive probability
(TPP), which is the probability that a design's monitoring rules do not stop a trial of an agent E that is truly both effec-
tive and safe. A design's TPP quantifies its potential benefit to future patients. A well-designed phase II trial should
achieve a balance between reliably monitoring futility and safety, and retaining reasonably high TPP. While a phase II
design's TPP sometimes is referred to as its “power,” here we do not test hypotheses, and thus we will refer to TPP
rather than abusing the conventional definition of power used in frequentist hypothesis testing.

Bayesian designs for phase II clinical trials facilitate formally incorporating historical data and expert experience,
easy sequential updating, and they are practical with small sample sizes. These features make them useful in many set-
tings, including early phase oncology trials with frequent monitoring. There is a rich literature on Bayesian clinical trial
designs. Thall et al,2,4-7 proposed a variety of Bayesian designs using posterior probabilities as criteria for interim moni-
toring of one or more outcomes. Tan and Machin8 proposed a Bayesian two-stage design in which the parameters are
calibrated on the basis of posterior probabilities. Sambucini9 accounted for the uncertainty of future data. Heitjan10

developed flexible Bayesian phase II designs with continuous monitoring based on predictive probabilities. Wathen and
Thall11 proposed a Bayesian adaptive model selection method for optimizing the stopping boundary of a phase III group
sequential trial with a time-to-event endpoint. There are numerous other publications dealing with Bayesian clinical
trial designs,12-14 that include early stopping rules.

As an illustrative example, we consider a single-arm phase II trial designed using the method of Thall et al,4 to con-
struct futility and safety monitoring rules. This study15 aims to investigate the dose-adjusted EPOCH regimen in combi-
nation with ofatumumab as therapy for patients with newly diagnosed or relapsed/refractory Burkitt leukemia. The
maximum sample size is 30, with monitoring done for cohorts of 5 patients. The trial will be stopped early if, with pos-
terior probability 0.95 or higher, the response rate with the new treatment is not at least 14% higher than the historical
response rate. The historical response rate was assumed to be beta(73, 27) based on historical data, and the prior distri-
bution for the new treatment response rate was assumed to be beta(1.46, 0.54), which has the same mean as the histori-
cal response rate, but a much larger variance, so it may be considered non-informative. For toxicity monitoring, the
trial will be stopped early if, with posterior probability 0.90 or higher, the toxicity rate with the experimental treatment
is very likely to exceed 30%, based on a beta (0.6, 1.4) prior distribution. This Bayesian monitoring method gives the fol-
lowing stopping rules: stop for futility if [number of patients who respond to the new treatment]/[number of patients
evaluated] is less than or equal to 2/5, 6/10, 10/15, 14/20 or 17/25; and stop for unacceptably high toxicity if [number of
patients with toxicity]/[number of patients evaluated] is greater than or equal to 3/5, 5/10, 7/15, 9/20, or 11/25. This
general methodology has been applied to design many other single-arm phase II trials.16,17

In this paper, we consider designs for a single-arm phase II trial of E with frequent futility and toxicity monitoring,
after successive cohorts of m = 1 or 5 patients. We characterize anti-disease effect by a binary “efficacy” variable, some-
times called response, and also characterize one or more severe adverse treatment effects collectively as a binary “toxic-
ity” variable. Our primary aims are to compare early stopping boundaries for efficacy and toxicity monitoring that have
different shapes as functions of interim sample size, n, and identify nearly optimal boundaries for use in practice. We
use posterior probabilities as stopping criteria, and explore four different futility stopping rules, each defined in terms
of boundary shape and starting point. The first rule uses a constant cutoff for all interim analyzes and the final analysis
(constant stopping boundary, CSB). Motivated by the concern that applying a stopping rule based on a very small early
sample has an unacceptably high risk of incorrectly stopping an effective treatment,18 the second monitoring rule is a
modification of CSB that does the first interim analysis at 10 patients, rather than at m = 1 or m = 5 (constant stopping
boundary with first analysis at n = 10, CSB10). The third rule uses a linearly increasing function of n, (linear stopping
boundary, LSB). The fourth rule uses an exponential function of n (exponential stopping boundary, ESB). We do not
include versions of LSB or ESB that are constrained to do the first interim analysis at 10 patients because these bound-
aries are highly unlikely to stop a trial before at least 10 patients have been evaluated. In order to focus on comparison
of the three shapes CSB, LSB, and ESB, we use constant stopping boundaries for toxicity throughout. We consider two
optimality criteria, TPP and the number of patients enrolled in the trial, which are both ethical and practical
considerations.

There are several different types of ESBs, which at one extreme consists of no interim futility monitoring. We will
show, by simulation, that the particular ESB we choose as best yields effective interim monitoring by stopping the trial
with high probability if the agent is ineffective while maintaining good TPP, that is, minimizing loss due to early stop-
ping for futility when an agent is truly effective and safe. The ethical goals are to maximize benefit for both the trial
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participants and future patients, in terms of TPP. To quantify how well a design performs for the trial participants, we
also calculate the mean number of patients and percent responders for each stopping boundary. Our simulations will
show that CSB, CSB10, LSB, and ESB yield designs with substantively different properties, especially compared with
designs that have no futility monitoring.

To consider optimization of futility monitoring rules, one may define, for example, a quantitative risk-benefit trade-
off between TPP and the False Positive Probability (FPP), which is the probability of not stopping a trial early for an E
that does not provide an improvement over standard treatment, S. One also may evaluate designs in terms of the num-
ber of patients who receive an ineffective treatment. Unavoidably, defining and quantifying such a trade-off is subjec-
tive. A thorough exploration of this issue might consider the total number of future patients who may benefit from the
current trial, the total number of competing new treatments, and distributions of the efficacy and toxicity probabilities
of these new treatments. All of these factors change over time with ongoing medical advances. Despite these challenges,
optimization of futility monitoring rule shapes, per se, still is a very important issue, considering the potential impact
on clinical trials in oncology and other areas of medical research. Based on our simulations, we conclude that some of
our newly proposed futility stopping boundaries are close to optimal, with small room for further improvement. How-
ever, an exact answer to the question of which design may be considered optimal still depends on the specific criteria
listed above.

The rest of the paper is organized as follows. In section 2, we introduce Bayesian trial designs, including notation,
posterior probabilities, and choice of prior distributions. In section 3, we consider futility monitoring only. We first pro-
pose phase II designs with futility stopping boundaries based on a Bayesian posterior probability as a function of the tri-
al's current sample size. We then show how to calibrate design parameters and compare the operating characteristics
(OCs) of different futility stopping boundaries under a range of different practical scenarios, using simulation as a
design tool. In section 4, we compare the OCs of the different boundaries in trials with both futility and toxicity moni-
toring. We close with a discussion in section 5.

2 | BAYESIAN PHASE II TRIAL DESIGNS

The primary endpoint of a phase II trial is often a binary indicator of a “response” event, R, that corresponds to early
treatment success (efficacy). To provide an initial efficacy assessment, a phase II trial often is designed as a single-arm,
open-label study. Multi-stage designs with one or more monitoring rules applied after successive cohorts often are used
so that the trial will be stopped early if the interim data show that the study drug is either inefficacious or too toxic. We
compare E with a standard, S, using historical data to specify prior distributions for the response and toxicity probabili-
ties of S.

Patients are enrolled into the trial sequentially, and we denote responses to E by YR, 1, YR, 2, …, where each YR, i = 1
if subject i has a response and 0 if not. Similarly, YT, i = 1 or 0 indicates whether or not subject i experiences severe tox-
icity, T. Denote the maximum number of patients by N. For the interim analysis after the n-th patient (n < N), the total
number of responses is XR, n = YR, 1 + … + YR, n, and the total number of toxicities is XT, n = YT, 1 + … + YT, n. Denote
treatment by Tr = E or S, and denote the joint probability θk, ab = Pr(YR = a, YT = b| Tr = k), for a, b � {0, 1} and k �
{E, S}. The marginal probabilities of R and T for treatment k are

πk,R = θk,10 + θk,11 and πk,T = θk,01 + θk,11:

We use the following posterior probabilities as interim monitoring criteria, with Datan denoting all observed data
up to the n-th subject enrolled in the trial,

ϕn,R =Pr πE,R > πS,R + δjDatanð Þ, ð1Þ

ϕn,T =Pr πE,T > πS,T jDatanð Þ, ð2Þ

where, δ is the targeted improvement in response probability for E over S. In our simulations, we use fixed δ = 0.2. We
stop the trial for futility if ϕn, R is unacceptably small, specifically, if ϕn, R < b(n), where b(n) is a boundary function of
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one of the four forms CSB, CSB10, LSB, or ESB. In section 4, we also will include a rule to stop the trial if E is too toxic,
specifically, if ϕn, T > t(n), where t(n) is a second boundary function used for toxicity monitoring. When two boundaries
are used, the relevant OCs represent how these two rules work together.

Suppose that a historical data set of nh patients is available, with nh, R responders, and nh, T experiencing severe tox-
icity. We specify distributions of πS, R and πS, T empirically as follows:

πS,R � beta
nh,R
κ

,
nh−nh,R

κ

� �
, ð3Þ

πS,T � beta
nh,T
κ

,
nh−nh,T

κ

� �
, ð4Þ

where the parameter κ ≥ 1 may be used to discount the historical information. This is based on the consideration that,
over time, the patient population may have changed, so if S were administered to the current patient population, it may
have somewhat different efficacy and toxicity profiles than seen in the historical data. Consequently, the parameter κ is
used to decrease the amount of information by increasing the variances in the above distributions. Using κ = 2 dis-
counts the historical data by 50%, while κ = 1 does not do any discountimg. Because larger κ reduces the informative-
ness of the distributions of πS, R and πS, T, it affects how the stopping rules behave.

In the next Section, we define and compare different boundaries for futility monitoring only. In section 4, we con-
sider monitoring for both futility and toxicity.

3 | COMPARING STOPPING BOUNDARIES FOR FUTILITY

3.1 | Different shapes of futility stopping boundaries

We assume prior distribution πE, R� beta(α, β) having the same mean as πS, R, but with a much smaller amount of
information. To specify this, we set α/(α + β) = nh, R/nh, and α + β = 1, that is, a prior effective sample size of 1. After
observing XR, n = xR, n successes out of the first n patients, the posterior of πE, R is beta(α + xR, n, β + n − xR, n), which is
used to compute the decision criterion

ϕn,R =Pr πE,R > πS,R + δjDatanð Þ,

with the distribution of πS, R specified in (3).
A very commonly used early stopping criterion for futility is a CSB (“Method I”). This futility monitoring rule stops

patient accrual at the n-th patient if

ϕn,R <C1, with n=m, 2m, 3m,…,N , ð5Þ

where C1 is a fixed small number, usually in the range 0.01 to 0.20. In practice, the value of C1 is calibrated by prelimi-
nary computer simulations to achieve a specified small false positive probability, FPP = probability of not stopping the
trial early, if E does not provide an improvement over S. For example, in our simulation study given below, we consider
a trial with πS, R � beta(30, 70) and δ = 0.20, maximum sample size N = 40, and interim analyzes conducted after the
outcomes of each cohort of m = 5 patients have been evaluated. We study the sensitivity of this rule to values of C1 from
0.001 to 0.20 in increments of 0.001, and do 10,000 simulations for each value of C1 in the setting where the fixed value
πtrueE,R =E πS,Rð Þ= p0, to estimate the FPP with each C1. We found that C1 = 0.092 achieves FPP =0.05 when
πtrueE,R = p0 = 0:30. With this value C1 = 0.092, the futility rule resulting from Equation (5) is to stop the trial if [number of
successes]/[number of patients evaluated] is ≤1/5, 3/10, 4/15, 7/20, 9/25, 11/30, 13/35 or 15/40. This is shown as the
thin solid line in Figure 1. R code to find C1 (as well as C2 to C5, below) and accompanying documentation are provided
as supplementary materials. If the trial is not stopped at any interim analyzes, E is regarded as promising, and the trial's
result is nominally “positive.” Otherwise, E is discarded and the trial is “negative.” We use these definitions of positive
and negative trials in the calculations of the true positive and false positive probabilities, TPP and FPP, in the
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simulations, presented in the next Section. In addition, for practical application, we give the futility rules of each type
of stopping boundary in terms of [number of successes]/[number of patients] in supplementary materials (Tables S1
and S2).

A major problem with the CSB futility monitoring rule is that it may be too likely to stop the trial early, when ϕn, R

is most variable, resulting in a substantial loss of TPP. A simple way to address this problem is to do the first interim
analysis at 10 patients, that is, change CSB to CSB10 (“Method II”), which stops the trial if

ϕn,R <C2, for n=10, 10+m,…,N , ð6Þ

where C2 is calibrated in the same way as C1.
A general way to re-define the stopping rules is to define boundaries that change over time as functions of current

sample size, n, making it harder to stop at early stages and easier to stop at later stages. Our goal is to improve the
design's TPP, while still reliably stopping accrual for truly inefficacious or unsafe E. Motivated by these considerations,
we propose two new designs, “Method III” and “Method IV”. Method III uses LSB, with a monitoring rule that stops
accrual for futility if

ϕn,R <
n
N
C3, for n=m,2m,3m,…,N , ð7Þ

where C3 is calibrated similarly to C1 and C2. The LSB is less likely to stop at the early stages than the later stages of a
trial, shown by the dashed line in Figure 1. This reduces the probability that the trial will be stopped prematurely based
on limited information from only a few patients.

For Method IV, we define an ESB, which behaves more strictly at the early stages and more loosely at the later
stages compared to the LSB. The ESB stops accrual for futility if

ϕn,R <exp
5n
N

� �
C4, for n=m,2m,3m,…,N , ð8Þ

where C4 is calibrated in the same way as C1, C2, and C3. The ESB is represented by the dotted line in Figure 1.
We also consider a design without an early stopping rule. Since the interim stopping boundary is zero in this case,

we call it the “zero stopping boundary (ZSB)” design. The ZSB is Method V, an extreme case where the trial will never
be stopped early, and at the end one concludes futility if

ϕN ,R <C5, ð9Þ

with C5 calibrated to achieve a pre-specified FPP. The ZSB is represented by the dot-dashed line in Figure 1.
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3.2 | Comparisons between the stopping boundaries

We first calibrated the parameters C1, C2, C3, C4 and C5 to achieve the same FPP (denoted by α) for all designs, to
ensure comparability. The resulting designs were used to simulate trials under a range of scenarios to estimate and
compare the TPPs of CSB, CSB10, LSB, ESB and ZSB. We evaluated the futility rules under three scenarios for different
values of N, m, α, and πS, R, with TPP for given πE, R the main quantity of interest used for comparison. We considered
α = 0.05 and 0.10 in all three scenarios. In Scenario 1, we set N = 40 or 80, with fixed cohort size m = 5 and πS, R = 0.3.
In Scenario 2, we set m = 1 (continuous monitoring) or m = 5, with fixed N = 40 and πS, R = 0.3. In scenario 3, we set
πS, R = 0.3 or 0.5, with fixed N = 40 and m = 5. We conducted 10,000 simulations of each case in each scenario. The
results are displayed in Figures 2-4. In all of these plots, the TPP of the LSB is always substantially larger than that of
CSB and CSB10, while the TPP levels of ESB and ZSB are slightly better than those of LSB. Although ZSB does not suf-
fer from TPP loss due to early stopping, it can be seen from the plots that its gain in TPP over ESB is negligible. This
indicates that the room for improvement over ESB on TPP is small. Thus, we conclude that ESB successfully maintains
high TPP, with only a small TPP loss due to early futility stopping.

The simulations show that, as the stopping boundary curve gets closer to the ZSB, that is, the stopping boundary
becomes tighter, more TPP is gained. However, we also note that ZSB, which has no interim futility stopping, is a very
undesirable design, because it provides no protection in the cases where E is not more efficacious than S, or has lower
efficacy.
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To provide some background, it is useful to consider what often occurs when evaluating new drugs. In practice, it
very often turns out that a new E is no better than S, or has a lower response rate. To compare the five boundary shapes
with this in mind, we performed simulations to examine the mean number of patients enrolled for different true πE, R.
In these simulations, we set N = 40 or 80, πS, R = 0.30 or 0.5, m = 5 and control FPP = 0.05. In each simulated trial, we
recorded the number of patients enrolled. Based on all simulated trials, we used the mean number of patients enrolled
to compare the performances of the different futility stopping boundaries. In each case considered, πtrueE,R might be less
than, equal to, or larger than πS, R. Thus, this simulation study shows how reliably each design either correctly stops
the trial when it should stop, that is, when πtrueE,R ≤ πS,R

� �
, or correctly does not stop the trial when it should not stop, that

is, when πtrueE,R > πS,R
� �

, with performance evaluated in terms of the mean number of patients enrolled. The simulations
show that, when E is worse than S (eg, πtrueE,R =0:20), as expected the ZSB (no interim futility stopping) gives the highest
mean number of patients enrolled (see Figure 5). The other four designs, that include interim futility monitoring, result
in substantially lower mean numbers of patients enrolled. For example, when N = 80, πS, R = 0.3, πE, R = 0.2, ZSB
always enrolls all 80 patients, while all of the other four designs enroll less than 30 patients, on average, and thus pre-
vent more than 50 patients from receiving an inferior treatment. This is a compelling reason for using futility monitor-
ing rules. In all of the four scenarios in Figure 5, when the new drug is less efficacious than the standard drug by .10,
ESB always enrolls on average about 20 patients, while the other three designs, CSB, CSB10, and LSB, may enroll about
only 10 patients.
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There are many other considerations when conducting a phase II trial, including patient heterogeneity, and compa-
rability between current and historical patient populations. While more elaborate designs may address these issues, as
the phase II design of Wathen et al11 that accommodates heterogeneous patients, in general a trial should enroll a suffi-
cient number of patients to reliably prevent premature early stopping. With this consideration in mind, the compara-
tively larger number of patients enrolled by ESB in such scenarios should be regarded as reasonably conservative and
acceptable. In addition, we also calculated the percentage of responders for different true πS, R, shown in supplementary
materials (Table S3).

Considering the above simulations together shows that there is no uniformly optimal early stopping boundary. In
general, if E has a higher true response rate than S, then LSB, ESB and ZSB have higher TPP than CSB and CSB10. On
the other hand, if E has a lower true response rate than S, then CSB, CSB10, LSB, and ESB all are likely to stop assig-
ning patients to such an ineffective treatment, and they all result in much lower numbers of patients enrolled than
ZSB. Considering these optimistic and pessimistic cases together, we believe that both LSB and ESB provide a good bal-
ance between retaining large TPP and still preventing assignment of an unacceptably large number of patients to an
inferior E. Overall, they are more ethically more desirable than ZSB. If one wishes to choose which of the two is closer
to being optimal, it appears ESB is slightly better than LSB, considering all of the simulations.

To further evaluate the performance of ESB, we compared it with Simon's optimal and minimax two-stage designs.
The comparisons are summarized in Table 1. In the null scenario, where πtrueE,R = πS,R, calibrating the designs to have the
same FPP for comparability, ESB has mean number of patients enrolled, E(N), very similar to Simon's Optimal and
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FIGURE 4 Plots of TPP for designs with constant stopping boundary (CSB, solid line), constant stopping boundary with first interim at

10 (CSB10, long dashed line), linear stopping boundary (LSB, dashed line), exponential stopping boundary (ESB, dotted line), and zero

stopping boundary (ZSB, dot-dashed line), respectively, as functions of πtrueE,R changing from 0.40 to 0.60 or from 0.60 to 0.80, for πtrueS,R =0:30 or

0.50 with N = 40, m = 5, α = 0.05 or 0.10
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MiniMax designs (25.2 vs 23.6 and 25.7), but ESB has a much higher probability of early termination (PET) (.875 vs
.713 and .666), and a slightly higher TPP (.82 vs .80 and .80). These results demonstrate that the main advantage of ESB
over Simon's two-stage designs is its much larger PET when πtrueE,R = πS,R ). This is due mainly to the fact that ESB has
multiple interim analyzes while the Simon designs have only one interim analysis.

4 | MONITORING FUTILITY AND TOXICITY SIMULTANEOUSLY

In this section, we consider designs with two monitoring rules, a safety rule for toxicity and a futility rule for efficacy.
To focus on comparison of how the different boundary shapes behave in this more general setting, we use a CSB for the
safety rule. As before, we use the priors given in section 3 for the response rates πS, R and πE, R. We also assume that
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FIGURE 5 Plots of mean number of patients enrolled for designs with constant stopping boundary (CSB, solid line), constant stopping

boundary with first interim at 10 (CSB10, longdashed line), linear stopping boundary (LSB, dashed line), exponential stopping boundary

(ESB, dotted line), and zero stopping boundary (ZSB, dot-dashed line), respectively, as functions of true πtrueE,R changing from 0.20 to 0.60 or

from 0.40 to 0.80, for N = 40 or 80, πS, R = 0.30 or 0.50 with m = 5, α = 0.05

TABLE 1 Comparison between

ESB and Simon 2-stage design under

null scenario with πtrueS,R =0:30 and

πtrueE,R =0:50

Methods FPP TPP N E(N) PET

Simon_Optimal 0.05 0.80 46 23.63 0.71

Simon_MiniMax 0.05 0.80 39 25.69 0.66

ESB 0.05 0.82 40 25.18 0.87
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prior distributions for the toxicity probabilities used by the different monitoring designs are identical, with πS, T� beta
(30, 70) for S and πE, T� beta(0.30,0.70) for E. Thus, if XT, n = xT, n patients out of the first n experience toxicity, then
the posterior distribution of πE, T is beta(0.30 + xT, n,0.70 + n − xT, n). For the toxicity rule criterion, we use the poste-
rior probability ϕn, T = Pr(πE, T > πS, T| Datan). If ϕn, T > CT, then the trial is stopped for toxicity, where CT is a con-
stant. We set CT = 0.85, which implies that the trial is stopped for toxicity if [the number of toxicities observed]/
[number of patients evaluated] ⩾ 3/5, 5/10, 7/15, 9/20, 11/25, 13/30, 14/35, or 16/40. The early toxicity stopping proba-
bility is high when the drug is excessively toxic, such as ptrueE,T =0:50. Temporarily ignoring the early stopping rule for
futility, the early stopping probabilities due to toxicity for CT = 0.85 considered per se are given in Table 2.

With two monitoring rules, a trial is considered a success only if it is not stopped by either the futility rule or the
toxicity rule. We consider the previous five futility stopping boundaries, CSB, CSB10, LSB, ESB and ZSB, now applied
with the above safety rule. We compare the five futility rules, each used with the CSB toxicity rule, for each of the three
assumed true toxicity probabilities ptrueE,T =0:10, 0.30 and 0.50, which may be considered slight, moderate, and excessive
toxicity. We use the calibrated futility boundaries in section 3 and toxicity boundary CT = 0.85 in the simulations.

Table 3 shows the OCs of the four designs, evaluated under each of the following four scenarios of response and tox-
icity probabilities:

• In the first scenario, the response probabilities are low, such as 0.20, and the designs CSB, CSB10, LSB, and ESB all
have the stopping probabilities above .09, regardless of ptrueE,T : However, unless E is excessively toxic with ptrueE,T =0:50,

the probability of stopping under ZSB is very low. This shows the importance of including a futility monitoring rule.

TABLE 2 Operating characteristics under toxicity stopping boundary CT = 0.85

Toxicity stopping boundary CT = 0.85, N = 40, m = 5

[Number of toxicities observed]/[Number of patients]⩾3/5, 5/10, 7/15, 9/20, 11/25, 13/30, 14/35, 16/40

πtrueE,T Probability of early toxicity stopping Sample size percentiles (10, 25, 50, 75, 90)

0.10 0.01 40 40 40 40 40

0.20 0.09 40 40 40 40 40

0.30 0.34 5 15 40 40 40

0.40 0.73 5 5 15 40 40

0.50 0.95 5 5 5 15 30

TABLE 3 Operating characteristics

of a design with joint monitoring of

futility and toxicity: πtrueE,R =0:2 or 0.3 is

too low, implying a need to stop

πtrueE,R πtrueE,T

Probability of stopping

CSB CSB10 LSB ESB ZSB

0.20 0.10 1.00 1.00 1.00 1.00 0.01

0.30 1.00 1.00 1.00 1.00 0.32

0.50 1.00 1.00 1.00 1.00 0.95

0.30 0.10 0.94 0.93 0.91 0.88 0.01

0.30 0.96 0.95 0.94 0.92 0.32

0.50 1.00 1.00 0.99 0.99 0.95

0.40 0.10 0.68 0.65 0.55 0.46 0.01

0.30 0.78 0.76 0.70 0.64 0.32

0.50 0.98 0.98 0.98 0.97 0.95

0.50 0.10 0.34 0.29 0.18 0.11 0.01

0.30 0.55 0.51 0.44 0.39 0.32

0.50 0.96 0.96 0.96 0.95 0.95

Note: πtrueE,R =0:4 or 0.5 is good, implying no need to stop. πtrueE,T =0:5 is too toxic, implying a need
to stop. πtrueE,T =0:1 is not bad, implying no need to stop. πtrueE,T =0:3 is borderline. Desirable clini-
cal scenarios are highlighted in bold.
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• In the second scenario, where ptrueE,T is as high as 0.50, the probabilities of stopping are all above .09 for all four

designs, regardless of ptrueE,R . This illustrates the importance of including a safety monitoring rule.

• In the third scenario, E is desirable, with negligible toxicity ptrueE,T =0:10 and high ptrueE,R =0:50. The early stopping prob-

abilities decrease in order for CSB, CSB10, LSB, ESB, and ZSB. This demonstrates the advantages of using LSB, ESB
or ZSB over CSB or CSB10 in this scenario.

• In the fourth scenario, where the toxicity probability is relatively high, pT = 0.30, and the response probability is low,
pE = 0.30, early stopping is desirable. In these scenarios, the probabilities of being stopped early by ESB, LSB, CSB10
or CSB are higher than that by ZSB, demonstrating advantages of these four boundaries over the ZSB in this scenario
of an unfavorable E.

In summary, considering all of the above scenarios, ESB and LSB have desirable OCs in all scenarios, whereas the
CSB, CSB10 and ZSB have very undesirable properties in some scenarios. Consequently, we recommend that ESB or
LSB be used, since the differences between them are small. R code for simulating the designs is available at https://
odin.mdacc.tmc.edu/�xhuang/.

5 | DISCUSSION

For futility monitoring in single-arm phase II clinical trials, in addition to the commonly used constant stopping bound-
ary (CSB) and constant stopping boundary with first interim look at 10 patients (CSB10), we have proposed two new
Bayesian adaptive phase II designs for early futility stopping, using either a linear stopping boundary (LSB) or exponen-
tial stopping boundary (ESB). The LSB and ESB designs define the early stopping boundaries as functions of the num-
ber of patients enrolled. They are conservative in that they are unlikely to stop the trial in the early stages, but
gradually relax as more patients are enrolled and more treatment outcome data accumulates. The LSB and ESB designs
both reduce TPP loss due to early stopping compared to CSB or CSB10, and provide a good balance between frequently
monitoring the trial for futility, and reducing the number of patients who receive ineffective treatments.

While we have used Bayesian designs for frequent monitoring, there is a rich literature on choosing the shape of
futility monitoring boundaries19 for frequentist hypothesis test based designs. However, most of these methods are
based on p-values derived from large sample approximations, which may be inappropriate for phase II trials with small
to moderate sample sizes. Bayesian methods offer easy real-time computation for updating posterior probabilities, and
thus make it easy to implement frequent trial monitoring rules.

Although the proposed designs can be applied to any single-arm phase II clinical trial with binary outcomes, they
are especially appealing for oncology trials, which often have small sample sizes. This is because most cancers are
highly heterogeneous, which effectively makes each cancer subtype a rare disease. Many cancer trials focus on a partic-
ular cancer subtype defined by tumor location, stage, number of previous treatments, and possibly molecular mutations
or other biomarkers. Thus, many cancer trials evaluate a small patient subpopulation, and have slow patient accrual
rates, which make it feasible to do frequent futility monitoring. The need to frequently monitor cancer trials often is
motivated by potentially fatal outcomes for their participants and the large number of toxic oncology drugs with
unknown anti-disease activity. Thus, it is ethically appealing to conduct futility and safety monitoring frequently,
starting early in the trial with reasonably small cohort sizes, rather than starting only after a large number of patients
have been enrolled. Bayesian designs are particularly appealing in such settings.

ACKNOWLEDGEMENTS
The research of F.Y. was supported in part by National Natural Science Foundation of China(General Program),
Funding No. 81973145. The research of X.H. was supported in part by USA NIH grants U54 CA096300, U01 CA152958
and 5P50 CA100632, and the Dr. Mien-Chie Hung and Mrs. Kinglan Hung Endowed Professorship. The research of
P.T. was supported by NIH/NCI grants 2P30 CA016672 43, 5P50CA140388-09l, and 5P01CA148600-08.

DATA AVAILABILITY STATEMENT
There are no real data used in this article. All results are based on computer-simulated data. The R code for simulations
is available at https://odin.mdacc.tmc.edu/�xhuang/.

938 JIANG ET AL.

https://odin.mdacc.tmc.edu/%7Exhuang/
https://odin.mdacc.tmc.edu/%7Exhuang/
https://odin.mdacc.tmc.edu/%7Exhuang/
https://odin.mdacc.tmc.edu/%7Exhuang/
https://odin.mdacc.tmc.edu/%7Exhuang/


ORCID
Peter F. Thall https://orcid.org/0000-0002-7293-529X
Xuelin Huang https://orcid.org/0000-0003-1192-9336

REFERENCES
1. Yuan Y, Nguyen HQ, Thall PF. Bayesian Designs for Phase I-II Clinial Trials. Boca Raton, FL, USA: Chapman & Hall; 2016.
2. Thall P, Simon R. Practical guidelines for phase iib clinical trials. Biometrics. 1994;50:337-349.
3. Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Bio-

technol. 2014;32(1):40-51.
4. Thall PF, Simon RM, Estey EH. Bayesian sequential monitoring designs for single-arm clinical trials with multiple outcomes. Stat Med.

1995;14(4):357-379.
5. Thall PF, Sung HG, Estey EH. Selecting therapeutic strategies based on efficacy and death in multicourse clinical trials. J Am Stat Assoc.

2002;97(457):29-39.
6. Thall PF, Wathen JK. Covariate-adjusted adaptive randomization in a sarcoma trial with multi-stage treatments. Stat Med. 2005;24(13):

1947-1964.
7. Thall PF, Wooten LH, Shpall EJ. A geometric approach to comparing treatments for rapidly fatal diseases. Biometrics. 2006;62(1):

193-201.
8. Tan S, Machin D, Tai B, Foo K, Tan E. A Bayesian re-assessment of two phase II trials of gemcitabine in metastatic nasopharyngeal can-

cer. Br J Cancer. 2002;86(6):843-850.
9. Sambucini V. A Bayesian predictive two-stage design for phase II clinical trials. Stat Med. 2008;27(8):1199-1224.

10. Heitjan DF. Bayesian interim analysis of phase II cancer clinical trials. Stat Med. 1997;16(16):1791-1802.
11. Wathen JK, Thall PF. Bayesian adaptive model selection for optimizing group sequential clinical trials. Stat Med. 2008;27(27):5586.
12. Zohar S, Teramukai S, Zhou Y. Bayesian design and conduct of phase II single-arm clinical trials with binary outcomes: a tutorial. Con-

temp Clin Trials. 2008;29(4):608-616.
13. Cai C, Liu S, Yuan Y. A Bayesian design for phase II clinical trials with delayed responses based on multiple imputation. Stat Med. 2014;

33(23):4017-4028.
14. Cheung Y, Thall PF. Monitoring the rates of composite events with censored data in phase II clinical trials. Biometrics. 2002;58(1):89-97.
15. Jabbour E. URL https://clinicaltrials.gov/ct2/show/NCT02199184
16. Jabbour E, Ravandi F, Kebriaei P, et al. Salvage chemoimmunotherapy with inotuzumab ozogamicin combined with mini-hyper-cvd for

patients with relapsed or refractory philadelphia chromosome-negative acute lymphoblastic leukemia: a phase 2 clinical trial. JAMA
Oncol. 2018;4(2):230-234. https://doi.org/10.1001/jamaoncol.2017.2380.

17. Jabbour E, Short N, Ravandi F, et al. Combination of hyper-cvad with ponatinib as first-line therapy for patients with philadelphia chro-
mosome-positive acute lymphoblastic leukaemia: long-term follow-up of a single-centre, phase 2 study. Lancet Haematol. 2018;5(12):
e618-e627. https://doi.org/10.1016/S2352-3026(18)30176-5.

18. Berry SM, Broglio KR, Groshen S, Berry DA. Bayesian hierarchical modeling of patient subpopulations: efficient designs of phase II
oncology clinical trials. Clin Trials. 2013;10(5):720-734.

19. Jennison C, Turnbull B. Group Sequential Methods with Applications to Clinical Trials. Boca Raton and London: Chapman and
Hall/CRC; 2000.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Jiang L, Yan F, Thall PF, Huang X. Comparing Bayesian early stopping boundaries for
phase II clinical trials. Pharmaceutical Statistics. 2020;19:928–939. https://doi.org/10.1002/pst.2046

JIANG ET AL. 939

https://orcid.org/0000-0002-7293-529X
https://orcid.org/0000-0002-7293-529X
https://orcid.org/0000-0003-1192-9336
https://orcid.org/0000-0003-1192-9336
https://clinicaltrials.gov/ct2/show/NCT02199184
https://doi.org/10.1001/jamaoncol.2017.2380
https://doi.org/10.1016/S2352-3026(18)30176-5
https://doi.org/10.1002/pst.2046

	Comparing Bayesian early stopping boundaries for phase II clinical trials
	1  INTRODUCTION
	2  BAYESIAN PHASE II TRIAL DESIGNS
	3  COMPARING STOPPING BOUNDARIES FOR FUTILITY
	3.1  Different shapes of futility stopping boundaries
	3.2  Comparisons between the stopping boundaries

	4  MONITORING FUTILITY AND TOXICITY SIMULTANEOUSLY
	5  DISCUSSION
	ACKNOWLEDGEMENTS
	  DATA AVAILABILITY STATEMENT

	REFERENCES


