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Patient heterogeneity may complicate dose-finding in phase 1 clinical trials if the

dose-toxicity curves differ between subgroups. Conducting separate trials within

subgroups may lead to infeasibly small sample sizes in subgroups having low

prevalence. Alternatively, it is not obvious how to conduct a single trial while

accounting for heterogeneity. To address this problem, we consider a generaliza-

tion of the continual reassessment method on the basis of a hierarchical Bayesian

dose-toxicity model that borrows strength between subgroups under the assumption

that the subgroups are exchangeable. We evaluate a design using this model that

includes subgroup-specific dose selection and safety rules. A simulation study is

presented that includes comparison of this method to 3 alternative approaches, on

the basis of nonhierarchical models, that make different types of assumptions about

within-subgroup dose-toxicity curves. The simulations show that the hierarchical

model-based method is recommended in settings where the dose-toxicity curves are

exchangeable between subgroups. We present practical guidelines for application

and provide computer programs for trial simulation and conduct.
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1 INTRODUCTION

Patient heterogeneity may complicate phase 1 clinical trials

in oncology. The goal may be either to determine a sin-

gle optimal dose, or possibly different optimal doses within

subgroups. For example, subgroups may be determined by

disease subtypes, biomarkers targeted by the agent being stud-

ied, or known prognostic variables. Preclinical and clinical

data often suggest that patient subgroups may have different

dose-toxicity relationships, but the order in the tolerability of

the subgroups is not known. Conventionally, even if such sub-

groups have been identified, most often a phase 1 trial ignor-

ing subgroups is conducted. If the dose-toxicity curves differ

between subgroups, however, a single dose chosen for all sub-

groups may be either subtherapeutic or excessively toxic in

some subgroups. Moreover, ignoring subgroup effects during

the dose-finding process may lead to undesirable interim dose

assignments and adaptive decisions. An alternative approach

is to conduct a separate dose-finding study within each sub-

group. This may not be feasible in subgroups for which the

prevalence is too low to reliably identify an optimal dose

within a reasonable time frame. A more refined approach is

to conduct 1 trial with the goal to find optimal doses that

may differ between subgroups. Ideally, the underlying model

should borrow strength between subgroups so that the data

obtained from each subgroup may help inform the decisions

in another subgroups.

We apply a hierarchical logistic regression model used by

Morita et al[1] to illustrate the computation of a prior equiv-

alent sample size in hierarchical models. The hierarchical

model-based method generalizes the continual reassessment

method (CRM) proposed by O’Quigley et al[2] by allowing

different doses to be chosen within subgroups, while bor-

rowing strength between subgroups. In this paper, we use
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the same model as Morita et al[1] and develop in detail

its uses for subgroup-specific dose finding. We review the

model and dose-finding method, which we call the Hierar-

chical Bayesian CRM (HB-CRM), compare it to 3 alternative

approaches, each on the basis of a nonhierarchical model,

give practical guidelines, and provide a computer program

for simulation and trial conduct. All 4 methods considered

here address the problem of determining an optimal dose,

or optimal subgroup-specific doses, on the basis of toxic-

ity in settings where K subgroups have been identified. Each

method uses a CRM-type criterion for optimality. For each

subgroup, indexed by k = 1, · · ·, K, denote the probability

of toxicity with dose x by 𝜋k(x, 𝜽k), where 𝜽k is the model’s

parameter vector. The HB-CRM assumes a hierarchical struc-

ture for 𝜽1, · · ·, 𝜽K, which implies a priori that 𝜋1(x, 𝜽1), · · ·,
𝜋K(x, 𝜽K) are exchangeable for each x and conducts a sin-

gle trial including all subgroups. Each of the 3 alternative

model-based comparators relies on a nonhierarchical model.

The first alternative completely ignores subgroups and con-

ducts a single trial using the same logistic dose-toxicity model

for all subgroups. That is, it is the CRM on the basis of a

logistic dose-toxicity model. The second alternative assumes

K different subgroup-specific models and conducts K sepa-

rate trials. The third alternative conducts 1 trial, assuming a

dose-toxicity model with K different parameters 𝜽k to account

for the inter-subgroup variability, and allows different optimal

doses to be chosen within subgroups.

To help motivate the problem, it is worthwhile to consider a

simple example in which there are K = 3 subgroups, with true

dose-toxicity probability curves 𝜋1(x)true, 𝜋2(x)true, 𝜋3(x)true,

given by Figure 1. If the aim of a phase I trial is to find a dose

having mean toxicity probability 𝜋* = .30 then, as shown by

Figure 1, the true optimal doses are different for the 3 sub-

groups. Any method that finds 1 optimal dose xopt ignores

this possibility, and giving the same xopt to all patients has

the consequence of underdosing patients in subgroup 1, and

overdosing patients in subgroup 3.

Several authors have addressed the problem of account-

ing for patient heterogeneity in phase 1 trials. O’Quigley

et al[3] and O’Quigley and Paoletti[4] proposed a paramet-

ric model-based 2-sample CRM to find the optimal dose for

each of 2 possibly ordered subpopulations of patients. Ivanova

and Wang[5] proposed a nonparametric design with bivariate

isotonic regression to address the same problem. Yuan and

Chappell[6] compared 3 dose-finding methods, which respec-

tively extended the up-and-down design,[7] the CRM,[2] and

the isotonic design,[8] to deal with multiple risk subgroups

which can be ordered according to their risk of toxicity. Thall

et al[9] proposed a phase 1 to 2 design including covari-

ates accounting for patient subpopulations on the basis of

a trade-off between efficacy and toxicity. Liu et al[10] pro-

posed an extended CRM with multiple skeletons of toxicity

probabilities to deal with dose-finding in different ethnic pop-

ulations. All of these approaches assume that the probability

of toxicity is monotonically ordered for subgroups, so that in

FIGURE 1 An example of 3 patient subgroups with different true

dose-toxicity curves (y-axis, toxicity probability; x-axis, dose). Given the

fixed target toxicity probability, 𝜋* = 0.30, the 3 subgroups have different

true optimal doses

particular the subgroups are not exchangeable and do not rep-

resent qualitatively different subgroups for which no ordering

may be assumed. In particular, O’Quigley et al[3] reported

that the 2-sample CRM in this setting was comparable to

conducting 2 independent trials for each of the 2 subgroups

separately using the 1-sample CRM. This comparison is simi-

lar to that between our second and third alternatives. The main

objective of our simulation study is to determine advantages

and disadvantages of the hierarchical model-based method,

in comparison with these alternative approaches, in a setting

with more than 2 nonordered subgroups. We also examine the

effects of the subgroup proportions, or prevalences, on how

each of the methods behaves.

In Section 2, we present probability models and prior

specification for dose-finding methods to account for patient

heterogeneity. We evaluate the operating characteristics of

HB-CRM and each of the 3 alternative methods by simula-

tion in Section 3. Section 4 gives guidelines for constructing

study designs. We close with a brief discussion in Section 5.

2 DOSE-FINDING METHODS

2.1 Preliminaries

Denote the population proportions (prevalences) of the K
subgroups by 𝝃 = (𝜉1,… , 𝜉K), that is, a patient belongs to sub-

group k with probability 𝜉k. In the trial, each patient in each

subgroup receives 1 of J doses, denoted by d1 < … < dJ. We

formulate the models using standardized doses xj = log(dj) −
J−1

∑J
l=1 log(dl). For the ith patient in subgroup k, denote the

assigned dose by x[k,i], the indicator Yk,i = 1 if the patient

suffers toxicity, 0 if not, and the toxicity probability

𝜋k(x[k,i],𝜽k) = Pr(Yk,i = 1|x[k,i],𝜽k), k = 1, … ,K.

At any given point during the trial, let Dn denote the data

for the first n patients and n = (n1, n2, · · ·, nK) the current

sample sizes within the subgroups, so n = n1 + · · · + nK.
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Let N = (N1, N2, · · ·, NK) denote the final subgroup sam-

ple sizes at the end of a trial, so the final total sample size is

N = N1 + · · · + NK. Given a planned maximum total sample

size, Nmax, because of the use of early stopping rules it may be

the case that N < Nmax. An important point, which will play

a central role in determining the properties of the designs, is

that both n and N depend on 𝝃 = (𝜉1,… , 𝜉K), as well as the

particular design being used. Given N, temporarily ignoring

the effects of early stopping, the expected final subgroup sam-

ple sizes are 𝜉1N, … , 𝜉KN. Due to both random variation

and the use of adaptive rules, however, each achieved Nk may

differ substantially from its mean.

2.2 Hierarchical Bayesian CRM

In the HB-CRM (Morita, et al.),[1] the parameter vector in

subgroup k is 𝜽k = (𝛼k, 𝛽) and model’s linear components are

logit{𝜋k(x[k,i], 𝛼k, 𝛽)} = 𝛼k + 𝛽x[k,i] (1)

for k = 1,… , K. For Level 1 priors, it is assumed that 𝛼1,… ,

𝛼K are i.i.d. N(𝜇̃𝛼, 𝜎̃2
𝛼) and that 𝛽 follows a N(𝜇̃𝛽 , 𝜎̃2

𝛽
) prior.

For Level 2 priors (hyperpriors), it is assumed that 𝜇̃𝛼 fol-

lows a normal hyperprior and, following the recommendation

of Gelman,[11] 𝜎̃𝛼 follows a uniform prior on the interval .01

to U𝜙, denoted 𝜎̃𝛼 ∼U(0.01, U𝜙). In summary, the model

assumptions are as follows:

Sampling model Yk,i ∼ Bernoulli(𝜋k(x[k,i], 𝛼k, 𝛽)) indep. for all k

Priors 𝛼k ∼ i.i.d. N
(
𝜇̃𝛼, 𝜎̃

2
𝛼

)
for all k

𝛽 ∼ N
(
𝜇̃𝛽 , 𝜎̃

2
𝛽

)

Hyperpriors 𝜇̃𝛼 ∼ N
(
𝜇𝛼,𝜙, 𝜎

2
𝛼,𝜙

)
𝜎̃𝛼 ∼ U(0.01,U𝜙).

(2)

We do not impose the constraint that 𝛽 > 0 with probability

1 to ensure that each 𝜋k(x, 𝛼k, 𝛽) increases in x or, alterna-

tively, assume a lognormal prior for 𝛽. In practice, appropriate

calibration of the hyperparameters 𝜇̃𝛽 and 𝜎̃2
𝛽

in Equation 2

ensures this monotonicity. Specifically, if 𝜇̃𝛽 is a large enough

positive value and 𝜎̃2
𝛽

is sufficiently small, then no constraint

on 𝛽 is needed because all computed posterior values of 𝛽 will

be positive.

While a hierarchical prior structure is assumed for (𝛼1, · · ·,
𝛼K), the dose effect parameter 𝛽 shared by all K marginal

toxicity probabilities has a usual prior without an additional

hyperprior on its hyperparameters (𝜇̃𝛽 , 𝜎̃𝛽), which are fixed.

Collecting terms, the K + 1 sampling model parameters that

characterize the marginal probabilities of toxicity in the K
subgroups are 𝜽 = (𝛼1, · · ·, 𝛼K, 𝛽), the 4 hyperparameters

that characterize the priors on 𝜽 are 𝜽̃ = (𝜇̃𝛼, 𝜎̃𝛼, 𝜇̃𝛽 , 𝜎̃𝛽),
and the fixed hyperparameters that characterize the hyperpri-

ors on (𝜇̃𝛼, 𝜎̃2
𝛼) are 𝝓 = (𝜇𝛼,𝜙, 𝜎𝛼,𝜙, .01, U𝜙). Consequently,

to complete the Bayesian model one must specify numeri-

cal values for a total of 5 parameters, the 2 hyperparameters

(𝜇̃𝛽 , 𝜎̃𝛽) and for the 3-fixed hyperprior parameters (𝜇𝛼,𝜙, 𝜎𝛼,𝜙,

U𝜙). In Equation 2 for the hierarchical model, “priors” may

be called “level 1 priors” because they are distributions on

the parameters 𝜽 of the sampling model, while “hyperpriors”

may be called “level 2 priors” because they are distributions

on the 2 parameters (𝜇̃𝛼, 𝜎̃2
𝛼) of the level 1 priors.

Under this hierarchical model, a priori, the parameter vec-

tors (𝜽1, · · ·, 𝜽K) of the marginal toxicity probability models

for the K subgroups are exchangeable. This is the property

that if the subgroup indices (1,… , K) are replaced by any

permutation (j1,… , jK) then the joint prior distribution of

the permuted vector (𝜽j1 , · · · ,𝜽jK ) is the same as that of (𝜽1,

· · ·, 𝜽K). Exchangeability is a useful property for probability

models of random quantities corresponding to qualitatively

different objects, where the order in which the objects are

indexed to identify them is arbitrary. A well-known spe-

cial case is a vector of random quantities that are indepen-

dent and identically distributed (iid), which trivially must

be exchangeable. The joint distribution of an exchangeable

random vector is more general, however, because the ran-

dom quantities need not be independent. The prior exchange-

ability of (𝜽1, · · ·, 𝜽K) implies that, a priori, the toxicity

probabilities {𝜋1(x, 𝜽1),· · ·,𝜋K(x, 𝜽K)} are exchangeable

for each x.

The hierarchical model given above induces prior associ-

ation among 𝛼1, · · ·, 𝛼K. To see this, denoting the level 1

priors by p1 and level 2 priors (hyperpriors) by p2, we obtain

the unconditional prior of the sampling model parameters by

averaging over the hyperprior p2(𝜇̃𝛼, 𝜎̃𝛼|𝝓), as

p(𝛽, 𝛼1, · · · , 𝛼K | 𝜇̃𝛽 , 𝜎̃𝛽 ,𝝓) = p1(𝛽 | 𝜇̃𝛽 , 𝜎̃𝛽) ∫
K∏

k=1

p1(𝛼k | 𝜇̃𝛼, 𝜎̃𝛼) p2(𝜇̃𝛼, 𝜎̃𝛼 | 𝝓)d𝜇̃𝛼d𝜎̃𝛼

= p1(𝛽 | 𝜇̃𝛽 , 𝜎̃𝛽) p1,2(𝛼1, · · · , 𝛼K | 𝝓),

(3)

where p1,2 denotes the marginal prior of (𝛼1,· · ·,𝛼K)

obtained by averaging over the hyperprior of (𝜇̃𝛼, 𝜎̃𝛼). The
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prior association among 𝛼1,· · ·, 𝛼K in p1,2 induces prior

association among the toxicity probabilities 𝜋1(x, 𝜽1),· · ·,
𝜋K(x, 𝜽K) for any x. In this regard, the dose effect parameter 𝛽

shared by these probabilities also induces positive association

among them. These prior associations shrink the posteriors of

the 𝜋k(x, 𝜽k)’s toward each other. Equation 3 also shows why

numerical values of (𝜇̃𝛽 , 𝜎̃𝛽 ,𝝓) must be specified to complete

the model.

Medical settings where this hierarchical model is appropri-

ate include trials in which there are K qualitatively different

disease subtypes, different solid tumors types, or subgroups

defined by biomarkers. The common feature is that one’s prior

uncertainty about 𝜽1, · · ·, 𝜽K would not be changed if the

subgroups were reindexed in a different order. In contrast,

for example, the hierarchical model is not appropriate if the

subgroups correspond to prognostic risk of toxicity from any

agent, such as good (low risk, k = 1), intermediate (k = 2),

and poor (high risk, k = 3). In this case, 𝜋k(x, 𝜽k) is stochas-

tically increasing in k for any dose x, and the exchangeability

assumption is not valid.

For each decision during trial conduct, the HB-CRM

defines the optimal dose xopt

[k] in subgroup k to be that for

which the posterior mean of 𝜋k(xj, 𝜽k) is closest to a given

fixed target, 𝜋*. Formally, given Dn, the dose chosen for

subgroup k is

xopt

[k] = argmin
j=1,··· ,J

|E{𝜋k(xj, 𝛼k, 𝛽)|Dn} − 𝜋∗|. (4)

If desired, different target values for the subgroups may be

used, although we will not explore that case here.

A safety rule imposed on the method is that, within each

subgroup, the HB-CRM may not skip an untried doses when

escalating. In addition, to control overdosing, HB-CRM does

not escalate within subgroup k if

Pr(𝜋k(xj,𝜽k) > 𝜋odc|Dn) > 𝜓odc

where 𝜋odc is a fixed upper limit, and 𝜓odc is a probabil-

ity cutoff. This rule supersedes the criterion (Equation 4)

for dose escalation. The design parameter 𝜓odc must be cali-

brated along with the prior parameters to obtain a design with

desirable operating characteristics.

The HB-CRM in Equation 2 relies on the prior assumption

that the toxicity probabilities of the patient subgroups are

exchangeable, because 𝛼1,· · ·, 𝛼K are conditionally i.i.d.,

given 𝜇̃𝛼 and 𝜎̃2
𝛼 . Since one must average over the hyperpri-

ors of 𝜇̃𝛼 and 𝜎̃2
𝛼 to compute posteriors, given the observed

data Dn the intercept parameters 𝛼1,· · ·, 𝛼K are positively cor-

related. This, and the 𝜋k(xj, 𝛼k, 𝛽)’s share the common slope

parameter 𝛽, induces positive correlation among all KJ toxic-

ity probabilities. This induces association among the posterior

means in Equation 4, which in turn shrinks the chosen doses

xopt

[1] , · · · , x
opt

[K] toward each other. In this way, conducting a

single trial with this hierarchical model provides a basis for

borrowing strength across patient subgroups.

The hyperpriors on 𝜇̃𝛼 and 𝜎̃2
𝛼 play key roles in how

the HB-CRM design behaves. Thus, their fixed parameters,

𝜇𝛼,𝜙, 𝜎
2
𝛼,𝜙

, and U𝜙, must be calibrated carefully, along with

the fixed level 1 prior parameters 𝜇̃𝛽 , 𝜎̃
2
𝛽
. As our simulations

will show, this may lead to more accurate within-subgroup

dose selection compared to what is obtained by either con-

ducting separate trials within subgroups or conducting 1 trial

but ignoring subgroups to obtain a design with good operating

characteristics.

2.3 Nonhierarchical models and designs

For the 3 alternative dose-finding methods, we assume non-

hierarchical logistic models, with different parameterizations

of their intercepts and slopes to account for subgroups.

That is, for each of the following models, usual priors are

assumed, and there are no hyperpriors. The first alterna-

tive method assumes complete patient homogeneity under the

model 𝜋(xj, 𝛼, 𝛽) = Pr(Yi = 1|xj, 𝛼, 𝛽) with

logit{𝜋(xj, 𝛼, 𝛽)} = 𝛼 + 𝛽xj (5)

for all subgroups, where 𝛼 and 𝛽 follow N(𝜇̃𝛼, 𝜎̃2
𝛼) and

N(𝜇̃𝛽 , 𝜎̃2
𝛽
) priors, respectively. For this model, numerical val-

ues of the 4 prior hyperparameters 𝜽̃ = (𝜇̃𝛼, 𝜎̃𝛼, 𝜇̃𝛽 , 𝜎̃𝛽) must

be specified. This method conducts a single trial and treats

all newly enrolled patient at the same recommended dose,

defined under the usual CRM criterion as the xj having esti-

mated posterior mean E{𝜋(xj,𝜽)|Dn} closest to 𝜋*, where

𝜽 = (𝛼, 𝛽). This is a usual CRM criterion, computed under a

2-parameter logistic model. For comparability, and to ensure

an ethical trial, the CRM as defined here also includes a

“do-not-skip” rule and a rule for overdose control, but applied

overall rather than within subgroups.

The second alternative method, which we denote by

K-CRM-1-trial, uses the CRM in 1 trial accounting for K sub-

groups. This method accounts for patient heterogeneity by

modeling the within-subgroup probability of toxicity using

the same logistic form with linear term 𝛼k + 𝛽x as given in

Equation 1, but without hierarchical borrowing of strength

among 𝛼1,… ,𝛼K through a common hyperparameter. For this

model, the assumed priors are 𝛼1, … , 𝛼K ∼ i.i.d. N(𝜇̃𝛼, 𝜎̃2
𝛼)

and 𝛽 ∼ N(𝜇̃𝛽 , 𝜎̃2
𝛽
). Again, since there are only level 1 priors

and no level 2 priors (hyperpriors) in this model, only numer-

ical values of the 4 prior hyperparameters 𝜽̃ = (𝜇̃𝛼, 𝜎̃𝛼, 𝜇̃𝛽 , 𝜎̃𝛽)
must be specified. This model also has prior exchangeablity

across patient subgroups, but it borrows strength between

the subgroups only through the common slope parameter, 𝛽.

Like the HB-CRM, the K-CRM-1-trial conducts a single trial

and treats each newly enrolled patient in subgroup k at the

subgroup-specific dose for which E{𝜋k(xj, 𝛼k, 𝛽)|Dn} is clos-

est to 𝜋*. Thus, the chosen doses for the K subgroups are

obtained by averaging the 𝜋k(xj, 𝛼k, 𝛽)’s with respect to the

parameters (𝛼1, · · ·, 𝛼K, 𝛽). This method applies the same

subgroup-specific, do-not-skip, and overdose-control rules as

those used in HB-CRM. That is, the K-CRM-1-trial uses
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TABLE 1 Summary of study designs of hierarchical versus nonhierarchical model and the
linear term of the logistic model for the probability of toxicity as a function of dose x and
prognostic subgroup k = 1, … ,K

Single trial K Separate trials
Bayesian model structure 𝛼 + 𝛽x 𝛼k + 𝛽x 𝛼k + 𝛽kx

Nonhierarchical CRMa K-CRM-1-trialb 1-CRM-K-trialsd

Hierarchical — HB-CRMc —

aOrdinary CRM ignoring subgroups, conduct 1 trial.

bK-subgroup CRM in 1 trial, assuming different intercepts 𝛼1,· · ·, 𝛼Kwithout a hierarchical structure,

conduct 1 trial.

cHierarchical model-based CRM assuming different intercepts 𝛼1,· · ·, 𝛼K with a hierarchical struc-

ture, conduct 1 trial.

dOrdinary CRM conducted in each of K separate trials, assuming independent subgroup-specific

parameters (𝛼k, 𝛽k).

In the linear terms, 𝛼 and 𝛽 denote the intercept and slope parameters, respectively.

precisely the same decision rules as the HB-CRM, but

assumes a different, nonhierarchical model.

The third alternative method, 1-CRM-K-trials, conducts

separate trials in the K subgroups using the ordinary 1-sample

CRM in each trial, and it does not assume exchangeabil-

ity across patient subgroups or borrow strength in any way

between subgroups. For subgroup k, this method assumes the

model 𝜋k(xj, 𝛼k, 𝛽k) = Pr(Yi = 1|xj, 𝛼k, 𝛽k) with

logit{𝜋k(xj, 𝛼k, 𝛽k)} = 𝛼k + 𝛽kxj, (6)

with priors 𝛼1,· · ·, 𝛼K ∼ i.i.d. N(𝜇̃𝛼, 𝜎̃2
𝛼) and 𝛽1, · · ·,

𝛽K ∼ i.i.d. N(𝜇̃𝛽 , 𝜎̃2
𝛽
). For this third model, numerical val-

ues of the 4 prior hyperparameters 𝜽̃ = (𝜇̃𝛼, 𝜎̃𝛼, 𝜇̃𝛽 , 𝜎̃𝛽)
must be specified. Like the HB-CRM and K-CRM-1-trial,

the 1-CRM-K-trials design includes subgroup-specific,

do-not-skip, and overdose-control rules.

Table 1 summarizes the 4 methods of the linear terms

of their logistic models, the structural assumptions for the

parameters, and the rules for trial conduct, ie, whether there is

1 trial or K separate trials that do not use each others’ data to

make decisions. While both the HB-CRM and K-CRM-1-trial

are based on models that borrow strength between subgroups,

the key diference is that the HB-CRM model has a hierar-

chial prior structure on 𝛼1,· · ·,𝛼K, while the model used by the

K-CRM-1-trial does not.

2.4 Prior specification and numerical methods

Recall that, for the hierarchical model, to establish the prior

the 5 fixed hyperparmeters (𝜇̃𝛽 , 𝜎̃𝛽) and (𝜇𝛼,𝜙, 𝜎𝛼,𝜙,U𝜙) must

be specified. To establish the prior for each of the 3 nonhier-

archical models, the 4 fixed hyperparameters (𝜇̃𝛼, 𝜎̃𝛼, 𝜇̃𝛽 , 𝜎̃𝛽)
must be specified. We recommend minimally informative

priors to allow the data to dominate the decisions in gen-

eral and, in the present context, to ensure a fair comparison

among the different methods. For the location parameters,

either (𝜇̃𝛼 , 𝜇𝛼,𝜙) for the hierarchical model or (𝜇̃𝛼, 𝜇̃𝛽) for

the nonhierarchical models, one can 2 elicited mean toxi-

city probabilities to solve for the fixed 2 fixed hyperprior

means. Given the standardized doses, in each case the 2 fixed

hyperprior means may be calculated by equating elicited val-

ues of toxicity probabilities at 2 different doses, say x(1) and

x(2), with the corresponding formulas for 𝜋(x(j), 𝜃), j = 1,2,

replacing 𝜃 by its mean, and solving the 2 equations for

the 2 unknown hyperparameters. This is illustrated below.

Given these fixed location parameters, variance parameters

may be determined for prior informativeness, quantified by

prior effective sample size (ESS).[1,12] To speed up computa-

tion, one may use approximate ESS values[13] (computational

details are given in the Appendix). One may set the values of

the variance hyperparameters to control prior informativeness

so that the per-subgroup ESS values are a small number, such

as 1, 2, or 3.

CRM. For the CRM, first choose an overall ESS, and then

divide it by K to obtain a common per-subgroup

ESS value. As explained in Section 2.3, this method

assumes logit{𝜋(xj, 𝛼, 𝛽)} = 𝛼 + 𝛽xj (Equation 5),

with 𝛼 ∼ N(𝜇̃𝛼, 𝜎̃2
𝛼) and 𝛽 ∼ N(𝜇̃𝛽 , 𝜎̃2

𝛽
). To

obtain the means 𝜇̃𝛼 and 𝜇̃𝛽 , if, for example,

one elicits the 2 prior mean toxicity probabilities

E{𝜋(x2,𝜽)} = 0.10 and E{𝜋(x5, 𝜽)} = 0.50, then

the 2 resulting equations 𝜇̃𝛼 + 𝜇̃𝛽x2 = logit(0.10)
and 𝜇̃𝛼 + 𝜇̃𝛽x5 = logit(0.50) yield 𝜇̃𝛼 = −1.23

and 𝜇̃𝛽 = 2.40. Assuming that 𝜎̃2
𝛼 = 𝜎̃2

𝛽
, one then

may compute the approximate overall ESS values

for a suitable range of 𝜎̃2
𝛼(= 𝜎̃2

𝛽
), eg, 0.01, 0.02, … ,

10. Finally, one may choose a value of 𝜎̃2
𝛼(= 𝜎̃2

𝛽
) so

that the overall ESS value is closest to 4( = 1 × 4),

that is, the per-subgroup ESS value nearly equals 1,

resulting in 𝜎̃2
𝛼 = 𝜎̃2

𝛽
= 1.25.

1-CRM-K-trials. This method conducts K separate tri-

als and assumes logit{𝜋k(xj, 𝛼k, 𝛽k)} = 𝛼k + 𝛽kxj
(Equation 6) with 𝛼1, · · ·, 𝛼K ∼ i.i.d. N(𝜇̃𝛼, 𝜎̃2

𝛼) and

𝛽1, · · ·, 𝛽K ∼ i.i.d. N(𝜇̃𝛽 , 𝜎̃2
𝛽
). Thus, one may per-

form the same calculations as done above for the

CRM, but within each subgroup. Given 𝜇̃𝛼 = -1.23

and 𝜇̃𝛽 = 2.40, one may choose 𝜎̃2
𝛼 (= 𝜎̃2

𝛽
) so that the

per-subgroup ESS takes a value close to 1, which in

this case gives 𝜎̃2
𝛼 = 𝜎̃2

𝛽
= 5.92.
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K-CRM-1-trial. This method conducts a single trial and

assumes logit{𝜋k(xj, 𝛼k, 𝛽)}= 𝛼k + 𝛽xj (Equation 6)

with priors 𝛼1,· · ·, 𝛼K ∼ i.i.d. N(𝜇̃𝛼, 𝜎̃2
𝛼) and

𝛽 ∼ N(𝜇̃𝛽 , 𝜎̃2
𝛽
). Since it is assumed that, a priori, 𝛼1,

· · ·, 𝛼K have the same mean 𝜇̃𝛼 , it is reasonable to

derive a single value of 𝜇̃𝛼 . Thus, as above, 𝜇̃𝛼 =
-1.23 and 𝜇̃𝛽 = 2.40 would be derived. In the evalu-

ation of approximate ESS values with fixed 𝜇̃𝛼 and

𝜇̃𝛽 , one may compute the within-subgroup proba-

bility of toxicity E{𝜋k(xj, 𝛼k, 𝛽)|𝜇̃𝛼, 𝜇̃𝛽 , 𝜎̃2
𝛼, 𝜎̃

2
𝛽
)} for

a suitable range of 𝜎̃2
𝛼 (= 𝜎̃2

𝛽
). Then, choose a value

of 𝜎̃2
𝛼 (= 𝜎̃2

𝛽
) so that the per-subgroup ESS takes

a value being closest to 1, resulting in 𝜎̃2
𝛼 = 𝜎̃2

𝛽
=

5.92. Although ESS is not necessarily additive over

subgroups because 𝛽 is the common slope param-

eter for patient subgroups in this method, we avoid

more complicated ESS computations to facilitate

practical application.

HB-CRM. As explained in Section 2.2, this method con-

ducts a single trial assuming a hierarchical model

with logit{𝜋k(xj, 𝛼k, 𝛽)} = 𝛼k + 𝛽xj (Equation 1)

for subgroup k = 1,… , K. For the level 1 priors,

it is assumed that 𝛼1,… ,𝛼K are i.i.d. N(𝜇̃𝛼, 𝜎̃2
𝛼) and

that 𝛽 ∼ N(𝜇̃𝛽 , 𝜎̃2
𝛽
). For level 2 priors, it is assumed

that 𝜇̃𝛼∼ N(𝜇𝛼,𝜙, 𝜎2
𝛼,𝜙

) and 𝜎̃𝛼 ∼ U(0.01, U𝜙). The

location parameters in this method are 𝜇̃𝛽 in level 1

and 𝜇𝛼,𝜙 in level 2. Since 𝜇𝛼,𝜙 represents the overall

mean of 𝛼1, … , 𝛼K, it may be acceptable not to dif-

ferentiate the prior levels of 𝜇̃𝛼 and 𝜇𝛼,𝜙 to simplify

the derivation of their estimates. Thus, similarly to

the nonhierarchical methods, 𝜇𝛼,𝜙 = -1.23 and 𝜇̃𝛽 =
2.40 are obtained using the 2 elicited prior means

E{𝜋(d2, 𝜃)} = 0.10 and E{𝜋(d5, 𝜃)} = 0.50. Next,

3 parameters (𝜎̃2
𝛽
, 𝜎2

𝛼,𝜙
,U𝜙) are specified using the

ESS computation process. To simplify computa-

tion, we use a simplified algorithm to obtain these

3 parameters sequentially. First, use the same value

of 𝜎̃2
𝛽

specified in K-CRM-1-trial, which has a study

design similar to that of HB-CRM, regardless of

whether a hierarchical structure is assumed or not.

Second, for U𝜙, Morita et al[1] evaluate ESS at 2

values, U𝜙 = 2 and U𝜙= 5. Then, for a suitable

range of 𝜎2
𝛼,𝜙

, eg, 0.01, 0.02, … , 10, compute the

within-subgroup prior mean probability of toxic-

ity E{𝜋k(xj, 𝛼k, 𝛽)|𝜇𝛼,𝜙, 𝜇̃𝛽 , 𝜎̃2
𝛽
, 𝜎2

𝛼,𝜙
,U𝜙} to obtain

approximate ESS values. Finally, choose a pair of

values of 𝜎2
𝛼,𝜙

and U𝜙 so that the per-subgroup

ESS takes a value close to 1. If both values of

U𝜙 in combination with some value of 𝜎2
𝛼,𝜙

yield

the per-subgroup ESS value 1, choose the smaller

value, 2 for U𝜙, thereby obtaining an appropri-

ately informative hyperprior of 𝜎̃𝛼 . It is expected

that HB-CRM with a suitably informative hyper-

prior for 𝜎̃𝛼 that controls the between-subgroup

variability in the intercepts (𝛼1,· · ·, 𝛼K) will do

a better job of dealing with differences in toxi-

city probabilities by borrowing strength between

subgroups.

Because these specifications of fixed prior

para=meters involve some arbitrary choices, one

should evaluate the operating characteristics of the

design via simulation, and if necessary adjust the

numerical hyperparameter values on that basis.

To compute the posteriors, we use Markov chain

Monte Carlo,[14] because the joint posterior distri-

bution of the intercept and slope parameters is not

readily available in closed form.

3 SIMULATIONS AND CASE-BY-CASE
EXAMPLES

3.1 Simulation study design

We compared the 4 methods in several cases chosen to evalu-

ate the advantages and disadvantages of HB-CRM and the 3

other designs of how accurately each estimates optimal doses

(ODs).

To evaluate the performance of the 4 methods fairly, we

used the same basic setup with respect to the dose levels J = 6

with (d1,… ,d6) = (100, 200, 300, 400, 500, 600), starting

dose (d1), target toxicity level 𝜋* = .33, and the number of

subgroups K = 4. For the subgroups, we assumed 2 different

distributions of population proportions: either 𝝃 = (0.25, 0.25,

0.25, 0.25) or 𝝃 = (0.40, 0.30, 0.20, 0.10), named “equal”

and “different” prevalence patterns, respectively. In addition,

we evaluated each design’s operating characteristics using

four maximum sample sizes (Nmax = 48, 72, 96, 120). We

chose the minimum and maximum values of Nmax, 48 and

120, taking into account that their corresponding expected

per-subgroup sample sizes under the equal population propor-

tions, 12 and 30, often may be used in an ordinary phase 1

trial for each subgroup.

As explained in Section 2.4, we set up the priors of the 4

methods to ensure reasonably fair comparisons. The details

are given in the Supporting Information. First, we used prior

estimates of E{𝜋(d2, 𝜽)} and E{𝜋(d5, 𝜽)} to solve for the

location parameters, 𝜇̃𝛼 and 𝜇̃𝛽 . With E{𝜋(d2, 𝜽)} = 0.10 and

E{𝜋(d5, 𝜽)} = 0.50, the location parameters were specified

as 𝜇̃𝛼 = −1.23 and 𝜇̃𝛽 = 2.40 for all 4 methods (except

for HB-CRM, which does not use a fixed 𝜇̃𝛼). Given the

location parameters, the scale parameters were specified as

𝜎̃2
𝛼 = 𝜎̃2

𝛽
= 1.25 for the CRM so that the overall ESS value

was close to 4( = 1 × 4), that is, the per-subgroup ESS values

nearly equaled 1. For 1-CRM-K-trials and K-CRM-1-trial,

the scale parameters were specified as 𝜎̃2
𝛼 = 𝜎̃2

𝛽
= 5.92 to

obtain per-subgroup ESS value close to 1. The priors and

hyperpriors of HB-CRM were specified with 𝜇̃𝛽 = 2.40, 𝜎̃2
𝛽
=

5.92, 𝜇𝛼,𝜙 =− 1.23, 𝜎2
𝛼,𝜙

= 4.85, and U𝜙 = 2. The location
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parameters were specified on the basis of the prior estimates

E{𝜋(d2, 𝜽)} = 0.10 and E{𝜋(d5, 𝜽)} = 0.50, and the dis-

persion parameters were specified according to prior ESS

so that the per-subgroup ESS value was close to 1. For the

design parameters of the overdose control rule, on the basis

of preliminary investigation, we determined that the combina-

tions of 𝜋odc = 0.50 and 𝜓odc = 0.25 gave designs with good

operating characteristics.

We constructed 4 different dose-toxicity scenarios by spec-

ifying values of the true toxicity probabilities in each sub-

group, shown in Figure 2 and Table S1. These scenarios

were chosen to illustrate how the methods behave in a variety

of settings for inter-subgroup difference of the dose-toxicity

relationship. The scenarios are not based on any of the mod-

els. Each scenario is characterized by the true probabilities of

toxicity, 𝜋true
j,k , for the 6 dose levels j = 1, · · ·, 6 and 4 sub-

groups, k = 1, · · ·, 4. Thus, the assumed true dose-toxicity

curve within subgroup k is characterized by the 6-dimensional

vector 𝝅true
k = (𝜋true

1,k , · · · , 𝜋
true
6,k ). Under Scenario 1, given

the target probability 𝜋* = 0.33, d4 is the OD in all the 4

subgroups. In contrast, Scenario 2 represents a case where

the ODs differ between subgroups, with respective ODs d4,

d6, d1, and d4, in the 4 subgroups, respectively. Scenarios

3 also has different ODs for the subgroups, but they are

closer to each other than in Scenario 2. Scenario 4 is a diffi-

cult case where the 4 subgroup-specific dose-toxicity curves

𝝅true
1
,𝝅true

2
,𝝅true

3
, and 𝝅true

4
differ substantially between sub-

groups, and moreover, each subgroup’s curve has 2 dose

levels with true toxicity probabilities equal to or close to the

target 𝜋* = 0.33. In this case, 2 doses both are good choices for

each subgroup, but these 2 doses differ between subgroups.

To evaluate and compare the 4 designs under each of the

dose-toxicity scenarios in the simulations, we use the fol-

lowing weighted average of the dose selection probabilities.

Motivated by the idea that smaller values of |𝜋true
j,k −𝜋∗| corre-

spond to dj being more desirable in subgroup k, equivalently

larger values of 1 − |𝜋true
j,k − 𝜋∗| are more desirable in that

subgroup, we define the weights

wj,k =
1 − |𝜋true

j,k − 𝜋∗| − min
r=1,··· ,J

{
1 − |𝜋true

r,k − 𝜋∗|}

max
r=1,··· ,J

{
1 − |𝜋true

j,k − 𝜋∗|} − min
r=1,··· ,J

{
1 − |𝜋true

r,k − 𝜋∗|}
(7)

Then, we define the subgroup-specific weighted probability
of selection (WPS)

WPSk =
J∑

j=1

wj,k·Pr(xj is selected as the OD in subgroup k),

(8)

for each k = 1,· · ·,K. We subtract the smallest value of 1 −
|𝜋true

r,k −𝜋∗| among the j doses in the numerator and denomina-

tor of Equation 7 so that wj,k = 0 for the least desirable dose in

that subgroup to give greater relative weights to the doses hav-

ing 𝜋true
j,k closer to 𝜋* in that subgroup. Particularly, Equation 7

gives weight 1 to the dose having 𝜋true
j,k closest to 𝜋*. We do

not take the alternative approach of using |𝜋true
j,k − 𝜋∗|−1 as a

FIGURE 2 Subgroup-specific dose-toxicity curves assumed in the simulations, presented for the true dose-toxicity probabilities 𝜋true
1,k , · · · , 𝜋

true
6,k for each

subgroup (Sg): Sg 1, diamond and solid; Sg 2, square and dashed; Sg 3, triangle and dashed-dotted; Sg 4, star and dotted. Optimal doses are indicated by open

circles. A, Scenario 1; B, Secnario 2; C, Scenario 3; D, Scenario 4
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basis for constructing weights because this takes on the value

∞ if 𝜋true
j,k = 𝜋∗.We also evaluate the statistic PCSk, the prob-

ability of correct selection (PCS) of the dose that minimizes

|𝜋true
j,k − 𝜋∗| in subgroup k, which gives weight 1 to the dose

having 𝜋true
j,k closest to the target and weight 0 to all other

doses.

Under each scenario, we simulated the trial 1000 times

using each method. The SAS program to implement

HB-CRM is provided in the Supporting Information (SAS

for Windows release 9.3; SAS Institute Inc., Cary, North

Carolina).

3.2 Simulation results

The operating characteristics for the 4 methods are summa-

rized by toxicity scenarios, and the results are shown for the

WPS and PCS only for Nmax = 96 and except for Scenario

1. Figures 3 and 4 show the results under the assumptions

of equal and different subgroup proportions (0.25, 0.25, 0.25,

0.25) and (0.40, 0.30, 0.20, 0.10), respectively. The selection

probabilities of xj as the OD in subgroup k in Equation 8 were

computed as the percentage of times that each of the meth-

ods selected xj as the OD in each subgroup. More complete

results are shown in Table S2.

Overall, the simulation study reconfirmed that ignoring

subgroups resulted in undesirably low probabilities of select-

ing ODs, especially when the dose-toxicity relationships were

largely different between subgroups. It also was reconfirmed

that K-CRM-1-trial and 1-CRM-K-trials behaved about the

same in a setting with more than 2 nonordered subgroups. The

HB-CRM showed worse performance than K-CRM-1-trial

and 1-CRM-K-trials in several cases. However, when the sub-

group proportions were different, HB-CRM gave much better

results in the subgroups with small proportions 𝜉 = 0.1 or 0.2.

As shown in Figure 3, under the assumption of equal

subgroup proportions, under Scenario 2, K-CRM-1-trial and

1-CRM-K-trials both performed best in subgroup 3, but in

another subgroups the performance of HB-CRM was very

similar to these 2 methods. As in Scenario 3, the performance

of HB-CRM was quite favorable when the ODs were close

FIGURE 3 Subgroup-specific weighted probability of selection (WPS) of optimal dose and probability of correctly selecting (PCS) the optimal dose for

HB-CRM (diamond and solid), K-CRM-1-trial (square and dashed), and 1-CRM-K-trials (triangle and dashed-dotted), and CRM (star and dotted) when the

total sample size Nmax = 96 with assuming equal subgroup proportions 𝝃 = (𝜉1,… , 𝜉4) = (0.25, 0.25, 0.25, 0.25)
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to each other between patient subgroups. It appears that, in

such a case, HB-CRM effectively borrows strength between

subgroups through its hierarchical structure. Under Scenario

4, the WPS and PCS values of HB-CRM were higher in

subgroups 2 and 3, for which 2 doses were good choices, com-

pared to those of K-CRM-1-trial and 1-CRM-K-trials. Under

the different subgroup proportions (Figure 4), HB-CRM

yielded much higher WPS values in subgroup 4 under

each of Scenarios 2 and 3 compared to K-CRM-1-trial and

1-CRM-K-trials. That is, the desirable effect of borrowing

strength between subgroups in HB-CRM appeared to be more

pronounced in subgroups with smaller numbers of patients.

In other aspects, overall, the results were similar to those

obtained in the case of equal subgroup proportions.

Figures 5A,B shows the WPS values for the 4 sam-

ple sizes by toxicity scenario under the equal and

different subgroup proportions, respectively. The 4

columns correspond respectively to HB-CRM, K-CRM-

1-trial, 1-CRM-K-trials, and CRM, starting from the left.

Overall, the performance of HB-CRM improves as Nmax

increases much more than those of K-CRM-1-trial and

1-CRM-K-trials. Particularly, under Scenario 1, HB-CRM

yielded high values of WPS even with Nmax = 48, and the

WPS values of HB-CRM with Nmax = 48 were comparable to

those of K-CRM-1-trial and 1-CRM-K-trials for Nmax = 120.

This may be due to the way that HB-CRM borrows strength

between subgroups. Under this scenario, it is not surpris-

ing that CRM provides the highest values of WPS, because

the patients come from one population rather than multiple

subpopulations.

Since similar conclusions were obtained from the simula-

tion results in WPS and PCS, it might be acceptable to use the

PCS to evaluate the operating characteristics of a dose-finding

study design. However, because the toxicity probabilities for 1

or more other doses may be close to that of the optimal dose in

1 or more subgroups, the WPS may be a more suitable index

to compare the performances between methods, especially in

a difficult case like Scenario 4.

FIGURE 4 Subgroup-specific weighted probability of selection (WPS) of optimal dose and probability of correctly selecting (PCS) the optimal dose for

K-CRM-1-trial (square and dashed), and 1-CRM-K-trials (triangle and dashed-dotted), and CRM (star and dotted) when the total sample size Nmax = 96

under the dose-toxicity Scenarios 2 to 4 with assuming different subgroup proportions 𝝃 = (0.40, 0.30, 0.20, 0.10)
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FIGURE 5A Subgroup-specific weighted probability of selection (WPS) of optimal dose for HB-CRM, K-CRM-1-trial, 1-CRM-K-trials, and CRM under

the dose-toxicity scenarios 1 to 4 (from the first raw to the bottom), for maximum sample sizes Nmax = 48, 72, 96, 120, in subgroups 1: diamond and solid, 2:

square and dashed, 3: triangle and dashed-dotted, 4: star and dotted. A, Assume equal subgroup proportions 𝝃 = (𝜉1,… ,𝜉4) = (0.25, 0.25, 0.25, 0.25). B,

Assume different subgroup proportions 𝝃 = (0.40, 0.30, 0.20, 0.10)

4 GUIDELINES FOR CONSTRUCTING
DESIGNS

To construct a study design using the HB-CRM method, the

following steps may be taken.

1. Determine the definition of toxicity, the target toxicity

probability 𝜋*, and the dose levels (d1, · · ·, dJ) to be tested.

2. Specify the patient subgroups (1, · · ·, K), anticipated sub-

group prevalences 𝝃 = (𝜉1, · · ·, 𝜉K), and patient accrual

rates.

3. Set up the priors of the dose-finding model to be minimally

informative for the prior ESS, following the approach

described in Section 2.4.

4. Determine the total maximum sample size, Nmax, by run-

ning the computer program (provided in the supplemen-

tary materials) for a range of feasible values of Nmax so

that the study design has a sufficiently good performance

for the WPS of the subgroups.

As a guide, in step 4 above, the values of Nmax may range

from 12 × K to 30 × K when the number of dose levels J is

4 to 6. If more dose levels are examined, one may consider

increasing the per-subgroup sample size, as in an ordinary

dose-finding trial. In some cases, some subgroups may be

very small, that is, the corresponding values of (𝜉1, · · ·, 𝜉K)

take very small values, eg, 0.05 or smaller. This is likely to

occur if the number of subgroups is large, eg, K = 10 or 20.

In such a case, due to the limited number of patients in a

phase 1 trial, we strongly recommend reducing the number of

subgroups, K, to a number that allows the proposed method-

ology to be applied in a practical way. In addition, one should

take the patient accrual rates in subgroups into account when

combining subgroups, to improve trial feasibility and simplify

trial conduct, that is, to complete the trial within a realistic

time frame. If different patient subgroups have different toxi-

city targets, 𝜋∗
1
, · · · , 𝜋∗

K , one can design the trial in the same

way as a trial with a common target 𝜋*, although one should
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FIGURE 5B Continued

investigate the operating characteristics of the study design

carefully (Figures 5).

5 ILLUSTRATION

For illustration, on the basis of 2 real phase 1 trials, we show

how HB-CRM and K-CRM-1-trial may work in practice,

via simulations. To perform these simulations, we assumed

true toxicity probabilities on the basis of the empirical data

observed in the 2 clinical trials. The first example (Example

1) is a case where exchangeable toxicity probabilities may

reasonably be assumed between patient subgroups, while

exchangeability clearly should not be assumed in the second

example (Example 2).

Example 1 is based on the work of Minami et al.[15]

They examined 3 doses (400, 600, 800 mg once daily)

of sonidegib (LDE225), a selective protein inhibitor, in N
= 45 Asian patients with advanced solid tumors, includ-

ing 2 racial subgroups. Subgroup 1 consisted of N1 =
21 Japanese and subgroup 2 consisted N2 = 24 of Hong

Kong/Taiwanese, following the health authority’s request.

The maximum tolerated doses (MTDs) were reported to

be 400 mg in both subgroups. For these patients, we con-

sider it reasonable to assume, a priori, that the toxicity

probabilities are exchangeable between the 2 racial sub-

groups. In this trial, dose-limiting toxicities (DLTs) were

evaluated during the first treatment cycle. Table 2 shows the

observed DLT data.

For Example 2, we use the data reported by Bendell

et al.[16] They conducted a phase 1 trial to test 6 dose lev-

els, 12.5, 25, 50, 80, 100, 150 mg once daily of BKM120,

a pyrimidine-derived pan-PI3 K inhibitor with specific and

potent activity against class I PI3Ks. A 100 mg was estimated

to be the MTD in this trial. As a clinical background charac-

teristic of the N = 35 patients enrolled in this trial, Bendell

et al[16] reported the number of prior therapies for 2 sub-

groups, with >3 in subgroup 1, and ⩽ 3 in subgroup 2. The

sizes of the 2 subgroups were nearly the same, with N1 =
18 and N2 = 17. Because, in general, patients who are more

heavily pretreated are be more likely to experience toxicity, it

is clearly not appropriate to assume that these 2 patient sub-

groups have exchangeable prior toxicity probabilities. Table 2

shows the DLTs observed during the first treatment cycle in

this trial.

For each of the 2 examples, we simulated toxicity data for

each of four hypothetical total sample sizes, N = 35, 45, 70,



154 MORITA ET AL.

TABLE 2 Illustration of HB-CRM and K-CRM-1-trial for 2 real phase 1 trials, the sonidegib trial[15] and the BKM120
trial[16]

Sonidegib trial Dose, mg
Subgroup 400 600 800

1 (Japanese) No. of DLTs 2 5 0

No. of patients 12 9 0

Empirical Pr(DLT) 0.17 0.56 —

Assumed true Pr(DLT) 0.15 0.55 0.65

2 (Taiwanese) No. of DLTs 2 1 2

No. of patients 12 8 4

Empirical Pr(DLT) 0.17 0.13 0.50

Assumed true Pr(DLT) 0.15 0.20 0.50

N Method Subgroup

45 HB-CRM 1 80.5 19.5 0.0

2 20.1 71.8 8.1

K-CRM-1 1 87.2 12.8 0.0

2 30.8 60.5 8.7

100 HB-CRM 1 91.6 8.4 0.0

2 16.2 80.6 3.2

K-CRM-1 1 95.5 4.5 0.0

2 27.1 69.6 3.3

BKM120 trial Dose (mg)

12.5 25 50 80 100 150

No. of DLTs 0 0 0 1 4 1

No. of patients 1 1 3 6 16 3

Empirical Pr(DLT) 0.00 0.00 0.00 0.17 0.25 0.33

Subgroup

1 ( > 3 prior trts) Assumed true Pr(DLT) 0.05 0.07 0.10 0.25 0.35 0.55

2 (⩽3 prior trts) Assumed true Pr(DLT) 0.01 0.02 0.05 0.10 0.15 0.25

N Method Subgroup

35 HB-CRM 1 0.9 8.1 39.0 30.2 18.0 3.8

2 0.3 2.1 18.3 13.1 33.7 32.5

K-CRM-1 1 1.2 12.6 33.1 31.6 17.9 3.6

2 0.3 6.0 12.1 9.1 35.6 36.9

100 HB-CRM 1 0.2 3.8 25.1 55.7 14.2 1.0

2 0.0 0.4 6.9 5.3 38.5 48.9

K-CRM-1 1 0.3 7.4 25.0 53.7 12.7 0.9

2 0.1 2.6 5.4 3.1 38.5 50.3

For each trial, the observed toxicity data and assumed true DLT probabilities used in the simulation first are summarized by subgroup,

followed by simulation results for each method for each of 2 maximum sample sizes. Percentages of correct selection of the MTD

within each subgroup are given in boldface.

and 100, with subgroup proportions 𝜉 = 0.467 in Example

1 and 𝜉 = 0.514 in Example 2, to mimic the proportions in

the reported data. Since the implicit target range for the DLT

probability was 0.16 to 0.33 to determine the MTD in both

trials, we defined 0.25 as the target DLT probability for both

examples. Table 2 shows the true DLT probabilities derived

from the empirical data of the 2 clinical trials. In Example

1, where subgroups were determined by race, we assumed

true DLT probabilities such that dose level 1 (400 mg) was

the MTD in subgroup 1, while dose level 2 (600 mg) was the

MTD in subgroup 2. For Example 2, where subgroups were

determined by number of prior therapies, toxicity data within

the patient subgroups were not given by Bendell et al.[16]

Thus, we assumed true DLT probabilities so that dose lev-

els 4 (80 mg) and 6 (150 mg) were the respective MTDs in

subgroups 1 (> 3 prior therapies) and 2 (⩽ 3 prior therapies).

The simulation results for Examples 1 and 2 are summa-

rized in Table 2 for 2 maximum sample sizes, N = 45 and 100

and N = 35 and 100, respectively. The table gives the percent-

ages of times that each method selected each dose as the MTD

in each subgroup. Correct selection percentages are given in

boldface. Corresponding results for other maximum N values

are summarized in the supplementary material.

In Example 1 (exchangeable case), HB-CRM performed

better than K-CRM-1 overall in the 2 subgroups. In this

example, Table 2 shows within-subgroup correct selection

percentages of 71.8% and 80.5% for HB-CRM even with
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N = 45, although these high values are due in part to there

were only 3 the number of dose levels. Still, the example illus-

trates the ability of HB-CRM to reliably choose different opti-

mal doses within subgroups. In Example 2 (nonexchangeable

case), for N = 35, Table 2 shows that K-CRM-1 performed

better than HB-CRM, especially in subgroup 2. With larger

N, the performances of both methods improved, and the dif-

ference in performance between the 2 methods diminished.

A key point is that, for phase 1 trials with patient hetero-

geneity and 6 or more doses levels, N should be larger than

conventional values to obtain reliable subgroup-specific dose

selections.

6 DISCUSSION

Our simulation studies suggest that HB-CRM works well in

situations where the dose-toxicity curves are expected to be

similar or not largely different between multiple patient sub-

groups, and the exchangeability assumption is valid. This

arises commonly in settings whether qualitatively different

disease subgroups are included, and there is no prior knowl-

edge about the comparative risks of toxicity in the subgroups.

For overall performance quantified by the WPS or PCS,

Figure 3 shows that the HB-CRM method (solid line) does

well across all subgroups. In contrast, the nonhierarchical

model-based methods K-CRM-1 and 1-CRM-K that account

for subgroups may perform well for some subgroups but not

as well for others. For example, in Scenario 2, the K-CRM-1

method outperforms the HB-CRM method slightly for WPS

and markedly for subgroup 3 of PCS, but K-CRM-1 has the

same or inferior performance compared to HB-CRM in Sce-

narios 3 and 4. Not surprisingly, the CRM that ignores sub-

groups has greatly inferior performance for several subgroups

in each of Scenarios 2, 3, and 4. Figures 4A,B illustrate the

extremely poor performance of the CRM for many subgroups

in the presence of heterogeneity.

Since, in practice, one cannot know the true toxicity

curves, there are 2 main messages. First, one certainly

should account for known patient heterogeneity, because

failure to do so is very likely to produce a selected dose

that is far below optimal in some subgroups. Second, when

the underlying assumptions are appropriate, the HB-CRM

performs well consistently across a broad range of differ-

ent dose-toxicity–subgroup scenarios, and it may be prefer-

able to nonhierarchical model-based methods that choose

subgroup-specific doses.

An important caveat is that the HB-CRM–based method is

not appropriate when it is known that the subgroups are not

exchangeable, with an important case being that where the

risk of toxicity is known to be ordered by subgroup. If pre-

clinical or clinical data identify multiple patient subgroups

that are likely to have substantially different dose-toxicity

relationships, but the HB-CRM is not appropriate, then

one should use a nonhierarchical dose-finding method that

chooses subgroup-specific doses.
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APPENDIX

The priors for the models underlying each of the 4 meth-

ods CRM, 1-CRM-K-trials, K-CRM-1-trial, HB-CRM may

be constructed in the following 2 steps.

Step 1: location hyperparameters. Determine the loca-

tion hyperparameters of the priors, (𝜇̃𝛼 , 𝜇𝛼,𝜙) for the

https://doi.org/10.1111/cas.13022. \ignorespaces [Epub \ignorespaces ahead \ignorespaces of \ignorespaces print]
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HB-CRM and (𝜇̃𝛼, 𝜇̃𝛽) for the 3 nonhierarchical meth-

ods, by first obtaining numerical values of the mean

probability of toxicity at each of 2 doses. A conve-

nient choice consists of the second lowest and second

highest dose, denoted by 𝜋(d2, 𝜽) and 𝜋(dJ − 1, 𝜽),

although other dose pairs may be used. These prior

mean probabilities may be obtained by elicitation

from the physicians, or on the basis of historical data.

For the HB-CRM model, the prior elicitation pro-

cess does not distinguish between patient subgroups,

because the hierarchical model prior assumes that

the toxicity probabilities of the patient subgroups are

exchangeable. For each model, given the 2 elicited

prior mean probabilities, the 2 equations are solved

for the 2 location parameters.

Step 2: dispersion hyperparameters. Given the prior

hypermeans, determine numerical values of the dis-

persion parameters controlling the informativeness

by using prior ESS, as described in Section 2.4.

These dispersion parameters are (𝜎̃𝛽 , 𝜎𝛼,𝜙,U𝜙) for the

HB-CRM model and (𝜎̃𝛼, 𝜎̃𝛽) for each of the 3 other

models. To speed up computation, compute approxi-

mate ESS values on the basis of a 𝛽(a, b) distribution

has ESS = a + b, by approximating the prior of any

probability 𝜋(𝜽) by a 𝛽(a, b) and matching the means

and variances. One then solves the 2 equations

E{𝜋(𝜽|𝜽̃)} = a∕(a + b)

and

var{𝜋(𝜽|𝜽̃)} = ab∕{(a + b)2(a + b + 1)}

for ESS
.
= a + b.

Step 2a. To compute an approximate ESS within each

subgroup, use the above approach to compute the

𝛽-approximated value ESSj of the prior 𝜋(𝜽|𝜽̃) for

each dose dj, j = 1,… ,J, and use the mean of these J
values as a per-subgroup approximate ESS.

Step 2b. Multiply the value of the per-subgroup ESS by

the number of subgroups, K, to obtain an overall ESS.
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