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SUMMARY

In oncology, a patient’s treatment often involves multiple courses of chemotherapy. The most common medical
practice in choosing treatments for successive courses is to repeat a treatment that is successful in a given
course and otherwise switch to a di�erent treatment. Patient outcome thus consists of a sequence of dependent
response variables and corresponding treatments. Despite the widespread use of such adaptive ‘play-the-
winner-and-drop-the-loser’ algorithms in medical settings involving multiple treatment courses, most statistical
methods for treatment evaluation characterize early patient outcome as a single response to a single treatment,
resulting in a substantial loss of information. In this paper, we provide a statistical framework for multi-
course clinical trials involving some variant of the play-the-winner-and-drop-the-loser strategy. The aim is to
design and conduct the trial to more closely reect actual clinical practice, and thus increase the amount of
information per patient. The proposed design is similar to a multi-stage cross-over trial, with the essential
di�erence that here all treatments after the �rst course are assigned adaptively. We illustrate the method by
application to a randomized phase II trial for androgen independent prostate cancer. We consider the goals of
selecting one best treatment, or selecting a best ordered pair of treatments with the second given if the �rst
fails to achieve a patient success. A simulation study is reported, and extensions to trials involving toxicity
or regimen-related death are discussed. Copyright ? 2000 John Wiley & Sons, Ltd.

1. INTRODUCTION

Patients undergoing cancer chemotherapy often receive several successive courses of treatment. In
typical medical practice, after the �rst course of chemotherapy the physician decides whether there
has been su�cient evidence of response to justify another course of the same treatment. If not, an
alternative treatment may be chosen for the second course. The physician continues in this manner,
choosing a treatment for each course based on the sequence of treatments given and the outcomes
observed in the previous courses, until a particular criterion for terminating the patient’s therapy
is met. This practice is quite common in settings where several active regimens are available for
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a particular disease but the level of each regimen’s activity is highly variable between patients,
even after accounting for individual patient covariates related to treatment response.
An important example arises in therapy for solid tumours, where a single course of chemother-

apy often succeeds in partially shrinking the patient’s tumour but does not eradicate the disease,
so that one or more additional courses are required. If little or no shrinkage is achieved in the �rst
course, however, then a di�erent regimen may be given subsequently. In such settings the objec-
tive criterion for treatment success on the �rst course, typically ¿50 per cent tumour shrinkage
(‘partial response’), may be quantitatively or qualitatively di�erent from the de�nition of success
on the second course of the same treatment, which may be that 100 per cent shrinkage (‘complete
response’) has been achieved. Similarly, if a leukaemia patient does not achieve a complete remis-
sion after an initial series of one or more courses of a particular chemotherapy combination, then
it is typical practice to declare the patient’s cancer ‘resistant’ to that treatment and switch to a
di�erent treatment. Because the physician must rely on clinical experience and numerous variables
to decide whether a patient’s leukaemia is resistant, the number of courses of the initial regimen
varies from patient to patient. A third example arises in treatment of life-threatening bacterial or
fungal infections, two common adverse side-e�ects of chemotherapy, where the patient may be
given several di�erent agents in succession until either the infection is resolved or the patient dies.
The treatment selection algorithm common to these examples may be described as ‘play-the-

winner-and-drop-the-loser’. Despite the widespread use of this general approach by physicians to
meet the practical demands of treating patients in successive courses when multiple active regimens
are available, to our knowledge there have been no attempts to design clinical trials based on this
paradigm. The most common statistical method for evaluating multiple treatment courses in clinical
research is to de�ne each patient’s outcome in terms of the treatment given in the �rst course
while ignoring any other treatments given to the patient subsequently if the initial course is not
successful. Thus, a patient for whom treatment u is unsuccessful in the �rst course is scored as a
failure with u, even if success is achieved subsequently with some other treatment t. Alternatively,
the patient may be scored as a success with t while ignoring the initial failure with u. Evidently,
both approaches ignore much of the available information.
An important phenomenon in the multi-course setting that is ignored by this sort of simpli�cation

is that of cross-resistance between u and t. This occurs when a failure with u on a given course
renders the probability of success with t on the next course lower than if the patient had failed
with some treatment other than u. An interesting aspect of the play-the-winner-and-drop-the-loser
algorithm, illustrated in Section 3.2, is that a patient randomized into a trial of several treatments
using this method may have a higher overall success probability than a patient treated initially
with the single best regimen. This design property is especially important given concerns in the
medical community regarding the ethics of randomized trials [1].
The purpose of this article is to provide a general statistical framework for a randomized multi-

course clinical trial where some variant of the play-the-winner-and-drop-the-loser strategy is used.
The proposed design is adaptive in that treatment decisions for an individual patient in all courses
after the �rst are based on the patient’s outcomes in previous courses. The inferential goals that
we consider are selection of one best treatment, selection of a best ordered pair of treatments with
the second given if the �rst fails to achieve a patient success, and estimation of cross-resistance
between consecutive treatments. Our proposed methodology is a phase II design in that it is based
on a patient outcome that, within each course of therapy, may be observed relatively soon, and
the goal is to select a treatment or treatments for future study in a phase III trial having survival
or disease-free survival time as the primary outcome.
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The remainder of the paper is organized as follows. In Section 2, we describe the prostate
cancer trial that initially motivated this research. We establish multinomial and regressive logistic
probability models in Section 3. In Section 4 we summarize a simulation study of selection designs
based on these models in the context of the prostate cancer trial. Generalizations of the method,
including versions of the ‘play-the-winner-and-drop-the-loser’ strategy di�erent from that used in
the prostate cancer trial, are described in Section 5. We close with a discussion in Section 6.

2. THE PROSTATE CANCER TRIAL

About 200 000 men are diagnosed with prostate cancer each year in the United States. Despite the
fact that it has an indolent course in comparison with most malignant diseases, about 40 000 deaths
are due to prostate cancer in the U.S. annually, a mortality toll second only to lung cancer [2].
These deaths result from the failure of androgen deprivation therapy. Essentially, all patients treated
by androgen deprivation will exhibit androgen-independent disease progression after a median time
of about one year. There is no standard therapy in this setting, and no systemic therapy has been
shown to provide a substantial improvement in survival.
Prostate-speci�c antigen (PSA) is an extremely useful marker for carcinoma of the prostate [3].

Declines in PSA following treatment are strongly associated with improved survival as well as other
indicators of patient bene�t, including improved haemoglobin concentration and decreased pain due
to bone metastases. Although the use of PSA decline as a surrogate endpoint in clinical trials is
still controversial, there is an emerging consensus that in the setting of androgen-independent
disease an 80 per cent decline in PSA maintained for at least eight weeks is a legitimate marker
of disease-altering ‘response’.
Recently, the use of chemotherapy regimens in which patients are exposed to treatment over

several consecutive weeks has resulted in response rates in the range of about 35 per cent to 60
per cent [4]. With this development, there is now considerable interest in the oncology community
in conducting a phase III trial to determine whether this recently recognized approach prolongs
survival. However, before a phase III trial can be organized, the problem of selecting the most
promising of the several contending regimens must be addressed. Thus, four candidate regimens
were identi�ed for evaluation in a randomized phase II selection trial aimed at providing a basis for
deciding which to study in phase III. These are: 1, paclitaxel+estramustine+etoposide; 2, ketocona-
zole+doxorubicin alternating weekly with vinblastine+estramustine; 3, cyclophosphamide+vincris-
tine+dexamethasone; 4, paclitaxel+estramustine+carboplatin. The trial, which is currently ongoing
at M.D. Anderson Cancer Center (MDACC), is limited to prostate cancer patients who have devel-
oped androgen-independent disease. The goals are to select a best treatment, or a best two-treatment
strategy, and to estimate cross-resistance between di�erent treatments given in consecutive courses.
As with any phase II trial, it is designed to serve as a precursor to a con�rmatory phase III trial
having survival as the primary outcome. Treatment evaluation is based on reduction of PSA level
as a surrogate outcome for survival time.
The speci�c parameters that we use to characterize treatment e�cacy and estimators of these

parameters, which will form the basis for the selection design, will be developed in Sections 3
and 4. The trial design was based on the multi-course treatment algorithm described in the next
paragraph. To avoid confusion, we will refer to a particular chemotherapy regimen given to a
patient in a particular course as a treatment, whereas we will refer to the entire sequence of
treatments given to a patient as that patient’s therapy. We also make a sharp distinction between
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treatment success in a particular course and overall patient success, since the latter may require
more than one successful course. In the prostate cancer trial, patient success with treatment t is
de�ned as two consecutive successful courses with t, while patient failure is de�ned as a total of
two unsuccessful courses regardless of treatment.
For the �rst course of therapy, patients are randomized fairly among the four treatments. Success

in the �rst course is de�ned as a decrease of 40 per cent or more in PSA from its baseline level
at diagnosis, with no evidence of disease progression at any site. For each patient, a treatment that
is successful in a given course is given to that patient in the next course, while a treatment that
is unsuccessful in a given course is dropped from the set of acceptable treatments for that patient
in any subsequent course. A second consecutive success with a given treatment is de�ned as a
decrease of 80 per cent or more in PSA from baseline, again with no evidence of progression.
Following an unsuccessful course, the treatment for the next course of the patient’s therapy is
chosen fairly from that patient’s new set of acceptable treatments, which excludes any previous
treatment that was unsuccessful for that patient. For example, patients who fail initially with
treatment 1 are subsequently randomized among treatments {2, 3, 4}. The baseline PSA used
to evaluate the next treatment is updated to equal the PSA level at the end of the unsuccessful
course.
Patients are �rst strati�ed into two prognostic strata, low and high volume disease. The latter is

de�ned as involvement of long bones or viscera, or more than three spots on a bone scan. Within
each prognostic stratum, patients are assigned to their �rst treatment in a random series of blocks
of size four, each block containing a random permutation of the four treatments. Patients from
either stratum who fail with their �rst treatment in the �rst or second course are then assigned to
a second, di�erent treatment for the next course, according to a random series of blocks of size
three, each consisting of a permutation of the three treatments not received initially. Thus, the
strati�cation factor for the �rst course is the prognostic factor disease volume, whereas patients
whose initial treatment is unsuccessful are subsequently strati�ed adaptively to exclude their initial
treatment.
The essential di�erence between the prostate cancer trial and a more typical randomized phase

II trial [5–7] is that we account for multiple treatment courses. Moreover, treatment assignment in
courses after the �rst is adaptive in that it depends on the individual patient’s previous history in
the trial. Our proposed design thus follows actual clinical practice. This leads to a much richer data
structure, which is in accordance with Fisher’s principle of designing an experiment to maximize
the amount of information per sampling unit [8]. Given the fact that the sampling unit in a clinical
trial is a human being, the additional complexity of our method compared to simpler conventional
methods seems warranted.

3. PROBABILITY MODELS

In this section we establish a general framework for determining the possible patient outcomes,
de�ning a probability model, and designing a multi-course clinical trial. Our main focus is se-
lection trials, similar to the prostate cancer trial, where the goals may include choosing one best
treatment, a set of treatments, or a pair of treatments (u; t) with u given initially and t given if u is
unsuccessful. Our approach to choosing a design parameterization in a particular clinical setting is
to �rst study the design’s operating characteristics under a range of parameterizations and clinical
scenarios. Because the multi-course structure is relatively complex compared to trials based on a

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:1011–1028



MULTIPLE TREATMENT COURSES IN CLINICAL TRIALS 1015

single binary patient outcome, we evaluate the designs by computer simulation. We �rst develop a
probability model for a k-treatment selection trial having the treatment assignment algorithm and
de�nitions of patient success and failure used in the prostate cancer trial. Subsequently, we will
describe variants of the model motivated by alternative algorithms appropriate in other clinical set-
tings, including trials that require a total of three unsuccessful courses for the patient’s therapy to
be declared a failure and, similarly, trials in which patient success is de�ned as a single successful
course.

3.1. A general probability model

A total of n= km patients are randomized fairly among the k treatments for the �rst course of
therapy. For the the ith patient, denote the total number of courses by ci and let Ti; j denote the
treatment and Yi; j the indicator of success for the jth course of chemotherapy, where j = 1; : : : ; ci
and i = 1; : : : ; n. The treatment a patient receives in any subsequent course depends on his=her
history, with Ti; j chosen on the basis of Yi; j−1 and Ti; j−1 for each j¿2. The data for the ith
patient through j courses thus consist of the treatment vector Ti; j =(Ti;1; : : : ; Ti; j) and outcome
vector Yi; j =(Yi;1; : : : ; Yi; j). In general ci varies randomly since the criteria for deciding whether
to terminate a patient’s therapy after j courses, and to then declare the patient’s therapy either a
success or a failure, are functions of Yi; j and Ti; j.
For simplicity we will denote a particular sequence of treatments and outcomes by writing Su

for success and Fu for failure with treatment u on a given course. For example, suppressing the
patient index i, a failure with u in the �rst course followed by two successes with t in the second
and third courses is denoted by FuStSt = [Y1 = 0; Y2 =Y3 = 1; T1 = u; T2 =T3 = t]. Thus, a patient
treated initially with u and subsequently with t if there is a failure with u, may achieve overall
success in three di�erent ways, SuSu; FuStSt or SuFuStSt : Similarly, this patient may have an overall
failure in four possible ways, FuFt; FuStFt ; SuFuFt or SuFuStFt : The best possible outcome for the
patient, denoted SuSu, may occur in k =4 possible ways, one for each treatment u, while each of
the other outcomes can occur in k(k−1)=12 ways, the number of ordered pairs (u; t): Thus, there
are k+6k(k− 1)=76 possible elementary outcomes. Each patient has a total of 2, 3 or 4 courses.
In general, the outcome sequences that are possible in a given trial depend upon the treatment
assignment algorithm and the de�nitions of patient success and patient failure employed by the
physicians conducting the trial. Because the statistical considerations must follow these medical
de�nitions and the particular medical structure of a multi-course therapy will di�er from trial to
trial, this structure plays an essential role in constructing a probability model.
Let Ai; j denote the set of acceptable treatments for patient i at course j. Since the entire set

of treatments is acceptable for all patients in the �rst course, Ai;1 = {1; : : : ; k} for all i, and the
probability of assignment to any treatment t is simply �i;1(t)= k−1 for all t and i. If Yi; j =0 with
treatment Ti; j at course j then Ti; j is removed from all subsequent sets of acceptable treatments for
patient i, formally Ai; r =Ai;1−

⋃ r−1
j=1 {Ti; j: Yi; j =0}. Thus, for j¿2; randomizing fairly among the

acceptable treatments at each course, the probability that patient i receives treatment t at course j
given his=her history through j − 1 courses is

�i; j(t)=Pr[Ti; j = t |Yi; j−1;Ti; j−1]= |Ai; j|−1; t ∈Ai; j (1)

with �i; j(t)= 0 if t =∈ Ai; j, where |A| denotes the cardinality of the set A. Temporarily suppress
the patient index i and denote the conditional probability of success in the jth course given the jth
treatment and the history through j−1 courses in general by �j = �j(Yj−1;Tj)=Pr [Yj =1 |Yj−1;Tj].
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Denoting �i; j = �j(Yi; j−1;Ti; j) for the ith patient, a simple conditioning argument shows that the
probability of a particular sequence of outcomes, yi; r , and treatments, ti; r , through r courses of
treatment, r6ci, may be expressed as

Li; r =Pr[Yi; r = yi; r ; Ti; r = ti; r] =
r∏
j=1
�yi; ji; j (1− �i; j)1−yi; j �i; j(ti; j) (2)

Given a parameterization of �i; j, the full likelihood is the usual product L=
∏n
i=1Li; ci .

3.2. Multinomial models

The probabilities of compound events of interest may be computed by referring to the appropriate
multinomial distribution based on the possible elementary outcomes. Patient success with treatment
t in the prostate cancer trial is the event S∗t = [StSt]∪ [

⋃
u 6=t FuStSt]∪ [

⋃
u 6=t SuFuStSt], corresponding

to patient success with t in two, three or four courses of chemotherapy. The probability of this
event is

�t =Pr(S∗t )=Pr[StSt] +
∑
u; u 6=t

{Pr[FuStSt]+Pr[SuFuStSt]} (3)

We will use estimates of the �t’s as the basis for selecting a single best treatment. An important
property of �t is that it is the sum of the probabilities of many di�erent elementary patient
outcomes that together involve all of the treatments in the trial. Thus, the value of �1 in a
trial of treatments {1; 2; 3; 4} may be quite di�erent from �1 in a trial of treatments {1; 5; 6; 7}.
This is very di�erent from the common statistical formulation wherein each patient’s outcome is
characterized as a single binary success=failure variable corresponding to a single treatment and the
data consist of k independent binomial samples each of size m. As noted in the Introduction, this
commonly used formulation is typically based on simplifying assumptions that essentially ignore
or collapse most of the multi-course structure. In that case, each �t =Pr[St] as de�ned depends
on t alone, regardless of the other treatments in the trial. While this distinction may appear to be
a drawback of the multi-course setting, we will show that the information in (Y;T) provides a
basis for treatment selection not available from the naive approach of reducing patient outcome to
a single binary variable. In particular, accounting for the multi-course structure provides a basis
for constructing desirable treatment combinations. The power of this approach, as illustrated by
our simulation results, is a probabilistic validation of the intuitive process by which physicians
actually practice.
An alternative goal is to select an ordered pair of treatments (u; t). This denotes the treatment

strategy in which u is given initially and, if u is unsuccessful, the patient is then given t. The
probability of patient success with (u; t) is �(u; t)= �u+(1− �u) �t|u, where �u denotes the proba-
bility of a patient success in the �rst two courses given that the patient was treated initially with
u, and �t|u denotes the salvage probability that the patient has two successful courses with t given
that the strategy (u; t) was used and the initial treatment with u was unsuccessful in either course
1 or 2. In the prostate cancer trial, �u=Pr[SuSu | (u; t)] and �t|u=Pr[FuStSt or SuFuStSt | (u; t) and
Fu or SuFu]:
MLEs of these probabilities may be obtained as follows. Denote the number of patients treated

initially with u by nu and let Xu= |SuSu| be the number in this group who succeed in their �rst two
courses. Similarly, denote the number of patients treated initially with u who fail either the �rst or
second course and are then treated with t by nt|u, and let Xt|u= |FuStSt ∪ SuFuStSt | be the number of

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:1011–1028



MULTIPLE TREATMENT COURSES IN CLINICAL TRIALS 1017

patient successes with t in this subgroup. Since the patients who have an initial failure with u are
randomized among the remaining treatments,

∑
t; t 6=u nt|u= nu−Xu. This yields the MLEs �̂u=Xu=nu

and �̂t|u=Xt|u=nt|u, and thus �̂(u; t). These estimators may be used as the basis for selecting a best
two-treatment strategy among the k(k − 1) ordered pairs {(u; t); 16u; t6k; u 6= t}: Recall that
the �t’s are de�ned unconditionally, in that they include the randomization probabilities in the
trial. Speci�cally, (3) may be expressed equivalently as

�t =
1
4
�t+

1
12

∑
u; u 6=t

(1− �u)�t|u (4)

and thus the above MLEs also provide estimates of the �t’s.
The clinical utility of treating patients in a randomized trial of this sort is a very important

issue. Given the choice between either randomizing a patient into the trial or treating the pa-
tient with the single best regimen, some physicians might choose the latter option. In general
this may be a mistake, since the patient would miss the chance of being salvaged if the initial
treatment were not successful. For example, consider a trial of three treatments {1; 2; 3} hav-
ing initial two-course success probabilities �1 = 0:50; �2 = 0:40; �3 = 0:30 and salvage probabil-
ities �2|1 = �2|3 = �1|2 = 0:20; �3|1 = �3|2 = �1|3 = 0:40. The overall patient success probability is∑

(u; t) [�u+(1− �u) �t|u]=6=0:58, which is larger than the probability 0:50 of initial success with
treatment 1 alone.

3.3. Regressive logistic probability models

In addition to relying on the above multinomial models, it will also be useful to use parametric
probability models de�ned in terms of the conditional probability of success at each course given
the patient’s history and current treatment, since this reects the way a physician regards the
patient’s prognosis at each course of therapy. In this section, we de�ne regressive logistic proba-
bility models [9; 10] for the possible elementary outcomes described earlier. A regressive logistic
model for a vector of dependent binary variables (Y1; : : : ; Yk) decomposes their joint probability
into

∏k
j=1 Pr[Yj |Y1 : : : Yj−1], with each conditional probability expressed as a logistic regression

function of the conditioning variables and possibly additional covariates. The likelihood (2) is a
slightly extended version of this decomposition in that it includes the treatment selection proba-
bilities as well as the patient outcome probabilities, although only the latter will involve treatment
e�ect parameters.
We develop regressive logistic models in terms of the following three probabilities characterizing

patient outcome through the �rst two courses of therapy:

�1(t) = Pr[Y1 = 1 |T1 = t] (5)

�2(1; (t; t)) = Pr[Y2 = 1 |Y1 = 1; T1 =T2 = t] (6)

�2(0; (u; t)) = Pr[Y2 = 1 |Y1 = 0; T1 = u; T2 = t] (7)

Expression (5) is the probability of success in the �rst course, while (6) and (7) are the conditional
probabilities of success in the second course given either success or failure in the �rst course. Thus,
for example, �t = �1(t)�2(1; (t; t)):
We summarize the patient’s failure history in terms of the following constructed variable. Let

Wi; j =
∑j

r=1 (1− Yi; r)=(j+1
2) denote the mean number of failures for patient i through j courses.
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We de�ne the patient’s sequence of failure history variables {Zi;1; : : : ; Zi; ci} recursively as
Zi; j =Wi; j if Yi; j =0

=Wi; j−1 if Yi; j =1 (8)

with Wi;0 = 0. Thus, Zi; j is the mean number of failures through the most recent course up to the
jth that was a failure. For the prostate cancer trial, this must be either the jth or (j− 1)th course,
since patient success is de�ned as two consecutive successful courses. That is, if Yi; j =0 then
Zi; j =Wi; j, while Yi; j =1 implies that Yi; j−1 = 0 and hence Zi; j =Wi; j−1; otherwise, the patient’s
therapy would have been completed successfully in the jth course. We use the divisor j+1

2 rather
than j in the de�nition of Wi; j as a device to obtain a slightly more re�ned numerical value of
Zi; j. In particular, for trials with a ‘three-and-out’ de�nition of patient failure this yields Zi; j = 2

3
given the history F1S2 and Zi; j = 4

5 given the history F1F2S2, whereas these would both equal 1 if
the divisor were j rather than j+1

2 .
We de�ne a regressive logistic probability model in terms of the linear component

�i; j = logit(�i; j)= �ti; j+�ti; j Yi; j−1+�ti; j Zi; j−1 (9)

characterizing the conditional probability of success on the jth course of patient i, where logit(�)=
log[�=(1− �)]. For a given t= ti; j ; the parameter �t = logit[�1(t)] characterizes the probability of
success on the initial course with t. Recall that a second consecutive success with t given a success
with t on the previous course typically is harder to achieve than an initial success with t because
the clinical de�nition for a second successful course is usually more demanding. Unfortunately, the
most common circumstance in oncology is that the second success is less likely than the �rst, as
in the treatment of prostate cancer. Formally, �2(1; (u; t))¡�1(t); which holds if and only if �t¡0.
From a clinical perspective, the larger the value of �t in the negative direction, the more di�cult it
is to achieve a second success with t following an initial success with t. The closer �t is to 0, the
higher the quality of the initial success with t. There are some settings where �2(1; (u; t))¿�1(t);
however, such as treatment of hairy cell leukaemia with 2-chloro-deoxy adenosine, where about
90 per cent of patients who respond initially are cured. The parameter �t accounts for the cost of
the patient’s previous failures, as summarized in terms of Zi; j−1. The regressive logistic model is
obtained by combining (2) and (9). For example, denoting g(�)= logit−1(�)= e�=(1+e�)

Pr[FuStSt] =
1
4
[1− g(�u)]× 1

3
g
(
�t+

2
3
�t

)
× 1g

(
�t+�t+

2
3
�t

)
(10)

An important point is that this model only makes sense medically if �t¡0 for all t, since pre-
vious failures reduce the probability of success on any given course. This will a�ect the design
of the simulations, described below, for evaluating the selection methods using this model. The
treatment selection probabilities in (10) are �1(s)= 1

4 for each s=1; 2; 3; 4 in the �rst course, then
�2(u)= 0 and �2(s)= 1

3 for each s 6= u since there is a failure with u in the �rst course, and
�3(t)= 1 since the success with t in the second course implies that t is certain to be given in the
third course. The one-to-one correspondence between {�t; �t ; �t} and the three outcome proba-
bilities {�1(t); �2(1; (t; t)); �2(0; (u; t))} for each treatment t implies that this 3k-parameter model
characterizes all outcome probabilities in terms of the probabilities of the outcomes in the �rst
two courses. As with all regressive logistic models, a practical advantage enjoyed by this paramet-
ric model is that it may be �t using any statistical software that �ts standard logistic regression
models, since the patient’s history enters the model as variables in the linear component.

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:1011–1028



MULTIPLE TREATMENT COURSES IN CLINICAL TRIALS 1019

The de�nition of �j(Yj−1;Tj) given by expression (9) ignores the particular treatments given
in the �rst j − 1 courses and thus does not account for cross-resistance between each distinct
treatment pair. A more re�ned version of the regressive logistic model that characterizes cross-
resistance more speci�cally than (9) is given as follows. Extend the de�nition of Zi; j so that, for
each treatment u, the history variable after the �rst course is

Zi; j(u) =Wi; j if Yi; j =0 and Ti; j = u

=Wi; j−1 otherwise (11)

again with Wi;0 = 0. The re�ned model is given by

logit(�i; j)= �ti; j+�ti; j Yi; j−1+
∑
u 6=ti; j

�u; ti; j Zi; j−1(u) (12)

Under this model, �u; t characterizes the cross-resistance between the current treatment t and the
treatment u given in the most recent course that was a failure. As with the simpler model (9), we
require all �u; t¡0. The probability of success in the second course with t following a failure with
u in the �rst course is �2(0; (u; t))= logit

−1(�t+2
3�u; t) for each u 6= t: This model has 2k+k(k−1)

parameters, which is 20 for the prostate cancer trial. Thus, the multinomial model and second
regressive logistic model (12) have the same number of parameters. Because they describe the
phenomenon in di�erent ways, however, they often yield di�erent �ts and thus di�erent selection
probabilities for a particular data set, as will be shown in the simulation study below. We will
refer to (9) and (12) as the �rst and second regressive logistic models, RLM1 and RLM2.

4. SIMULATION STUDY

4.1. Selecting one best treatment

In this section we summarize results from a simulation study of the prostate cancer trial. The
purpose of the simulation was to study the design’s behaviour under a range of clinical scenarios
and use this as a basis for calibrating design parameters, including sample size. Our aim here
is to illustrate both the prostate cancer trial application and how the proposed methodologies
may be applied in similar clinical settings involving multiple treatment courses. Let the subscript
[j] denote the jth smallest of a set of values indexed by {1; : : : ; k}, so that in particular [k]
indexes the maximum of the k values. We selected a single treatment t as best if it had the
largest estimated patient success probability �̂t = �̂[k]. We selected (u; t) as the best two-treatment
strategy if �̂(u; t) was largest among all k(k−1) estimates. Ties were broken by fair randomization.
Using maximum likelihood throughout, we computed parameter estimates under one or both of the
regressive logistic models and under the appropriate multinomial model (MM). We determined the
sample size empirically to ensure that, under clinical Scenario 1 described below in Section 4.2,
the probability of correctly selecting the treatment t having true �t = �[4] as best was at least a
speci�ed value PCS∗. Each case was simulated 4000 times, with a run time of about two hours per
case. All computations were done on a DEC AlphaServer 4100 5=400 running Digital UNIX 4.0D
in S-plus using a customized program for the simulations and MM �ts and the S-plus program glim
to �t the regressive logistic models. The program is available from the third author on request.
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Table I. The �rst two model-based scenarios for the simulation.

Probability Treatment (t)
1 2 3 4

Scenario 1 �1(t) 0.40 0.40 0.40 0.55
�2(1; (t; t)) 0.37 0.37 0.37 0.52
�2(0; (u; t)) 0.15 0.15 0.15 0.25
�t 0.043 0.043 0.043 0.087

Scenario 2 �1(t) 0.40 0.55 0.55 0.55
�2(1; (t; t)) 0.37 0.37 0.52 0.52
�2(0; (u; t)) 0.15 0.42 0.15 0.42
�t 0.043 0.074 0.079 0.107

4.2. Model-based scenarios

We evaluated the design under a broad range of possible clinical scenarios. For purposes of
illustration we summarize four of these. The �rst two are de�ned in terms of the regressive
logistic model (7), in Table I. Under scenario 1, treatments t=1; 2 and 3 have the identical
parameterization determined by �1(t)= 0:40; �2(1; (t; t))= 0:37; and �2(0; (u; t))= 0:15 for each
u 6= t, corresponding to a typical prostate cancer treatment. In particular, given that one of t=1; 2
or 3 is chosen as the �rst treatment, the probability of success in the �rst two cycles with t
is �1(t)�2(1; (t; t))= 0:40× 0:37=0:148, while the unconditional probability is Pr[StSt] = 1

4�1(t)�2
(1; (t; t))= 0:037. The probability of patient success with t in three courses is

Pr[FuStSt] =
1
12

∑
u; u 6=t

{[1− �1(u)]�2(0; (u; t))�3((0; 1); (u; t; t))}=0:0031

and the probability of patient success with t in four courses is

Pr[SuFuStSt] =
1
12

∑
u; u 6=t

{�1(u)[1− �2(1; (u; u))] �3((1; 0); (u; u; t))�4((1; 0; 1); (u; u; t; t))}

= 0:0028

so that the overall probability of patient success with each of treatments t=1; 2 or 3 is �t =
0:037+0:0031+0:0028=0:0429. Treatment 4 di�ers only in that �4 is larger than the common
value of �1 = �2 = �3. This is reected in the larger values of all three success probabilities for
the �rst two courses given in Table I, as well as the larger overall patient success probability
�4 = 0:087. Scenario 2 is qualitatively di�erent from scenario 1 in that each treatment provides
an overall improvement over the last in terms of �t , with the largest jumps from �1 = 0:043 to
�2 = 0:074 and �3 = 0:079 to �4 = 0:107. Thus, selecting the best treatment is statistically easier
under scenario 1, since �[4] − �[3] = 0:044 while the corresponding di�erence under scenario 2
is 0:028.
An important probability from the patient’s point of view is the overall probability of success∑4
t=1 �t , regardless of the treatment with which it occurs. This is 0:216 under scenario 1, but is

0:30 under scenario 2. Thus, scenario 2 would be more desirable from the viewpoint of a patient
entering the trial.
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4.3. Determining sample size

We evaluated the estimators of the �t’s and single treatment selection probabilities under the
RLM1, the MM, and the naive approach of only recording the patient’s response to the initial
treatment. Speci�cally, the naive approach scores a patient given t in the �rst course as a success
if Y1 =Y2 = 1 and a failure otherwise, and hence ignores any outcomes of subsequent courses
with treatments other than t if either the �rst or second course is unsuccessful. We considered
overall sample sizes n=92; 124; 156, which were determined to ensure that the probabilities of
correctly selecting treatment 4 as best under scenario 1 are, respectively, ¿0:80; 0:85, and 0:90. It is
worthwhile to compare these sample sizes to what might be obtained using a method that relies on
the approximate normality of the �̂t’s, bearing in mind that these arise from a multinomial setting
and hence are negatively correlated. The procedure NB, proposed by Bechhofer [11] and described
by Bechhofer et al. (Reference [12], Section 2:2:1), is based on independent samples from k normal
populations with means �1; : : : ; �k and common variance �2: The treatment having the largest
sample mean is selected as best, and the per-treatment sample size m ensuring that the treatment
with largest true mean �[k] will be selected with probability at least PCS∗ if �[k] − �[k−1] = �∗ is
given by m=2[� Z (1−PCS

∗)
k−1;1=2 =�∗]2, where Z (1−PCS∗)k−1;1=2 is the upper 1−PCS∗ cut-o� of the maximum of

k independent standard normals with common correlation 1=2. Some care must be taken in applying
this formula here since, as shown in expression (4), we have de�ned patient success with t so that
it includes the treatment selection probabilities. If the �t’s were used in place of the �t’s to compute
sample size, this would be analogous to using �∗=(�2 − �1)=2 rather than �2 − �1 in the usual
two-sample setting, which would incorrectly increase the computed sample size. We thus base the
computation on 4�t , which equals �t plus the equally weighted average of �t|u(1−�u) over u such
that u 6= t: Applying the above method in this way, and using the approximation �= [∑4

t=1 4�t(1−
4�t)=4 ]1=2 = 0:4043, since Z0:103;1=2 = 1:734 and 4�4−4�3 = 4(0:0873−0:0429)=0:0444, this yields a
per-treatment sample size m=32, for a total trial size of 128 patients. The large di�erence between
this value and our empirically determined total 156 may be explained by the heteroscedasticity,
negative correlation and deviation from exact normality of the �̂t’s, since each of these conditions
violates the assumptions underlying the above computation. Thus, we strongly suggest that trials
using our proposed methods be sized empirically.

4.4. Simulation results under the model-based scenarios

The simulation results under scenarios 1 and 2 are summarized in Tables II and III. Since the
�̂t’s obtained under RLM1, RLM2 and the MM and the actual �t’s were identical to three decimal
places for all scenarios, these appear in Table II as a single value labelled ‘multi-course’. The
smaller numerical values of the estimates under the naive approach are due to the fact that it is
estimating Pr[StSt] = �t=4 rather than �t: The fact that the RLM1-based and MM-based estimates of
the �t’s are the same is reected in the single treatment selection probabilities given in Table III,
which are also identical aside from sample variation. The much smaller probabilities of selecting
treatment 4 under the naive approach show what is lost by using this method for treatment selection
rather than taking full advantage of the multi-course data. This di�erence is most pronounced
under scenario 2, where the superiority of treatment 4 is due to its higher salvage probability
�2(0; (u; 4)), which is completely ignored by the naive approach. Since the naive method wastes
data and performs poorly even for the simplest goal of selecting one best treatment, we do not
consider it further.
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Table II. Estimates of patient success probabilities for trials of
92, 124 or 156 patients. Each entry is the mean from 4000
simulated trials. Standard errors, given in parentheses,

are based on the 92-patient trial.

Treatment Scenario
1 2

1 Multi-course 0.044 (0.021) 0.044 (0.020)
Naive 0.038 (0.019) 0.037 (0.018)

2 Multi-course 0.044 (0.020) 0.074 (0.027)
Naive 0.037 (0.019) 0.051 (0.022)

3 Multi-course 0.044 (0.020) 0.080 (0.025)
Naive 0.037 (0.018) 0.071 (0.023)

4 Multi-course 0.088 (0.028) 0.107 (0.030)
Naive 0.072 (0.024) 0.071 (0.023)

Total Multi-course 0.219 0.305
Naive 0.184 0.231

Table III. Probabilities of selection as best in terms of �̂t : Decisions were based on the �rst regressive logistic
model (RLM1) or multinomial model (MM) for a multi-course trial, or on the naive method using only the
�rst treatment (naive). Probabilities of correctly selecting treatment 4 are shown in bold type. Each entry

is the mean from 4000 simulated trials.

n Treatment Scenario 1 Scenario 2

RLM1 MM Naive RLM1 MM Naive

92 1 0.067 0.069 0.087 0.011 0.017 0.033
2 0.065 0.066 0.084 0.163 0.148 0.119
3 0.070 0.071 0.090 0.181 0.244 0.422
4 0.800 0.794 0.739 0.646 0.591 0.425

124 1 0.048 0.055 0.068 0.004 0.007 0.020
2 0.048 0.059 0.068 0.125 0.115 0.097
3 0.050 0.057 0.066 0.160 0.231 0.437
4 0.855 0.828 0.798 0.712 0.647 0.446

156 1 0.034 0.040 0.049 0.002 0.004 0.013
2 0.035 0.041 0.051 0.108 0.098 0.080
3 0.030 0.037 0.048 0.162 0.228 0.465
4 0.900 0.882 0.851 0.729 0.670 0.441

4.5. Selecting a best treatment pair

We now discuss the somewhat di�erent goal of selecting the best two-treatment strategy (u; t) hav-
ing the largest patient success probability �(u; t); as described in Section 3.2. The four treatments
in the prostate cancer trial yield 12 such strategies. We examined the relative merits of using
MLEs of the �(u; t)’s for achieving this goal based on the MM, RLM1 and RLM2. We simulated
these three methods under scenario 3, which is based on RLM2, and under scenario 4, which is a
non-model-based scenario that speci�es the conditional probability of success in each course for
each possible history. These two scenarios are summarized in Table IV. Scenario 3 is obtained
from scenario 1 by changing the values of �(4; t) from the common value 0:3086 to �(4; 1)=0:29,
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Table IV. Scenarios with varying cross-resistance probabilities. Scenario 3 is based on regressive logistic
model 2. Scenario 4 is non-model-based.

Treatment
t = 1 t = 2 t = 3 t = 4

Scenario 3 �t −0.4055 −0.4055 −0.4055 0.2067
�t −0.1268 −0.1268 −0.1268 −0.1268
�1; t – −1.9937 −1.9937 −1.9937
�2; t −1.9937 – −1.9937 −1.9937
�3; t −1.9937 −1.9937 – −1.9937
�4; t −4.300 −0.9120 −0.0320 –

�t 0.148 0.148 0.148 0.287
�(1; t) – 0.1723 0.1723 0.2103
�(2; t) 0.1723 – 0.1723 0.2103
�(3; t) 0.1723 0.1723 – 0.2103
�(4; t) 0.2900 0.3400 0.3900 –

Scenario 4 �t 0.402 0.560 0.375 0.315
�(1; t) – 0.5085 0.4379 0.4459
�(2; t) 0.5736 – 0.5755 0.5767
�(3; t) 0.4187 0.4907 – 0.4238
�(4; t) 0.3625 0.4406 0.3583 –

�(4; 2)=0:34, and �(4; 3)=0:39, so that the strategy (4; 3) is optimal, (4; 2) is second best, (4; 1)
is third best, and the remaining strategies have patient success probability 0:1723 or 0:2103. We
chose these numerical values of the �(4; t)’s because each is bounded below by �4 = 0:2868, where
�4; t =−∞, and above by 0:3923, where �4; t =0, with the upper bound being due to the fact that
the regressive logistic model only makes sense medically if �u; t¡0 for all (u; t). Under scenario
4, for practical purposes any of the strategies (2; 1); (2; 3), and (2; 4) are optimal since each has
patient success probability between 0:57 and 0:58, while the remaining nine strategies are clearly
inferior. Scenario 4 is useful for evaluating the robustness of the selection procedures based on
RLM1 or RLM2.
The treatment pair selection probabilities under scenario 3 are summarized in Table V. These

probabilities should be evaluated relative to the probability 1=12=0:083 of correct selection by
simply guessing in the absence of any data. The RLM2-based estimators give the largest PCS for
the best strategy (4; 3), with the PCS dropping about 0:11 to 0:13 with the RLM1-based estimators
and an additional 0:02 to 0:04 under the MM-based estimators. All three methods improve with
increasing sample size. To address the question of how the three methods perform when the two-
treatment strategies di�er only in terms of their cross-resistance, we altered scenario 3 by setting
�4 =−0:4055 so that the treatments have identical �t’s and �t’s and di�er only in the values of
�4;1; �4;2 and �4;3, as given in Table IV. This yields patient success probabilities �(4; 1)=0:1513,
�(4; 2)=0:2098 and �(4; 3)=0:2712. The di�erences between these values are about the same as
in scenario 3, but now they are due entirely to the varying cross-resistance parameters. In this
more di�cult case, for n=156 the probabilities of correctly selecting strategy (4; 3) as best for
(MM, RLM1, RLM2) are (0:280; 0:173; 0:468). As might be expected, there is a drop in PCS from
the corresponding values (0:449; 0:486; 0:607) under scenario 3, although the RLM2-based method
still performs best. It thus appears that, when the �u; t’s vary with both u and t, the regressive
logistic model that accounts for this explicitly does the best job of detecting the best two-treatment
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Table V. Selection probabilities for the 12 two-treatment strategies under scenario 3. Each ordered triple
consists of the selection probabilities using the (MM;RLM1;RLM2)-based estimators. Probabilities of

selecting the best treatment pair (4,3) are shown in bold type.

First treatment Second treatment
1 2 3 4

n = 92
1 – (0:032; 0:020; 0:022) (0:024; 0:029; 0:013) (0:057; 0:064; 0:062)
2 (0:024; 0:007; 0:017) – (0:026; 0:031; 0:014) (0:057; 0:061; 0:056)
3 (0:027; 0:006; 0:021) (0:024; 0:024; 0:017) – (0:059; 0:062; 0:060)
4 (0:058; 0:094; 0:018) (0:221; 0:238; 0:228) (0:347; 0:365; 0:472) –

n = 124
1 – (0:019; 0:010; 0:008) (0:016; 0:025; 0:009) (0:050; 0:049; 0:048)
2 (0:016; 0:003; 0:010) – (0:019; 0:025; 0:010) (0:052; 0:058; 0:052)
3 (0:019; 0:002; 0:009) (0:017; 0:014; 0:008) – (0:055; 0:057; 0:049)
4 (0:058; 0:083; 0:010) (0:239; 0:248; 0:230) (0:408; 0:427; 0:558) –

n = 156
1 – (0:016; 0:009; 0:007) (0:017; 0:017; 0:008) (0:038; 0:042; 0:034)
2 (0:012; 0:002; 0:005) – (0:013; 0:019; 0:006) (0:045; 0:044; 0:034)
3 (0:015; 0:002; 0:007) (0:011; 0:009; 0:006) – (0:042; 0:041; 0:031)
4 (0:042; 0:071; 0:005) (0:276; 0:258; 0:248) (0:449; 0:486; 0:607) –

strategy. If the di�erence between the true values of the best and second best strategies is larger,
speci�cally if scenario 3 is modi�ed so that �4;1 = �4;2 = 0:29 while �4;3 = 0:39, then the PCS
values for (MM, RLM1, RLM2) with n=156 increase to (0:476; 0:582; 0:789). Thus, each method
behaves consistently in that it is more likely to detect a best strategy that has a larger advantage
over the others.
To assess each method’s robustness, we also evaluated them under scenarios not arising from

the parametric models that are the basis for RLM1 and RLM2. Scenario 4, summarized in
Table IV, was constructed based on clinical judgement to obtain a reasonable set of success
probabilities given each possible patient history. As was the case under the model-based scenarios,
under scenario 4 all three methods give �̂t’s that agree with the actual values (�1; �2; �3; �4)=
(0:11; 0:17; 0:10; 0:09) to two decimal places. For the goal of selecting a single best treatment in
terms of the �̂t’s, for n=156 the probability of correctly selecting treatment 2 under scenario 4 is
0:95 for all three methods. This higher correct selection probability, compared to the corresponding
values under scenarios 1 and 2 given in Table III, may be attributed to the larger true di�erence
�[4] − �[3] = 0:06 under scenario 4. Table VI shows that the probabilities of selecting one of the
three best strategies (2; 1); (2; 3) or (2; 4) with n=156 under scenario 4 for (MM, RLM1, RLM2)
are (0:477; 0:766; 0:579). Thus, when there is no clear cross-resistance advantage for a speci�c pair
of treatments, the simpler regressive logistic model given by equation (9) that has a single �t for
each t appears to perform best. This also indicates that the RLM1-based procedure is reasonably
robust, since scenario 4 is not based on either model (9) or (12).
To take advantage of these results in practice, one must decide between the two regressive

logistic models. This is straightforward, since model (9) is nested within model (12); hence, one
may �rst �t both models to the data, decide between them on the basis of a likelihood ratio (LR)
test, and then use the model giving a better �t as the basis for treatment selection. Since the
regressive logistic models may be �t using standard statistical software, this is straightforward.
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Table VI. Selection probabilities for the two-treatment strategies under scenario 4. Each ordered triple con-
sists of the selection probabilities using the (MM;RLM1;RLM2)-based estimators. Probabilities of correctly

selecting an optimum strategy (2,1), (2,3) or (2,4) are shown in bold type.

First treatment Second treatment
1 2 3 4

n = 92
1 – (0:160; 0:131; 0:147) (0:038; 0:012; 0:037) (0:043; 0:010; 0:040)
2 (0:119; 0:286; 0:156) – (0:117; 0:190; 0:142) (0:131; 0:201; 0:164)
3 (0:037; 0:010; 0:043) (0:137; 0:106; 0:122) – (0:036; 0:007; 0:035)
4 (0:017; 0:004; 0:023) (0:086; 0:042; 0:077) (0:013; 0:002; 0:014) –

n = 124
1 – (0:146; 0:126; 0:140) (0:030; 0:006; 0:034) (0:042; 0:006; 0:034)
2 (0:132; 0:308; 0:178) – (0:146; 0:211; 0:175) (0:148; 0:203; 0:173)
3 (0:030; 0:007; 0:030) (0:137; 0:096; 0:116) – (0:032; 0:005; 0:032)
4 (0:010; 0:002; 0:015) (0:072; 0:028; 0:062) (0:008; 0:002; 0:009) –

n = 156
1 – (0:155; 0:116; 0:140) (0:025; 0:001; 0:022) (0:035; 0:004; 0:024)
2 (0:149; 0:344; 0:199) – (0:162; 0:210; 0:178) (0:166; 0:212; 0:202)
3 (0:020; 0:005; 0:029) (0:118; 0:086; 0:112) – (0:025; 0:002; 0:024)
4 (0:008; 0:001; 0:010) (0:067; 0:018; 0:057) (0:006; 0:000; 0:004) –

For example, a single data set simulated under scenario 3 gives a log LR statistic, equivalently
a di�erence in residual deviances, of 461:30 − 443:67=17:63 on 20 − 12=8 d.f., p=0:024,
indicating that the more complex model (12) is more appropriate. Similarly, a data set simulated
under scenario 4 gives log LR=469:02 − 460:59=8:43 on 8 d.f., p=0:39, indicating that the
simpler model (9) is more appropriate.

5. GENERALIZATIONS

To illustrate how this approach may be applied more generally, we �rst briey consider two other
versions of the play-the-winner-and-drop-the-loser algorithm. In a bladder cancer trial currently
being planned, patient failure is de�ned as three rather than two unsuccessful courses, with patient
success still de�ned as two consecutive successful courses. Thus, a patient who �rst fails with
treatment u, then succeeds and fails with w, then has two successful courses with t, has elementary
outcome FuSwFwStSt . As before, there are k possible SuSu outcomes, k(k−1) possible outcomes of
the form FuSwSw, and now k(k−1)(k−2) outcomes of the form FuFwStSt . Denoting the probability
of patient success with t in j courses following a treatment sequence u by �t; j(u), the probability
of overall patient success with t is

�t;2 +
∑
u 6=t
[�t;3(u) + �t;4(u; u)]

+
∑

u 6=t; w 6=t; u 6=w
[�t;4(u; w) + �t;5(u; u; w) + �t;5(u; w; w) + �t;6(u; u; w; w)]

MLEs may be de�ned by partitioning the patient outcome space into k +1 sets as in Section 3.2.
For evaluating multi-treatment strategies, now there are three-treatment combinations (u; w; t), with
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u given �rst, w given if u is unsuccessful, and t then given if w is unsuccessful. The probability
of patient success with this strategy is

�(u; w; t)= �u + (1− �u){�w|u + (1− �w|u)�t|u;w}

where �u and �w|u are as de�ned earlier and �t|u;w is the probability of two consecutive successful
courses with t given two earlier failures, �rst with u and then with w. Since the number of such
combinations is now rather large, a practical approach is to focus on consecutive treatment pairs
using the probability �(u; t) of patient success when an unsuccessful course with u is followed by
t. The regressive logistic models now may draw on a richer patient history, however. For example,
with k =4 treatments, model (9) gives

Pr[FuFwStSt] = 1
4 [1− g(�u)] 13

[
1− g(�w + 2

3�w)
]
1
2g

(
�t + 4

5�t
)
1g

(
�t + �t + 4

5�t
)

(13)

A much simpler application is a trial where a single successful course achieves patient success,
but patient failure still consists of two unsuccessful courses. Here the possible patient outcomes
are the k events Su and the k(k − 1) combinations of each of FuSt and FuFt . Evaluation of single-
treatment and two-treatment success probabilities may proceed as before in terms of �t and �(u; t):
Our formulation also may be extended to accommodate trials where there is a non-trivial prob-

ability that the patient may die during therapy. Let Di; j be the indicator that patient i dies during
the jth course and �j =Pr[Di; j =1]. If we now de�ne �i; j =Pr [Yi; j =1 |Yi; j−1;Ti; j;Di; j =0], so
that each outcome probability is as previously de�ned but now includes the event that the patient
survives the jth course in the conditioning event, then the likelihood (2) is extended as follows:

Li; r =
r∏
j=1

{�yi; ji; j (1− �i; j)1−yi; j �i; j(ti; j)(1− �j)}1−Di; j �Di; jj (14)

Thus, the MLE �̂j is simply the mean number of deaths in the jth course, and the other parameter
estimates are as before but based on the patients who do not die. We did not use this extended
model in designing the prostate cancer trial since, among 185 patients treated with similar regimens
at MDACC during 1993–1999, there was only one death during therapy and this was due to a
heart attack unrelated to treatment.
If the probability of death may be related either to treatment or to the individual patient’s

history, beyond the number of previous courses, then a model extension more detailed than (14)
may be required. In such settings, Yi; j may be replaced by a multinomial variable that accounts
for the more complex outcome. For example, a trinary variable may be used to record whether
the course is successful, the patient dies during that course, or the course is unsuccessful but
the patient is alive. Dealing with this case would then require extending the probability model,
constructing interim decisions rules for discontinuing treatments having unacceptably high death
rates, and formulating selection rules in terms of the probabilities of both response and death. We
are currently pursuing this line of research in the context of a multi-course chemotherapy trial in
acute leukaemia.
Patient covariates may be included by adding them to the linear term of either regressive lo-

gistic model. A practical advantage of this, aside from the usual statistical bene�ts of covariate
adjustment, is that a larger patient group may be included in a given trial.
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6. DISCUSSION

We have provided a statistical framework for clinical trials in which therapy may consist of
multiple courses, and each patient’s treatment for any course after the �rst is chosen adaptively
based on that patient’s treatments and outcomes in previous courses. Because this sort of adaptive
treatment assignment is quite common in medical settings where two or more treatments are
available, our model and design more closely reect actual clinical practice than more commonly
used statistical methods. While any statistical formulation necessarily involves data reduction, such
as characterizing the outcome in each course as a binary variable in our application, we feel
strongly that accounting for the multi-course structure provides a much more informative basis
for treatment evaluation. In particular, the notion of selecting treatment sequences rather than
individual treatments follows naturally from consideration of the multi-course structure.
Our simulation study has shown that designs with attractive operating characteristics under a

variety of clinical scenarios can be obtained with moderate sample sizes. For example, the sample
of 156 patients required to obtain a 90 per cent correct selection probability in terms of the �t’s
under scenario 1 (Table I) also provides good two-course treatment strategy selection probabilities
(Tables V and VI). Two important provisos are that: (i) until formal methods are derived, the
sample size for a given trial should be determined empirically, rather than by attempting to adapt
available methods intended for simpler settings; and (ii) the model upon which the probability
estimates and thus the treatment selection is based should itself be chosen based on the data
from the trial once it is completed. The fact that the di�erent models give di�erent �ts and
selection probabilities may be attributed to the fact that the regressive logistic models borrow
strength across the outcomes. Even when the MM and RLM1 models have the same number of
parameters, however, they describe the phenomenon in qualitatively di�erent ways, and so they
should be expected to perform di�erently for a given data set.
Our design is similar to a multi-stage cross-over trial where, in its simplest form, patients are

randomized between two treatments for a �rst stage and each patient is then ‘crossed over’ to the
other treatment in a second stage. The essential di�erence is that our design chooses all treatments
after the �rst adaptively based on the patient’s outcomes in earlier courses, whereas in a cross-over
trial of treatments u and t, all patients given u in stage 1 are given t in stage 2, and vice versa,
regardless of their stage 1 outcome. There is also a very di�erent objective. In a cross-over trial,
patients are crossed over to reduce variability in estimating individual treatment e�ects, and carry-
over e�ects between courses are viewed as a nuisance. In contrast, the conditional distribution of
Yj given (Y1; : : : ; Yj−1) is an essential feature of our model and treatment evaluation. Indeed, what
we call cross-resistance would be called a carry-over e�ect in a cross-over trial. A discussion of
what does and does not constitute a cross-over trial is given by Senn [13].
The two-stage randomization described in Section 2 is formally equivalent to simply randomizing

patients equally among the 12 two-treatment strategies. Under either approach, a given patient
receives any u in the �rst course with probability 1=4 and receives (u; t) over either three or four
courses with probability (1 − �u)=12. Since the number of patients nu − Xu who fail with u in
course 1 or 2 is random, however, the two-stage randomization in which the second treatment
assignment is balanced within this smaller subgroup for each u provides a slightly better balance.
In our conduct of the prostate cancer trial, the second randomization has not presented any practical
di�culties.
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