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SUMMARY

For many diseases, therapy involves multiple stages, with the treatment in each stage chosen adaptively
based on the patient’s current disease status and history of previous treatments and clinical outcomes.
Physicians routinely use such multi-stage treatment strategies, also called dynamic treatment regimes or
treatment policies. We present a Bayesian framework for a clinical trial comparing two-stage strategies
based on the time to overall failure, defined as either second disease worsening or discontinuation of
therapy. Each patient is randomized among a set of treatments at enrollment, and if disease worsening
occurs the patient is then re-randomized among a set of treatments excluding the treatment received
initially. The goal is to select the two-stage strategy having the largest average overall failure time. A
parametric model is formulated to account for non-constant failure time hazards, regression of the second
failure time on the patient’s first worsening time, and the complications that the failure time in either stage
may be interval censored and there may be a delay between first worsening and the start of the second
stage of therapy. Four different criteria, two Bayesian and two frequentist, for selecting a best strategy are
considered. The methods are applied to a trial comparing two-stage strategies for treating metastatic renal
cancer, and a simulation study in the context of this trial is presented. Advantages and disadvantages of
this design compared to standard methods are discussed. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

For many diseases, therapy involves multiple stages. Each stage begins with evaluation of
the patient’s disease status, and the physician chooses a treatment based on this evaluation and
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the patient’s history of previous treatments and therapeutic outcomes. Diseases for
which multi-stage treatment strategies are used include cancer, psychological disorders and
high blood pressure. In a given stage, a treatment may be a combination of drugs, radio-
therapy and surgery in oncology; drugs and an intervention such as psychotherapy for a be-
havioural disorder; or a drug plus an exercise and diet regime for treating high blood pressure.
There is a growing statistical literature on outcome-adaptive strategies for choosing a patient’s
treatments sequentially based on the patient’s history of treatments and outcomes. Such algo-
rithms have been referred to variously as ‘dynamic treatment regimes’ [1, 2], ‘clinical strate-
gies’ [3], ‘adaptive treatment strategies’ [4], ‘treatment policies’ [5] or ‘multi-course treatment
strategies’ [6, 7].

Physicians often must make treatment decisions in the face of great uncertainty. What works
for one patient may not work for another, and often it is unknown why a treatment succeeded
or failed for a given patient. Since this may be due to effects of latent variables specific to the
patient, a common multi-stage strategy is to repeat a treatment that previously achieved a desired
clinical outcome for the patient, and otherwise switch to a different treatment. This sort of ‘switch
away’ strategy reflects the idea that the most useful information for predicting whether a given
treatment will succeed for a given patient is whether that treatment has been successful previously
for that patient. For many types of cancer, therapy begins with one or more courses of a ‘frontline’
treatment. The patient’s disease is evaluated at the end of each course or according to a planned
schedule. If an evaluation shows that, compared to a pre-treatment baseline evaluation, the patient’s
cancer is stable or a partial remission has been achieved, then the frontline treatment is continued.
If the cancer has worsened compared to baseline (‘progressed’), then it is common medical practice
to switch to a different ‘salvage’ treatment. The terminology ‘frontline,’ ‘salvage’ and ‘progression’
from oncology corresponds to analogous treatments and events in many similar medical settings.
For example, if an anti-psychotic drug A given initially fails due to the patient experiencing a
psychotic episode and drug B is then given, one may identify A as the frontline treatment, B as
the salvage treatment, and the psychotic episode is analogous to progression of cancer since both
are a worsening of the disease state.

In this paper, we present a Bayesian framework for a clinical trial comparing two-stage outcome-
adaptive strategies in which each patient receives an initial treatment and is switched to a different
treatment when disease worsening is first observed. In particular, here ‘outcome-adaptive’ refers
to treatment decisions that are made within patients, rather than between patients. While such
within-patient treatment strategies may be part of a trial that also uses between-patient adaptive
decision rules, such as group-sequential tests or rules to drop within-patient strategies found to
perform poorly, the designs that we will discuss here do not include between-patient adaptive
decision rules. We consider trials in which each patient is randomized among a set of treatments
at enrollment and this treatment is continued until it fails due to disease worsening. The patient is
then re-randomized among a set of treatments that excludes the treatment (s)he received initially.
This ensures ignorability [8] since, given the stage 1 data, the stage 2 treatment assignment does
not depend on possible future outcomes. Our underlying model accounts for several practical
complications. Due to the use of scheduled examinations, unless disease worsening is discovered
by frank signs or symptoms when it occurs, the worsening time is interval censored since it is
only known that it occurred between the examination when it was discovered and the previous
examination. The first or second worsening time may be interval censored in this way. The model
also includes non-constant failure time hazards and regression of the second failure time on the
patient’s first worsening time.
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We establish a probability model in Section 2. Criteria for selecting a best two-stage strategy
are presented in Section 3. Section 4 describes numerical methods for carrying out the necessary
computations. The motivating application is presented in Section 5, including details of prior
elicitation. A simulation study evaluating the selection methods is presented in Section 6. We close
with a discussion in Section 7.

2. PROBABILITY MODELS

2.1. Two-stage strategies

For clinical trials evaluating two-stage strategies in which the second treatment must differ from
the first, the sample size allocated to each strategy may be severely limited. For example, our
application considers six two-stage strategies, so the overall sample size of 240 yields only 40
patients per strategy. Moreover, because on average therapy is discontinued without a second stage
for about 20% of patients, the expected number of patients for whom the effects of each two-stage
treatment strategy may be evaluated is only 32. Lavori and Dawson [2] note the combinatorial
explosion in the number of possible strategies in the context of a trial examining multi-stage
strategies for treating clinical depression, and they use this to motivate consideration of a limited
but meaningful set of possibilities. We take this general approach here by considering only two
stages and assuming a parametric model to borrow strength across strategies. Denoting by (A, B)

the strategy in which treatment A is given initially and B is given if A fails, we will exploit the
fact that patients given (A, B) and those given (A,C) both provide stage 1 data on treatment A.

2.2. Outcomes and likelihoods

Let T1 denote the time to first treatment failure, defined as either first disease worsening or
discontinuation of therapy. Discontinuation may be due to several reasons, including an adverse
event so severe that therapy cannot be continued, the patient choosing not to receive further therapy
(‘dropout’), the physician deciding the patient’s disease has worsened to an extent that further
therapy is futile, or death. We combine these possibilities into one event to obtain a reasonably
tractable probability model. An additional rationale is that, aside from death, any combination of
the above reasons may cause discontinuation and often it is unclear which were the actual causes.

For patients who experience a first worsening, let T2 denote the time from first worsening to
second treatment failure, defined as either second disease worsening or discontinuation. Thus,
T1 + T2 is the second failure time. Let TD denote the time of discontinuation and S j the time from
the start of the stage j treatment to the j th disease worsening, for j = 1, 2. Development of a
probability model is complicated by several factors, including the sequential disease examination
process, the fact that failures may be of two types (discontinuation or disease worsening), the
possibility of interval censoring, the possibility of a delay between first worsening and start of
the second stage of therapy, and non-constant failure time hazards. To account for all of these
complications with a reasonably tractable model we define T1 and T2 in terms of S1, S2 and
TD and model T1 and [T2 | T1]. Thus, the first failure time is T1 = min(S1, TD). Denoting by
Y1,W = I (T1<TD) = I (T1 = S1), the indicator that the first failure is disease worsening rather
than discontinuation, T2 is defined only if Y1,W = 1. In many settings there is a delay between
first worsening and the start of the second stage of therapy. To accommodate this, denoting the
length of the delay by �, we define the second failure time as T2 = min(� + S2, TD − S1). We
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Table I. The four possible cases for first treatment failure time T1, second treatment failure
time T2, and discontinuation time TD, when there is a fixed delay � between first disease

worsening time S1 and the start of stage 2 therapy.

Case Discontinuation T1 Y1,W T2 Y2,P f2

1 TD<S1 TD 0 — — —
2 S1<TD<S1 + � S1 1 TD − S1 0 f2,1(T2)
3 S1 + � < TD < S1 + � + S2 S1 1 TD − S1 0 F2,1(�) f2,2(T2 − �)

4 S1 + � + S2 < TD S1 1 � + S2 1 F2,1(�) f2,2(T2 − �)

4

3

2

1

/ / / / / / / / / / / / / / / / / / /
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S10

Figure 1. The four cases that determine the times T1 and T2 to first and second treatment failure. In each
case, the time of discontinuation is indicated by a triangle, and the period of delay between first disease

worsening at S1 and the start of the second stage of therapy at S1 + � is denoted by hashmarks.

denote the indicator that the second failure is a disease worsening rather than a discontinuation
by Y2,W = I (T1 + T2<TD). The cases for determining T1 and T2 are summarized in Table I and
Figure 1, including the possibilities of discontinuation before first worsening, during the delay
interval (S1, S1 + �) between first worsening and the start of the second stage of therapy, during
the interval (S1 + �, S1 + � + S2) after the second stage treatment has begun but before second
worsening, or after second disease worsening.

Denote the patient’s evaluation times by 0= �0<�1< · · ·<�k . If the patient experiences a first
worsening (Y1,W = 1) and T1 is observed rather than interval censored then we include T1 in the
vector of � j ’s. Thus, the � j ’s include the patient’s examination times, which typically are scheduled
but often deviate from the schedule due to patients being early, late or missing a scheduled visit, as
well as the time of a first disease worsening that was discovered due to frank signs or symptoms
rather than at a scheduled examination. Denoting the last follow-up time by T 0, we also write
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�k0 = T 0 as a notational convenience, so that �k��k0 . This allows the possibilities that the last
follow-up time was the last examination time, �k0 = �k, or that the patient was known to have
lasted to a time T 0 = �k0>�k after the last examination without a treatment failure, or that the
patient died at a time T 0>�k . Let A j = (� j−1, � j ] denote the j th interval for j = 1, . . . , k0, with
Ak0+1 =[�k0, ∞). Thus, �k<�k0 only if administrative right censoring or failure occurs after the
final examination, and by definition interval censoring of either T1 or T1 + T2 may occur in any
A j for j = 1, . . . , k or j = k0 + 1, but not between �k and �k0 .

We temporarily suppress dependence of event time distributions on their model parameters. Let
f1 be the probability density function (pdf) and F1 the survivor function (sf) of T1, and denote
the conditional pdf and sf of [T2 | T1] by f2(· | T1) and F2(· | T1). The first treatment failure is
observed at T1 if either worsening is first discovered by frank signs or symptoms or therapy is
discontinued before disease worsening. Otherwise, worsening is discovered at one of the � j ’s and
T1 is interval censored. Let Y1,0 be the indicator that the exact value of T1 is observed and let Y1, j
indicate that it is only known that T1 ∈A j for j�k, so that Y1 = (Y1,0, Y1,1, . . . , Y1,k) has at most
one entry equal to 1 and all other entries 0. Denoting interval censoring by Y1,+ = ∑k

j = 1 Y1, j , the

indicator of right censoring at T 0 is 1−Y1,0 −Y1,+. The likelihood for the first failure time data is

L1(T1,Y1) = f1(T1)
Y1,0F1(T

0)1−Y1,0−Y1,+
k∏
j=1

�
Y1, j
1, j (1)

where �1, j = Pr(T1 ∈A j ) =F1(� j−1) − F1(� j ).
To define f2(t | T1), we first deal with the complication that there may be a delay of duration �

between first disease worsening at T1 = S1 and the start of stage 2 treatment at S1+�. Let f2,1(t | T1)
be the pdf of the time T2,1 to second failure during the delay interval [S1, S1 + �] and, if a second
failure does not occur during [S1, S1+�], let f2,2(t | T1) denote the pdf of the time T2,2 from the start
of the stage 2 treatment to second failure. We then define T2 = T2,1 I (T2,1��)+(�+T2,2)I (T2,1>�).
Thus, for a patient randomized to strategy (A, B), f2,1 depends on A but not B while f2,2 depends
on (A, B). The pdf of [T2 | T1] thus takes the piecewise form

f2(t | T1) = f2,1(t | T1)I (T2,1��){F2,1(�) f2,2(t − � | T1)}I (T2,1>�) (2)

Since the second failure may be due to either a discontinuation or a second disease worsening,
T2 = TD − S1 if S1�TD�S1 + � and T2 = min{TD − S1, � + S2} if TD>S1 + �. In the simpler case
where the second stage treatment is begun without delay at S1, so that � = 0, the pdf of [T2 | T1]
reduces to f2(t | T1) = f2,2(t | T1). The forms of f2 under the various discontinuation cases are
given in the last column of Table I. Although one may include the additional elaboration that � is
considered to be random, we did not do this in our application because any variability in � was
very small and we found that including it had no substantive effect on the trial’s results.

The conditional pdf of T2 given that T1 is interval censored in A j is

f2(t2 | T1 ∈A j ) = �−1
1, j

∫ � j

� j−1

f2(t2 | t1) f1(t1) dt1 (3)

For T1��r−1<T1 + T2��r , we denote the conditional probability

�2(Ar | T1) = Pr(T1 + T2 ∈Ar | T1) =F2(�r−1 − T1 | T1) − F2(�r − T1 | T1)
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When the conditioning event is that T1 ∈A j we denote

�(I )
2 (Ar |A j ) = Pr(T1 + T2 ∈ Ar | T1 ∈A j ) = �−1

1, j

∫ � j

� j−1

�2(Ar | t1) f1(t1) dt1

for � j��r−1. Let Y2,0 indicate that the exact value of T1 +T2 is observed, and let Y2,r indicate that
T1+T2 is only known to have occurred inAr , with Y2,+=∑k

r=1 Y2,r andY2=(Y2,0, Y2,1, . . . , Y2,k).
Since Y2,1 = 0 in any case, the conditional likelihood of T2 may be expressed as follows:

L2(T2,Y2 | T1,Y1) =
[
f2(T2 | T1)Y2,0

{
k∏

r=2
�2(Ar | T1)Y2,r

}
F2(T

0 − T1 | T1)1−Y2,0−Y2,+
]Y1,0

×
k∏
j=1

[
f2(T2 |A j )

Y2,0

{
k∏

r= j+1
�(I )
2 (Ar |A j )

Y2,r

}

× �(I )
2 (Ak0+1 |A j )

1−Y2,0−Y2,+

]Y1, j

(4)

Denoting �k = Pr(Yk,W = 1) for k = 1 and 2, the overall likelihood is

L(T1,Y1, Y1,W , T2,Y2, Y2,W )

=L1(T1,Y1){�1L2(T2,Y2 | T1,Y1)�
Y2,W
2 (1 − �2)

1−Y2,W }Y1,W (1 − �1)
1−Y1,W (5)

2.3. A parametric model

Based on historical experience, it is well known that the rate of disease progression or death for
patients with metastatic renal cancer increases over time [9, 10]. Consequently, we assume that
T1 and [T2 | T1] follow Weibull distributions. For real-valued � and �, we denote by Weib(�, �)
the Weibull with log[− log{F(t | �, �)}] = e�{−� + log(t)}. This distribution has scale and shape
parameters e� and e�, median �(�, �) = e�{log(2)}exp(−�), mean �(�, �) = e� �(1+e−�) and hazard
function h(t | �, �) = exp(� − �e�)texp(�)−1. In other applications, it may be appropriate to use
other event time distributions chosen based on experience with the particular disease and type of
treatment regime being studied.

For a patient given initial treatment A, we assume first failure time distribution

[T1 | A] ∼Weib(�A, �A) (6)

Two patients who receive different strategies with the same frontline treatment, say (A, B) and
(A,C), both contribute data for estimation of the stage 1 parameters (�A, �A), as in a conventional
trial to compare only stage 1 treatments in terms of T1. Since a randomized trial of multi-stage
strategies has such a conventional trial of the stage 1 treatments embedded within it, the more
complex design adds information to what would be obtained conventionally. This point will be
discussed further in Section 7.
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Let Exp(�) denote an exponential distribution with mean e�. For a patient given strategy (A, B)

who had first progression at T1 = S1, we define the two variables

[T2,1 | (A, B), T1] ∼Exp(	A + 
A log(T1)) (7)

and

[T2,2 | (A, B), T1] ∼Weib(�A,B + 
A log(T1), �A,B) (8)

In the notation of Section 2.1, f2,1 is the exponential pdf (7) and f2,2 is the Weibull pdf (8). This
piecewise model accounts for the stage 1 treatment A effects if T2��, or the two-stage strategy
(A, B) effects if T2>�, as well as regression of T2 on the first disease worsening time. Under this
model, after adjusting for the effect of T1, the hazard of a second failure is constant during the
delay period (S1, S1 + �), but once the stage 2 therapy with B has begun at S1 + � the hazard may
be non-monotone. Many alternative models are possible. We have assumed the particular forms
(6)–(8) to obtain a reasonably tractable model having the properties described above.

Recall that �k is the probability that the kth failure is disease worsening, for k = 1, 2. The
parameter vector for strategy (A, B) is

hA,B = (�1,A, �2,A,B, �A, �A, 	A, 
A, �A,B, �A,B)

Accounting for all six strategies, the overall model parameter vector h contains two instances of
each parameter �1,a, �a, �a, 	a, and 
a in hA,B indexed by a single treatment a = A or B and six
instances each of �2,A,B , �A,B and �A,B . Thus, h has 28 entries, made up of 10 single-treatment
parameters and 18 interaction parameters.

Denote the mean overall failure time under strategy (A, B) by �A,B(h) = E{T | (A, B), h}. Since
T = T1 + Y1,WT2 and E{Y1,W | (A, B)}= �1,A,

�A,B(h) = E(T1 | A, h) + �1,AE{T2 | (A, B), h}
= E(T1 | A, h) + �1,AE[E{T2 | T1, (A, B), h}]

= �(�A, �A) + �1,A

∫
E{T2 | T1 = t, (A, B), h} f1(t | �A, �A) dt (9)

where f1(t | �A, �A) is the Weib(�A, �A) pdf of T1 for a patient receiving A in stage 1. The form of
�A,B(h) given in (9) shows that since effects of the interaction parameters appear in the conditional
mean of [T2 | T1], this must be averaged over f1(T1 | h1). Substituting the exponential distribution
(7) for f2,1 and the Weibull (8) for f2,2 into the general piecewise form for f2 given by (2), and
denoting �A(t) = exp{	A + 
A log(t)}, the conditional expectation inside the integral in (9) is

E{T2 | T1 = t, (A, B), h} = (1 − e−�/�A(t))�A(t) + e−�/�A(t) {� + t
A e�A,B�(1 + e−�A,B )} (10)

Thus, the expected time to second failure is an average of the expectations in the cases where the
patient does or does not experience a second failure during the delay period before the second
stage of therapy is begun. In the simpler case where there is no delay between first progression and
start of the stage 2 treatment (�= 0), 	A disappears from hA,B, the piecewise form (2) simplifies
to f2(t | T1) ≡ f2,2(t | T1), and (10) reduces to the Weibull mean t
Ae�A,B�(1 + �−1

A,B).
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3. CHOOSING A BEST STRATEGY

We will evaluate four criteria, two Bayesian and two frequentist, for selecting a best strategy
based on the mean overall failure times {�A,B(h) : (A, B) ∈S}. The two Bayesian methods select
the strategy having, respectively, the largest posterior mean or the largest posterior median of
�A,B(h). We denote these methods by B-Weib-Mean and B-Weib-Median. The first frequentist
method selects the strategy having the largest maximum likelihood estimator (MLE) of �A,B(h)
computed under the same likelihood (5) assumed by the Bayesian methods. We denote this method
by F-Weib-MLE. The second frequentist method also uses maximum likelihood, but is much sim-
pler than the other three methods in that it ignores the multi-course structure, interval censoring
and delay between courses by assuming that the overall failure time T for strategy (A, B) fol-
lows a simple Exp(�A,B) distribution. For this method, which we denote by F-Exp-MLE, there
are only six parameters, the �A,B’s themselves. Denoting by T 0

i the right-censored overall fail-
ure time of patient i , the F-Exp-MLE method uses the conventional exponential model MLE
�̂A,B =∑

T 0
i /

∑
I (Ti = T 0

i ) and selects the strategy for which �̂A,B is largest. The sums in �̂A,B
include all patients who received only A and discontinued, and patients who received B in stage
two following disease progression with A in stage 1. This method borrows strength across strate-
gies since the censoring times T 0

i for patients who discontinue with A before stage 2 contribute to
�̂A,B, �̂A,C and �̂A,D . Note that, although the six parameters {�2,A,B : (A, B) ∈ S} characterizing
the proportion of second failures that are disease worsenings appear in the likelihood (5), they
have no affect on �A,B and are of secondary interest.

4. NUMERICAL METHODS

To compute the posterior mean and median of �A,B(h), we used the following 3-step algo-
rithm, which first approximates L(data | h)prior(h) as a function of h with a multivariate normal
pN(h | l̃, �̃) having mean l̃ and variance–covariance matrix �̃, and then uses defensive importance
sampling to compute posterior quantities. The algorithm exploits the fact that l̃ is the mode of
pN. In carrying out the following computations, the numerical integrations required to compute
the integrals in f2(t2 | T1 ∈A j ), �(I )

2 (Ar |A j ) and the overall mean �A,B(h) were evaluated
numerically using the double exponential integration method of Takahasi and Mori [11].

Step 1: Approximate the mode of L(data | h)prior(h) as a function of h using the simplex
method of Nelder and Mead [12], and set l̃ equal to this mode. This is carried out in the log
domain, in terms of l(data, h) = log{L(data | h)prior(h)}, to avoid numerical underflows as a result
of multiplying very small values.

Step 2: Determine a quasi-random sample {h(1), . . . , h(K )} of h values near l̃ using the method
of Halton [13], which efficiently distributes the sample over the h domain. Evaluate l(data, h) and
the quadratic form Q(h, �̃, A) = (h− �̃)TA(h− �̃) at the quasi-sample points, treat l(data, h( j)) like
the j th observed outcome variable, Q(h( j), �̃, A) like the j th observed predictor and the entries
of A as parameters in a linear regression model, solve for the entries of A using conventional least
squares, and set �̃=−0.5 A−1.

Step 3: Generate a sample of size 20 000 from the posterior using the iterative
defensive importance sampling method of Owen and Zhou [14], with the normal distribution
pN(h | l̃, �̃) obtained in steps 1 and 2 used as the distribution approximating L(data | h)
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prior(h). Use this posterior sample to compute E{�A,B(h) | data} and median{�A,B(h) | data}
empirically.

For the frequentist methods, the MLE of h under each model was calculated using the same mode-
finding method as Step 1 above, applied to the likelihood L(data | h) rather than to L(data | h)
prior(h). All programming was done in C++. Computer programs are available from the second
author on request.

5. APPLICATION

5.1. A Metastatic Renal Cancer Trial

We illustrate our method with the clinical trial that motivated this research. The goal of the trial
is to compare two-stage treatment strategies for patients with metastatic renal cancer who have
not been treated previously with systemic therapy. While many new agents with potential clinical
anti-tumour activity currently are being produced at a rapidly increasing rate, the number of single
agents that can be evaluated clinically is limited. Considering the number of possible multi-stage
treatment strategies that may be of interest, the limitations are far greater. The trial described here
was motivated by the desire to compare several new targeted agents in a randomized fashion, the
belief that different agents given consecutively may have interactive effects, and the desire to
provide a sound basis for selecting two-stage strategies for later evaluation in a large-scale phase
III trial.

The strategies are based on four targeted therapies, which we denote by a, b, c, d. The four
agents were chosen based on preliminary clinical and biological data. Three of the four agents
target the vascular endothelial growth factor or its receptors, and the fourth inhibits the mTOR
signalling pathway that controls messenger RNA and cell proliferation. When designing the trial,
a and b recently had been approved by the U.S. Food and Drug Administration as frontline
treatments for metastatic renal cancer but c and d had not. Thus, it was decided to include only
strategies for which either a or b is given in stage 1. Since the second treatment of each strategy
must be different from the first, the six strategies S= {(a, b), (a, c), (a, d), (b, a), (b, c), (b, d)}
are evaluated. A total of 240 patients will be randomized fairly at enrollment between a and b.
If a patient suffers a disease progression (s)he is then re-randomized among the three agents not
given initially. At the end of the trial, the strategy having the largest posterior mean �A,B(h) will
be selected.

While it is tempting to believe that the presence of a measurable target implies a high probability
of response to an agent aimed at that target, unfortunately this usually is not so. For example,
benefit from EGFR-directed therapy in colon cancer is completely independent of EGF or EGFR
expression status. Likewise, expression data do not reliably predict benefit for EGFR therapy in
lung cancer. In the latter case, a specific mutation in a subset of the population (females of oriental
heritage), has been found to be associated with benefit from a particular agent but, even in this
case, the effect is far below the level that would guide clinical practice, and the mutation has not
been found in other contexts where EGFR inhibition is known to be biologically active, such as in
colon or bladder cancer. Other examples include the lack of association between KIT expression
and response to KIT inhibitors, and the lack of association between the androgen receptor and
response to anti-androgens in the setting of prostate cancer. Thus, limiting a trial to patients who
are ‘target positive’ would risk missing subsets of target negative patients in whom a drug, or

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:4687–4702
DOI: 10.1002/sim



4696 P. F. THALL ET AL.

in our trial a two-stage strategy, is effective. In metastatic renal cancer, there currently are no
tests that predict clinical benefit from a particular drug better than classical histologic sub-type or
clinical features. Identifying specific targets that can be measured at baseline and used as a basis
for treatment assignment is a secondary goal of the metastatic renal cancer trial, however.

5.2. Establishing priors

Although h has 28 elements, assuming that the six subvectors {hA,B : (A, B) ∈S} are exchange-
able, it is only necessary to establish priors on the eight elements of one hA,B . To ensure suit-
ably uninformative priors, large variances were used. Since historically 80 per cent of treatment
failures in metastatic renal cancer are disease progression, we assumed all �1,A’s and �2,A,B’s
were iid beta(0.80, 0.20). The remaining parameters �A, �A, 	A, 
A, �A,B, �A,B are real valued
and were assumed to follow independent normal priors. To determine the prior means, we
elicited expected values of medians and several other percentiles of T1 and T2 | T1, and ap-
plied the least-squares method of Thall and Cook [15] to solve for the means of �A, �A, 
A,

�A,B and �A,B . Setting var{e�A} = var{e�A,B } = 100 then yielded �A ∼N(−0.0516, 1.5492) and
�A,B ∼N(0.434, 1.3952), and setting var{e�A} = 100 gave �A ∼N(−0.260, 1.6132). Assuming the
probability of discontinuation during the one month delay period is 0.02, substituting the prior mean
E(
A) = 0.847 and reference value T1 = 8 months, and solving 1−exp(−1/e	A+0.847 log(8)) = 0.02
yielded E(	A) = 2.141. Equating var(
A) = var(	A) = var(�A) yielded 
A ∼N(0.847, 1.6132) and
	A ∼N(2.141, 1.6132), and setting var(�A,B) = var(�A) gave �A,B ∼N(−2.100, 1.6132). The re-
sulting prior means of the scale and shape parameters were E(e�A) = 2.83, E(e�A,B ) = 0.45,
E(e�A) = 3.15 and E(e�A,B ) = 4.09. Together, these priors yield E(�A,B) = 7.0 and var(�A,B)=167
for the mean overall failure times, so the priors on the �A,B’s were uninformative.

6. SIMULATION STUDY

6.1. Clinical scenarios

Each clinical scenario under which we will evaluate the design in the simulation study is character-
ized by a fixed value of h. To facilitate interpretation, the scenarios are specified in terms of fixed
values of �1(A) =median (T1 | A) and �2(A, B) =median(T2,2 | T1 = 8, A, B), the median time to
second failure in stage 2 with treatment B following first progression with A at the reference value
T1 = 8 months. Given �1(A) and �2(A, B), to determine �A,B we must specify fixed values of the
seven parameters �A, �A,B, �A, 	A, 
A, �A,B, and �A,B . To do this, in all the cases we fixed
�1,A = 0.80, 	A = 2.141 and 
A = 0.847, their prior means. In each case, we equated the upper
95th percentiles of the distributions �1(A) and �2(A, B) to twice their specified fixed values, and
these two additional constraints allowed us to solve for fixed values of �A, �A, �A,B, �A,B .

To construct a set of scenarios reflecting a reasonable array of possibilities, based on clinical
experience we first specified the null values �1 = 8 and �2 = 3 months for the median failure times.
In the other scenarios, �1 = 12 months is considered good frontline, and �2 = 6 months and 9
months are considered good and very good salvage. The scenarios are summarized in Table II.
In all scenarios, we assume that 80 per cent of first failures are disease progressions, hence on
average 32 patients are treated with each strategy. This underscores the importance of using the
stage 1 data to learn about �1,A, �A and �A, for A= a, b, c, d, and borrowing across strategies to
learn about the regression parameters 
a and 
b.
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Table II. The scenarios studied in the simulations.

True parameter values

Scenario Description Medians Overall means

1 Null case All �1 = 8, all �2 = 3 All �a,b = 12.5

2 a is good frontline �1(a)= 12 �a,b =�a,c =�a,d = 17.7

3 d is good salvage �2(a, d) = �2(b, d) = 6 �a,d =�b,d = 15.0
after either a or b

4 (a, d) is a good strategy �2(a, d) = 6 �a,d = 15.0

5 a is good frontline, �1(a)= 12 �a,b =�a,c = 17.7
(a, d) is a good strategy �2(a, d) = 6 �a,d = 21.3

6 (a, d) is a good strategy, �2(a, d) = 6 �a,d = 15.0
(b, d) is a very good strategy �2(b, d) = 9 �b,d = 17.5

Note: In all the scenarios, unless otherwise specified, the medians are the null values �1(A) = 8
and �2(A, B) = 3 for all treatments A and B, corresponding to �A,B = 12.5 months, and �2(A, B)
denotes median (T2,2 | T1 = 8) under (A, B). In all cases, 80 per cent of first failures are renal
cancer progressions (worsenings).

In scenario 2, since a is a good frontline treatment the three strategies (a, b), (a, c), (a, d)

are equally desirable with mean overall failure time 17.7, while (b, a), (b, c), (b, d) all have
null mean 12.5. In scenario 3, since d is a good salvage therapy after either a or b, (a, d) and
(b, d) are equally desirable with mean overall failure time 15.0, a smaller advantage over the
null value 12.5 than in scenario 2. In scenario 4 only one strategy (a, d) is superior, due to an
interaction. In scenario 5, since a is good frontline and a and d interact, (a, d) is by far the best
strategy with �a,d = 21.3, while (a, b) and (a, c) are superior but provide the smaller improvements
�a,b = �a,c = 17.7. Scenario 6 has two superior strategies, one good with �a,d = 15.0 and the other
very good with �b,d = 17.5.

6.2. Simulation methods

The trial was simulated 1000 times under each scenario, and the same data were used for all four
selection methods. To simulate (T1, T2) for strategy (A, B), we first generated T1 ∼Weib(�A, �A).

Under the piecewise model given by (7) and (8), we then generated T2,1 | T1 from the exponential
distribution (7). If T2,1�� we set T2 = T2,1, and if T2,1>� we generated T2,2 | T1 from the Weibull
distribution (8) and set T2 = � + T2,2.

6.3. Simulation results

The simulation results are summarized in Table III. Each tabled mean is the average value over
the 1000 simulated trials. The four methods perform very similarly under each of Scenarios 1–3,
although under scenario 3 the B-Weib-Median and F-Weib-MLE methods both always select
one of the two strategies (a, d) or (b, d) that include the superior salvage treatment d . The
better performance of these two methods compared to the others is more pronounced under
each of Scenarios 4–6, which show that B-Weib-Median and F-Weib-MLE perform equally well,
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Table III. Simulation results.

Strategy

Scenario Method (a, b) (a, c) (a, d) (b, a) (b, c) (b, d)

1 B-Weib-Mean 16, 11.9 17, 12.0 17, 11.9 17, 12.0 17, 12.0 17, 11.9
B-Weib-Median 16, 11.9 16, 11.9 16, 11.9 18, 11.9 18, 11.9 16, 11.9
F-Weib-MLE 17, 11.8 16, 11.8 16, 11.8 17, 11.9 17, 11.9 17, 11.9
F-Exp-MLE 18, 11.9 17, 11.8 16, 11.8 16, 11.9 17, 11.9 16, 11.9

2 B-Weib-Mean 29, 17.3 37, 17.5 34, 17.4 0, 11.9 0, 11.9 0, 11.9
B-Weib-Median 31, 17.3 37, 17.4 33, 17.3 0, 11.9 0, 11.9 0, 11.8
F-Weib-MLE 31, 17.3 35, 17.3 34, 17.3 0, 11.8 0, 11.8 0, 11.8
F-Exp-MLE 33, 16.8 34, 16.8 33, 16.8 0, 11.8 0, 11.9 0, 11.8

3 B-Weib-Mean 1, 12.0 1, 12.1 51, 14.9 1, 12.0 0, 12.1 45, 14.9
B-Weib-Median 0, 11.9 0, 12.0 52, 14.9 0, 12.0 0, 12.0 48, 14.8
F-Weib-MLE 0, 11.9 0, 11.9 52, 14.9 0, 11.9 0, 11.9 48, 14.8
F-Exp-MLE 0, 11.8 1, 11.9 55, 14.2 0, 11.9 1, 11.8 44, 14.0

4 B-Weib-Mean 1, 12.0 1, 12.0 94, 14.8 2, 11.9 2, 11.9 1, 11.9
B-Weib-Median 0, 11.9 0, 11.9 97, 14.7 1, 11.8 1, 11.8 1, 11.8
F-Weib-MLE 0, 11.9 0, 11.9 98, 14.7 1, 11.8 1, 11.8 1, 11.8
F-Exp-MLE 2, 11.9 2, 11.8 84, 14.0 5, 11.9 4, 11.8 3, 11.7

5 B-Weib-Mean 0, 17.4 1, 17.6 98, 22.1 0, 11.9 0, 12.0 0, 11.9
B-Weib-Median 0, 17.4 0, 17.5 100, 21.9 0, 11.8 0, 11.9 0, 11.8
F-Weib-MLE 0, 17.4 0, 17.4 100, 21.9 0, 11.8 0, 11.8 0, 11.8
F-Exp-MLE 5, 16.9 5, 16.9 91, 20.3 0, 11.8 0, 11.8 0, 11.8

6 B-Weib-Mean 1, 12.0 1, 12.1 5, 14.9 0, 12.1 0, 12.1 93, 18.2
B-Weib-Median 0, 11.9 0, 12.0 4, 14.8 0, 12.0 0, 12.0 96, 18.1
F-Weib-MLE 0, 11.9 0, 11.9 5, 14.8 0, 11.9 0, 11.9 95, 18.1
F-Exp-MLE 0, 11.8 0, 11.8 13, 14.1 0, 11.8 0, 11.9 87, 16.5

Note: Each pair of entries is the selection percentage and estimated mean overall failure time, �A,B . Results are
given for the Bayesian Weibull model-based methods using the posterior mean (B-Weib-Mean) and median (B-
Weib-Median) of �A,B , and for the frequentist methods based on maximum likelihood estimators of �A,B under
the Weibull model (F-Weib-MLE) and under a simple exponential model for overall failure time (F-Exp-MLE).
Entries for superior strategies are given in boldface type.

B-Weib-Mean performs well but has slightly smaller correct selection probabilities, and F-Exp-
MLE clearly has the worst performance. It thus appears that, in terms of selecting a best strategy,
it is worthwhile to account for the complexities of the data structure through an appropriately
modelled likelihood. Moreover, it is interesting that B-Weib-Median has superior performance
compared to B-Weib-Mean. The B-Weib-Median and F-Weib-MLE methods thus appear to do a
very reliable job of selecting the best strategy in the cases studied. The greater simplicity of the
frequentist method suggests that, once one has done the work of modelling the event time process
in the likelihood, there may be little practical advantage to using a Bayesian model.

In terms of estimation, under each of the scenarios 1–4 all four methods slightly underestimate the
�A,B’s. In contrast, B-Weib-Mean, B-Weib-Median and F-Weib-MLE each slightly overestimates
the means of the best strategies in scenarios 5 and 6, whereas F-Exp-MLE underestimates the
�A,B’s in all cases.

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:4687–4702
DOI: 10.1002/sim



BAYESIAN AND FREQUENTIST TWO-STAGE TREATMENT STRATEGIES 4699

Proportion of Patients Continuing to a Second Stage of Therapy
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Figure 2. Sensitivity of the selection probabilities for the good strategy (a, d) with �a,d = 15.0 months
(dotted line with triangles) and very good strategy (b, d) with �b,d = 17.5 months (solid line with circles)
under Scenario 6 to the proportion of patients whose first treatment failure is a disease worsening and

who thus receive a second stage of therapy.

The expected number of patients who receive each strategy is 40 �1,A, since �1,A is the probability
a patient first treated with A will suffer a disease progression and therefore receive a second stage
of therapy. To examine the method’s sensitivity to this probability, we repeated the simulations of
B-Weib-Mean in scenario 6 while varying the fixed values of �1,a = �1,b from 0.10 to 1.00, which
has the effect of varying the expected sample size for evaluating each interaction from 4 to 40.
The results are illustrated in Figure 2, which shows that the method’s reliability is very sensitive
to �1, with the selection percentage for the best strategy (b, d) decreasing from 98 when �1 = 1.0
to 57 when �1 = 0.10.

7. DISCUSSION

While study of frontline treatments in randomized trials is routine, salvage treatments usually are
evaluated in single-arm trials. This makes comparisons between salvage treatments problematic
due to selection bias and effects of latent variables, since treatment effects are confounded with
trial effects [16]. Comparisons between frontline treatments in terms of overall survival time
also suffer from the biasing effects of non-randomly selected salvage therapies, since a patient’s
overall survival time depends on both the frontline and salvage treatments. Randomizing among
strategies solves these problems by providing unbiased comparisons among strategies, among
frontline treatments, and among salvage therapies given to patients who received the same initial
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treatment. Additionally, a trial with randomization among salvage treatments has the substantial
logistical advantage that these treatments are all evaluated in one trial rather than in separate
single-arm trials.

Although the primary aim of our design is to select the best two-stage strategy, a conventional
randomized trial of a versus b evaluated in terms of T1 alone is embedded in the design. If the
primary goal were to perform a frequentist test of equal median first failure times, �1(a)= �1(b),
for the two frontline treatments then, assuming an accrual rate of nine patients per month and
maximum trial duration of 38.5 months, the sample size of 240 would provide the basis for a two-
sided level 0.05 test to detect a 50 per cent difference in �1, from 8 to 12 months, with power 0.80.
In this sense, one could think of the trial as a conventional phase III comparison of two frontline
treatments that also includes comparisons of six two-stage strategies. Another interpretation is
that the trial replaces six conventional single-arm phase II trials, namely two phase IIB trials of
a and b as frontline therapies and four phase IIA trials of a, b, c and d as salvage regimens.
However, randomization eliminates the bias that results from comparing treatments or two-stage
strategies based on data from such single-arm trials. Finally, the use of time-to-event outcomes
provides a much more reliable assessment of treatment effects than the binary response indicators
conventionally used in phase II trials [17].

While it may appear unethical to continue randomizing patients to an initial treatment, a, if
interim data indicate that it is inferior to initial treatment b in terms of T1, this relies on the
assumption that T1 reliably predicts overall failure time, T1 + T2. In many clinical settings this
simply is not the case. A regimen with a higher initial response rate or longer average time to first
failure may not necessarily be the best choice when considered in the larger context of the overall
therapeutic strategy. It may be the case that the treatment having the worst initial outcome, in our
setting the shortest average T1, is the first component of the best two-stage treatment strategy in
terms of overall failure time. Although this may appear counter-intuitive, it is quite plausible due
to the potential for the lack of cross-resistance between the first and second treatments, and the
preservation of physiologic reserve with stage 1 therapy. For example, aggressive alkylator-based
chemotherapy produces a high initial response rate in multiple myeloma but, in terms of overall
long-term outcome, it is clear that a much better strategy in this disease is to use less aggressive
therapies front-line, keeping chemotherapy in reserve as second line treatment. Thus, in general
it is false that if b provides a longer average time to first failure then it necessarily follows that
a strategy beginning with b rather than a will provide the greatest long-term clinical benefit. The
main advantage of our proposed methodology, that it reliably identifies two-stage strategies that are
superior in terms of overall failure time, would be lost if stage 1 treatments having comparatively
worse first failure times were terminated early.

An important issue is accounting for possible effects of covariates Z= (Z1, . . . , Zq), such
as established prognostic variables or biomarkers thought to be related to outcome. This is a
complex issue since effects of Z must be modelled within the multi-stage structure. An example
in the context of two-stage strategies with discrete outcomes is given by Thall et al. [7]. This is
particularly important when a measurable covariate indicating the presence of a putative target
is available, since it generally is not the case that an agent aimed at a given target will improve
clinical outcome in patients who are target positive. For example, benefit from EGFR-directed
therapy in colon cancer or lung cancer is completely independent of EGF or EGFR expression
status, KIT expression is not associated with response to KIT inhibitors, and presence of androgen
receptors is not associated with response to anti-androgen agents for treating prostate cancer. Thus,
including such biomarkers as covariates to assess possible effects, including biomarker-treatment
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interactions, is potentially useful. However, limiting a given treatment to patients who are positive
for biomarkers that are thought, based on preclinical data, to be related to outcome using that
treatment [18] risks doing away with the possibility of discovering that the treatment is beneficial
in target negative patients, and of course it does away with the benefits of randomization.

To incorporate Z into the Weibull model given by (6), (7), and (8), for A= a or b and B = a, b, c
or d , an extended model is given by [T1 | A,Z] ∼Weib(�A+∑q

j=1 Z j�
( j)
A , �A+∑q

j=1 Z j�
( j)
A ), and

[T2,2 | (A, B), T1,Z] ∼Weib(�A,B + ∑q
j=1 Z j�

( j)
A,B + 
A log(T1), �A,B + ∑q

j=1 Z j�
( j)
A,B). The 4q

parameters {(�( j)
A , �( j)

A ) : A= a, b, j = 1, . . . , q} characterize covariate effects on the distribution

of T1 in stage 1, and the 12q parameters {(�( j)
A,B, �( j)

A,B) : (A, B) ∈S, j = 1, . . . , q} characterize

the covariate effects on the distribution of T2 in stage 2. Thus, in addition to the 28 parameters
of the original model, there are 16q additional covariate parameters, and such a model may
easily become intractable. In practice a simpler formulation would be needed, such as assuming
homogeneous covariate effects �( j)

A = �( j) and �( j)
A = �( j) for A= a, b, and �( j)

A,B = �( j), �( j)
A,B = �( j)

for all (A, B) ∈S. An alternative approach would be to evaluate the predictive value of each Z j
separately, by comparing each 40-parameter model obtained by adding only the 12 parameters
specific to Z j to the ‘null’ 28-dimensional model with no covariates.

Our design has some similarities with the biased coin adaptive within subject (BCAWS) design
proposed by Lavori and Dawson [3]. The BCAWS design starts all patients with the same initial
treatment, and then randomly switches the patient to a salvage treatment, with the probability of
switching based on whether a cumulative symptom score quantifying the success of the initial
treatment over time exceeds a critical threshold. Lavori and Dawson apply the multiple imputation
method of Rubin and Shenker [19] to obtain an approximately unbiased estimator of the mean
final cumulative score of the optimal threshold. Our design is very different in that we randomize
patients among treatments at both stages, randomize fairly in stage 2 rather than using the stage
1 data as a basis for choosing the randomization probabilities adaptively, and focus on selection
among two-treatment strategies. An important similarity, however, is that both designs deal with
strategies that switch the patient away from a treatment that has failed.

Our design is not outcome-adaptive between patients. It is outcome-adaptive within patients in
that the second stage of therapy is begun after the stage 1 treatment has failed, and the stage 2
treatment must be different from that received in stage 1. However, as noted above the stage 2
randomization probabilities do not depend on T1, but rather the patient is randomized with equal
probability among the three treatments not given initially. Thus, patients could be randomized
fairly among the strategies at baseline to avoid logistical problems during the trial. This avoids
many of the difficulties, such as estimation bias, associated with designs that are outcome-adaptive
between treatments, such as more elaborate versions of our design that unbalance the randomization
probabilities interimly in favour of superior strategies, or that terminate inferior strategies early in
a group-sequential fashion. Such designs introduce bias into estimators since the more successful
treatments or strategies are over-represented, and are well known to be subject to potential biasing
effects of systematic drift in patient prognosis over the course of the trial [20].

An important point regarding our definition of the composite discontinuation event is that the
subevent in which the patient decides to discontinue therapy may be considered to be related to
subsequent disease worsening or death. In this case, methods for utilizing such informative dropout
information may be appropriate, such as that of Lunceford et al. [5]. Similarly, a deviation of the
� j ’s from a planned schedule also may be considered to contain information about the progression
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time distributions. Although we will not deal with these issues here, they are important areas for
future research in the context of multi-stage treatment regimes.
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