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A Bayesian phase I-II dose-finding design is presented for a clinical trial with
four coprimary outcomes that reflect the actual clinical observation process.
During a prespecified fixed follow-up period, the times to disease progression,
toxicity, and death are monitored continuously, and an ordinal disease status
variable, including progressive disease (PD) as one level, is evaluated repeatedly
by scheduled imaging. We assume a proportional hazards model with piece-
wise constant baseline hazard for each continuous variable and a longitudinal
multinomial probit model for the ordinal disease status process and include
multivariate patient frailties to induce association among the outcomes. A finite
partition of the nonfatal outcome combinations during the follow-up period is
constructed, and the utility of each set in the partition is elicited. Posterior mean
utility is used to optimize each patient's dose, subject to a safety rule excluding
doses with an unacceptably high rate of PD, severe toxicity, or death. A simu-
lation study shows that, compared with the proposed design, a simpler design
based on commonly used efficacy and toxicity outcomes obtained by combining
the four variables described above performs poorly and has substantially smaller
probabilities of correctly choosing truly optimal doses and excluding truly unsafe
doses.

K E Y W O R D S

adaptive randomization, Bayesian design, dose finding, interim response, mixed hazard, phase I-II
clinical trial

1 INTRODUCTION

We propose a Bayesian design for a phase I-II clinical trial based on an outcome vector including three time-to-event
(TTE) variables and a longitudinal discrete ordinal categorical disease severity process, motivated by a metastatic renal
cancer trial. During a fixed follow-up period, the times to progressive disease (PD), toxicity, and death are monitored.
Each patient's disease also is evaluated by imaging the tumor at successive scheduled times after the start of treatment.
At each evaluation, the possible disease severity levels are PD, stable disease (SD), partial response (PR), and complete
response (CR). Thus, PD is monitored in two ways, both as a continuous variable and a discrete variable. Because this
structure reflects how patient outcomes actually are observed in many oncology settings, the proposed design is broadly
applicable. The design is constructed by first mapping the outcome vector to a finite partition of outcome combinations,
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aT = 1 aT = 2 aT = 3

YT ≤ 42 42 < YT ≤ 84 84 < YT

aPD = 1 YPD ≤ 42 or Z1 = 0 20 30 45

aPD = 2 42 < YPD ≤ 84 or Z2 = 0 35 40 50

aPD = 3 84 < YPD and Z = (1, 1) 45 50 60

aPD = 4 84 < YPD and Z = (1, 2) 50 55 65

aPD = 5 84 < YPD and Z = (1, 3) 70 75 85

aPD = 6 84 < YPD and Z = (2, 1) 45 50 60

aPD = 7 84 < YPD and Z = (2, 2) 60 65 75

aPD = 8 84 < YPD and Z = (2, 3) 80 85 95

aPD = 9 84 < YPD and Z = (3, 1) 35 40 50

aPD = 10 84 < YPD and Z = (3, 2) 35 40 50

aPD = 11 84 < YPD and Z = (3, 3) 85 90 100

Note: Elicited utilities U(a) of the 33 possible a = (aPD, aT, aD) = (aPD, aT, 2) on the follow-up subintervals
(0, 42] and (42, 84] for patients who survive 84 days, that is, YD > 84 (equivalently, aD = 2). For any a with
aD = 1, U(a) = 0. For each Z1 and Z2, the values (0, 1, 2, 3) represent (PD, SD, PR, CR), so (aPD = 1 or 2) =
(YPD ≤ 84) and (aPD ≥ 3) = (84 < YPD).

T A B L E 1 Utilities of the full
outcome design

based on the disease evaluation schedule and follow-up interval, eliciting a numerical utility for each set in the partition,
and using posterior mean utility as a criterion for choosing doses.

The motivating trial aims to optimize the dose of the oral targeted agent sitravatinib, combined with a fixed dose of the
immunotherapeutic agent nivolumab, for treating metastatic renal cancer. Nivolumab is a programmed death 1 immune
checkpoint inhibitor with proven efficacy against clear cell renal cell carcinoma.1 Sitravatinib is an oral tyrosine kinase
inhibitor that Du et al2 have shown in preclinical cancer models to potentiate immune checkpoint blockade when com-
bined with drugs such as nivolumab, by targeting cell receptors known to contribute to an immunosuppressive tumor
microenvironment. This motivates exploring the combination of nivolumab and sitravatinib clinically in metastatic renal
cancer. Tumor imaging is done at 42 and 84 days after the start of treatment using computerized tomography (CT) scan or
magnetic resonance imaging (MRI), with disease severity categorized as {CR, PR, SD, PD} using RECIST criteria.3 Con-
tinuous monitoring of the times to toxicity and death is done over 84 days of follow-up, with PD observed continuously as
the occurrence time of signs or symptoms that prompt unscheduled imaging that confirms the signs/symptoms occurred
due to PD.

Most phase I-II trial designs are based on simplified outcomes defined by combining complex outcomes similar to
those described above. This often is done by reducing a sequence of ordinal disease status variables and event time vari-
ables to one nominal “efficacy” outcome, and similarly defining one “toxicity” outcome. Defining such simpler outcomes
allows an established design to be applied. Phase I-II designs based on binary efficacy and toxicity are given by Braun,4
Thall and Cook,5 Yin et al,6 Mandrekar et al,7 Yuan and Yin,8 Thall et al,9 and Gao and Yuan,10 and many others. An
alternative approach is to define toxicity and efficacy as TTE variables to avoid suspension of patient enrollment, as done,
for example, by Yuan and Yin,11 Thall et al,12 and Jin et al.13 Reviews of phase I-II designs have been given by Zohar and
Chevret,14 Yuan et al,15 and Yan et al.16

The convention of defining simplified outcome variables comes with a high price that may not be obvious. While the
data reduction may appear sensible to simplify phase I-II modeling and design in this way, because it destroys important
information, it may result in a design with surprisingly poor properties. Our simulations, reported below in Section 4,
include as a comparator a phase I-II design based on two outcomes, the time to toxicity and “efficacy,” defined as neither
PD nor death occurring during the 84 days follow-up period. These two outcomes correspond to Case 2 of the phase I-II
design of Jin et al,13 described in sections 2.1 and 5.4 of that paper. Undesirable consequences of using this combined
efficacy outcome are illustrated by the following two examples. We first note that both our proposed design based on the
full outcome data and the simpler design based on toxicity and the combined efficacy outcome defined above rely on
numerical utilities for outcome desirability evaluation, which we will describe in detail below, on a finite number of sets
defined in terms of the follow-up subintervals (0, 42] and (42, 84] days. These utilities are given in Table 1 for the full
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T A B L E 2 Utilities of the reduced outcome
design

aT = 1 aT = 2 aT = 3

YT ≤ 42 42 < YT ≤ 84 84 < YT

a′
PD = 1 Y ′

PD ≤ 42 10 20 35

a′
PD = 2 42 < Y ′

PD ≤ 84 25 30 45

a′
PD = 3 84 < Y ′

PD 60 80 100

Note: Utilities U′(a′) of all possible a for the reduced design, based on YT and efficacy defined
as neither PD nor death occurring by day 84.

outcome design and Table 2 for the reduced outcome design. As a first example, if a patient is alive without PD at day 84 but
experiences toxicity before day 42, then the full outcome design may assign this a utility between 45 and 85, depending on
the patient's disease statuses at days 42 and 84, while the reduced design's utility is 60 because it ignores different outcome
desirabilities implied by ordinal disease status categories, SD, PR, or CR. As a second example, if a patient dies between
days 42 and 84, the full outcome design assigns this a utility of 0, whereas the reduced outcome design assigns it a utility
of 25, 30, or 45, depending on when toxicity occurs, the same as the event of PD occurrence, although death is a clinically
much worse result than PD. An important consequence of the difference between the full outcome design and a design
that uses simplified outcomes is that, for their assumed utilities, the two designs may have different truly optimal doses.
That is, because simplifying outcomes may easily change the quantification of what is important, the simplified design
may have an “optimal” dose that is different from the optimal dose under the design using the full outcome structure.
Consequently, computer simulation results of the design based on the simplified outcomes may misleadingly indicate
that it has a high probability of choosing the “optimal” dose when consideration of the full outcomes would lead to the
conclusion that this dose is suboptimal. Simulations, described below in Section 4.2, show general consequences of this
sort of disagreement due to using a design with simplified outcomes. In most scenarios considered, our proposed design
based on the full outcome vector is much more likely to choose truly superior doses and protect patient safety, compared
with the simpler design.

We assume a Bayesian multivariate semiparametric regression model for the TTE outcomes, Y = (YPD,YT,YD), includ-
ing proportional hazards (PH) models with piecewise constant baseline hazards, and dose effects accounted for by
parametric regression. For Z, the ordinal categorical variables that represent PD, SD, PR, and CR, we assume a longitudi-
nal multivariate probit regression model, including dose and previous outcomes as covariates. Combining the models for
ordinal disease status variables, Z, and the continuous time to PD, YPD, the overall observation process for PD is modeled
by a mixture distribution that is discrete at the scheduled imaging times and continuous at the remaining times. Similar
to Lee et al,17 we introduce a random frailty vector for each patient and assume conditional independence of the out-
comes given the frailties. The patient-specific frailties account for additional variability between patients not explained
by the regression model and induce dependence between the elements of (Y ,Z). A joint model for (Y ,Z) is obtained by
marginalizing over the frailty vector. Frailty models have been used widely for multivariate failure time data in a wide
variety of settings, including competing risks18 and semicompeting risks.19 Our proposed design's sequentially adaptive
dose selection decisions for patients enrolled during the trial are based on posterior predictive mean utilities, computed
from the interim data using elicited numerical utilities of (Y ,Z) values on partition in the fixed follow-up period.

The remainder of the article is organized as follows. Section 2 presents the probability model underlying the design.
Section 3 describes utility elicitation and numerical computation and presents the design. In Section 4, a simulation study
is presented to evaluate the design's safety, ability to identify optimal doses, and robustness, and to compare it to a design
based on simplified outcomes. We close with a brief discussion in Section 5.

2 DOSE- OUTCOME MODEL

2.1 Event times and longitudinal disease status

The disease statuses scored at L scheduled times following the start of therapy are represented as ordinal categorical
variables Z = (Z1,… ,ZL), with each entry Z𝓁 of Z taking on integer values (0, 1, 2, 3) representing (PD, SD, PR, CR). If
PD occurs at any evaluation, then, by definition, SD, PR, and CR cannot occur subsequently. The times to severe toxicity
and death are denoted by YT and YD, respectively. We also let YPD denote the time of PD observed due to the occurrence
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F I G U R E 1 Illustration of the observed outcomes
Ỹ = (ỸPD,YT,YD) and Z = (Z1,Z2). Severe toxicity occurred at
day 75, while neither death nor PD occurred during the
follow-up period, with imaging conducted at two prespecified
times. The outcomes after full follow-up are Ỹ o = (84, 75, 84),
𝜹 = (0, 1, 0), and Z = (1, 2) [Colour figure can be viewed at
wileyonlinelibrary.com]

of signs or symptoms. Occurrence of PD may be observed either by the discrete time imagining process or continuously
at time YPD by signs or symptoms. Since PD may be observed at most once, the definitions of the longitudinal discrete
variables Z and the possibly right-censored continuous time variable YPD are linked. These all are potential outcomes that
may or may not be observed during follow-up, and they are semicompeting risks since death censors all other variables
at YD, but not conversely.

For interim sample size n(t) ≤ Nmax at trial time t in days, index patients in order of enrollment by i = 1,… ,n(t), with
trial entry times 0 ≤ e1 ≤ e2 ≤ … ≤ en(t). Given fixed follow-up time C, for patient i, the event j = PD, T, or D occurs at trial
time ei + Yi,j, and the three events are monitored continuously until ei + C, subject to possible right-censoring of ei + Yi,PD
and ei + Yi,T by death at ei + Yi,D. In the renal cancer trial, C = 84 days. Each patient's disease status {PD, SD, PR, CR} is
evaluated by CT or MRI tumor imaging at follow-up times ei + t⋆i,𝓁 , 𝓁 = 1,… ,L, where are t⋆i,1 < … < t⋆i,L are prespecified.
Denote the ordinal disease status outcome of patient i at time ei + t⋆i,𝓁 by Zi,𝓁 ∈ {0, 1, 2, 3}. In general, different ordinal
categories may be used to accommodate a particular clinical setting, provided that PD is included. In the renal cancer
trial, L = 2 and the interim disease evaluation times are t⋆i,1 ∈ (42±7) and t⋆i,2 ∈ (84±7), with the ±7-day deviation from
each scheduled time included to accommodate commonly seen logistical variability in the process of imaging patients'
diseases.

Let Y o
i,j denote the observation time of Yi,j or right-censoring, with binary indicator 𝛿i,j = 1 if Y o

i,j = Yi,j and 0 otherwise.
At trial time t > ei, if Yi,D > min{t − ei,C}, then Y o

i,D is the time of independent right censoring with 𝛿i,D = 0, that is,
the patient is alive at t. If Yi,D < min{t − ei,C}, then Y o

i,D = Yi,D is the observed time of death, and 𝛿i,D = 1. The nonfatal
outcomes Yi,T, Yi,PD and Zi,𝓁 ,𝓁 = 1,… ,L can be censored administratively at C or by death. For severe toxicity, if Yi,T <

min{t − ei,C,Yi,D}, then Y o
i,T = Yi,T with 𝛿i,T = 1 and otherwise Y o

i,T is the time of right-censoring (𝛿i,T = 0). Due to the
construction, Yi,PD also may be censored by the event Zi,𝓁 = 0 that PD is seen by imaging. Censoring of Zi,𝓁 is dependent
on Yi,D, Yi,PD, and the events (Z′

i,𝓁 = 0), 𝓁′ < 𝓁. That is, if Yi,PD or Yi,D < t⋆i,𝓁 , or Zi,𝓁′ = 0 for 𝓁′ < 𝓁, then Zi,𝓁 is censored. To
connect {Zi,𝓁} and Yi,PD, we define Ỹi,PD to be the time to PD observed by either the continuous variable or by the discrete
observation process. Formally,

Ỹi,PD = min{Yi,PD, t⋆i,𝓁 × 1(Zi,𝓁 = 0)} and Ỹ o
i,PD = min{C,Yi,D, Ỹi,PD}.

If Ỹi,PD = Yi,PD or Zi,𝓁 = 0 for any 𝓁, then 𝛿i,PD = 1; otherwise, let 𝛿i,PD = 0. An example of Ỹ o, 𝜹 and Z is illustrated in
Figure 1. Due to the semi-competing risk structure that death censors any nonfatal event but not conversely, the support
of Ỹ i = (Ỹi,PD,Yi,T,Yi,D) is defined on the set  = {ỹ ⊂ [0,∞)3 ∶ max(ỹPD, yT) < yD}.

2.2 Sampling and frailty models

To develop a dose-outcome model for the coprimary outcome variables Y = (YPD,YT,YD), and longitudinal Z, we first
standardize doses to have mean 0 and variance 1, denoted by {d1,… , dM}. In the renal cancer trial, given the raw
doses (60, 80, 120, 150) mg/day of oral sitravatinib, the standardized doses are (−1.05,−0.56, 0.43, 1.18), with M = 4.
For the ith patient, we denote the assigned dose by d[i] and introduce a frailty vector 𝜸i = (𝛾i,PD, 𝛾i,T, 𝛾i,D, 𝛾i,Z) ∈ R4,
where 𝛾i,Z corresponds to Zi. Assuming conditional independence of the outcomes (Y i,Zi) given 𝜸i, we specify marginal
models for Zi,𝓁 and each Yi,j given 𝜸i, and obtain a joint distribution by averaging over the distribution of 𝜸i. The
joint distribution is identifiable in  and the subset of 𝓁(ỸPD) censored by YD.20 We will present a model for 𝜸i
below.

http://wileyonlinelibrary.com
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We first construct probability models for Yi,PD and Zi = {Zi,𝓁}, which together will yield a continuous-discrete mixture
model for Ỹi,PD. For event time Yi,PD of patient i treated at dose d[i], we assume a PH model with conditional hazard
function

hPD(t|d[i], 𝜸i) = h0PD(t) exp{𝜂PD(d[i], 𝜸i)}, (1)

where h0PD(t) is an unknown baseline hazard function, and the function 𝜂PD accounts for dose effects on the hazard of
YPD. PD has two observation processes that may be censored at YD. This may result in sparse occurrences for each process
especially with a small sample size. To obtain a reliable approximation of the occurrence probabilities of PD, we assume
a simple model for 𝜂PD and use the linear function in the logarithm of the hazard given by 𝜂PD(d[i], 𝜸i) = 𝛽PDd[i] + 𝛾i,PD,
with 𝛽PD ∈ R.

For ordinal disease status Zi,𝓁 obtained from imaging at ei + t⋆i,𝓁 , 𝓁 = 1,… ,L, we assume a multinomial probit model.
For simplicity, we will present the model for L = 2 scheduled disease evaluations, as in the renal cancer trial. Recall that
there are K = 4 possible disease states {PD, SD, PR, CR} obtained from each disease imaging. Let Φ(⋅|𝜇, 𝜎2) denote the
cdf of a normal distribution with mean 𝜇 and variance 𝜎2. We introduce a vector of fixed cutoffs u = (u0,… ,uK) with
u0 < u1 < … < uK , u0 = −∞ and uK = ∞. Given Yi,PD ≥ t⋆i,𝓁 and Zi,𝓁′ ≠ 0, 𝓁′ < 𝓁, we apply the common device of using
the cutoffs u to define the observed categorical variables {Zi,𝓁}, as in Ashford and Sowden21 and Chib and Greenberg.22

Conditioning on Yi,PD ≥ t⋆i,1 (equivalently, Ỹi,PD ≥ t⋆i,1), we assume the probit model

P(Zi,1 = k|d[i], 𝜸i) = 𝜋1,k(d[i], 𝜸i)
= Φ(uk+1|𝜇1(d[i], 𝜸i), 𝜎2

𝜋) − Φ(uk|𝜇1(d[i], 𝜸i), 𝜎2
𝜋), (2)

with fixed 𝜎2
𝜋 for k = 0,… ,K − 1. The cutoffs u1,… ,uK−1 used to define the Zi,𝓁s are determined from elicited values, as

described in Supplement Section 2. Similarly, given that Yi,PD ≥ t⋆i,2 and Zi,1 > 0 (equivalently, Ỹi,2 ≥ t⋆i,2), we assume

P(Zi,2 = k|d[i],Zi,1, 𝜸i) = 𝜋2,k(d[i],Zi,1, 𝜸i)
= Φ(uk+1|𝜇2(d[i],Zi,1, 𝜸i), 𝜎2

𝜋) − Φ(uk|𝜇2(d[i],Zi,1, 𝜸i), 𝜎2
𝜋). (3)

The mean functions in Equations (2) and (3) are given by

𝜇1(d[i], 𝜸i) = 𝜉1 + 𝜙d[i] + 𝛾i,Z, and 𝜇2(d[i],Zi,1, 𝜸i) = 𝜉2 + 𝜙d[i] + 𝛼Zi,1 + 𝛾i,Z. (4)

Expression (4) includes imaging time-specific intercepts 𝜉1 and 𝜉2 for the probit distributions of the ordinal disease
status outcomes Zi,1 and Zi,2 evaluated by imaging, with dose effects accounted for by 𝜙 ∈ R. The vector 𝜶 = (𝛼1,… , 𝛼K−1)
quantifies effects of the first imaged disease status Zi,1 on the second imaged disease status Zi,2. Since imaging is performed
at t⋆i,2 only if PD has not occurred prior to t⋆i,2, 𝛼0 is not defined. This construction may be extended to settings with L > 2
disease imaging in a straightforward manner, although it may be appropriate to make a Markovian assumption by defining
𝜇l(d[i],Zi,1,… ,Zi,𝓁−1, 𝜸i) as 𝜇l(d[i],Zi,𝓁−1, 𝜸i) to control the number of model parameters.

We let 𝛼1 = 0 by using Z1 = 1 as the reference and assume 0 < 𝛼2 < 𝛼3 to reflect the fact that Zi,1 is ordinal.
Note that the dose-outcome relationship for PD in Equations (1) and (4) is not assumed to be either increasing or
decreasing in dose under the model. A multireceptor tyrosine kinase inhibitor, sitravatinib, in our motivating trial
is a targeted agent, and there is no strong biological justification to assume monotonicity in one direction rather
than another. In contrast to cytotoxic agents, targeted drugs often have different affinities for different receptors, and
increasing dose may cause antagonistic biological effects, negative feedback regulation that reduces responses, or
receptor desensitization. There also may be dose-dependent modulation of drug metabolism. An overview is given by
Lagarde et al.23 If monotonicity in either direction is known a priori, it can be reflected by restricting the domains
of 𝛽PD and 𝜙 appropriately. For mathematical convenience, we use a probit model in Equations (2) and (3). Alterna-
tive approaches such as those in Ursino and Gasparini,24 Piccolo et al,25 and Wellhagen et al26 can be considered for
defining Zi,𝓁 .

For 𝓁 = 1, 2, [Zi,𝓁 = 0] is the event that PD is observed at t⋆i,𝓁 , and 𝜋𝓁,0 is the conditional probability that PD is detected
by imaging at time t⋆i,𝓁 given Ỹi,PD ≥ t⋆i,𝓁 . This implies that 𝜋𝓁,0 is the discrete hazard of PD occurring at t = t⋆i,𝓁 . Similarly,
for k ≠ 0, 𝜋𝓁,k is the conditional probability of observing Zi,𝓁 = k given Ỹi,PD ≥ t⋆𝓁 . Consequently, the hazard function of
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(A) (B)

F I G U R E 2 An example of the survival function SPD(t) with constant hazard hPD0 is in (a). The survival functions are discontinuous at
t⋆1 = 42 and t⋆2 = 84. (b) shows an example of the hazard function h(t) with constant baseline hazard h0 and a logistic function for 𝜂. Hazard
function h = h0 exp

{
𝛽3

1+exp(𝛽1(10×d−𝛽2)

}
. (𝛽1, 𝛽2, 𝛽3) = (−1, 0,−4), (−0.5, 5,−0.5), and (0.3, 10,−5) with h0 = 0.9, 0.5 and 0.6 are used for the

black solid, red dashed, and green dash-dotted lines, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

Ỹi,PD is the continuous-discrete mixture

hPD(t|d[i],Zi, 𝜸i) =
⎧⎪⎨⎪⎩

h0PD(t) exp{𝜂PD(d[i], 𝜸i)}, t > 0, t ≠ t⋆i,𝓁 , 𝓁 = 1, 2,
𝜋1,0(d[i], 𝜸i), t = t⋆i,1,
𝜋2,0(d[i],Zi,1, 𝜸i), t = t⋆i,2,

(5)

where Zi,1 ∈ {1, 2, 3} for 𝜋2,0, and the joint survival function of Ỹi,PD and Zi is

P(Ỹi,PD > t,Zi|d[i], 𝜸i) =
⎧⎪⎨⎪⎩

S′
PD,i(t), 0 < t < t⋆i,1,

S′
PD,i(t)𝜋1,Zi,1 (d[i], 𝜸i), t⋆i,1 ≤ t < t⋆i,2,

S′
PD,i(t)𝜋1,Zi,1 (d[i], 𝜸i)𝜋2,Zi,2(d[i],Zi,1, 𝜸i), t⋆i,2 ≤ t,

(6)

where

S′
PD,i(t) = exp

{
−∫

t

0
h0PD(v) exp{𝜂PD(d[i], 𝜸i)}dv

}
.

Note that the discrete random variables Zi,1 and Zi,2 appear in the subscripts of the probabilities 𝜋1,Zi,1 (d[i], 𝜸i) and
𝜋2,Zi,2 (d[i],Zi,1, 𝜸i), and moreover, the support i,𝓁(t) of Zi,𝓁 changes with t. The mixture survival function SPD(t|d[i], 𝜸i) =
P(Ỹi,PD > t|d[i], 𝜸i) is obtained by marginalizing Equation (6) over i,𝓁(t). Using the definition of the mixture hazard, the
joint distribution of Ỹi,PD and Zi is expressed as

P(Ỹi,PD = t,Zi|d[i], 𝜸i) = hPD(t|d[i],Zi, 𝜸i) limv→t−
P(Ỹi,PD > v,Zi|d[i], 𝜸i), t > 0. (7)

An example of P(Ỹi,PD > t|d[i], 𝜸i) is illustrated in Figure 2A, which shows that the survival function is discontinuous
at t⋆𝓁 = 42 and 84 days due to the discrete components in the hazard function (5).

We formulate probability models for Yi,T and Yi,D, by assuming PH models similar to Equation (1), with unknown base-
line hazard functions h0j(t) and dose-outcome regression functions 𝜂j(d[i], 𝜸i). For j = T and D, we model the relationship
between Yi,j, d, and 𝛾i,j through the regression function

𝜂j(d[i], 𝜸i) =
𝛽j3

1 + exp{𝛽j1 × (10 × d[i] − 𝛽j2)}
+ 𝛾i,j, for j = T and D, (8)

http://wileyonlinelibrary.com
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where we assume that 𝛽j2 ∈ R and 𝛽j3 < 0. We multiply dose by 10 to stabilize computations. The factor 10 was chosen
based on preliminary simulation studies. For the dose coefficients, we assume 𝛽T1 < 0 to ensure that 𝜂T increases with
dose. Since death may be related to severe toxicity or disease progression, let 𝛽D1 ∈ R so the probability of death may
increase or decrease in dose. The regression model for YT and YD is flexible yet parsimonious. Functions of the form
given by Equation (8) commonly are used to obtain an “S” shape, with 𝛽j2 the inflection point, when allowing nonlinear
patterns of a dose effect, such as a plateau in the hazard. An example of hj with 𝜂j of the form in Equation (8) is illustrated
in Figure 2B. The survival functions for the marginal distributions of the times to toxicity and death take the usual forms
Sj(t|d[i], 𝜸i) = exp{− ∫ t

0 hj(v|d[i], 𝜸i)dv}, for j = T,D.

Let 𝜽 denote the vector of all model parameters and �̃� the vector of all fixed hyperparameters, which we will specify
below. The joint likelihood of all observable outcomes of patient i, conditional on d[i], 𝜸i, and all model parameters, is the
product

p(ỹo
i , zi, 𝜹i|d[i], 𝜸i,𝜽, �̃�) =

∏
j∈{D,T}

p(yo
i,j, 𝛿i,j|d[i], 𝜸i,𝜽, �̃�) × p(ỹo

i,PD, zi, 𝛿i,PD|d[i], 𝜸i,𝜽, �̃�)

=
∏

j∈{D,T}

{
hi,j(yo

i,j|d[i], 𝜸i)
}𝛿i,j

Sj(yo
i,j|d[i], 𝜸i)

× P(ỹo
i,PD, zi|d[i], 𝜸i)𝛿i,PD P(Ỹi,PD > ỹo

i,PD, zi|d[i], 𝜸i)1−𝛿i,PD , (9)

where ỹo
i = (yo

i,D, yo
i,T, ỹo

i,PD), zi = (zi,1, zi,2), and 𝜹i = (𝛿i,D, 𝛿i,T, 𝛿i,PD).

For the patient frailties, we assume 𝜸i|Ω iid∼ N4(0,Ω) with random Ω. The prior of Ω is given in Section 2.3. The corre-
lations among the 𝛾i,js induce dependence among the outcomes within a patient, and the joint distribution of (Ỹ i,Zi) is
obtained by integrating over 𝜸i, as

p(ỹi, zi|d[i],𝜽, �̃�) = ∫
R4

p(yi, zi|d[i], 𝜸i,𝜽, �̃�) × p(𝜸i|Ω)d𝜸i.

2.3 Prior distributions and posterior computation

We specify priors for the model parameters h0j(t), 𝜷 = (𝛽PD, 𝛽T1, 𝛽T2, 𝛽T3, 𝛽D1, 𝛽D2, 𝛽D3), 𝜙, {𝜇𝓁 ,𝓁 = 1, 2}, {𝛼k, k = 2, 3}
and Ω as follows. We assume that h0j is piecewise constant, which is a flexible function that can capture complex features
of the hazard. To construct this, we fix the number of subintervals Qj and cutoff points sj,q, q = 0,… ,Qj placed evenly
over (0,C], that is, sj,0 < sj,1 < sj,2 < … < sj,Qj with sj,0 = 0, sj,Qj = C, and sj,q+1 − sj,q = C∕Qj. For time t in subinterval Ij,q =

(sj,q−1, sj,q], we assume h0j(t) ≡ 𝜆j,q. Denoting �̃�j,q = log(𝜆j,q), we assume �̃�j,1
indep∼ N(�̃�j,0, 𝜎

2
j0) and �̃�j,q|�̃�j,q−1

indep∼ N(�̃�j,q−1, 𝜎
2
j ),

q = 2,… ,Qj with fixed �̃�j,0, 𝜎2
j0 and 𝜎2

j .27 The resulting survival functions under this assumed piecewise constant haz-
ard model given 𝜆j,q are given in Supplementary Equations (2) and (3). Due to the discrete components of h0j, the
survival functions are discontinuous at the times sj,q. Recall that we assume the relationships between dose and the
outcomes, PD, and death can be either increasing or decreasing, while assuming the hazard of toxicity increases mono-
tonically with dose. To ensure this, we assume either normal or truncated normal distributions for 𝛽 accordingly. We
assume normal distributions N(𝛽, 𝜏2) for 𝛽PD, 𝛽T2, 𝛽D1, and 𝛽D2, and let 𝛽T3 and 𝛽D3 have normal distributions trun-
cated above at 0, pj(𝛽|𝛽, 𝜏2) ∝ exp{−(𝛽 − 𝛽)2∕(2𝜏2)} for 𝛽 < 0, j = T3, and D3. We assume 𝛽T1 follows a normal
distribution truncated below at 0 so that pT1(𝛽|𝛽, 𝜏2) ∝ exp{−(𝛽 − 𝛽)2∕(2𝜏2)} for 𝛽 > 0 to impose a monotonic increas-
ing relationship of toxicity with dose. For the parameters in the model for Z𝓁 , let 𝜉𝓁|𝜉𝓁 , 𝜏2

𝜉𝓁

indep∼ N(𝜉𝓁 , 𝜏2
𝜉𝓁) for 𝓁 = 1, 2 and

𝜙|𝜙, 𝜏2
𝜙

indep∼ N
(
𝜙, 𝜏2

𝜙

)
, and normal distributions with some restricted parameter space for 𝛼k,

p(𝛼2, 𝛼3|𝜶, 𝝉2
𝛼) ∝

3∏
k=2

exp{−(𝛼k − 𝛼k)2∕(2𝜏2
𝛼k)}1(𝛼k > 𝛼k−1),

with 𝜶 = (𝛼2, 𝛼3) and 𝝉2
𝛼 = (𝜏2

𝛼,2, 𝜏
2
𝛼,3). The vector of all model parameters is 𝜽 = (�̃�, 𝜷, 𝝃, 𝜙,𝜶), where �̃� = {�̃�j,q, j =

D,T,PD, and q = 1,… ,Qj}, 𝝃 = (𝜉1, 𝜉2), and 𝜶 = (𝛼2, 𝛼3). Lastly, we define the prior of the covariance matrix for the
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frailty vectorΩ|𝜈,Ω0 ∼ inv-Wishart(𝜈,Ω0) for fixed 𝜈 > 3 and 4 × 4 positive definite hyperparameter matrixΩ0. Collecting
terms, the hyperparameter vector is �̃� = (�̃�0,𝝈

2, 𝜷, 𝝃, 𝜙,𝜶, 𝝉2, 𝜈,Ω0), where �̃�0 = {�̃�0j, j = D,T,PD}, 𝜷 = {𝛽PD,… , 𝛽D3},
𝝈2 = {𝜎2

j0, 𝜎j, j = D,T,PD}, and 𝝉2 = {𝜏2
D1,… , 𝜏2

𝛼3}.
To establish �̃�, we elicited probabilities of TTE outcomes within follow-up periods of 84 days for each of the nonfatal

events PD and T and 365 days for D, and of the disease status outcomes evaluated by imaging at 42 and 84 days of follow-up.
We then solved sets of equations under the assumed model to obtain prior means and calibrated dispersion parameters
to reflect uncertainty in prior knowledge. Details of this process are given in Supplement Section 2.

Given �̃� and interim data n(t) at trial time t, including all observed outcomes and dose assignments from previously
enrolled patients, the joint posterior of the parameters 𝜽 and patient-specific random effects 𝜸 = (𝜸1,… , 𝜸n(t)) is

p(𝜽, 𝜸|n(t), �̃�) ∝
n(t)∏
i=1

p(ỹo
i , zi, 𝜹i|d[i], 𝜸i,𝜽, �̃�) p(𝜽, 𝜸|�̃�), (10)

where p(ỹo
i , zi, 𝜹i|d[i], 𝜸i,𝜽, �̃�) is specified in Equation (9). We use Markov chain Monte Carlo (MCMC) simulation to gen-

erate posterior samples of𝜽 and 𝜸. Computational details are given in Supplement Section 1. Data sharing is not applicable
to this paper as all data in Section 4 is computer simulated. An R package “DosefindingPeriodicEff” for implementing
this methodology for simulated data is available from https://github.com/juheelee2/DosefindingPeriodicEff.

3 TRIAL DESIGN

3.1 Utility function

Our proposed design uses an elicited utility function of (Y ,Z) on a finite number of sets defined in terms of subintervals
that partition the follow-up period (0,C]. In the application, the subintervals are (0, 42] and (42, 84]. Denote aD = 1 if
YD ≤ 84 and aD = 2 if YD > 84. We first assign utility 0 to any outcome (Y ,Z) where the patient dies during follow-up,
(YD ≤ 84) = (aD = 1). Given this, we define 11 events for efficacy, identified by aPD = 1,… , 11, as combinations of YPD
and (Z1,Z2), and three events for toxicity, identified by aT = 1, 2, 3. For patients who survive the 84 day follow-up period,
the 33 elementary events a = (aPD, aT, aD) with aD = 2 determined by combining these variables are given in Table 1,
along with the elicited utility U(a) of each a. The numerical values reflect the fact that, given U(a) = 0 if YD ≤ C, having
neither toxicity nor PD during the follow-up and CR for at both 42 and 84 days is the best outcome (U = 100). Having
severe toxicity or PD earlier during the follow-up is worse, and better response evaluation scores from imaging have larger
utilities.

Given 𝜽, we evaluate probabilities of each a for each dose dm in terms of Pr(Y ,Z|dm,𝜽), and compute the mean utility.
For example,

Pr{a = (8, 2, 2)|dm,𝜽} = Pr{YPD > 84,Z = (2, 3),YT ∈ (42, 84],YD > 84|dm,𝜽}

= ∫
∞

84 ∫
84

42 ∫
∞

84 ∫
R4

p(y,Z = (2, 3)|dm, 𝜸,𝜽)p(𝜸|𝜽)d𝜸 dy.

Given 𝜽, the mean utility of assigning dose dm to a future patient is

Ū(dm,𝜽) =
11∑

aPD=1

2∑
aT=1

U(a, b, 2) Pr(a = (aPD, aT, 2)|dm,𝜽). (11)

A frequentist approach might compute a plug-in estimator, �̂� and use Ū(dm, �̂�) as a dose selection criteria. Instead,
we exploit the posterior predictive distribution, defined within the Bayesian structure. Given data n(t) at trial time t, the
posterior predictive mean utility of giving dose dm to a future patient is

u(dm|n(t)) = ∫𝜽

Ū(dm,𝜽)p(𝜽|n(t))d𝜽. (12)

https://github.com/juheelee2/DosefindingPeriodicEff
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This maps the elicited outcome utilities in Table 1 and the current data to a set of posterior mean utilities, one for
each dose. We will use this as an optimality criterion for dose assignment during the trial, and for final dose selection at
its completion. While utilities are elicited for events occurring or not during the follow-up interval, to improve reliability,
all follow-up information on (Ỹ i,Zi, 𝜹i), for i = 1,… ,n(t) is used to compute u(dm|n(t)), using the empirical mean of a
posterior sample of 𝜽 values simulated from p(𝜽|n(t), �̃�) using MCMC. Details are given in Supplementary Section 1.

3.2 Dose acceptability and adaptive randomization

While the posterior predictive mean utility in Equation (12) is used as an optimality criterion, we do not fully trust the
utility function to protect patient safety. The aim of the metastatic renal cancer trial is to find the optimal dose of sitrava-
tinib from the four levels 60, 80, 120, and 150 mg given orally each day until PD, when combined with nivolumab given
at a fixed dose of 240 mg intravenously every two weeks until PD. Since lower doses may carry a higher risk of death or
PD, and higher doses carry a higher risk of toxicity, we will restrict the set of acceptable doses by imposing the following
safety conditions.

The first safety criterion is the commonly used constraint that an untried dose may not be skipped when escalating.
Formally, if dmmax(t) is the highest dose level that has been administered by trial time t, then the search for the optimal dose
is constrained so that dm ∈ Tried(t) = {d1,… , dmin{(mmax(t)+1), M}}. In addition, we monitor safety and efficacy to avoid
giving patients undesirable doses, as follows. For each dm, we denote the probabilities of observing PD, T, or D during the
full 12-week (84-day) follow-up period by

𝜁PD(dm,𝜽) = Pr{YPD ≤ min(C,YD), or Z𝓁 = 0 for any 𝓁|dm,𝜽},
𝜁T(dm,𝜽) = Pr{YT ≤ min(C,YD)|dm,𝜽},
𝜁D(dm,𝜽) = Pr(YD ≤ C|dm,𝜽).

For each outcome j = PD,T,D, let 𝜁 j, be an elicited fixed upper limit on 𝜁j(dm,𝜽), and let p⋆ be a fixed cut-off
probability. During the trial, if

P{𝜁j(dm,𝜽) > 𝜁 j for j = PD, T, or D|n(t)} > p⋆, (13)

then dm is considered unacceptable and is not administered. We let Accp(t) denote the set of acceptable doses at time
t, which do not satisfy the criterion in Equation (13). The elicited values 𝜁D = 0.30, 𝜁T = 0.40 and 𝜁PD = 0.70 for the
renal cancer trial were provided by the clinical investigators. The limit 𝜁D = 0.30 was motivated by the fact that less
than 30% of metastatic renal cancer patients treated with single-agent nivolumab, the immunotherapy serving as the
backbone for the targeted agent sitravatinib added to the regimen, will die within 12 weeks of enrollment. If a combination
dose is associated with ≥30% of patients dying within 12 weeks, then that dose is unacceptable. The limit 𝜁T = 0.40 was
determined from the consideration that, regardless of what the efficacy outcome may be, it is unacceptable for ≥ 40% of
patients to develop dose-limiting toxicity within 12 weeks. The apparently very high limit 𝜁PD = 0.70 was set because it
is expected that the single-agent nivolumab should produce SD, PR, or CR in at least 20-30% of patients within 12 weeks,
so adding sitravatinib should not be permitted to do worse. To obtain a design with high probabilities of stopping a truly
unsafe or inefficacious dose, and of selecting the best safe and efficacious dose, we investigated cut-offs 0.75, 0.80, and
0.85 by simulation, and chose p⋆ = 0.80.

At trial time t, the safety and efficacy constraints together define a set of acceptable doses (t) = Tried(t) ∩Accp(t) ⊆
{d1,… , dM} based on interim data n(t). To produce reliable decisions, we let (t) = Tried(t) early in a trial due to
insufficient data. The dose acceptability monitoring is begun when at least 20 patients have died or been fully followed
for 84 days. We chose the value 20 based on preliminary trial simulations, in which the designs with the values 15, 20,
and 25 were evaluated. In terms of the utility-based objective function, the dose that maximizes u(dm|n(t)) yields the
best clinical outcomes. However, the reliability of the process over the entire trial can be improved by including adap-
tive randomization (AR). Thus, during trial conduct, patients are adaptively randomized among dm ∈ (t). Using AR
decreases the probability of the sequential algorithm getting stuck at a suboptimal dose, and also has the effect of treating
more patients at doses having larger utilities, on average. See, for example, Thall and Nguyen,28 Yan et al,29 or Chap-
ple and Thall.30 Specifically, we assign a patient dose dm ∈ (t) with probability proportional to u(dm|n(t)). If (t) = ∅,
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then we terminate the trial and no dose is selected, dsel = None. To determine a final optimal action when Nmax = 60 at
Tmax = eNmax + C, we identify (Tmax). If (Tmax) = ∅, then dsel = None, while if (Tmax) ≠ ∅, then the selected optimal
dose is dsel = arg maxdm∈(Tmax)u(dm|Nmax ).

4 SIMULATION STUDY

4.1 Simulation design

To evaluate the design's performance, we simulated the renal cancer trial under 10 dose-outcome scenarios. Due to the
complexity of the outcome structure, constructing simulation scenarios is not entirely straightforward. For each scenario,
we first specified marginal occurrence probabilities p̃j,dm = P(Yj < C|dm), j = PD,T,D and dm ∈ {d1,… , d4} for M = 4
doses that ignore both dependent censoring by death and the two separate PD observation processes. We also specified
the covariance matrix Ωtrue for the frailty vectors and simulated frailties 𝜸true

i
iid∼ N4(0,Ωtrue).

Given d[i], 𝜸true
i and p̃j,d[i] , we generated event times Yi,j, j = T and D, from the Weibull distribution with shape param-

eter 𝜒 true
i,j and scale parameter gi,j exp(𝛾 true

i,j ), where gi,j is the solution of the equation, p̃j,d[i] = 1 − exp(gi,j × C
𝜒 true

i,j

j ). That is,
in the simulation truth, the dose-outcome relationship was specified arbitrarily through p̃j,dm and the hazards are contin-
uous in time. In contrast, for the design, the dose-response relationship is modeled through assumed parametric function
𝜂j and discontinuous hazards. Thus, our modeling assumptions are very different from the simulation truth, so the sim-
ulation examines robustness of our design. To simulate Yi,PD and Zi, we utilized a probit model that allows an arbitrary
relationship between d and Z. We specified 𝜙true and �̃�1,k(d1), k = 0,… , 3 and 𝜎

2,true
𝜋 and found the quantiles to fix the

true cutoff values utrue
k = Φ−1

(∑k−1
k′=0 �̃�1,k′ (d1)|0, 𝜎2,true

𝜋

)
, k = 1, 2, 3, with utrue

0 = −∞ and utrue
4 = ∞, where Φ−1(⋅|a, b2) is

the quantile function of N(a, b2). We set 𝜉true
1 = −d1 × 𝜙true and specified 𝜉true

2 . We then computed

𝜋true
1,k (d[i], 𝜸

true
i ) = Φ

(
utrue

k+1|𝜉true
1 + 𝜙trued[i] + 𝛾 true

i,Z , 𝜎
2,true
𝜋

)
− Φ

(
utrue

k |𝜉true
1 + 𝜙trued[i] + 𝛾 true

i,Z , 𝜎
2,true
𝜋

)
, and

𝜋true
2,k (d[i],Zi,1, 𝜸

true
i ) = Φ

(
utrue

k+1|𝜉true
2 + 𝜙trued[i] + 𝛼true

Zi,1
+ 𝛾 true

i,Z , 𝜎
2,true
𝜋

)
− Φ

(
utrue

k |𝜉true
2 + 𝜙trued[i] + 𝛼true

Zi,1
+ 𝛾 true

i,Z , 𝜎
2,true
𝜋

)
.

We let S′,true
PD,i (t) = exp{−gi,PD exp(𝛾i,PD)}t𝜒

true
i,PD , where 𝜒 true

i,PD is specified and gi,PD is the solution of the equation

p̃PD,d[i] = 1 − exp(gi,PD × C
𝜒 true

i,PD
PD ). Finally, we simulated Yi,PD and Zi using the mixed hazard in Equation (6) with S′,true

PD,i (t),
𝜋true

1,k (d[i], 𝜸
true
i ) and 𝜋true

2,k

(
d[i],Z1, 𝜸

true
i

)
. Similar to the true model for YD and YT, the true model of YPD and Z𝓁 is more

complex than the assumed regression model for the design. In particular, the true cutoff points can be very different
from the assumed cutoff points. We assumed ei − ei−1|ei−1

iid∼ Exp(1∕30) with e0 = 0 and simulated random imaging times
t⋆i,1 = 38 + 9 × vi,1 and t⋆i,2 = 80 + 9 × vi,2 with vi,𝓁

iid∼ Be(2.4, 2.4). This lets a new patient to be treated every 30 days, on
average, and t⋆i,1 = 42.5± 3.5 days and t⋆i,2 = 84.5± 3.5 days. For Scenarios 1-9, we assumed 𝜒 true

i,j = 1.0, 0.7 and 1.3 for
j = PD,T,D, corresponding to hazard functions constant, decreasing and increasing in time, respectively, for all i. For Sce-
nario 10, we assumed nonmonotone baseline hazard functions in the truth by using a mixture of two Weibull distributions;
we let𝜒 true

i,j = 0.7 or 1.3 with equal probability for all (i, j). We also let 𝜎2,true
𝜋 = 1.5 andΩtrue

j,j = 0.1, j = 1,… , 4,Ωtrue
j,4 = −0.05

and Ωtrue
j,j′ = 0.05, j ≠ j′, j′ ≠ 4 for Ωtrue for all scenarios. Supplementary Tables 3 and 4 show the assumed values of p̃j,d,

�̃�1,0(dm), 𝜙true, 𝜉true
𝓁 , and 𝛼true

z for each of the scenarios. Supplementary Table 3 also illustrates the expected numbers
of observing any Z𝓁 = z, 𝜋•0(dm) = 𝜋true

1,z (dm, 𝜸) and 𝜋•z(dm) = 𝜋true
1,z (dm, 𝜸) +

∑3
z1=1 𝜋

true
1,z1

(dm, 𝜸)𝜋true
2,z (dm, z1, 𝜸), z ≠ 0, with

𝛾Z = 0. The scenarios assume various dose effect patterns. For example, some scenarios have patterns that increase and
then plateau, for example, p̃T in Scenario 1 and p̃j for all outcomes in Scenario 10. Also, p̃D in Scenario 9 decreases and
then increases in dose, which violates the model assumption in Equation (8). Details of the simulation design are given
in Supplementary Section 3.

The specified marginal probabilities p̃j,dm are not the same as ptrue
j,dm

= Ptrue(𝛿j = 1|dm) due to marginalization over
random frailties and the semicompeting structure. We numerically evaluate the true probabilities of observing events
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ptrue
j,dm

= Ptrue(𝛿j = 1|dm) and true expected utilities Utrue(dm) using a Monte Carlo method. Table 3 gives ptrue
j,dm

and Utrue(dm)
for each scenario, with truly unacceptable doses and optimal doses given in red and blue, respectively. Recall the elicited
thresholds 𝜁PD = 0.70, 𝜁T = 0.40, and 𝜁D = 0.30. In Scenarios 1-4, while the probability of toxicity is kept stable in doses,
the probabilities of PD and death vary and modeling death and PD accurately is critical in making correct decisions. In
Scenarios 1 and 2, all doses are safe, and the true optimal doses are doses 1 and 4 due to the changing patterns in the
probabilities of PD and death over doses, respectively. In Scenarios 3 and 4, all doses are unacceptable due to excessive
probabilities of death and PD, respectively. Scenarios 5-8 have respective truly optimal doses, 1, 2, 3, 4, with some of the
other doses unacceptable. For those scenarios, it is important to fully use ordinal response outcomes to select true optimal
doses with high accuracy. For example, in Scenario 8, 𝜋•3 increases a lot for dose 4 (0.05, 0.19, 0.38, and 0.80 for doses 1-4,
respectively), resulting in dose 4 being the optimal, despite of increasing toxicity probabilities. A total of R = 500 trials
were simulated under each scenario.

As a comparator, described briefly in Section 1, we used a design with two time to event outcomes. We defined the
time to severe toxicity in the same way, so Y ′

T = YT, but defined Y ′
PD to be the time to PD or death, ignoring whether PD

is observed from YPD or Z. Under the comparator, efficacy represents the event that the patient is alive without PD at day
84, [Y ′

PD > 84]. Thus, nonefficacy can be observed at any time up to day 84, but efficacy cannot be known to have occurred
before day 84. This sort of combination of two or more actual outcomes to define a single efficacy or toxicity variable is
very common in phase I-II designs. Based on (Y ′

PD,Y ′
T), the reduced outcome design assumes PH models with piecewise

constant baseline hazards h′
0j and logistic functions for the dose-outcome relationship 𝜂′j (d, 𝜸

′) =
𝛽′j3

1+exp(𝛽′j1×(10×d−𝛽′j2))
+ 𝛾 ′j

for j = PD,T, where 𝜸′ = (𝛾 ′PD, 𝛾
′
T), similar to Equation (1). As in the full outcome model, we let 𝛽′j2 ∈ R and 𝛽′j3 < 0 for

j = PD and T and assume dose coefficients 𝛽′PD1 ∈ R and 𝛽′T1 > 0. We also assume normal priors for 𝜷′
j , and an inverse

Wishart prior for Ω′. Fixed prior hyperparameters under the reduced outcome model were specified by using the same
elicited prior probabilities. Under the reduced outcome design, we defined Accp(t) as the set of doses that do not satisfy

P{𝜁 ′j (d,𝜽
′) > 𝜁

′
j , for j = PD or T|n(t)} > p⋆, j = PD or T,

where 𝜁 ′j (d,𝜽
′) = P(𝛿j = 1|d,𝜽′). We used 𝜁

′
PD = 0.79 and 𝜁

′
T = 0.4, which provides a comparable threshold for Y ′

PD. Util-
ities were elicited for reduced outcomes (Y ′

PD,YT), and shown in Table 2. A key difference between the full and reduced
outcome utilities is that there are 33 elementary events of a with aD = 2 in the partition based on (Y ,Z), but only nine
elementary events (a′

PD, aT) in the partition based on (Y ′
PD,YT). As in the full outcome design, posterior mean utility was

used to perform AR during the trial and to choose an optimal dose at the end. The reduced outcome design is more sophis-
ticated than most phase I-II designs, but it still does not fully utilize all observables available during the trial. Under the
reduced outcome model, patterns of the expected utilities over doses or optimal doses may be different from those in the
truth because it is poorly informed by the simplified outcomes (Y ′

PD,YT). As the examples given in Section 1 illustrate and
our simulations will show, the reduced outcome design often makes bad decisions.

In the simulations, we evaluated the full and reduced outcome designs using three criteria, punacc = Pr(declaring a
dose unacceptable), in terms of having an excessive probability of PD, severe toxicity, or death, psel = Pr(selecting a dose
as optimal) and pptrt = Pr(treating a patient in trial at a given dose). For each simulated trial r = 1,… ,R under each design
and dose-outcome scenario, we denote by dsel,r the dose selected by each design. We let 𝜅r,m = 1 if dose dm is identified
as unacceptable in simulated trial r, or 0 if not, and the number of patients treated in trial r denoted by Nr. Denoting the
indicator function of event A by I(A), for each dose dm, m = 1, 2, 3, 4, we summarized simulation results by computing
the empirical proportions across the R simulated trials,

punacc =
∑R

r=1 𝜅r,m

R
, psel =

∑R
r=1 I(dsel,r = dm)

R
, pptrt =

∑R
r=1

∑Nr
i=1 I(dr,[i] = dm)∑R

r=1 Nr
.

4.2 Simulation results

The simulation results are summarized in Table 3, including the true values ptrue
PD , ptrue

T , and ptrue
D for each dose to facilitate

evaluation. Overall, the full outcome design reliably identifies doses that are unsafe or have very low efficacy and selects
optimal acceptable doses, based on Nmax = 60. Large punacc

m is achieved for doses having large ptrue
PD , ptrue

T or ptrue
D . When
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T A B L E 3 Simulation results for the full outcome and reduced outcome designs

d1 d2 d3 d4 None d1 d2 d3 d4 None

Scenario 1 Scenario 2

ptrue
PD 0.58 0.50 0.41 0.36 0.65 0.35 0.08 0.05

ptrue
T 0.05 0.05 0.10 0.09 0.01 0.03 0.08 0.10

ptrue
D 0.01 0.15 0.20 0.25 0.01 0.05 0.10 0.15

Utrue 52.39 44.85 42.97 40.87 51.78 54.64 65.40 73.00

Full punacc 0.04 0.02 0.09 0.14 0.08 0.00 0.00 0.01

Outcome psel 0.77 0.16 0.01 0.05 0.02 0.00 0.02 0.05 0.93 0.00

pptrt 0.30 0.28 0.22 0.18 0.01 0.23 0.25 0.26 0.26 0.00

Reduced punacc 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00

Outcome psel 0.52 0.07 0.10 0.31 0.00 0.00 0.04 0.32 0.64 0.00

pptrt 0.28 0.26 0.24 0.22 0.00 0.25 0.25 0.26 0.24 0.00

Scenario 3 Scenario 4

ptrue
PD 0.47 0.49 0.50 0.55 0.91 0.91 0.88 0.83

ptrue
T 0.19 0.20 0.29 0.31 0.05 0.10 0.16 0.21

ptrue
D 0.65 0.55 0.50 0.40 0.15 0.10 0.05 0.01

Utrue 15.81 20.37 21.67 26.39 38.31 40.24 43.25 46.17

Full punacc 1.00 1.00 1.00 1.00 1.00 1.00 0.92 0.81

Outcome psel 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.18 0.81

pptrt 0.11 0.10 0.10 0.10 0.60 0.12 0.10 0.12 0.19 0.46

Reduced punacc 0.88 0.84 0.78 0.77 0.97 0.91 0.27 0.22

Outcome psel 0.06 0.05 0.03 0.17 0.68 0.00 0.01 0.11 0.66 0.21

pptrt 0.17 0.16 0.16 0.16 0.34 0.13 0.14 0.30 0.32 0.11

Scenario 5 Scenario 6

ptrue
PD 0.55 0.44 0.36 0.26 0.63 0.44 0.24 0.14

ptrue
T 0.01 0.10 0.24 0.27 0.05 0.05 0.33 0.57

ptrue
D 0.03 0.15 0.20 0.30 0.05 0.05 0.25 0.40

Utrue 52.54 45.48 42.23 37.94 54.20 62.12 54.22 45.35

Full punacc 0.01 0.01 0.15 0.26 0.01 0.00 0.52 0.87

Outcome psel 0.81 0.17 0.01 0.01 0.00 0.02 0.80 0.13 0.05 0.00

pptrt 0.32 0.30 0.22 0.16 0.00 0.35 0.37 0.19 0.09 0.00

Reduced punacc 0.00 0.00 0.04 0.07 0.01 0.00 0.34 0.69

Outcome psel 0.71 0.13 0.04 0.12 0.00 0.18 0.68 0.11 0.03 0.00

pptrt 0.3 0.27 0.23 0.21 0.00 0.33 0.33 0.21 0.13 0.00

(Continues)
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T A B L E 3 (Continued)

d1 d2 d3 d4 None d1 d2 d3 d4 None

Scenario 7 Scenario 8

ptrue
PD 0.45 0.24 0.13 0.08 0.88 0.81 0.60 0.39

ptrue
T 0.10 0.15 0.20 0.31 0.01 0.05 0.20 0.30

ptrue
D 0.05 0.10 0.15 0.35 0.10 0.10 0.05 0.05

Utrue 57.40 64.33 73.46 57.34 42.43 43.93 52.76 61.26

Full punacc 0.00 0.00 0.08 0.35 0.83 0.38 0.07 0.08

psel 0.01 0.23 0.60 0.16 0.00 0.00 0.01 0.03 0.91 0.06

pptrt 0.28 0.29 0.25 0.18 0.00 0.14 0.20 0.31 0.32 0.03

Reduced punacc 0.00 0.00 0.02 0.09 0.50 0.33 0.04 0.05

psel 0.35 0.29 0.25 0.11 0.00 0.00 0.02 0.12 0.83 0.03

pptrt 0.29 0.27 0.24 0.20 0.00 0.19 0.20 0.30 0.29 0.02

Scenario 9 Scenario 10

ptrue
PD 0.68 0.62 0.46 0.41 0.57 0.50 0.39 0.35

ptrue
T 0.05 0.05 0.28 0.28 0.01 0.10 0.27 0.27

ptrue
D 0.10 0.05 0.25 0.25 0.03 0.15 0.25 0.25

Utrue 48.37 53.78 42.76 46.04 51.90 44.38 38.09 38.85

Full punacc 0.08 0.04 0.23 0.34 0.05 0.03 0.22 0.31

psel 0.13 0.62 0.02 0.20 0.03 0.81 0.12 0.00 0.04 0.03

pptrt 0.30 0.30 0.21 0.17 0.02 0.33 0.30 0.20 0.16 0.02

Reduced punacc 0.02 0.01 0.10 0.15 0.00 0.00 0.06 0.09

psel 0.34 0.32 0.05 0.29 0.00 0.76 0.08 0.03 0.13 0.00

pptrt 0.29 0.28 0.23 0.20 0.00 0.30 0.28 0.23 0.19 0.00

Note: punacc
m = P(declare dose m unacceptable), psel

m = P(select dose m as optimal), and pptrt
m = P(treat a patient at dose m), are

illustrated for Scenarios 1-6 under the proposed design (full Outcome) and the reduced outcome design (reduced
Outcome). Values for true unacceptable and true optimal doses are given in red italic and blue bold, respectively.
𝜁PD = 0.70, 𝜁T = 0.40, and 𝜁D = 0.30 are the fixed upper limits used to define acceptability.

either of ptrue
PD or ptrue

T is clearly greater than its fixed upper threshold 𝜁 j, punacc
m is particularly high. When all doses are

unacceptable, as in Scenarios 3 and 4, punacc
m is especially high for all m, because the full outcome model borrows infor-

mation across doses through 𝜂j and thus improves reliability. The design is likely to identify unacceptable doses even in
scenarios where only some doses are unacceptable, as in Scenarios 5-8. In some scenarios, acceptable doses whose true
probabilities are close to the threshold 𝜁 j do not have very large punacc, as in the case with d4 in Scenario 7, due in part to
the small sample size. When all doses are truly unacceptable, trials are stopped or conclude no optimal dose with high
probability. In Scenarios 3 and 4, the design identifies the doses as unacceptable and terminates trials early or selects no
dose 100% and 81% of the time, respectively. For the remaining scenarios, psel

m is larger at least as 60% for the true optimal
doses. Scenarios 1, 2, 5-8, and 10 have psel

m = 77%, 93%, 81%, 80%, 60%, 91%, and 81%, respectively, showing that the full
outcome design performs very well in optimal dose selection. In addition, the proportions pptrt

m of patients treated at dm
in the trial show that the design reliably identifies unacceptable doses during a trial and assigns fewer patients to truly
unacceptable doses. For example, 60% and 46% of patients were not treated in Scenarios 3 and 4. In Scenarios 5-8, fewer
patients were treated at their unsafe doses, and more patients were treated at the truly optimal or truly safe doses. Recall
that the true probabilities of observing events during the follow-up period, ptrue

PD,dm
, ptrue

T,dm
, and ptrue

D,dm
, are arbitrarily specified

for doses, whereas the design assumes PH models with regression functions for dose-outcome relationship. Especially in
Scenario 9, the pattern of p̃D over dm is not monotone, which violates the model assumption. It thus is remarkable that,
in terms of all criteria, the proposed design performs well in the various scenarios.
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(A) (B)

F I G U R E 3 [Safety: Comparison of probabilities of identifying truly unacceptable doses] Histograms of differences in punacc
m for truly

unacceptable doses for all scenarios combined. Histograms of, A, punacc
m (N = 60,Full) − punacc

m (N = 60, Reduced) and, B,
punacc

m (N = 120, Full) − punacc
m (N = 60, Full). Larger positive values correspond to superior performance in identification of unacceptable doses

by the Full versus Reduced outcome design with N = 60 patients in (A), and of maximum sample size 120 versus 60 for the Full outcome
design in (B) [Colour figure can be viewed at wileyonlinelibrary.com]

The reduced outcome design, also summarized in Table 3, has greatly inferior performance compared to the full out-
come design in most of scenarios. In some scenarios, the reduced outcome design performs poorly because it completely
ignores periodic efficacy evaluations and does not model time to death separately. Very often, the reduced outcome design
fails to identify doses that are unacceptable due to inefficacy or death, as shown in Scenarios 3 and 4. When all doses
have unacceptably high PD probability, in Scenario 4, only 21% of the trials were stopped early by the reduced outcome
design, so it clearly is unsafe. For Scenario 8, where d1 and d2 have high probabilities of PD, the reduced outcome design
declares these doses unacceptable less often, 50% vs 82% for d1 and 34% vs 38% for d2 compared with the full outcome
designs. In Scenario 1, ptrue

D decrease significantly, while ptrue
PD does not, and dose 1 is truly optimal. Because the reduced

outcome design combines death and PD, it selects the true optimal dose only 53% of the time compared to 77% under
the full outcome model. A similar difference is seen in Scenario 2, where the truly optimal doses are selected 93% vs 64%
of the time by the full vs reduced outcome designs. Scenarios 1 and 2 show that combining the terminal event death
with the nonterminal event PD often results in much poorer dose selection. In Scenarios 5-10, the reduced outcome
design identifies the true optimal doses much less often, for example, 25% vs 60% and 83% and 91% under the reduced
vs full outcome designs in Scenarios 7 and 8, respectively. In Scenario 8, while PD occurrence decreases from 0.60 to
0.39 with doses 3 and 4, the expected occurrences of CR, 𝜋•3 increase sharply from 0.38 to 0.80 (shown in Table 3 and
Supplementary Table 3). Since the full outcome design uses the ordinal response outcomes, it correctly identifies dose 4
as optimal much more often than the reduced outcome design. Figures 3A and 4A plot the differences between the two
designs, punacc

m (Full) − punacc
m (Reduced) for safety and psel

m (Full) − psel
m (Reduced) for reliability, with positive differences

corresponding to better performance by the full outcome design.
To examine how much the full outcome design's performance is improved by using a larger sample size, we reran

the simulations using Nmax = 120. Supplementary Table 5 summarizes the results under all scenarios, showing that the
performance is greatly improved in most scenarios. Figures 3B and 4B compare the performance metrics of the designs
with Nmax = 60 and 120, in terms of the differences punacc

m (N = 120,Full) − punacc
m (N = 60, Full) and psel

m (N = 120, Full) −
psel

m (N = 60, Full). Positive differences for truly unacceptable doses and truly optimal doses indicate superior performance
with the larger sample size. Identification of truly unacceptable doses also is improved by larger N for all scenarios, except
the one case of dose 4 in Scenario 5 whose true death probability equals its threshold. Dose selection also is noticeably
improved by larger Nmax , especially in Scenarios 1, 4, and 7.

5 DISCUSSION

We have presented a phase I-II clinical trial design that monitors dose acceptability and selects the optimal dose based
on a vector of complex discrete and continuous outcomes that correspond to the way that patient outcomes actually are
monitored in many trials. The design is motivated by a trial of a targeted agent combined with immunotherapy for treating

http://wileyonlinelibrary.com
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F I G U R E 4 [Comparison of true optimal dose selection
probabilities] Plots of, A, psel

m (Full, N = 60) −
psel

m (Reduced, N = 60) and, B, psel
m (Full, N = 120) − psel

m (Full, N = 60).
Larger positive values correspond to superior performance in true
optimal dose selection by the full versus reduced outcome designs,
both with 60 patients in (A), and of maximum sample size 120
versus 60 patients for the full outcome design in (B) [Colour figure
can be viewed at wileyonlinelibrary.com]

(A)

(B)

metastatic renal cell cancer. A finite partition of the nonfatal outcome combination is defined to facilitate utility elicita-
tion. In the application, (Y ,Z) was mapped to a 33 set partition, which is sufficiently granular to represent (Y ,Z) with
little loss of information but still simple enough to allow utilities to be elicited. While the subjectivity of the utilities may
be questioned, we consider this to be a strength of our methodology, rather than a weakness. Given the partition, the util-
ities provide an explicit quantification of the desirability of the possible outcomes, that is, the basis for choosing doses.
In contrast, while all statistical methods require subjective decisions for their implementation, the underlying utilities
often are not made explicit. For example, in conventional hypothesis testing, the common practice of specifying Type I
error probability 0.05 and Type II error probability 0.20 implies that a false positive error is four times as important as a
false negative error at the specified targeted alternative parameter. This is a highly subjective assumption that may not
be appropriate in many settings. In practice, this implicit weighting of the importance of these two types of error, and the
choice of the alternative parameter value, seldom are questioned. Thus, in general, since all decision-making relies on
subjective criteria, we feel that making the actual criteria explicit is preferable to not doing so. While the design was moti-
vated by a phase I/II trial in clear cell renal cell carcinoma, the practice of evaluating solid tumors as a categorical variable
by scheduled imaging while also continuously monitoring signs/symptoms of progression that trigger unscheduled is
extremely common in oncology. A closely related emerging practice is the use of wearable devices and smartphones to
continuously monitor a patient's signs and symptoms, as well as treatment efficacy and toxicity.

Our simulations show that the design performs well under a wide variety of dose-outcome scenarios, and that incor-
porating the actual observational processes in a trial is very useful for making correct decisions with high probability, as
shown by comparison to a simplified version of the design using two reduced outcomes. Simulations of the design with a
larger sample size indicate that the performance of phase I-II designs for trials with complex outcomes can be improved
greatly by increasing Nmax.
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