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Defining and ranking effects of individual
agents based on survival times of cancer
patients treated with combination
chemotherapies
Peter F. Thall,a∗† Diane D. Liu,a Su G. Berrakb and
Johannes E. Wolffc

An important problem in oncology is comparing chemotherapy (chemo) agents in terms of their effects
on survival or progression-free survival time. When the goal is to evaluate individual agents, a difficulty
commonly encountered with observational data is that many patients receive a chemo combination including
two or more agents. Because agents given in combination may interact, quantifying the contribution of each
individual agent to the combination’s overall effect is problematic. Still, if on average combinations including
a particular agent confer longer survival, then that agent may be considered superior to agents whose
combinations confer shorter survival. Motivated by this idea, we propose a definition of individual agent
effects based on observational survival data from patients treated with many different chemo combinations.
We define an individual agent effect as the average of the effects of the chemo combinations that include the
agent. Similarly, we define the effect of each pair of agents as the average of the effects of the combinations
including the pair. Under a Bayesian regression model for survival time in which the chemo combination
effects follow a hierarchical structure, these definitions are used as a basis for estimating the posterior effects
and ranks of the individual agents, and of all pairs of agents. The methods are illustrated by a data set arising
from 224 pediatric brain tumor patients treated with over 27 different chemo combinations involving seven
chemo agents. Copyright © 2011 John Wiley & Sons, Ltd.
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1. Introduction

An important problem in oncology is comparison of chemotherapy (chemo) agents in terms of their
effects on overall survival (OS) time or progression-free survival time. A difficulty often encountered
when addressing this problem based on observational data is that while some patients are treated with a
single agent, others receive a chemo combination including two or more agents. Because agents given
in combination may interact, quantifying the contribution of each individual agent to the combination’s
overall effect is problematic. Still, if on average the combinations that include a particular agent are
associated with longer survival time compared with combinations that do not include the agent then,
intuitively, it seems likely that the common agent may be what is conferring longer survival. In this
paper, we formalize this idea in order to define, estimate, and rank the effects of individual agents
based on survival time data in which a large number of different combination chemotherapies were
used. We use a similar approach for pairs of agents given together as part of some combination.
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We are motivated by an observational data set, obtained by a literature review, on 224 patients
with choroid plexus carcinoma (CPC), the most malignant subtype of choroid plexus tumor, a family
of rare brain tumors. CPCs occur most often in children; the median age of the patients in the
data set was 1.75 years, with range 0–64. The five-year OS rate of patients with CPC is about 40
per cent [1], and surviving patients often have long-term sequelae that include reduced psychomotor
function as a result of the disease or treatment [1--3]. Because CPCs are rare, organizing a large-
scale prospective randomized clinical trial is not considered feasible. Owing to the lack of prospec-
tive clinical trials, observational data obtained from single case experiences are the only available
source of information on the clinical efficacy of various chemo combinations that have been used
to treat CPCs. Consequently, CPC patients are treated following the personal judgments and opin-
ions of attending physicians. Such expert opinion typically is generated from experience with other
types of pediatric brain tumors, which may not be necessarily a valid basis for choosing treatments
for CPC.

The literature review was conducted in several stages following specific questions building upon
each other and thereby growing the database and validating previous entries [4--6]. Pubmed was
the main data source using ‘choroid plexus, CPC, CPP, APP’ as search words. Every publication in
which individual patients could be identified was included, excluding only those in which the same
patients were described in multiple publications from the same group to avoid counting patients more
than once. Variables in the final data set included year of publication, journal and page number,
country of origin, age, gender, tumor location, histological grade, surgery result, radiation dose and
radiation field, chemotherapy drugs, and OS. For our analyses, countries were combined to form country
categories. Other variables that were originally intended to be included but could not be extracted
from the literature in a meaningful way included chemo dose schedule, quality of life, and event-free
survival time.

While many different treatments are used for CPCs, therapy typically includes some combination
of surgery, radiation, and one or more chemo agents. Slightly over half (122, 54 per cent) of the
patients in our data set received some form of chemo, consisting of either a single agent or a combi-
nation. The remaining 102 patients received surgery, radiation, or both, but no chemo. Each chemo
combination consisted of some subset of seven individual chemo agents commonly used to treat this
disease, given in Table I. The agents are denoted by CARBO=Carboplatin, CYC=Cyclophosphamide,
VP16=Etoposide, IFOS=Ifosfamide, PRC=Procarbazine, VCR=Vincristine, and CDDP=Cisplatin.
‘Unk’ denotes that it is unknown whether the agent was included in the combination. Table I shows
that a total of 23 different chemo combinations with all agents identified were given. For 7 patients, the
agents comprising the combination that they received were only partially known, and for 32 patients
it was known that they received chemo, but no agents were identified. Of the 27 combinations having
at least one agent known, 23 (85 per cent) were given to five or fewer patients. In addition to chemo
combination and indicators for radiation and surgery category, patient covariates included age, gender,
tumor location, geographic location, and publication year of the paper reporting the data. An addi-
tional complication was that covariate data were partially missing for 19 (8.5 per cent) of the 224
patients.

We define each individual agent effect as the average of the effects of the combinations in which it
was included. Similarly, we define the effect of each pair of agents given together as the average of the
effects of all combinations including the pair. To obtain estimates and rankings, we first fit a Bayesian
regression model for survival time [7] in which a hierarchical structure [8, 9] is assumed for the effects
of the chemo combinations. The fact that this model borrows strength across the chemo combinations
is particularly useful for this data set because most of the chemo combinations were given to very few
patients. The posteriors of the chemo combination effects thus provide posteriors for the ranks of the
individual agent effects, and of the agent pair effects. We also assume a hierarchical structure for the
country category effects, although these are of secondary interest.

In Section 2, we describe the data structure and hierarchical survival time regression model. Defini-
tions of the effects of individual agents and agent pairs are given in Section 3. Corresponding definitions
of the ranks of these effects are given in Section 4. In Section 5, we apply the methods to the CPC data,
including prior specification, imputation of missing values, and goodness-of-fit analyses. The rankings
of individual agents and agent pairs are given in Section 6, including sensitivity analyses to assess the
effects on the estimated posterior ranks of prior parameter values and the hierarchical structure assumed
for the chemo combination effects. We close with a discussion in Section 7.
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Table I. Chemo combinations used to treat the 224 CPC patients.

Comb. VP16 VCR CDDP CARBO CYC IFOS PRC No. of patients No. of deaths

0 − − − − − − − 102 62
1 − − − + − − − 1 0
2 − − − + − + − 2 2
3 − − + − − − − 1 0
4 − + − − − − − 7 4
5 − + − − − − + 1 0
6 − + − − + − − 2 1
7 − + − + − − + 1 0
8 − + + − − − − 1 1
9 − + + − + − − 1 0
10 − + + − + − + 4 1
11 − + + + + − − 1 0
12 + − − − − − − 1 1
13 + − − + − − − 4 3
14 + − − + − + − 14 6
15 + − − + + − − 5 0
16 + − + − − − − 4 2
17 + − + − − + − 2 2
18 + + − − + − − 1 0
19 + + − + − + − 1 0
20 + + + − + − − 14 6
21 + + + − + + − 1 1
22 + + + + + − − 1 1
23 + + + + + − + 13 7
24 + Unk Unk + Unk + Unk 4 4
25 Unk + + + + Unk Unk 1 0
26 Unk + + Unk + Unk + 1 1
27 Unk + Unk Unk Unk Unk Unk 1 1
28 Unk Unk Unk Unk Unk Unk Unk 32 12

Na 13 17 13 12 12 6 5

Inclusion of an agent in a combination is denoted by a ‘+’ and absence by a ‘−’. The combination index 0
corresponds to patients who did not receive chemotherapy. The number of combinations including each agent
a =1, . . . ,7 denoted by is Na .

2. Data structure and survival time models

Let T denote OS time and T o the observed time to death or right censoring, with �= I (T o =T ). As
noted above, a complication with this data set is that, for the 39 patients who received the combinations
numbered 24–28 in Table I, the particular single agents in the combination that they received were
either partially or completely unknown. To account for this, we index patients by i =1, . . . ,n (n =224),
and combinations by c=0,1, . . . , K +1 (K =27), and define the indicator Wi,c that patient i received
chemo combination c, where c=0 corresponds to no chemo and c= K +1 indexes the case where it is
known that the patient received chemo but no agents were identified. The chemo combination indicator
vector of patient i is denoted by Wi = (Wi,0, . . . ,Wi,K+1), which has one entry 1 and all other entries 0
(Table I).

The countries in which the studies were conducted were grouped into 13 categories in order to
obtain meaningful numbers. Geographical locations and cultures of leading schools of medical care
were used as guidelines in this grouping. For example, USA and Canada were combined as ‘North
America’, Mexico, Central and South American countries were combined as ‘South America’, Austria
and Germany were combined as ‘Germanic’, and Sweden, Finland, and Norway were combined as
‘Nordic’. While the UK–Israel–India category may seem odd in that its three countries are not geograph-
ically close, this group reflects the fact that the medical oncology environments for treating pediatric
brain tumors in these three countries are very similar. The country categories are given in Table II, which
includes estimated median survival time and 1-year survival probability for each country category, and
also shows that the country categories of 10 patients were unknown. For r =1, . . . , R (R =13), we
define the indicator Xi,r that patient i was in a study from country category r , with Xi,R+1 indicating

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 1777--1794
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Table II. Distribution of 224 choroid plexus carcinoma patients, and estimated median and one-year survival
probabilities, by country category.

Survival estimates (years)∗

Country category No. of patients Percent Times† Median Pr(T >1year)

Australia 1 0.45 4.5 4.5 —
Slavic 7 3.13 0.9 0.43
Denmark 1 0.45 1.0 1.0 —
Far East 15 6.70 — 0.66
France 32 14.29 2.1 0.74
Germanic 28 12.50 4.0 0.70
North America 78 34.82 4.8 0.75
Nordic 2 0.89 11.0+, 11.1+ — —
Poland 1 0.45 1.0+ — —
South America 8 3.57 0.9 0.38
Southern Europe 12 5.36 7.6 0.58
Turkey 2 0.89 0.7+, 1.0+ — —
UK–Israel–India 27 12.05 0.4 0.37
Missing 10 4.46 1.1 0.50

∗Values that could not be computed are represented by ‘—’.
†For country categories with 1 or 2 subjects, the times of death are given by T and the times of right censoring
by T +.

that the country category was missing. We denote the country category indicator vector of patient i by
Xi = (Xi,1, . . . , Xi,R+1), which has one entry 1 and all other entries 0. We denote by Zi = (Zi,1, . . . , Zi,q )
the vector of all baseline prognostic covariates and treatment variables of patient i not accounted
for by either Wi or Xi . In the sequel, for brevity we will suppress the index i when no meaning
is lost.

To obtain a good fit to the CPC data, we consider several different parametric distributions for the
survival time regression model of [T | Z,X,W,h], where h is the vector of model parameters. In each
model, we assume that the linear term of patient i takes the form

�i =
q∑

j=1
� j Zi, j +

K∑
c=1

�cWi,c +�K+1Wi,K+1 +
R∑

r=1
�r Xi,r +�R+1 Xi,R+1. (1)

The elements of the vector b= (�1, . . . ,�q ) are covariate parameters. The subgroup of 102 patients who
did not receive any chemo (c=0) is employed as a baseline group for evaluating chemo combination
effects. Thus, if Wi,0=1, indicating that the patient received no chemo, then Wi,1 =·· ·=Wi,K =0 and∑K

c=1 �cWi,c=0; hence, no �c appears in �i . That is, c= (�1, . . . ,�K ) is the vector of chemo combination
effects compared with no chemo. In contrast, there is no baseline comparator group for country category,
and the elements of the parameter vector a= (�1, . . . ,�R) are country category effects. These play the
role of intercept parameters in �i , with �r the intercept if Xi,r =1. The parameters �K+1 and �R+1
account for the patients whose chemo combination or country category are missing, respectively. In
particular, the vector c does not include �K+1, and a does not include �R+1. Let � or n= (�1, �2)
denote any additional scale, shape, or precision (inverse variance) parameters under the assumed
model that do not appear in �i so that h= (b,c,�K+1,a,�R+1,n). Denoting the probability density
function (pdf) and survivor function of T by f and F̄ , the likelihood for a sample of size n may be
expressed as

L(To,d | Z,X,W,h)=
n∏

i=1
{ f (T o

i ,�i | Zi ,Xi ,Wi ,h)}�i {F̄(T o
i | Zi ,Xi ,Wi ,h)}1−�i . (2)

We write f , F̄ , and L as regression functions in (2) to reflect the viewpoint that (To,d) characterize
patient outcomes while Z, X, and W are vectors of predictive variables.

The distributional families that we consider for T are listed in Table III. Temporarily suppress i
and Z,X,W,h for brevity, and denote precision, shape, and scale parameters by � or (�1,�2). Denoting
the normal distribution with mean � and precision parameter (inverse variance) 	 by N(�,	), for
the lognormal distribution in Table III we assume that log(T )∼ N(�,�). The remaining distributions

1780

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 1777--1794



P. F. THALL ET AL.

Table III. (a) Goodness-of-fit statistics for survival time regression model distributions in the null case with
no covariates. A large (small) p-value bound for the Johnson test indicates a good (poor) model fit to the
data. p=number of model parameters, BIC=Bayesian information criterion, DIC=deviance information
criterion. (b) DIC values for different linear terms of the log normal survival time model. Full= the full
hierarchical model, NH Chemo= the model obtained by dropping the hierarchical structure for chemo
combination effects.

Johnson test
Distribution p-value bound p BIC DIC

(a)
Log normal 1.000 2 665.4 544.5
Logistic 0.460 2 815.0 809.5
Weibull 0.076 2 679.3 558.3
Gamma 0.019 2 685.8 564.6
Exponential <0.0001 1 722.6 604.4

Model DIC

(b)
Full 2831.9
NH Chemo, 	�=1.0 2843.2
NH Chemo, 	�=0.5 2841.0
NH Chemo, 	�=0.1 2859.8
NH Chemo, 	�=0.01 2898.4

are given by F̄(t)= [1+exp{�(t −�)}]−1 for the logistic; f (t)=exp(�− te�)t�−1/�(�) for the gamma;
F̄(t)=exp(−e�t�) for the Weibull; and F̄(t)=exp(−e�t) for the exponential.

Given the distributional form, each Bayesian regression model includes two hierarchical structures,
one for chemo combinations and one for country categories. We assume that �1, . . . ,�K follow a
conditionally independent hierarchical model [8, 9]. Since �K+1 represents the chemo effect in patients
for whom no elements of their chemo combination were known, it is not included on the hierarchical
structure and has its own prior. Similar considerations apply to a= (�1, . . . ,�R) and �R+1. Let Ga(a,b)
denote the gamma distribution with mean a/b and variance a/b2. For each distribution of T considered,
we assume the following Bayesian structure, which includes usual (Level 1) priors and hierarchical
(Level 2) priors.

Level 1: Priors �1, . . . ,�q ∼ i.i.d. N(0,	�),

� or �1, �2 ∼ i.i.d. Ga(a�,b�),

�R+1 ∼ N(0,	�,mis),

�K+1 ∼ N(0,	�,mis),

�1, . . . ,�R |��,	� ∼ i.i.d. N(��,	�),

�1, . . . ,�K |��,	� ∼ i.i.d. N(��,	�),

Level 2: Hyperpriors �� ∼ N(0, 	̃�),

	� ∼ Ga(ã�, b̃�),

�� ∼ N(0, 	̃�),

	� ∼ Ga(ã�, b̃�).

To express the model more compactly, we partition the parameter vector as h= (h1,h2), where
h1 = (b,�R+1,�K+1,�) is the vector of parameters having only Level 1 priors and no hierarchical
structure, and h2 = (c,a) is the vector of country category and chemo combination effects, which have
hierarchical structures. Denote the vector of fixed parameters characterizing the Level 1 priors of h1
by /1 = (	�,	�,mis,	�,mis,a�,b�), the vector of random parameters characterizing the Level 1 priors on
h2 by /2 = (��,	�,��,	�), and the vector of fixed parameters characterizing the Level 2 priors on /2

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 1777--1794
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by /̃2 = (	̃�, ã�, b̃�, 	̃�, ã�, b̃�). The Level 1 priors now may be denoted by

p(h1 | /1) and p(h2 | /2)= p(a | ��,	�) p(c | ��,	�),

and the Level 2 priors (hyperpriors) may be denoted by

p(/2 | /̃2)= p(��,	� | 	̃�, ã�, b̃�) p(��,	� | 	̃�, ã�, b̃�).

With this notation, the posterior may be expressed as

p(h|To,d,Z,X,W,/1, /̃2)∝L(To,d | Z,X,W,h) p(h1 | /1) p(h2 | /2) p(/2 | /̃2). (3)

To complete the model, numerical values of the fixed Level 1 prior parameters /1 and the fixed Level 2
prior parameters /̃2 must be specified. This will be done in the context of the data analyses in Section
4 and sensitivity analyses in Section 5.

An important question is whether the hierarchical structure assumed on �1, . . . ,�K contributes substan-
tively to the posterior estimates and ranks of single agents and agent pairs. To assess this, we also
will consider the model obtained by dropping the Level 2 priors on �� and 	�, and instead assuming
that ��=0 and 	� takes on a fixed positive value. This model may be considered a limiting case of the

hierarchical model in which the precision parameter 	̃� →∞, and ã�, b̃� →∞ subject to ã�/b̃� =	�. In
this model, we retain the Level 2 priors on the country category effects.

3. Defining effects of individual agents and agent pairs

In this section, we present methods for addressing the primary goal of the analyses, which is to define
and rank the individual chemo agents in terms of their effects on OS. We do this in terms of the
chemo combination effects appearing in the regression model for OS, which also accounts for the
effects of country categories, other baseline covariates, and the two non-chemo treatments, radiation
and surgery. To avoid technical difficulties, in the definition we use only the effects �1, . . . ,�23 of the
23 chemo combinations for which all agents are known (Table I). To keep track of both individual
chemo agents and chemo combinations, let Yc,a denote the indicator that combination c includes agent
a, for c=1, . . . ,23 and a =1, . . . , J , where here J =7. Denote the number of combinations among the
first 23 that contain agent a by Na =∑23

c=1 Yc,a .
Our definition of an individual agent effect is


a =
∑23

c=1 Yc,a �c∑23
c=1 Yc,a

=
23∑

c=1
wc,a �c for a =1, . . . , J, (4)

where wc,a =Yc,a/Na . This says that the effect of agent a is the equally weighted average of the
effects of all combinations, for which all agents are known, that contain agent a. We make no attempt
to define the quantitative contribution of agent a to any �c for which Yc,a=1, since this cannot be
determined from the available data. In any case, it is difficult to determine one agent’s contribution to
a chemo combination due to unmodeled interactions between agents. We do not include between-agent
interaction terms in the model because the data cannot provide a reliable basis for their estimation, and
because it is a common oncology practice to adjust the doses of each agent in a combination to control
the patient’s overall amount of chemotherapy.

It is very important to bear in mind that 
a is not the effect of agent a when administered alone.
Rather, it is the average of the effects of the combinations, for which all agents were identified, that
included a. This set of combinations may or may not include a given as a single agent. Moreover, the
definition of 
a is data-dependent, since it relies on the particular chemo combinations that include a
in the data set at hand. However, given the facts that CPC is a rare disease, no large-scale comparative
trials of CPC therapies have been conducted, and the data were obtained by a painstaking literature
review, it is highly unlikely that another CPC data set having similar structure will become available
in the near future.

A natural question is how the individual agents may behave when given together. While it is not
practical to address this in general based on the available data, some progress can be made by considering
the pairs of agents in terms of c. To do this, we first define Yc,{a,b} to be the indicator that both agent
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a and agent b are included in combination c, and we define agent pair effects analogously to the way
that we defined single agent effects, as follows. Denote the number of combinations, again for which
all agents are known, that include both a and b by N{a,b} =

∑23
c=1 Yc,{a,b}. While there are 7× 6

2 =21
possible pairs, in the CPC data set no combination contained both IFOS and PRC; hence, only 20 pairs
were included in at least one combination given to at least one patient. Our definition of the effect of
agents a and b when given together in some combination, either with or without other agents, is


{a,b} =
∑23

c=1 Yc,{a,b} �c∑23
c=1 Yc,{a,b}

=
23∑

c=1
wc,{a,b} �c, (5)

where wc,{a,b} =Yc,{a,b}/N{a,b}. Thus, 
{a,b} is the equally weighted average of the effects on OS of all
combinations containing both a and b. As with the single-effect definition, 
{a,b} does not pertain to
how the chemo combination pair {a,b} alone would affect OS.

4. Ranks of individual agent effects and agent pair effects

Our primary goal is to rank the single agents with regard to their effects on OS. To augment these
analyses, we also will rank the effects of the 20 agent pairs that were included together in at least
one combination. There is an extensive literature on Bayesian and empirical Bayes ranking [10--13].
A review is given by Carlin and Louis [14, Chapter 7]. As pointed out by Laird and Louis [10], in a
Bayesian or empirical Bayes setting, ranking a set of parameters corresponding to a set of observational
units using the parameters’ posterior means suffers from the problem that unequal variances may
produce misleading conclusions. This issue is important in the present setting due to the fact that
the numbers of chemo combinations including each agent, N1, . . . , N7, vary from 5 to 17 (Table I).
This implies that, under our data-based definition (4), the individual agent effects 
1, . . . ,
7 may have
different variances due to sample size differences, aside from intrinsic differences among the posterior
variances of the chemo combination effects themselves. Furthermore, it has been shown that ranking
based on either the maximum likelihood estimates (MLEs) of the parameters or Z-scores of frequentist
test statistics also perform poorly [11]. Consequently, rather than ranking the individual agents based
on the posterior means of the 
a’s, we will follow the recommendation of Laird and Louis [10] by
estimating the posterior ranks of the 
a’s, defined by

Ra =
J∑

k=1
I (
a�
k), a =1, . . . , J. (6)

We denote the posterior mean of Ra by R̄a . Since J=7 in the CPC date set, each R̄a takes on values
in the domain [1, 7], and in general this statistic is not integer-valued [11]. Among possible estimators
for Ra, the posterior mean R̄a is optimal under squared error loss [13]. We denote the integer rank of
R̄a among {R̄1, . . . , R̄7} by R̂a .

Extending the above structure to agent pairs, we denote the rank of 
{a,b} among {
1,2, . . . ,
6,7} by

R{a,b} =
∑

1�r<s�7
I (
{a,b}�
{r,s}). (7)

We denote the posterior mean of R{a,b} by R̄{a,b}. Since there are 20 agent pairs included in at least
one chemo combination in the brain tumor data set, each R̄{a,b} takes on a value in the domain [1, 20].
We denote the integer rank of R̄{a,b} among the R̄{a,b}’s by R̂{a,b}.

Since each 
a and 
{a,b} is a linear combination of the chemo combination effects, c, computing the
posteriors of these parameters and of the ranks Ra and R{a,b} requires the posterior of c, which may
be obtained as the marginal

p(c|To,d,Z,X,W,/1, /̃2)=
∫

(h1,a)
p(h|To,d,Z,X,W,/1, /̃2)dh1 da.

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 1777--1794
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5. Analysis of the CPC data

5.1. Covariates and priors

The non-chemo treatment covariates used in the survival time regression models are type of surgery
(CR=complete resection, PR=partial resection, BN=biopsy or no surgery), and radiation (Yes or No),
which we record using the indicators Z1 = I (CR), Z2 = I (PR), and Z3 = I (radiation). The two baseline
covariates are Z4 =age in years and the indicator Z5 = I (gender=male). Thus, in the linear term
bZ=�1 Z1 +·· ·�5 Z5, the parameters �1 and �2 are the respective effects of surgery resulting in CR
or PR compared with the baseline group BN, �3 is the radiation effect, �4 is the per-year age effect,
and �5 is the effect of being male. Because there are 13 known country categories and an ‘unknown
country category,’ R =13 and dim(Xi )=14. Similarly, since there are K =27 chemo combinations with
at least one agent known while 32 patients received chemo with no agents known, dim(Wi )=28.

Two additional baseline covariates in the data set are tumor location (INF=infratentorial versus
SUP=supratentorial) and publication year. Because tumor location is highly associated with type of
surgery, and publication year is highly associated with both radiation and whether a patient received
chemo, to avoid collinearity we do not include either tumor location or publication year in any regression
model for OS. These two covariates are utilized in the regression models used to impute missing values,
described in Section 5.2.

To complete the Bayesian model, numerical values must be specified for the four fixed parameters
in /1 and the six fixed parameters in /̃2. We assume vague priors, with ��, ��, �R+1, �K+1, and the
elements of b i.i.d. N(0, 0.01), and 	�, 	� and each � j i.i.d. Ga(0.10, 0.10), which has mean 1 and variance
10. It is important to note, however, that a Ga(�,�) prior with small � is not necessarily ‘non-informative’
since, if small values of the parameter are possible, then posterior inferences may be sensitive to �.
A discussion and illustration of this point is given by Gelman [15]. In summary, the fixed parameters
determining the Level 1 priors are (	�,	mis,a�,b�),= (0.01,0.01,0.10,0.10) and the fixed parameters
determining the Level 2 priors are (	̃�, ã�, b̃�, 	̃�, ã�, b̃�)= (0.01, 0.10, 0.10, 0.01, 0.10, 0.10). The small
normal precision parameters 	̃� = 	̃� =0.01 and the large gamma variances ã�/b̃2

� = ã�/b̃2
� =10 quantify

the lack of prior knowledge about the parent populations for the country category effects and chemo
combination effects.

5.2. Imputing missing values

Some patients in the data set had partially missing covariates, including age (2 missing), gender (10
missing), surgery (9 missing), tumor location (13 missing), and radiation (1 missing). In addition,
Table I shows that there were four chemo combinations (c=24, . . . ,27) in which the elements of the
agent inclusion indicator vector Yc = (Y1,c, . . . ,YJ,c) were only partially known. These combinations
were administered to a total of seven patients. In order to include the data from patients who had
some missing entries of Z or received combinations for which some Yc,a’s are missing, we employ
Bayesian model-based data augmentation [16--19]. The data augmentation is carried out, as in the
conventional Bayesian parametric model-based regression analysis, by treating the missing values like
additional parameters when applying the Markov chain Monte Carlo (MCMC) algorithm to compute
the posterior [19].

In the fit of each regression model considered, imputation entails embedding a fit of a regression
model for each missing value as a function of other variables and log(T ) in each iteration of the
MCMC algorithm, using the fitted model to simulate the missing value, and treating the simulated
value as the missing value’s latest update. To establish notation for missing covariates and models used
in the imputation, if the covariate Z j was missing for patient i , let Zi,−Z j denote a vector including
log(Ti ) and a selected subvector of that patient’s covariates other than Z j . If some covariates other than
Z j also are missing for that patient, then those other covariates are represented in Zi,−Z j initially as
sample means and subsequently as the imputed value from the previous MCMC step. The imputation
model used for age, which is the only non-categorical-valued covariate, is the linear regression model
log(Zi,age)=xZi,−age+�i , with �i ∼N(0,	�) and x a parameter vector including an intercept. The fitted
N(x̂Zi,−age, 	̂�) distribution is used to simulate Zi,age, with this value included in the next MCMC
iteration. For a missing binary covariate, Zi, j , a logistic regression model with linear term xZi,−Z j is
used with Zi, j simulated from the estimated probability exp(x̂Zi,−Z j )/{1+exp(x̂Zi,−Z j )}. Only log(Ti )
is included in Zi,−age, Zi,−gender, and Zi,−(tumor location) because survival time is by far the strongest
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predictor of these three covariates. The imputation model for missing radiation values also includes
publication period as the three-category variable (�1979, 1980–1999, �2000) in Zi,−radiation because
this was highly predictive of whether a patient received radiation. A three-category generalized logistic
model is used for missing surgery, and Zi,−(C R,P R) consists of tumor location and log(Ti ).

To impute missing chemo combination membership indicators, we proceeded similarly. If Yi,a,c was
missing for patient i , let Yi,−a,c denote the vector obtained from the J −1 dimensional subvector of
Yi,c without the entry Yi,a,c, also including log(Ti ), country category, and publication period (� 1994
versus � 1995). The missing Yi,a,c value is simulated using a fitted logistic model for Pr(Yi,a,c=1)
having linear term xYi,−a,c.

5.3. Goodness of fit for survival time distributions

To allow the data to determine a form for the OS time distribution, initially we consider several possible
distributions for [T |Z,X,W,h]. Under each distribution, we assess the regression model’s fit to the data
using Johnson’s Bayesian �2 test [20], a modified version of Schwarz’s Bayesian information criterion
(BIC, [21]) and the deviance information criterion (DIC, Spiegelhalter et al. [22]). We compute the
BIC as

BIC=−2log(L(ĥ
mle

))+ p log(d),

where p is the number of model parameters, d the number of deaths, and ĥ
mle

denotes the frequentist
MLE. Following the recommendations of Volinsky and Raftery [23] and Ibrahim et al. [7], we use d
rather than the sample size in the penalty term p log(d) since this provides a better approximation to the
Bayes Factor when using the BIC to compare models for right-censored event time data. To compute
the BIC for the full hierarchical model, the frequentist version of the model has parameter vector h=
(b,��,	�,�K+1,��,	�,�R+1,�), where � is the lognormal precision parameter; hence,p=dim(�)+7.
If the hierarchical structure for the �c’s is dropped, so that there are no Level 2 priors on (��,	�), then
these become fixed prior parameters and in the frequentist version of the model (��,	�) are replaced by
�1, . . . ,�23; hence, p becomes much larger. For the data at hand, however, this is a moot point for this
model due to the fact that there were 10 chemo combinations for which there were 0 deaths; hence,
the MLE does not exist and the BIC cannot be computed. Since Johnson’s Bayesian �2 test can be
computed only under the null model with no covariates, in Table III(a) we also computed the BIC and

DIC under this null model. The BIC computations were carried out by obtaining L(ĥ
mle

) using SAS
PROC Lifereg, which parameterizes survival time regression models in the accelerated failure form
log(T )=�+� log(T0), where T0 follows a standard distributional form. DIC values were computed
using WinBUGS version 1.4.3. Because the BIC, DIC, and p-value bounds of Johnson’s test all indicate
that the best fit is provided by the log normal distribution, we chose to use this distribution for all of
our analyses.

To assess the effect of the assumed hierarchical structure for the �c’s on the log normal model fit
when including treatment and covariate variables in �, we computed the DIC both with (Full Model)
and without (NH Chemo model) this hierarchical structure (Table III(b)). The DIC values indicate
that, when including treatments and covariates, the full model provides a better fit to the data than
any version of the NH Chemo model with precision parameter varying from 1.0 to 0.01. The DIC
values also indicate that, under the NH Chemo model, assuming a highly imprecise prior with 	��0.1,

equivalently a prior variance of each �c greater than 10, gives a substantially worse fit to the data.

5.4. Fitted models and effect estimates

The fitted log normal model for OS is summarized in Table IV. The posterior probability Pr(�� >

0|data)>0.99 indicates that receiving some form of chemo was greatly beneficial compared with
receiving no chemo. For the covariates and treatment variables, the posterior probabilities Pr(� j >0|data)
indicate that achieving either a complete or partial resection at surgery was greatly beneficial compared
with either a biopsy or no surgery, and receiving radiation also was greatly beneficial. It appears that
older age was moderately advantageous and that males had moderately worse survival than females,
but neither Age nor Gender was strongly associated with OS. We thus fit a reduced version of the
full model excluding Age and Gender, which gave BIC=598.2 and DIC=1400.6. While this BIC is
slightly larger than the value 595.7 of the full model, indicating that dropping Age and Gender gives
a slightly worse fit, the DIC is dramatically smaller than the value 2831.9 of the full model including
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Table IV. Fitted Bayesian log normal regression model for overall survival time, including hierarchical
structures on the country categories and on the chemo combinations.

Posterior quantities

Parameter Effect description Mean std Pr(�>0|data)∗

Level 1 parameters
�1 Surgery=CR (vs biopsy/no surgery) 2.43 0.45 1.00
�2 Surgery=PR (vs biopsy/no surgery) 0.70 0.43 0.95
�3 Radiation=yes 1.28 0.29 1.00
�4 Age 0.013 0.012 0.87
�5 Gender=male −0.28 0.27 0.15
� Lognormal precision 0.37 0.06 —
�14 Missing country category −2.02 0.68 —
�28 Missing chemo combination 1.42 0.44 —

Level 2 parameters
�� Country category mean† −1.40 0.49 —
	� Country category precision 5.87 5.37 —
�� Chemo combination mean‡ 1.21 0.35 >0.99
	� Chemo combination precision 5.35 5.55 —

∗A value close to 1 corresponds to a significantly large beneficial effect.
†Mean overall country category effect.
‡Mean overall chemo combination effect, compared with no chemo.
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Figure 1. Summaries of the posterior distributions of the overall mean country category effect �� and of the
individual country category effects �1, . . . ,�13 on overall survival time. For each effect distribution, the thin
line runs from the 2.5 to 97.5th percentiles, the thick line runs from the 25 to 75th percentiles, and the midpoint

is the median. The vertical line is located at the posterior mean of ��.

these two covariates. This is due to the fact that some values of both Age and Gender were missing
and thus were imputed, which required additional model fits embedded in the MCMC. It thus appears
that the large decrease in the DIC value was an artifact of the fact that there was no imputation when
Age and Gender were dropped from the model.

The posterior country category effects are summarized in Figure 1. The shorter median survival
time of 0.4 years for the UK–Israel–India country category, and the longer survival but small sample
of 2 patients in the Nordic country category (Table II), both are illustrated graphically in Figure 1.
All differences between posterior country category effects appear to be small, however. The posteriors
of the chemo combination effects and overall mean chemo combination effect are given in Figure 2,
which shows a clear survival advantage for patients receiving some form of chemo. The combinations
VP16+CARBO+CYC, VP16+VCR+CDDP+CYC, and VP16+CARBO+IFOS are each associated
with slightly longer survival time, but there is substantial overlap among all the posteriors of the �c’s.
We next perform a more formal ranking of individual agents and agent pairs.
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Figure 2. Posterior distributions of the overall mean chemo combination effect �� and of all chemo combination
effects �1, . . . ,�23 on the overall survival time.

6. Ranking chemotherapy agents and agent pairs

6.1. Posteriors of effects and ranks

For the full model fit both with and without Age and Gender included in �, Table V summarizes the
posteriors of each 
a and its rank Ra , and gives the estimates R̄a and the corresponding integer rank
R̂a , for each a =1, . . . ,7. There is very little difference among the posteriors of the 
a’s. In terms of
the posterior mean or integer ranks, bearing in mind that in general some form of chemo is beneficial,
a message of Table V is that chemo combinations containing CARBO and CYC have the largest and
second largest beneficial effects on survival, while combinations containing VCR and CDDP have the
two smallest beneficial effects. The posterior ranks, in terms of both R̄a and R̂a , were insensitive to
whether Age and Gender were included in the model, with only the ranks 1 and 2 of VCR and CDDP
reversed by dropping these covariates. The statistics R̃max

a and R̃min
a given in Table V will be defined

and discussed below.
The histograms of the posteriors of the ranks R1, . . . , R7, given in Figure 3, are much more revealing

than the summary statistics in Table V. While the right-skewed posterior of the rank for CARBO and
the left-skewed posterior of the rank for CDDP both agree with what was seen in terms of the R̄a’s
and R̂a’s, two striking results are that the posteriors of the ranks for both IFOS and PRC are clearly
bimodal, with highest peaks at the two extreme ranks 1 and 7. The fact that the effect 
a for IFOS was
often ranked either the highest (by R̃max

a ) or lowest (by R̃min
a ) says that chemo combinations containing

IFOS were associated with either longer or shorter survival times, compared with combinations not
containing IFOS. The same considerations apply to PRC. Thus, if the shapes of the posteriors were
ignored, the fact that both of the summary statistics R̄a and R̂a for IFOS and PRC were in the middle
of their rank orderings would be very misleading. These results suggest that there may have been
interactive effects between each of IFOS and PRC and other agents. Another possible explanation is
that these agents were used frequently in combinations with other agents that, comparatively, were
either better or worse, as discussed below.

Table VI summarizes the posterior of each 
{a,b} and its rank R{a,b}, and gives the estimates R̄{a,b}
and R̂{a,b} for each distinct pair {a,b}. As for the single agent effects, these were computed under the
full model both with and without Age and Gender. Based on the summary statistics of the posterior
ranks, chemo combinations containing the pair {CARBO, CYC} had the largest beneficial effects on
survival, combinations containing the pair {CARBO, IFOS} had the second largest beneficial effects,
whereas combinations containing the pair {VP16, PRC} had the smallest beneficial effects. These
results are consistent with those seen for the individual agent ranks. Figure 4 shows that, as with the
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Table V. For each chemo agent, the posterior mean of the effect 
a , the posterior mean R̄a of the rank Ra

of 
a , and the integer-valued rank R̂a of R̄a .

Posterior quantities

Full model Full model-age–gender

Chemo agent Mean (
a) R̄a R̂a R̃max
a R̃min

a Mean (
a) R̄a R̂a

CARBO 1.320.36 4.731.86 7 5 2 1.250.35 4.751.86 7
CYC 1.300.36 4.571.79 6 4 1 1.230.35 4.621.78 6
VP16 1.270.34 4.061.74 5 3 3 1.190.33 4.061.75 5
IFOS 1.270.39 4.062.31 4 6 6 1.190.38 4.032.31 4
PRC 1.260.42 3.882.43 3 7 7 1.180.41 3.872.41 3
VCR 1.230.35 3.361.45 2 1 4 1.150.34 3.311.45 1
CDDP 1.220.35 3.321.81 1 2 5 1.140.34 3.361.78 2

R̃max
a and R̃min

a are the estimated ranks of the agents with the largest posterior probabilities of being ranked the
largest or smallest, respectively. Standard deviations are given as subscripts.
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Figure 3. Posterior distributions of the individual chemo agent effect ranks R1, . . . , R7, where Ra = rank of 
a
among {
1, . . . ,
7}.1788
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Table VI. For each pair {a,b} of chemo agents appearing together in at least one combination, the posterior
mean E(
{a,b}) of the effect 
{a,b}, the posterior mean R̄{a,b} of the rank Ra,b of 
{a,b}, and the rank R̂{a,b}
of R̄{a,b}.

Posterior quantities

Full model Full model-age–gender

Chemo agent pair E(
{a,b}) R̄{a,b} R̂{a,b} E(
{a,b}) R̄{a,b} R̂{a,b}
CARBO–CYC 1.390.43 13.7805.22 20 1.320.42 13.745.22 20
CARBO–IFOS 1.360.44 12.6506.22 19 1.280.42 12.566.28 19
CYC–VP16 1.320.38 12.5104.50 18 1.240.37 12.354.51 17
CARBO–VP16 1.320.37 12.3104.75 17 1.250.36 12.364.81 18
VP16–IFOS 1.290.41 11.6805.41 16 1.220.40 11.545.39 16
CYC–CDDP 1.280.37 11.4203.93 15 1.210.36 11.433.95 15
CARBO–VCR 1.280.41 11.1404.94 14 1.210.40 11.095.01 14
IFOS–VCR 1.280.54 10.9606.73 13 1.210.54 11.016.71 13
PRC–VCR 1.260.42 10.7605.69 12 1.180.41 10.655.69 12
VP16–VCR 1.240.38 10.3804.27 11 1.170.37 10.304.25 9
CYC–VCR 1.240.36 10.2904.13 10 1.170.35 10.314.10 10
VCR–CDDP 1.240.36 10.2404.11 9 1.170.35 10.214.10 8
CARBO–CDDP 1.240.43 10.1205.78 8 1.180.42 10.315.85 11
CYC–IFOS 1.170.66 9.5307.57 7 1.100.66 9.577.57 7
CARBO–PRC 1.190.48 9.4806.51 6 1.110.47 9.346.50 4
PRC–CDDP 1.160.44 9.2905.96 4.5 1.090.43 9.465.98 5.5
CYC–PRC 1.160.44 9.2905.96 4.5 1.090.43 9.465.98 5.5
IFOS–CDDP 1.130.50 8.6606.54 3 1.060.49 8.646.52 3
VP16–CDDP 1.170.36 8.5804.39 2 1.100.35 8.584.39 2
VP16–PRC 1.090.49 7.9606.61 1 1.030.47 8.126.66 1

Standard deviations are given as subscripts.

single agent effect ranks, several pairs had ranks R{a,b} with bimodal posteriors, and this was most
pronounced for {CYC, IFOS}.

Some of these results may be explained, in part, by examining the posteriors of the �c’s (Figure 2) and
the distributions of patients among the combinations (Table I). The comparatively superior performance
of CARBO and CYC in terms of the posterior ranks may be explained by noting that these agents were
included in the three combinations having �c’s with largest posterior means (Figure 2). The bimodal
posterior of the rank of 
a for PRC may be explained by the fact that, examining Table I, PRC was
included in five combinations given to a total of 20 patients, and the combination among these given
to 13 patients also included both CYC and CARBO. Moreover, Table VI shows that four of the six
pairs having the lowest posterior means R̄{a,b} included PRC. Similarly, the bimodal posterior of Ra
for IFOS may be explained by the fact that it was included in five combinations given to a total of 24
patients, and the combination among these given to 14 patients also included CARBO.

The bimodal posteriors of the ranks of the 
a’s for IFOS and PRC also illustrate potential difficulties
in identifying a ‘best’ or ‘worst’ agent based on combination chemo data of the form considered here.
For 0<<1, identifying the ‘best’ agent, formally, identifying the index a such that Pr(Ra = K |data)
is largest, is equivalent to identifying the upper 100 per cent of the agents for > (K −1)/K , since in
this case �a()=Pr(Ra > [K ]|data)=Pr(Ra = K |data). In general, Lin et al. [13] showed that the rank
of �a() among {�1(), . . . ,�K ()} is the optimal estimator under 0−1 loss, defined as the number of
misclassifications of the Ra’s either above or below K . For > (K −1)/K , we denote this estimator by
R̃max

a . We define R̃min
a similarly for the ‘worst’ agent, formally the index a with largest Pr(Ra =1|data).

These statistics are given in Table V under the full model. A large value of R̃max
a in the domain [1, 7]

corresponds to Pr(Ra =7|data) often being largest, i.e. 
a often being ranked largest among {
1, . . . ,
7}.
Similarly, a large value of R̃min

a in the domain [1, 7] corresponds to Pr(Ra =1|data) often being ranked
largest, i.e. 
a often being ranked smallest among {
1, . . . ,
7}. The results R̃max

a = R̃min
a =7 for PRC and

R̃max
a = R̃min

a =6 for IFOS in Table V appear to be incongruous, since they imply that Pr(Ra =7|data)
and Pr(Ra =1|data) for PRC were both ranked the highest most often, and that this same effect was
seen for IFOS. These apparent anomalies are explained quite easily, however, by simply examining
the bimodal posteriors of the ranks for PRC and IFOS given in Figure 3. This illustrates the more
general points that summary statistics, such as means or ranks, may be very misleading for bimodal
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Figure 4. Posterior distributions of the individual chemo agent pair effect ranks Ra,b for 1�a <b�7, where
R{a,b} = rank of 
{a,b} among the 20 effects of agent pairs given together in at least one chemo combination in

the CPC data set.

or multimodal distributions, and that it often is important in Bayesian inference to examine the entire
posterior distribution.

6.2. Sensitivity analyses

An important issue is the sensitivity of the posterior estimates and rankings to the model assumptions.
These include the fixed Level 1 and Level 2 prior parameter values under the assumed full model
and, more generally, the assumed hierarchical structure on the �c’s. To address this, we first carry
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out a sensitivity analysis of the posterior rank estimates to the numerical values of the fixed Level 1
and Level 2 prior parameters under our full model. These include (i) the precision parameter 	�
characterizing the Level 1 normal priors on the � j ’s; (ii) the parameters (a�,b�) characterizing the
Level 1 gamma prior on the precision parameter � of the lognormal distribution; (iii) for the Level 2
hyperpriors of the country category effects �1, . . . ,�13, the precision parameter 	̃� of the mean �� and
the gamma parameters (ã�, b̃�) of the precision 	�; and (iv) for the Level 2 hyperpriors of the chemo
combination effects �1, . . . ,�27, the precision parameter 	̃� of the mean �� and the gamma parameters

(ã�, b̃�) of the precision 	�. Numerically, each of the precision parameters 	�, 	̃�, and 	̃� was varied
from the prior value 0.01 to the larger values 0.02 and 0.10, equivalently, variances ranging from 100
to 10. Each of the gamma prior pairs (a�,b�), (ã�, b̃�), and (ã�, b̃�) was varied from the prior pair
(0.10, 0.10) to the larger values (0.50,0.50) and (1.0, 1.0), equivalently, mean identically 1 and variance
ranging from 10 to 1.

The posterior means of �1, . . . ,�5, �14, �28, ��, and �� changed by at most 12.5 per cent (0.64 vs
0.72) and at least 0.8 per cent (1.28 vs 1.29). The posterior means of 	� and 	� changed by at most 8.5
per cent (5.50 vs 5.97) and 9.4 per cent (5.24 vs 5.73) due to the variation of 	�, 	̃�, 	̃�, and (a�,b�). In
contrast, these posterior means changed by over 60 per cent (5.97 vs 2.16) and 67.5 per cent (5.73 to
1.86) as functions of (ã�, b̃�) and (ã�, b̃�) ranging from (0.10, 0.10) to (1.0, 1.0). Thus, the posteriors
of the precision parameters for both the country category effect and the chemo combination effect
distributions were quite sensitive to the Level 2 gamma hyperpriors on their precision parameters. As
shown by the upper portion of Table VII, however, the sensitivity of 	� to its Level 2 prior parameters
(ã�, b̃�) under the full model had almost no effect on the posterior ranks. For the 10 values of (ã�, b̃�)
studied, the mean ã�/b̃� was either 0.5 or 1 while the variance ã�/b̃2

� varied from 0.1 to 10, with both

R̄a and R̂a robust to these hyperprior parameters despite the fact that the posterior of 	� was sensitive.
We also considered (ã�, b̃�) pairs with variance 100, but the MCMC computations did not converge
for these hyperpriors. This is in agreement with the discussion given by Gelman [15] of Level 2
inverse gamma priors on the variance; in our notation, �2

� =1/	� of the �c’s in hierarchical models,
equivalent to the Ga(�,�) priors on 	� assumed here. Gelman concluded that very small values of �,
corresponding to very high prior variance of 	�, are non-truly ‘non-informative’ and are problematic
in that inferences are very sensitive to �, which is what we saw with our data. Following Gelman’s

Table VII. Sensitivity analysis of the Level 2 priors for 	� under the full hierarchical model for chemo
combination effects, and of fixed values of 	� under the NH Chemo model.

Posterior ranks

CARBO CYC VP16 IFOS PRC VCR CDDP

Hierarchical models with Ga(ã�, b̃�) hyperprior on 	�

ã�, b̃� R̄a R̂a R̄a R̂a R̄a R̂a R̄a R̂a R̄a R̂a R̄a R̂a R̄a R̂a
0.1,0.1 4.731.86 7 4.571.79 6 4.061.74 5 4.062.31 4 3.882.43 3 3.361.45 2 3.321.81 1
10,10 5.051.76 7 4.781.73 6 3.901.72 3 3.962.25 4 4.012.41 5 3.261.39 2 3.051.73 1
2,2 4.961.80 7 4.791.72 6 3.921.72 3 3.992.27 5 3.962.41 4 3.271.40 2 3.101.74 1
1,1 4.931.80 7 4.731.75 6 3.961.72 4 4.032.28 5 3.932.41 3 3.261.42 2 3.161.75 1
0.2,0.2 4.771.84 7 4.661.77 6 4.011.74 4 4.122.30 5 3.872.42 3 3.311.44 2 3.261.79 1
2.5,5 5.131.74 7 4.831.71 6 3.811.69 3 3.872.23 4 4.132.40 5 3.281.40 2 2.961.71 1
0.5,1 4.971.79 7 4.761.73 6 3.951.70 4 4.022.28 5 3.922.41 3 3.261.41 2 3.111.75 1
0.25,0.5 4.911.79 7 4.731.77 6 3.981.73 4 4.022.28 5 3.962.40 3 3.261.41 2 3.151.76 1
0.05,0.1 4.761.87 7 4.651.78 6 4.001.71 4 4.092.32 5 3.872.41 3 3.351.45 2 3.281.78 1
0.025,0.05 4.661.88 7 4.551.81 6 4.081.73 4 4.112.32 5 3.852.42 3 3.401.46 2 3.361.81 1

Hierarchical model with Uniform(0, 1000) hyperprior on �� =	−1/2
�

4.681.86 7 4.601.79 6 4.021.75 4 4.072.31 5 3.872.43 3 3.401.48 2 3.371.80 1

Non-hierarchical models with i.i.d. N(0,	�) priors on �1, . . . ,�23
	� =1 5.061.74 7 4.621.73 6 4.381.65 5 4.122.25 4 3.952.38 3 2.801.28 1 3.061.71 2
	� =0.5 5.321.62 7 4.701.71 6 4.121.67 5 3.912.20 3 4.042.39 4 2.861.27 1 3.051.73 2
	� =0.1 5.691.44 7 4.771.70 6 3.331.56 2 3.452.08 4 4.582.33 5 3.451.29 3 2.731.66 1
	� =0.01 5.961.21 7 4.761.55 5 2.641.26 3 2.451.63 1 5.072.14 6 4.491.06 4 2.631.50 2
Standard deviations are given as subscripts.
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suggestion to use a uniform prior on �� instead, we also fit the full hierarchical model assuming a
uniform prior on the domain (0, 1000) for ��, also given in Table VII. The resulting posterior integer
ranks R̂a match those obtained with the last four Ga(ã�, b̃�) hyperpriors, and the posteriors of the R̄a’s
were nearly identical to those obtained under the Ga(0.025,0.05) hyperprior, which has mean 0.5 and
variance 10.

Our second set of sensitivity analyses focuses on effects of the fixed variance 	� of the chemo
combination effects �1, . . . ,�23 under the NH Chemo model without a hierarchical structure on these
effects, instead assuming that they are iid with N(0,	�) prior. The results are given in the lower
portion of Table VII. Recall that, as shown in Table III(b), the DIC values increased substantially
as 	� was decreased from 1.0 to 0.01. The lower portion of Table VII shows that the posterior
mean ranks R̄a varied slightly, and the integer ranks R̂a were quite stable for 	�=1 or 0.5, with
only the values 3 and 4 of R̂a switching for IFOS and PRC. There was a substantial effect on
the ranks as 	� was set to the smaller values 0.1 and 0.01, corresponding to var(�c)=10 or 100. It
thus appears that the posterior ranks are robust to changes in the Level 2 hyperprior parameters for
the �c’s under the full model; for a range of values that give convergence of the MCMC, but for
the NH Chemo model the posterior ranks become unstable if a very disperse prior on the �c’s is
assumed. It then appears that, under either the full hierarchical model or NH Chemo model, the fixed
prior parameters should be chosen so that prior uncertainty is reasonably represented but is not too
large.

A final question is how the proposed methodology works when the values of the �c’s and thus
the 
a’s are known. To investigate this, we assumed the same 23 chemo combinations as in the
CPC data but, in order to focus on ranking, covariates were not included. We assumed that log(T )∼
N(�∗

c ,	
∗
� ) for a patient given chemo combination c, for fixed values �∗

1, . . . ,�∗
23 that gave fixed indi-

vidual agent values (
∗
1, . . . ,
∗

7)= (2.15,1.50,1.48,1.32,0.92,0.85,0.74) corresponding to (CARBO,
VP16, CYC, IFOS, VCR, PRC, CDDP), and fixed 	∗

� . A data set was simulated under this model
using each of three different administrative censoring patterns. In each data set, each combination was
given to a hypothetical sample of 100 patients, with an additional 100 patients receiving no chemo,
for a total sample size of 2400. The data sets were generated assuming administrative censoring
at 15 months (Scenario 1), at 25 months (Scenario 2), and no censoring (Scenario 3). The preci-
sion parameter 	∗

�=1 was assumed for Scenarios 1 and 2, but 	∗
�=4 was assumed for scenario 3

in order to avoid unreasonably long survival times. Each data set was analyzed under each of 14
different assumed models, 10 with hierarchical structure on the �c’s and 4 without Level 2 priors,
corresponding to the 14 models considered in Table VII. Specifically, the first 10 models assumed
that �1, . . . ,�K |��,	� ∼ i.i.d. N(��,	�) with �� ∼ N(0, 	̃�) and 	� ∼Ga(ã�, b̃�), using the 10 (ã�, b̃�)
pairs in Table VII. The last four models assumed that the �c’s were i.i.d. N(0,	�), with 	� =1, 0.5,
0.1, or 0.01.

Under Scenario 1, for all 10 hierarchical models, the posteriors of the �c’s were quite stable.
Consequently, the posteriors of the 
a’s and in turn the Ra’s were very stable, with the R̄a’s and
R̂a’s reflecting the actual ordering of (
∗

1, . . . ,
∗
7) perfectly. For the NH models, 	�=1 or 0.5 gave

posteriors for the Ra’s very similar to those given by the hierarchical models, and consequently the same
estimated ranks. While prior precision 	� =0.1 produced posteriors on the �c’s with larger standard
deviations compared with those for 	�=1 or 0.5, or obtained under any of the hierarchical models,
the effects on the R̄a’s and R̂a’s were small. Only the ranks of VP16 and CYC were reversed, which
is of little practical consequence since their true effects, 
∗

2=1.5 and 
∗
3=1.48, were nearly identical

by design. The MCMC did not converge for 	�=0.01, which is in agreement with the discussion of
Gelman [15].

Under both Scenarios 2 and 3, all posteriors were very stable and thus all rank estimates corresponded
perfectly to the actual 
∗

a’s. This may have been due to the fact that, because the sample sizes were
large and follow up was sufficiently long in these two cases, all combinations had some deaths and
therefore all �c’s could be estimated reliably either with or without the hierarchical structure on the
�c’s. A general conclusion regarding the full hierarchical model seems to be that, in addition to giving
a better fit to the CPC data than the NH Chemo model (Table III(b)), in the type of setting addressed
here it helps most when there are small subsample sizes without deaths for some chemo combinations,
since posterior estimation of their �c’s borrows strength from the estimated posterior effects of the other
chemo combinations.
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7. Discussion

We have defined and estimated the effects and ranks of individual chemo agents, and of agent pairs,
based on survival time data from pediatric brain tumor patients treated with a wide variety of different
regimes including chemotherapy, radiation and surgery. While our underlying regression model accounts
for a variety of possible covariate effects on OS and we apply goodness-of-fit analyses to choose a
distributional form, our results rely on a particular assumed structure for the linear component (1), as
well as particular prior distribution forms. Our assumptions and analytic methods are motivated by the
desire to account for substantial heterogeneity, as well as missing values, in this observational data set.
We define individual chemo agent effects and agent pair effects as linear combinations of the chemo
combination effects.

It is somewhat encouraging that nearly all of the models and methods produced the same two highest
ranked agents, CARBO and CYC, and the same two lowest ranked agents, VCR and CDDP. The
messages for single agent effects of IFOS and PRC were less clear in that the posterior distribution
of the rank of each was bimodal. For agent pair effects, {CARBO, CYC} and {CARBO, IFOS} were
ranked highest and second highest, while {VP16, PRC} and {VP16, CDDP} had the two lowest ranks.
Based on these results and preliminary data from a prospective international choroid plexus tumor
study (CPT-SIOP-2000), the choroid plexus tumor group decided that the standard arm of the planned
future randomized trial, CPT-SIOP-2009, will include CARBO, CYC, and VP16.

An important question is whether severity of disease may have affected the choice of chemo combi-
nation, since an association between severity and chemo combination would cause confounding. In
practice, however, CPC patients with more advanced disease are given more cycles of chemotherapy,
regardless of the particular combination used.
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