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A medical statistician’s routine professional activities are likely to have important ethical consequences. This
is due in part to the fact that good medical practice and scienti�cally valid medical research both require as
precursors high quality statistical design and data analysis. In this paper I discuss various ethical issues that I
have encountered while working as a biostatistician at M.D. Anderson Cancer Center. I describe particular
experiences and the ethical issues involved. Topics include medical decision making, bene�t–harm trade-
offs, safety monitoring, adaptive randomization, informed consent, and publication bias.

1 Introduction

In this paper I discuss a variety of ethical issues that I have encountered during my
11 years working as a biostatistician at M.D. Anderson Cancer Center (MDACC).
In addition to recounting and discussing actual experiences, I explore some related
hypothetical situations and generalities. The examples arose from the processes of
designing cancer clinical trials, reviewing designs proposed by others, analyzing data,
and collaborating on medical research projects. I have also drawn on my experiences
making rounds at MDACC, which I do periodically at the invitation of a hematologist
with whom I have long collaborated, Dr. Eli Estey. My focus here is on real situations
because, like theoretical statistics, ethical concepts only matter if they are relevant to
actual behavior.

It may seem that a statistician working in a medical center has few really dif�cult
ethical choices, given that (s)he is not a physician and thus does not treat patients. This
is not true. Medical decision making relies in a fundamental way on evaluating the
potential bene�ts and risks associated with various therapeutic options. It follows that
probability and statistics are essential components of medical decision making and
hence of the ethical issues arising therein. In what follows, I will explain why a working
medical statistician’s actions often have a substantial impact on many medical
decisions, and hence profound effects on the welfare of large numbers of patients. An
implication is that medical statisticians should consider their day-to-day activities and
decisions in an ethical as well as a scienti�c context. It is my intention here not just to
relate my experiences, but also to in�uence the attitudes and behaviors of others
involved in medical settings similar to those described here. Although the statistical
concepts underlying medical ethics can be quite complicated, in order to address an
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audience including nonstatisticians I have minimized statistical notation as much as
possible. While I have used simple probability statements to give substance to some of
the examples, none are unduly complicated. Also, I have rounded numerical values to
help simplify the illustrations.

The literature on medical ethics is substantial. Two useful books are Beauchamp and
Childress1 on biomedical ethics, and Kadane’s2 collection of articles on a wide variety
of ethical issues in clinical trials. I have not attempted to place what follows into the
context of the existing literature. Undoubtedly, I will reiterate many issues discussed
elsewhere in much greater detail. Wherever I have committed this expository sin, I beg
the reader’s indulgence.

The examples that follow involve particular individuals, including physicians, nurses,
statisticians, and patients. In many cases, there was strong disagreement with regard to
decisions made or actions taken. The very fact that intelligent, highly skilled scientists
and physicians may, in certain settings, hold very different views of what constitutes
appropriate and ethical behavior underscores the complexity and subjectivity of
medical decision making. While I have omitted names and, where reasonable, parti-
culars of the disease and treatments, I have made no attempt to disguise my opinions.
Most of the clinical trials described here either were designed at MDACC or originated
elsewhere and it was formally requested that MDACC participate, and many of the
trials involved multiple institutions.

2 Epistemology, in brief

Like any discussion of ethics, what follows is purely a matter of opinion. The question
of whether or not a particular behavior is ethical hinges on what the individual
engaging in that behavior knows, which in turn must rest on that individual’s beliefs.
It may be the case that, although two individuals engage in the same behavior, one is
behaving ethically while the other is not. This could simply be due to the fact that the
two individuals have different sets of rules for what constitutes ethical behavior. It also
may be that they have different knowledge. For example, if two physicians both treat
prognostically identical patients with treatment A, but one of the physicians is aware of
a clearly superior treatment B while the other is not, then the physician with the greater
knowledge may have behaved unethically. Of course, the argument that ignorance is a
defense for apparently unethical behavior has its limits. A competent physician must
have at least a reasonable knowledge of current practice.

On a deeper level, knowledge rests on belief. That is, one ‘knows’ something to be
true if one believes it to be true, one has good reason to believe that it is true and,
furthermore, it is true. A dif�culty inherent in evaluating knowledge to determine
whether a behavior is ethical is that, scienti�c method and all available empirical
evidence notwithstanding, people believe what they want to believe. In the abstract,
many particular actions may be categorized unambiguously as ‘ethical’ or ‘unethical’
within a given value system. In real life, aside from extreme cases where the distinction
is obvious, the situation is often more complex than this simple dichotomy. This is
especially true in oncology. In my experience, dif�cult circumstances and practical
imperatives often force compromises in the design and conduct of oncology clinical

430 PF Thall



trials. These compromises, while far from ideal, are all that can be achieved in an
imperfect world. So, ethics is a matter of belief, knowledge, circumstance, and practical
necessity. Not an easy thing.

3 Clinical trials

A clinical trial is essentially a statistical device for evaluating medical treatments with
the aim of developing improved therapies. The idea of conducting a medical experiment
with human subjects only makes sense if one accepts the premise that the data obtained
from the experiment may bene�t future patients, and if it can be maintained plausibly
that the bene�t=harm ratio is favorable for the patients enrolled in the trial. Most
people have little understanding of clinical trials, and many have never heard of them.
People place themselves in the hands of a physician in order to obtain treatment for
whatever malady af�icts them. So the �rst purpose of a clinical trial must be to treat the
patients in the trial, otherwise it is clearly unethical. At the same time, there are many
medical conditions for which no effective treatment exists or for which the existing
treatments are not the best that one might hope for. That is, there is always plenty of
room for improvement in medicine. From both a practical and an ethical perspective,
then, it makes sense for physicians to learn from their experiences while treating
patients. In modern medicine, it is neither necessary nor appropriate for a physician to
rely on individual experience alone. The medical literature provides an essential shared
resource in which physicians and scientists pool their experiences. The quality of this
resource is determined by the quality and validity of the scienti�c method underlying
what is reported. Statistics is the basis of scienti�c method. Consequently, it is essential
that medical statisticians carefully consider the ethical issues involved in their
professional activities.

While the outcomes of any medical procedure are not certain, the statistical notion of
average behavior provides a basis for evaluating and comparing treatment effects
within populations of similar patients. The rapidly developing array of modern
statistical methods for reducing uncertainty through designed experiments and data
analysis are increasingly being brought to bear in the process of developing improved
treatments. The fact that human disease and medical practice are often chaotic, messy,
and dif�cult to control notwithstanding, clinical trials are currently the best scienti�c
device available for placing this process into the context of an inferentially useful
experiment. So, the ethical imperative of learning as we go in medicine motivates
experimentation in the form of clinical trials.

Many medical practices have been based on assumed common knowledge later
shown to be incorrect by a randomized clinical trial (RCT). Beta-blockers were not
given to patients with heart disease until a RCT showed that this treatment could
increase survival in some of these patients. Autologous bone marrow transplantation
(BMT) was considered by many oncologists to be a superior treatment for breast cancer
until a RCT showed survival with autologous BMT to be the same as that achieved with
other treatments. Granulocyte-colony stimulating factor (G-CSF) was considered a
desirable treatment for myelodysplastic syndromes (MDS). However, a RCT of G-CSF
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versus no therapy showed that the MDS patients given G-CSF actually had shorter
survival. There are many other examples.

The main dif�culty in the design and conduct of a clinical trial is that, ideally, it must
provide the patients in the trial with the best available treatments while also generating
data that will provide a valid basis for making inferences aimed at developing improved
therapies. These two goals, each ethically motivated, are often in con�ict. The statistical
idea of treating patients in a clinical trial designed to generate data that will be
applicable to similar future patients embodies a viewpoint that is different from
actual medical practice. Physicians treat patients one at a time, not in groups.
Necessarily, a clinical trial protocol imposes mandates or limitations on how the
physician should or may treat each patient. A physician who �nds these requirements
unacceptable may feel ethically obligated to avoid enrolling patients in the trial.
Another individual, either statistician or physician, may consider withholding eligible
patients from a clinical trial to be unethical because it reduces the amount of
information in the trial and thus the probability of bene�ting future patients; it also
may deprive a patient of the opportunity to receive a promising investigational
treatment.

A pervasive dif�culty for proponents of clinical trials is that statistical theory and
practise are not so well established that it is always clear how to design a given trial or
analyze a given data set. Statisticians argue endlessly about which methodology is most
appropriate in a particular setting. This includes the Bayesian-versus-frequentist
controversy, competing methods for dose-�nding in phase I trials or safety monitoring
in phase II trials or interim decision making in phase III trials, whether and how to
account for multiple testing and data-driven model selection, the use of model-based
versus nonparametric methods, and so on. These statistical controversies may undercut
the argument that it is unethical not to conduct clinical trials since a skeptical physician
may be disinclined to participate in an enterprise that, at its scienti�c basis, is a source
of disagreement within the community of statisticians. So the con�icts and limitations of
clinical trials are substantial, both ethically and methodologically. Nonetheless, the
limitations of clinical trials should not be used as a basis for not conducting trials, since
the bene�ts of clinical trials, if properly designed and conducted, greatly outweigh their
drawbacks. Innovation is always controversial, and I believe that ethical and scienti�c
disagreement will always be intrinsic parts of medical research. As a statistician, I
regard this not as an impediment but as a strong motivation for statisticians to continue
developing improved clinical trial designs and methods of data analysis, just as
physicians continue to search for improved therapies.

4 Treatment choice and statistical inference

Therapeutic decision making often involves choosing one of several available treat-
ments. For example, if a patient with acute leukemia is not treated, (s)he is almost
certain to die very soon. Alternatively, any treatment combination will certainly cause
harm in the form of one or more toxicities, varying in severity from nausea and
vomiting to regimen-related death. In the comparatively happy cases where, for
example, it is clear that surgery plus some chemotherapy or radiation therapy has a
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high likelihood of providing the patient with years of high quality, disease-free life,
there is no problematic ethical choice. The dif�cult cases are those where the likelihood
of this outcome is not high, or where the expected disease-free survival interval is less
than a few years, or where the only available treatment with any antidisease effect is
known to be very harmful. The ethical choices that must be made in such settings can be
very complex. They hinge not only on the physician’s knowledge of available
treatments and their possible desirable and undesirable effects but, because this
knowledge is imperfect and uncertainty is substantial in any oncology setting, the
probabilities of these effects. Thus, probability and statistical inference are necessary
components of routine oncology practice. At the scienti�c level, where treatment
advances are achieved, experimental design and data analysis are necessary tools.
The role of the biostatistician is thus intrinsic to both good oncology practice and
clinical research.

An oncologist has three basic therapeutic choices for each patient: treat with an
established therapy, treat with an investigational therapy, or do not treat the patient
with anything other than palliative drugs. The �rst avenue is appropriate when the
patient’s diagnosis is relatively straightforward and when an established therapy has a
high chance of extending the patient’s life. In contrast, if there is very little chance of
improving the patient’s survival with any established treatment, then it is the physician’s
ethical responsibility to convey this to the patient and possibly to their spouse or family
members. This situation often arises with patients for whom one or more previous
courses of treatment have failed. Invariably, such patients have suffered the adverse
effects of these treatments, and the prospect of repeating this sort of suffering with little
hope of extending their life is unattractive. Patients with highly advanced disease at
diagnosis are in a similar circumstance therapeutically. This is often the case with
pancreatic cancer because it usually is discovered only after reaching an advanced stage.
Similarly, patients with early symptoms who delay the process of undergoing appro-
priate diagnostic tests may unwittingly allow their disease to progress to an advanced
stage with poor prognosis. In many such cases the patient, if properly informed, will
choose to decline treatment other than palliative medication and spend what little time
(s)he has left at home or in a hospice. In contrast, some patients in such circumstances
cling to the small hope of success with an investigational therapy and ask for the
treatment even after they understand the small probability of therapeutic success. It is
ethically appropriate to treat such patients in a phase I or phase II clinical trial. This
requires, however, that the physician honestly and effectively explain the chances of
success and of adverse events to the patient or their family members. A physician who
knowingly misrepresents the chance of success with an investigational therapy in order
to populate an early phase clinical trial is behaving unethically. In the absence of
empirical data on an untried new agent, there is a great difference between saying that
achieving a disease remission with the agent is possible and claiming that it has a 50%
remission rate.

Consider a 30-year-old patient diagnosed with acute myelogenous leukemia (AML)
or MDS who has favorable cytogenetic prognostic variables. Without treatment, such a
patient has a median survival of about nine months, with very poor quality of life. With
aggressive chemotherapy, which typically involves very unpleasant side effects, the
patient is very likely to survive a year, has a median survival of about 30 months and, if
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(s)he survives three years, has a very high probability of surviving many years
thereafter. So treatment is clearly more desirable than no treatment. Now consider a
75-year-old AML=MDS patient who has unfavorable cytogenetic prognostic factors
and is bedridden. With either no treatment or standard chemotherapy this patient has
a median survival of about one month, with very poor quality of life, and less than a
2% chance of surviving nine months. So there is no real advantage to treatment with
standard chemotherapy. As noted above, many such patients choose to be treated with
an investigational therapy. In this case, the real choice is between an experimental
treatment and no treatment. More dif�cult decisions arise in circumstances somewhere
between these two extremes, or where there are qualitative differences between possible
treatment modalities and their potential effects.

The above trichotomy, although a simpli�cation, provides a useful basis for thinking
about therapeutic choices. Importantly, each decision requires that the physician
estimate the patient’s survival time distribution, or at least portions of it such as the
probabilities of surviving speci�ed time periods, for each treatment option. In general,
this estimation will depend greatly on the patient’s prognostic covariates, such as age,
disease stage, or previous treatment history, with the list of relevant covariates
depending on the particular type of cancer. Such estimation relies on previous statistical
analyses of one or more data sets arising from groups of similar patients in which the
joint effects of treatments and patient covariates on survival time have been evaluated.
That is, the decisions that an oncologist must make routinely and repeatedly in the
course of patient diagnosis and treatment, ideally, rely on a good working knowledge of
the results of detailed statistical analyses. A competent oncologist must be familiar with
the medical literature on both established and newer, more recently studied treatments.
Of course, medical papers summarizing such statistical analyses are only useful to the
extent that the analyses, and the clinical trials from which the underlying data arise, are
of good quality. Simply put, good statistical practice is a necessary basis for good
medical practice. By the same token, bad statistics may lead to bad medicine, and in this
regard physicians are at the mercy of incompetent or irresponsible medical statisticians.
Consequently, it is ethically imperative that medical statisticians endeavor to provide
the best design and data analysis they can, and that they pay careful attention to the
manner in which the substantive conclusions of these analyses are summarized in any
resulting medical papers.

5 Bene¢t^harm trade-o¡s

Several hundred years ago, bleeding a patient was in many medical settings the correct
and ethical thing for a physician to do. Today, in many oncology settings, injecting
poisons into a cancer patient’s body is the correct and ethical thing. Unfortunately, at
present the three most widespread cancer treatment modalities are cut, burn, and
poison. These are known euphemistically as surgery, radiation, and chemotherapy. A
fourth, somewhat more modern modality is blood or marrow cell transplantation,
which carries with it a long list of potential adverse effects, including treatment-related
death. The use of biological agents comprises a �fth therapeutic category. At present,
some combination of these approaches is the best that the oncology community can
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provide any given cancer patient. For most cancers, and there are many different kinds,
no complete cure is available. Realistically, the best that can be hoped for therapeu-
tically within a given cancer disease category and prognostic subgroup is a substantive
improvement in the patient’s chance of long-term survival, or in the quality of the
patient’s life during the time (s)he has remaining.

The general ethical principal ‘First, do no harm’ that is taught to young physicians
must be set aside routinely in many oncology settings. This is because this approach will
in many cases result in rapid death. Unfortunately, in our present state of technology,
the only treatments that have any substantive effect against many cancers are often
themselves harmful. Surgery for bone sarcoma may extend a patient’s life, but it
occasionally involves removal of an arm or a leg, or saving the patient’s limb but with a
lifelong functional impediment. Prophylactic irradiation of a lung cancer patient’s brain
may reduce the likelihood that the cancer will metastasize from the lung to the brain,
but it also may cause permanent brain damage. Treatment of soft tissue sarcoma with
ifosfamide may bring the disease into remission, but it also may permanently damage
the patient’s kidneys. Long-term treatment of chronic myelogenous leukemia with
interferon may extend the patient’s life, but it is also very likely to continually degrade
motor function and cognitive abilities. Chemotherapy of acute leukemia or lymphoma
kills cancer cells, but it also severely damages the ability of the patient’s immune system
to �ght life-threatening infections. Allogeneic bone marrow transplantation from a
matched donor may eradicate a patient’s cancer, but the engrafted cells may attack and
kill the patient. All of these examples suggest that trade-offs between potential desirable
and undesirable treatment effects play an important role in cancer therapeutics.

Oncologists often must choose among a set of available treatment alternatives, each
of which is very likely to have undesirable consequences but possibly also desirable
effects. The most simple example is the most common, namely that of an oncologist
choosing among several available chemotherapies. I will assume that the patient is
relying entirely on the physician’s recommendation, which is typically the case. Each
choice might be described as infusing the patient with poisons, each likely to cause any
of a variety of adverse effects, including transient but terrible effects such as nausea and
vomiting, low white blood cell count leading to infection, transient or permanent organ
damage, or death. Considered per se, using chemotherapy appears to be the behavior of
a criminal. It is only seen as ethical, and in fact desirable, in light of the facts that (1) the
patient is very likely to die of the disease if it is untreated, (2) the patient’s survival time
is, on average, more likely to be longer if (s)he is treated than if not, and (3) no
treatment with life-extending capacity and without adverse effects exists.

Roughly speaking, in evaluating trade-offs a distinction may be made between events
occurring within the same time frame and settings where the good and bad events are
separated in time. For rapidly fatal diseases where only aggressive therapy is effective,
either disease remission or regimen-related death will occur within a few weeks. Here,
the trade-off is between the probabilities of these two outcomes. Late onset toxicities or
secondary cancers caused by chemotherapy or radiation are a different matter. In these
cases, the risk of the much later adverse effect must be weighed against the bene�t of
treatment obtained by eradicating or bringing into remission the initial cancer. For
example, many leukemias are ‘downstream’ consequences of chemotherapy given years
earlier to treat an initial cancer. This latter situation arises in the treatment of Hodgkin’s

Ethical issues in oncology biostatistics 435



or non-Hodgkin’s lymphoma, where there is a substantial cure rate but the treatment
may be highly associated with a secondary cancer of a completely different type that
appears many years later. Unfortunately, the rates of initial cure and downstream
secondary cancer both increase with the aggressiveness of the initial therapy.

Most oncologists assess the trade-offs between such possibilities for each treatment in
a primarily subjective manner by synthesizing their knowledge of the medical literature
and their personal experience. Formal statistical methods for evaluating bene�t–harm
trade-offs do exist, however. Working in an oncology environment naturally leads one
to think about methods for decision making based on trade-offs. A general Bayesian
strategy for constructing designs to monitor multiple events in phase II trials, including
both good and bad outcomes, is described by Thall, Simon, and Estey3,4 and Thall and
Sung. 5 Stallard, Thall, and Whitehead6 provide a formal decision–theoretic basis for
conducting this sort of trial. Statistical tests based on bivariate ef�cacy and toxicity
outcomes are given by Bryant and Day7 and Conaway and Petroni8 for single arm
trials, and by Willan and Pater, 9 Jennison and Turnbull, 10 Cook, 11 and Thall and
Cheng12,13 for randomized trials. Thall, Simon, and Shen14 provide a Bayesian method
for evaluating multiple treatment effects. Thall, Sung, and Estey15 describe a method for
quantifying the trade-off between the probabilities of complete remission and death in a
clinical trial of several treatments for advanced acute leukemia. There is a large
literature on quality of life indices, including Feeney and Torrance’s16 utility-based
measures, the idea of quality-adjusted time without symptoms described by Goldhirsch,
et al.,17 and quality-adjusted survival introduced by Glasziou, Simes, and Gelber18 and
formalized by Zhao and Tsiatis.19 The use of such formal methods in the day-to-day
practice of oncology may provide oncologists with an improved basis for ethical
decision making.

Consider therapy of AML within a particular prognostic subgroup that, if untreated,
has a median survival of about six months. With treatment, the primary therapeutic
goal is achieving a complete remission (CR), because without a CR the patient’s
survival is not much better than if (s)he is not treated. If a CR is achieved, then the
patient has a chance of long-term survival. If the patient achieves a CR but later suffers
a relapse, the chance of achieving a subsequent CR is much smaller and hence the
chance of long-term survival is greatly reduced. Median survival post CR decreases with
the length of time, or with the number of courses of chemotherapy, required to achieve
the CR. Thus, initial prognosis consists of the probability of CR and the distribution of
survival time, adjusted for the patient’s baseline prognostic covariates. Survival should
be considered overall at the start of therapy, but once therapy has begun the relevant
survival distribution is conditional on whether or not the patient has achieved a CR
and, once CR is achieved, how long it took to achieve CR and whether the patient has
relapsed. Once a patient’s disease stays in remission for three years, the chance of
relapse declines precipitously, so a CR duration of three years is considered a ‘cure.’

Here are two ways to quantify the trade-off between the probabilities of CR and
death and incorporate this into a clinical trial design. Suppose that among, say, 300
historical AML=MDS patients treated with an established, ‘standard’ treatment, S, two
months from the start of therapy 50% had achieved a CR, 20% had died, and the
remaining 30% were alive but not in CR. Suppose that the aim of a clinical trial of an
experimental therapy, E, is to improve the CR rate while controlling the death rate.
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Denoting the probabilities of CR and death with S by yCR and yDEATH and the cor-
responding probabilities with Eby lCR and lDEATH, a pair of Bayesian rules that together
allow a 0.05 increase in the death rate as a trade-off for a 0.20 improvement in the CR
rate are to stop the trial of E if either Prob(yDEATH ‡ 0.05 < lDEATH j data) is unac-
ceptably large or Prob(yCR ‡ 0.20 < yCR j data) is unacceptably small. Technical
details are given in Thall, Simon, and Estey.3,4 Another approach combines lCR and
lDEATH into a single CR–death trade-off function, f ˆ f(lCR, lDEATH), as follows. One
may assign the desirability index, say, 0 to the historical probabilities (0.50, 0.20) with
S, and the desirability index 1 to the physician’s desired trade-off target (0.70, 0.25).
The physician is then asked to specify other probability pairs (lCR, lDEATH) that have
the same desirability as the trade-off target. The numerical parameters of the function f
corresponding to these probability targets are then derived algebraically. The physician
may be shown contour plots of this function and, if necessary, its parameters are
calibrated interactively on that basis. Decisions and inferences are then based on f.
Technical details are given in Thall, Sung, and Estey.15

6 Early stopping in single-arm trials

The nominal goal of a phase II cancer clinical trial is to determine whether a new
treatment is suf�ciently safe and promising to warrant further study in a large-scale,
randomized phase III trial with survival or disease-free survival as the outcome. The
usual outcomes in phase II are relatively early events such as disease remission and
toxicity. There are many phase II designs. Most phase II trials are single-arm, in which
case the comparison to the standard must be based on historical data, and consequently
all experimental-to-standard parameters are confounded with trial effects. Because the
treatment is new, and because anticancer treatments generally have adverse effects,
safety is a major concern. Consequently, an essential design component consists of
formal rules to stop the trial early if the interim data show a high likelihood that the
treatment is either unsafe or inef�cacious, compared to the event rates of standard
treatments. If the trial is not stopped early, then the design should provide reasonably
reliable estimators of the event rates and it should declare the new treatment promising
with reasonably high probability if it is in fact superior to the standard.

A phase II trial was proposed to determine whether a new combination chemother-
apy, E, for breast cancer was ‘promising.’ The protocol speci�ed that the chemotherapy
was to be used in conjunction with surgery, which is typical, with ‘response’ de�ned as
complete or partial remission of the disease at six weeks. The statistical section of the
protocol provided details of a Simon20 optimal two-stage design to test the null
hypothesis that the response rate of E was 20% against the alternative that it was at
least 40%. The speci�ed Simon design having type I error 0.05 and power 0.90 to
detect this alternative requires 19 patients to be treated and evaluated in a �rst stage. If
four or fewer responses are observed in the 19 patients then the trial is terminated; if
there are �ve or more responses then 35 additional patients are treated and evaluated.

While this seemed like a reasonable design for this trial, a closer look at the protocol
showed that the historical response rate with standard treatment was 60%, not the
assumed 20% null rate in the hypotheses underlying the design. A simple computation
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shows that if the experimental treatment’s response rate is actually 40%, which is 20%
below the established rate with standard treatment, then the above design would stop
the trial early with probability only 0.07. Another way of putting this is that if the
experimental treatment actually decreases the response probability by 20% compared
to the standard, then the design has probability 0.93 of proceeding to a second stage
and using this inferior experimental treatment on 35 more patients.

When confronted with this glaring de�ciency, the physician who had written the
protocol and proposed this particular design for the trial, YoungDoc, explained that he
was very excited about the experimental treatment and wanted to give it as good
a chance as possible of getting through phase II. When asked why he had not used a
design with a null rate of 60%, the standard therapy response rate, and targeted
an improvement to 75% or 80%, YoungDoc explained that he had initially considered
this but that the resulting Simon design would be ‘too likely to stop the trial early.’ Even
after it was explained to YoungDoc that the protocol design had a very small
probability of protecting the second cohort of 35 patients from being treated with a
greatly inferior treatment, YoungDoc maintained that the design was appropriate.
YoungDoc further argued that the Simon design is used very widely for phase II trials
and that, moreover, the particular numerical design parameterization had been used in
a previous phase II clinical trial in breast cancer. A number of questions regarding other
important details of the protocol were raised, including the absence of any formal early
stopping rule for adverse events. My proposal that such a safety monitoring rule be
included in the protocol was addressed by pointing out that the protocol included a
provision for the principal investigator to stop the trial if an unacceptably high adverse
event rate was observed.

Given that response was the only outcome considered in the design, it obviously did
not protect the patients in the trial from an inferior treatment. The null and alternative
values, 20% and 40%, were a complete �ction in that they represented nothing more
than the investigator’s desire to treat as many patients as possible with the new regimen.
In formal terms, YoungDoc cared a great deal about the risk of a false negative (Type II
error) but nothing at all about a false positive (Type I error). In common terms,
YoungDoc felt that it was much more important to protect the new treatment than to
protect patients in the trial should the new treatment in fact turn out to be substantially
inferior to the standard.

Considering YoungDoc’s claimed optimism regarding the experimental treatment, and
taking into account his apparent inability to think quantitatively, we must ask whether
his behavior was ethical. Sadly, the answer is ‘Yes.’ As noted earlier, where ethics are
concerned, ignorance is a perfectly valid defense. The argument YoungDoc put forth for
the design’s validity was based on the optimistic viewpoint that the experimental
treatment was very likely to be superior to the standard, and on the fact that the same
design had been used for the same type of trial in the same disease. Of course, this
viewpoint regards everything qualitatively and completely ignores any quantitative
issues. It also replaces empirical evidence, both past and future, with immovable prior
belief. A deeper question is whether a physician so implacably ignorant of basic concepts
of hypothesis testing and safetymonitoring should be permitted to conduct a clinical trial.

This episode also raises the question of what actually constitutes a phase II clinical
trial. Many regard it as a scienti�c experiment to evaluate the ef�cacy of a new
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treatment, with the important condition that it should be terminated early with
reasonably high probability if the experimental treatment is inferior to the standard.
The physician who proposed the above protocol apparently regarded a phase II trial as
a device to allow him to treat a large number of patients with an experimental regimen,
with little attention paid to patient safety during the trial. This sort of behavior is not
uncommon, in my experience, and I attribute it to the fact that research oncologists are
rewarded for conducting clinical trials, and for accruing a large number of patients into
a trial. The institution may receive a �xed amount of money for each patient accrued.
The oncologist’s career will bene�t greatly if a trial of an investigational agent is
‘successful,’ which in particular requires that it not be stopped early for an unacceptably
high adverse event rate. Attitudes with regard to trial conduct often re�ect a large
previous investment of preliminary laboratory research, time, and money by a
pharmaceutical company supplying the investigational agent. Many pharmaceutical
company representatives, and physicians who work with them, regard phase I and
phase II trials not as scienti�c experiments but as bureaucratic hurdles that stand in the
way of drug approval. Essentially, optimism and the hope of professional advancement
or �nancial gain may overcome consideration of the consequences of a false positive
conclusion and, all too frequently, honest consideration of patient safety.

In fairness to clinical oncologists who propose and conduct early phase trials of new
treatments, there is a duality of clinical optimism and empirical skepticism. The
clinician must be very optimistic to propose the trial in the �rst place, since in fact
most investigational cancer treatments do not provide an improvement. It is essential
that oncology statisticians understand that oncologists must deal with many failures,
both with individual patients and with investigational treatments. The ability to
confront this on a daily basis rests on a foundation of optimism that may seem
unrealistic to those unfamiliar with the harsh realities of clinical oncology. Certainly,
the statistician must provide a basis for objectively evaluating new treatments, which
includes designs with explicit early stopping rules. This is an ethical sine qua non in
clinical trial design. However, I feel that it is also the statistician’s responsibility to
provide encouragement, since the research oncologist’s optimism is necessary for the
entire enterprise of developing improved therapies. In my experience, many oncologists
rely on their statisticians in much the same way that patients rely on their physicians.

7 Randomization

A lot of thought has been devoted to both the technique and ethics of randomization in
clinical trials. Royall21 and the comments and references therein provide a very
thorough account. Kadane22 proposes a radical Bayesian alternative to randomization.
The ECMO trial described by Ware23 and the object of much discussion, shows how
highly skilled statisticians with the best of intentions may �nd themselves in dif�cult
ethical circumstances when proposing a randomization scheme.

The idea of randomizing human beings between different medical treatments in
order to compare the treatments’ effects fairly is actually pretty strange. Explaining
this modern, exotic statistical procedure to a nonstatistician is always an interesting
process. The explanation requires casting some rather deep statistical ideas in simple
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terms, as well as explaining the ethical concept of equipoise and, inevitably, appealing
to personal, often emotional evaluation. Equipoise between two treatments simply
says that the physician is as willing to treat the next patient with one treatment as with
the other. Many physicians hate this idea and are unwilling to allow their patients to
be randomized. Their usual argument is that explaining and proposing the randomi-
zation to a patient is an admission that they do not know what they are doing, since a
truly competent physician should be able to choose the better of the two treatments
for any given patient. Moreover, many physicians feel that randomization allows a
statistician to rob them of the authority to choose, or at least to recommend, each
patient’s treatment. Unfortunately, the beliefs with regard to treatment effects that a
physician develops based on individual experience may be quite different from the
conclusion reached by objective analysis of existing data. This is due in large part to
the facts that individual experience is necessarily limited, and memory is highly
subjective and biased.

Several years ago I was asked to design a clinical trial in soft tissue sarcoma to
compare surgery plus radiation, which was standard therapy, to surgery alone. The
motivating rationale was that radiation increases the likelihood of limb dysfunction,
and the hypothesis was that radiation could be dropped without a reduction in disease-
free survival (DFS). So the goal was to improve limb function while maintaining DFS.
I developed a design with both DFS and an index of limb function as the bivariate
outcome, based on the test described in Thall and Cheng.12,13 The surgeons liked the
idea very much, the radiation oncologists hated the idea, and the trial was never run.
People believe what they want to believe.

Bone marrow or peripheral blood stem cell transplantation (tx) and chemotherapy
(chemo) are two very different treatment modalities for leukemia, lymphoma, and
advanced breast cancer. Both involve very aggressive therapy that entails severe adverse
effects, including regimen-related death. While it might seem that oncologists who use
such therapies would be very interested in randomizing patients between these two
modalities, this has seldom been done. Most clinical trials of experimental tx or chemo
are either single-arm phase I or phase II trials of one of the two modalities. When
randomized trials are conducted, the different treatments are usually two versions of
chemo, such as different combinations of agents or different dose schedules, or two
versions of tx, usually using different preparative regimens. This is not surprising if one
realizes that the physicians who do tx and those who do chemo come from two very
different groups, each with its own subculture and therapeutic orientation, sometimes
residing within different sections or even different departments within an institution. In
addition, a complication in designing a randomized trial of allogeneic tx versus
chemotherapy is that a tx donor must �rst be found, and it would be necessary to
tell the donors of all patients randomized to chemotherapy that their cells were not
needed. There has been a recent advent of so-called ‘mini tx’ in which a nonablative
chemo or radiation dose precedes the injection of cells, with reliance to some extent on
the ability of the injected cells to kill cancer cells, the so-called ‘graft-versus-disease’
effect. This has lessened the cultural divide between the tx and chemo oncologists since,
at least in theory, both the chemo and the injected cells play prominent roles in �ghting
the patient’s disease. The two subcultures are still distinct, however, and randomized
trials comparing chemo to tx are not common.
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I once reviewed a large randomized clinical trial aimed at comparing two chemother-
apy combinations, A and B. Some rather disturbing historical data, available before the
trial, were available. These data came from a preliminary, small-scale randomized trial
of A versus B in a prognostically homogenous patient group. Severe toxicity was
observed in 4=20 (20%) of patients given A and in 20=22 (91%) of patients given B.
Aside from my feeling that the preliminary trial should have been stopped early due to
this observed extreme difference, given the historical data it seemed unethical to
propose a new, much larger randomized trial. Starting with uninformative beta(0.50,
0.50) priors on the toxicity probabilities associated with A and B, given the historical
data it is virtually certain a posteriori that B was more toxic than A. Moreover, the
observed response rate with B was actually slightly lower than that of A. Who would
want to be treated with B?

Even in situations where the physicians involved in designing a trial have equipoise
between two treatments, they are often concerned that this will disappear if one
treatment outperforms the other. Strict adherence to equipoise allows randomization
for the �rst patient, but once that patient’s outcome is observed equipoise disappears.
Depending on one’s viewpoint, equipoise might return at a subsequent point if the
observed success rate of each treatment is exactly the common value believed a priori.
For example, suppose that one starts with the belief that on average both treatments A
and B have a 20% success probability for some binary outcome, treats the �rst patient
with A as a result of a 50 : 50 randomization, and that patient’s treatment is a success.
Then equipoise is gone and one would necessarily treat the second patient with A.
However, if A fails with each of the next four patients, then its observed success rate is
back down to the 20% value initially believed for both A and B, so it seems sensible to
again randomize. However, the evidence supporting the 20% rate for A is now stronger
than that for B, so it is not clear that a 50 : 50 randomization is best. To address this
problem, a Bayesian analysis that begins with, say, a beta(0.20, 0.80) prior on each
success probability would yield a beta(1.20, 4.80) posterior on the success rate of A. So
the posterior mean success rates are again both 20%, but the posterior of the success
rate with A is more informative than the beta(0.20, 0.80) distribution of the success rate
with B. If one accounts for the value of what is learned from each new piece of data,
more can be learned by treating the next patient with B rather than with A. If one looks
further into the future than one patient, then this sort of analysis rapidly becomes quite
mathematically complex. It has been dealt with extensively under the rubric of ‘bandit
problems.’ A basic reference is Berry and Fristedt.24 The seminal paper on this seems to
be Thompson.25

The study of bandit problems leads to the notion of outcome-adaptive randomiza-
tion, which provides a compromise between ethical concerns and the scienti�c goal of
obtaining an unbiased treatment comparison. An advantage of outcome-adaptive
randomization is that it directly addresses the problem that equipoise is lost as interim
data become available during the trial. Some useful survey papers are Rosenberger and
Lachin,26 Berry and Eick, 27 and Rosenberger.28 The idea is to use the observed patient
outcome data available at any interim point in the trial to compute randomization
probabilities that are biased in favor of the treatment having more favorable outcomes.
For example, if there have been 6=10 (60%) successes with A and 8=12 (67%) successes
with B, the difference between these two observed rates might re�ect actual superiority
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of B over A or, alternatively, they may be due entirely to the play of chance. Based on
these data, one adaptive Bayesian rule would randomize the next patient between A and
B in a 3 : 5 ratio rather than 1 : 1. Speci�cally, the patient would receive A with
probability 3=8 ˆ 0.375 and B with probability 5=8 ˆ 0.625. Moreover, the observed
difference might become extreme enough to lead one to the conclusion that one
treatment is clearly superior. For example, if there are 7=14 (50%) successes with A
and 30=36 (83%) successes with B, then the randomization probability for B is 0.99. In
practice, one would either terminate the trial or treat all remaining patients with B in
this case. In my experience, many oncologists �nd this type of treatment assignment
procedure very attractive. At MDACC, we have recently developed computer programs
that perform the computations necessary to implement a Bayesian outcome-adaptive
randomization, simulate the trial to obtain its operating characteristics and calibrate
parameters on that basis, and a user-friendly front-end necessary for trial conduct.
The front-end essentially looks like a ‘point-and-click’ patient log that tells the user,
typically a research nurse or physician, each new patient’s treatment assignment. Once
this software became available, our oncologists rapidly began to use this methodology
in numerous settings. These have included trials of surgery plus chemotherapy for
gastrointestinal sarcoma, bone marrow transplantation, chemotherapy of acute leuke-
mia, interferon for renal cell cancer, and treatment of acute respiratory distress
syndrome. In several cases, a physician who initially planned to conduct a single-arm
phase II trial of an experimental treatment decided to do an adaptively randomized trial
of the experimental versus standard therapy. A remarkable aspect of this development
at MDACC is that quite a few surgeons and tx oncologists, both historically disinclined
to randomize patients, have found adaptive randomization to be ethically very
attractive. Thus, the development of computer software that enabled us to implement
adaptive randomization in the clinic has resulted in what I regard as a substantial
cultural change in our community of oncologists.

8 The logistics of adaptive decision making

Adaptive randomization is an example of an outcome-adaptive decision rule, which is
one that uses the outcomes of patients treated previously in the trial to make treatment
decisions for new patients. A common example of outcome-adaptive decision making in
oncology is a phase I dose-�nding trial in which successive cohorts of patients are
treated at speci�ed doses. Once it is observed whether or not each patient in a given
cohort experiences toxicity, the dose for the next cohort is chosen based on these
outcomes and, ideally, also the dose—outcome data from all previous cohorts. Another
example is a phase II trial with a rule saying that if there are three or fewer responses in
the �rst 19 patients then the trial must be stopped; otherwise 30 additional patients
should be treated. A very common logistical problem arising in such settings is that the
outcome may not be observed immediately but rather is de�ned over a particular time
interval. ‘Toxicity’ may be de�ned over the �rst month of therapy, so that a patient
can be scored as ‘No toxicity’ only after waiting a month. Similarly, ‘response’ may
be de�ned as the event that the patient is alive with disease in remission at two months.
In such settings, formal application of an adaptive decision rule may require waiting
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this time period in order to obtain the data and apply the rule to determine the next
patient’s treatment. This may be logistically inconvenient or impossible. For example,
formally applying a safety monitoring rule after each �fth patient in a trial where
‘response’ is de�ned over a three-month time period in a 50-patient trial would require
up to 3 £ 9 ˆ 27 months during which accrual is suspended. While this is simply not
feasible, the ethical question of how to conduct the trial safely remains, since it should
be terminated with high probability if the six-month response rate is indeed unaccep-
tably low. One seemingly obvious approach is to continue accruing patients before the
outcomes of previously treated patients are observed and make all decisions based on
the outcomes that have been observed. This may have a high risk of treating new
patients ineffectively, especially if the accrual rate is high relative to the three-month
outcome window. In the case of dose-�nding, the risk is treating a large number of
patients with a current dose that later turns out to be overly toxic. So dealing with issues
that seem to be purely logistical actually has serious scienti�c and ethical implications.
Most of the statistical literature completely ignores this pervasive logistical problem,
instead assuming the mathematically convenient fantasy that outcomes are observed
immediately. Two papers dealing with this issue in dose-�nding trials are Thall et al.29

and Cheung and Chappell.30 Eick31 gives a formal treatment of this problem for
randomized trials with a survival time outcome. Cheung and Thall32 propose a method
for monitoring composite binary events in phase II trials that does away with the need
to suspend accrual.

9 Informed consent

The idea of providing an easily understood description of the possible bene�ts and
adverse effects of the treatments to be studied in a clinical trial seems like a sensible,
ethical way to inform prospective patients about what they might be getting into.
Patients who satisfy a trial’s entry criteria are asked to read this description, or have it
explained to them, and a patient is not entered into the trial unless (s)he signs an
‘Informed Consent’ form. This seems to makes sense. Any reasonable person would
agree that patients should have the right to decide whether or not to participate in a
clinical trial based on an honest description of what it entails.

While this may sound wonderfully ethical, in practice it is far from this ideal. Cancer
patients seldom choose a treatment. Instead, they choose a physician and then rely
entirely on their chosen physician’s advice. Most cancer patients are so emotionally
upset by the discovery that they have cancer, or that a previously treated cancer has
recurred and requires further therapy, that they are incapable of making objectively
rational decisions. Family members or friends are not much help in this regard, either,
since they are also emotionally involved. Only a patient who is calmly rational and also
intelligent enough to understand the intricacies of the treatments and the probabilities
of the various outcomes can make such a decision effectively. Meisel and Roth33

provide a review of how informed consent actually works. In reality, in almost all cases
it falls on the physician honestly and accurately to present options, possible conse-
quences, and probabilities to the patient. In order to do this effectively the physician
must have a rather deep understanding of the possible treatment outcomes and their
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probabilities for the particular patient. As explained above, this in turn relies on
inferences from previous statistical data analyses. So, in reality, the nominal goal of
informed consent can only be achieved if high quality statistical analyses of high quality
data have been performed and the results of these analyses have been well understood
by the oncologist and communicated in a readily interpretable way. Once again,
effective application of statistical methods is a precursor to the ethical practice of
medicine.

10 Designed confounding

A particular new chemotherapy, which I will call Newdrug, was studied in a series of
clinical trials for treatment of AML=MDS. Newdrug was always used in combination
with a standard drug, which I will call Standard. So, some patients received this
combination while others received Standard. Some of the trials were single-arm phase II,
others were small randomized trials with the different arms arising from other agents
being added to Newdrug ‡ Standard. At the insistence of a particular scientist,
LabGuy, involved in the development and promulgation of Newdrug, it was decided
that, whenever used in this combination to treat AML=MDS, Standard should be
administered as a bolus. This was important because the mode of administration for
Standard without Newdrug was continuous infusion. Another complication was that
none of the trials included randomization of Newdrug ‡ Standard versus Standard;
consequently, the Newdrug effect was always confounded with trial effects. A statistical
analysis of the resulting data showed that, with the exception of patients with very good
prognosis, after accounting for prognostic covariates and possible trial effects, the
Newdrug ‡ Standard combination appeared to result in much worse survival
compared to Standard alone. While data from multiple trials were combined in this
analysis, the between-trial effects within each treatment group were small in relation to
the treatment effects. The negative conclusion regarding the ef�cacy of Newdrug was at
odds with what was reported previously in a series of papers based on each successive
trial, and many physicians worldwide have treated AML=MDS patients with Newdrug
on that basis.

Since the Newdrug effect was confounded with bolus administration of Standard,
LabGuy argued that the relatively poor performance of Newdrug may have been due to
the fact that Standard was given as a bolus in the Newdrug ‡ Standard combination
and by continuous infusion when Standard was given without Newdrug. LabGuy also
argued strongly and repeatedly that the paper describing these analyses should not be
submitted for publication, citing the need for collegiality as an additional motivation.
The discussion became acrimonious and unproductive. The paper was written,
submitted, and published in the medical literature.

How might this unfortunate series of events have been avoided? There are several
ethical and scienti�c issues involved. While each clinical trial was designed in a
reasonable manner, the overall evaluation of Newdrug by the collection of trials was
scienti�cally �awed in two important ways. The �rst �aw was that Newdrug ‡
Standard was never randomized against Standard, which resulted in a confounding
of the Newdrug effect with trial effects. Only a randomized comparison can really
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resolve the issue. This may be addressed by estimating the trial effects using external
data, although this approach requires additional assumptions that would not be
necessary had a randomized trial been conducted. The second �aw was that the real
comparison became Newdrug ‡ Standard given as bolus versus Standard given as
continuous infusion, so the poor performance of the former could be attributed to the
bolus effect. Both of these problems were design �aws, and with 20=20 hindsight I see
that I should have paid greater attention to the overall process of evaluating Newdrug,
and for certain trials I should have argued more forcefully for randomization of
Newdrug ‡ Standard versus Standard. In fact, I lost this argument. The question of
bolus versus continuous infusion of Standard seemed like a purely medical decision
beyond my authority as a statistician, since LabGuy insisted that Standard be given as a
bolus when combined with Newdrug on fundamental scienti�c grounds. I had no idea
that it would arise as an important statistical issue. All of this suggests to me that, to
help avoid this sort of mess in the �rst place, application of fundamental statistical
design principles is essential. At a deeper level, it is the statistician’s ethical responsibility
to argue clearly and, if necessary, forcefully for the use of appropriate design in clinical
trials. Of course, sometimes you just cannot win.

Another trial that I was asked to review aimed to study the effect of a drug,
FeelGood, when injected into the patient prior to surgery. The trial design randomized
patients between surgery alone and surgery‡ injected FeelGood. The primary outcome
was quality of life (QOL) as measured by a questionnaire administered shortly after
recovery from the surgery, and the motivating hypothesis was that FeelGood would
improve QOL. Importantly, the FeelGood injection was given prior to surgery while the
patient was conscious. Patients receiving surgery alone received no injection. Thus,
based on this and the informed consent describing the treatments, the patient knew
whether (s)he had received FeelGood. Consequently, because QOL was the primary
outcome and this is of course an entirely subjective variable, the FeelGood effect and the
prior injection effect were completely confounded. The physicians also explained that
FeelGood could not be given effectively as part of the intravenously administered
mixture that patients receive prior to and during surgery.

I strongly suggested that patients in the surgery alone arm be given a sham injection
to avoid this confounding. I was not alone in this viewpoint. The discussion of this
protocol, which continued over several weeks and became highly politicized, ended
with the protocol being approved in its original form. Of course, the resulting data from
the trial will be completely useless for evaluating the primary outcome, since any
difference in QOL is easily attributable to the patient’s knowledge of whether (s)he
received an injection. Had the primary outcome been survival time, then the injection
effect would have been irrelevant. One might argue that it is unethical to give a sham
injection, since it does not bene�t the patient. If one adopts this viewpoint, however,
then it becomes impossible to conduct the experiment in any manner but the
fundamentally �awed way that was agreed upon. The question then becomes whether
it is ethical to devote time, resources, and, above all, patients to such a fruitless
enterprise. I think not.

This episode also illustrates an important behavioral component of the process
whereby groups of people within an institutional setting are required to reach a
consensus. In my experience, many individuals would much rather avoid disagreement
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and the possibility of discord rather than hold to a viewpoint that they actually believe
is correct. That is, they would rather be wrong along with everyone else than be right by
themselves. In many settings over the years, I have watched individuals �rst assess
group opinion without expressing their own view and then vote with the majority. Since
people believe what they want to believe, it is easy to rationalize such behavior simply
by saying that one has acted in a manner concordant with the viewpoints of respected
colleagues. The point is that ethical behavior may be unpopular, especially within
settings involving many individuals and one or more institutions. The issue for each
individual is whether one has the courage to act in accordance with one’s convictions.

11 Some simple criteria

A long-term, large-scale randomized trial was designed to assess the ability of a certain
drug, Preventol, to reduce the risk of breast cancer. This was not a trial of treatments
for cancer, but rather it was a prevention trial aimed at healthy women who satis�ed a
particular risk pro�le. It happened that a female physician involved in organizing the
trial satis�ed the entry criteria. She decided not to participate.

I have no idea why this individual declined to enter the trial, and I consider it
inappropriate for me to ask. One relevant fact is that, at the time the trial was
organized, there was thought to be a small probability that Preventol might increase
the risk of ovarian cancer. One might assume that this did not motivate the physician’s
decision, since in recommending the trial to other women she must have considered this
risk an acceptable trade-off for the potential bene�t from Preventol. Perhaps she felt
that participating would have impaired her objectivity. In any case, her actions seem to
have a logical inconsistency. The question is whether it is ethical to propose that others
take a medication, either preventive or therapeutic, while considering this medication
unacceptable for oneself. I wonder how the decisions of women who were offered
participation in the trial would have been affected had they known of this physician’s
personal decision.

I use the following simple criterion when designing a clinical trial, which I highly
recommend. Ask yourself, ‘If I were an eligible patient, would I want to participate in
this trial?’ If the answer is ‘No,’ then the next step is to modify the statistical design to
change the answer to ‘Yes.’ In the rare instances where a physician has imposed
limitations that made me unable to get to ‘Yes,’ we parted company. If one is reviewing
someone else’s design, then it is one’s responsibility not only to carefully explain its
de�ciencies, but to make it clear where ethical issues are involved.

Often, an investigator at MDACC is asked to participate in a multi-institution trial
where the options are to ‘take it or leave it’ in that the design has already been
negotiated and will not be changed in any case. Participation in multi-institution clinical
trials is an essential part of the scienti�c activity in any large research hospital. The
research clinicians in each disease area belong to a larger community of oncologists who
work in other medical institutions, pharmaceutical companies, or regulatory agencies.
The decision by MDACC to not participate in a multi-institution trial thus has many
consequences involving relationships on both the personal and institutional level.
Consequently, a ‘take it or leave it’ protocol typically is disapproved for MDACC
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participation only if either it is considered to be clearly unethical or the science is just
plain wrong. Otherwise, even if the science is considered to be not the best, typically the
protocol is approved.

12 Publication bias

Some years ago, I presented a physician colleague with the results of a statistical
analysis of data from a recent clinical trial of an investigational treatment regimen,
NewRx. The analyses clearly showed that NewRx provided no improvement whatso-
ever over the standard therapy. It was the statistical equivalent of pointing out that a
dog has four legs. The physician then told me that, given such negative results, (s)he
intended not to write a paper describing the trial’s results. After a short but extremely
interesting discussion, the oncologist agreed to write the paper, and it was subsequently
published in the medical literature.

The issue here is that it is essential to convey negative results to the scienti�c
community. Otherwise, other investigators may waste time and resources pursuing
NewRx when, if they were but aware of the negative results, they would instead devote
their time elsewhere, say investigating NewNewRx. In scienti�c terms, the failure to
publish negative results produces in�ated false positive rates and misleads colleagues. A
related issue is that it is the ethical responsibility of the statistician to make sure that any
scienti�c enterprise in which (s)he is involved is honestly reported in the scienti�c
literature. This includes not only insisting that negative studies be published, but also
making sure that the speci�c language in any scienti�c paper clearly and accurately
re�ects the conclusions of any statistical analyses. That is, the statistician’s responsi-
bility does not end with data analysis.
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