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a b s t r a c t

In many biomedical studies, identifying effects of covariate interactions on survival is
a major goal. Important examples are treatment–subgroup interactions in clinical trials,
and gene–gene or gene–environment interactions in genomic studies. A common prob-
lemwhen implementing a variable selection algorithm in such settings is the requirement
that the model must satisfy the strong heredity constraint, wherein an interaction may be
included in the model only if the interaction’s component variables are included as main
effects. We propose a modified Lasso method for the Cox regression model that adaptively
selects important single covariates and pairwise interactions while enforcing the strong
heredity constraint. The proposed method is based on a modified log partial likelihood in-
cluding two adaptively weighted penalties, one for main effects and one for interactions.
A two-dimensional tuning parameter for the penalties is determined by generalized cross-
validation. Asymptotic properties are established, including consistency and rate of con-
vergence, and it is shown that the proposed selection procedure has oracle properties,
given proper choice of regularization parameters. Simulations illustrate that the proposed
method performs reliably across a range of different scenarios.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Cox proportional hazards regressionmodel (Cox, 1972, 1975) is themost widely used statistical model for evaluating
relationships between an event time, T , and baseline covariates, X = (X1, . . . , Xp). The Cox model is characterized by the
hazard function

h(t|X, β) = h0(t) exp{g(X, β)}, t > 0, (1)

for a subject with covariates X , where h0(t) is an unspecified baseline hazard and the linear component g(X, β) =
p

j=1 βjXj

is characterized by a vector β = (β1, . . . , βp)
T of unknown regression coefficients. Inmany applications, this simple form of

g(X, β) does not adequately describe the relationship between T and X due to interactions between elements of X . For ex-
ample, an anti-cancer agent tailored to attack a certain biological target typically has effects hypothesized to differ between
the subgroups of patients who do and do not have the target, identified by a binary ‘‘biomarker’’ covariate. In a randomized
trial of the targeted agent versus standard therapy, such a differential effect is characterized as a treatment–biomarker in-
teractionwhich, if found to be sufficiently large, may lead to regulatory approval of the agent for patients who are biomarker
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positive. Identifying such treatment–biomarker interactions thus is a key step in developing personalized treatments. The
presence of other covariates that may or may not be associated with T , and that also may interact with treatment, compli-
cates identification and estimation of biomarker effects. Fitting the Cox model with interactions is challenging since, even
with amoderate number of covariates, the number of interaction termsmay be large, and not all covariates and interactions
may have meaningful effects on h(t|X, β).

There is a large literature on variable selection methods for survival models. A family of penalized partial likelihood
methods have been proposed for the Cox proportional hazard model, including the Lasso (Tibshirani et al., 1997) and the
smoothly clipped absolute deviation method (Fan and Li, 2002). By shrinking some regression coefficients to zero, these
methods simultaneously select important variables and estimate the regression model parameters. Zhang and Lu (2007)
proposed an adaptive Lasso estimator for variable selection in the Coxmodel, with an adaptively weighted L1 penalty on the
regression coefficients that has a convex form. They showed that this method enjoys the oracle properties, global optima
exist, and it can be implemented efficiently using standard numerical algorithms (Boyd and Vandenberghe, 2004).

All the above variable selection methods for the Cox model treat the candidate variables equally. However, when
interactions are included, there is a natural hierarchical ordering among the variables in the model (Chipman, 1996; Joseph,
2006; Yuan et al., 2007). This motivates the strong heredity requirement that an interaction can be included in the model
only if the interaction’s component variables are included asmain effects (Hamada andWu, 1992), sincemodels that violate
this property are difficult to interpret. For linear and generalized linear regression models, Yuan et al. (2009) proposed
non-negative garrote methods that naturally incorporate a general hierarchical structure among predictors. Along this
line, Choi et al. (2010) extended the Lasso to identify interaction terms while obeying the strong heredity constraint,
which is achieved by reparameterizing the coefficients of the interaction terms. Bien et al. (2013) investigated a Lasso for
hierarchical interactions, and Radchenko and James (2010) considered a more general case with nonlinear interactions.
To our knowledge, none of these papers studied the setting with time-to-event data, and none of the variable selection
methods for the Cox model noted above satisfy the strong heredity constraint when interactions are included. This paper
aims at filling this gap.

We propose a modified Lasso procedure for the Cox model to adaptively select covariates and interactions while auto-
matically enforcing the strong heredity constraint. Themain challenges compared to linear/generalized linear regression are
that the Cox model is semiparametric and involves right-censored data. We carry out estimation and variable selection by
optimizing a modified log partial likelihood that includes two adaptively weighted penalty terms, one for main effects and
one for reparameterized interactions, with each penalty multiplied by a tuning parameter. The main reason that we choose
the reparameterization approach is that thismethod can handle all pmain effects simultaneously in one iteration, which has
tremendous numerical advantage, especially for survival analysis when no closed form can be found. The two-dimensional
tuning parameter is determined by generalized cross-validation. The proposed method is computationally convenient, has
good convergence properties, and implementation is straightforward. We establish asymptotic properties, including selec-
tion consistency, rate of convergence, and the oracle property (Fan and Li, 2001; Fan and Peng, 2004) that it performs as
well as if the correct underlying model were known in advance. These theoretical properties and algorithms have not been
studied previously for variable selection for Cox models with interaction terms subject to the strong hierarchy constraint.

2. Adaptive lasso with strong heredity constraint using penalized partial likelihood

Let Ti denote the failure time, Ci the censoring time, and Xi = (Xi1, . . . , Xip) the covariate vector of the ith subject, for
i = 1, . . . , n, withTi = min(Ti, Ci) and δi = I(Ti ≤ Ci). Suppose that (X1, T1, C1) , . . . , (Xn, Tn, Cn) are independent and
identically distributed. We further assume non-informative censoring, Ti ⊥⊥ Ci | Xi, i.e., Ti is conditionally independent
of Ci given Xi. Although our methods can be generalized to handle higher order interactions, for the ease of exposition we
consider the Cox model having a linear component with all possible two-way interactions. That is, in model (1)

g(X, β, α) =

p
j=1

βjXj +


1≤j<j′≤p

αj,j′ XjXj′ , (2)

where α = (α1,2, . . . , αp−1,p)
T . Our goals are to provide a method that determines which terms in g(X, β, α) have impor-

tant effects on the hazard, and develop a corresponding computational algorithm and parameter estimators having desirable
properties. The existing variable selection methods for the Cox model do not guarantee the strong heredity constraint, as
they treat all elements of (β, α) equally and do not distinguish between elements of β and α.

We first re-parameterize the coefficients for the interaction terms in (2) as αj,j′ = γj,j′βjβj′ , so that the linear term becomes

g(X, θ) =

p
j=1

βjXj +


1≤j<j′≤p

γj,j′βjβj′XjXj′ (3)

and the parameter vector is θ = (β, γ ) = (β1, . . . βp, γ1,2, . . . , γp−1,p)
T . With this reparameterization, the coefficient for

an interaction term XjXj′ must be 0 if either of its two main effects Xj or Xj′ has coefficient 0. Conversely, if γj,j′βjβj′ ≠ 0, this
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implies that both βj ≠ 0 and βj′ ≠ 0, which guarantees the strong heredity constraint. With the reparameterization (3), the
log partial likelihood is

ln(θ) =

n
i=1

δi


g(Xi, θ) − log


n

r=1

I(Tr ≥Ti) exp {g(Xr , θ)}


, (4)

where I(A) denotes the indicator of the event A. For the variable selection problem at hand, we will minimize the adaptive
penalized negative log partial likelihood

Qn(θ, λβ , λγ ) = −ln(θ) + nλβ

p
j=1

w
β

j

βj
+ nλγ


1≤j<j′≤p

w
γ

j,j′
γj,j′

 , (5)

where {w
β

j } and {w
γ

j,j′} are prespecifiedweights, andλβ ,λγ are tuning parameters. FollowingBreiman (1995) andZou (2006),
we compute the weights in (5) using

w
β

j =
log(n)

n

 1βj

 , w
γ

j,j′ =
log(n)

n

βjβj′αj,j′

 ,
whereβj’s andαj,j′ ’s are the estimates from a usual, unpenalized fitted Coxmodel with linear component (2). Themultiplier
log(n)/n is included to satisfy the convergence rate and the asymptotic properties introduced in Section 3. The objective
function becomes

Qn(θ, λβ , λγ ) = −ln(θ) + log(n)λβ

p
j=1

βj
βj
 + log(n)λγ


1≤j<j′≤p

γj,j′
 βjβj′αj,j′

 . (6)

The two tuning parameters in (6) control the coefficient estimates at different levels. The first tuning parameter λβ

controls main effect estimates. If βj is shrunk to zero, all terms involving Xj, including βjXj and the interactions γj,j′βjβj′XjXj′ ,
for any j′, are removed from themodel. The second tuning parameter λγ controls the estimates only at the interaction effect
level. Even if both βj ≠ 0 and βj′ ≠ 0, it is possible that γj,j′ = 0 if Xj and Xj′ do not interact. The penalty term controlled by
λγ thus provides the flexibility of selecting only main effects of Xj and Xj′ but not their interaction.

The weights act on the objective function, Qn(θ, λβ , λγ ), as follows. If the initial estimateβj is close to 0 then w
β

j will be
large and hence, as can be seen from (5), the coefficient βj of Xj will be heavily penalized. Similarly, ifαj,j′ is small relative
toβjβj′ then w

γ

j,j′ will be large and the coefficient γj,j′ of the interaction term XjXj′ will be heavily penalized.

3. Theoretical properties of the estimator

In this section, we study the asymptotic properties of our proposed variable selection procedure and the corresponding
estimator. As n → ∞, our estimator possesses the oracle property under certain regularity conditions, that is, it performs as
well as if the true model were known in advance (Fan and Li, 2001). The regularity conditions that we need throughout the
development are given in Appendix 1 in the web supplementary materials (see Appendix A), where we follow the notation
in Andersen and Gill (1982).

Let θ0 = (βT
0 , γ T

0 )T denote the true parameter vector, where

γ0j,j′ =


α0j,j′/β0jβ0j′ if β0j ≠ 0 and β0j′ ≠ 0
0 otherwise. (7)

This guarantees that the true model obeys the strong heredity constraint, that is, α0j,j′ = γ0j,j′ = 0 if either β0j = 0 or
β0j′ = 0.

Define the covariate-specific tuning parameters λ
β

j,n = λβw
β

j = n−1 log(n)λβ/

β̃j

 for j = 1, . . . , p and the interaction-

specific tuning parameters λ
γ

j,j′,n = λγ w
γ

j,j′ = n−1 log(n)λγ /
γ̃j,j′

 for 1 ≤ j < j′ ≤ p, where γ̃j,j′ = αj,j′/βjβj′ . Our proposed
estimator is

θ̂ = argminθ


−ln(θ) + n

p
j=1

λ
β

j,n

βj
+ n


1≤j<j′≤p

λ
γ

j,j′,n

γj,j′
 . (8)

Note that the criterion in (8) is the same as Qn(θ, λβ , λγ ) in (6) with different notation.
Without loss of generality, we denote β0 = (βT

a0, β
T
b0)

T , where βa0 consists of all nonzero components and βb0 consists
of the remaining zero components of β0. Similarly, for the true coefficient of interactions, write γ0 = (γ T

a0, γ
T
b0, γ

T
c0)

T , where
γa0 contains all nonzero components of γ0, γb0 contains the zero components of γ0 whose corresponding main effects both
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are nonzero, and γc0 contains the remaining zero components of γ0 whose corresponding components of main effects have
at least one zero. Correspondingly, we denote the maximizer of (8) as θ̂n = (β̂T

an, β̂
T
bn, γ̂

T
an, γ̂

T
bn, γ̂

T
cn)

T , the covariate-specific
tuning parameters as {(λ

β
an)

T , (λ
β

bn)
T
}, and the interaction-specific tuning parameters as {(λ

γ
an)

T , (λ
γ

bn)
T , (λ

γ
cn)

T
}.

Let

ξn = max

(λβ

an)
T , (λγ

an)
T , ζn = min


(λ

β

bn)
T , (λ

γ

bn)
T

.

Then ξn is the maximum among both covariate-specific and interaction-specific tuning parameters that correspond to
nonzero coefficients in the model. But for ζn, we only consider those specific tuning parameters corresponding to zero main
effects and zero interaction terms when coefficients are in γb0. That is, we consider all zero cases for themain effects, but for
the interactions, we only consider those zero terms whose corresponding main effects are nonzeros. We will refer to such
terms in the definition of ζn as non-trivial zero terms.

For the proposed variable selection procedure to perform properly, as n → ∞ the covariate-specific and interaction-
specific penalties for the terms whose true coefficients are nonzeros should converge to 0, and the penalties for those non-
trivial zero terms should be large enough so that the estimates shrink to 0. In fact, if the tuning parameters in (8) that
correspond to βa0 and γa0 converge to 0, and those corresponding to βb0 and γb0 are sufficiently large, then our proposed
estimating procedurewill have the so-called oracle property (Fan and Li, 2001). This can be guaranteedwhen

√
n-consistent

estimates of θ0 are used in the definition of λβ

j,n and λ
γ

j,j′,n, where one can easily show that
√
nξn → 0 and

√
nζn → ∞.

Denote the initial estimates as β̃ = (β̃1, . . . , β̃p), γ̃ = (γ̃1,2, . . . , γ̃p−1,p), and we summarize the above results in Theo-
rem 1. A sketch of the proof of Theorem 1 is given in Appendix 2 (see Appendix A).

Theorem 1. When
√
n(β̃ − β0) = Op(1) and

√
n(γ̃ − γ0) = Op(1) in (8) to calculate λ

β

j,n and λ
γ

j,j′,n,
√
nξn → ∞ and

√
nζn → ∞ as n → ∞. Under the regularity conditions (1)–(3) in Appendix 1 (see Appendix A), there exists a local minimizer

θ̂n of Qn(θ) such that

(i) (Sparsity) P(β̂bn = 0) → 1, P(γ̂bn = 0) → 1, and P(γ̂cn = 0) → 1 as n → ∞.
(ii) (Asymptotic normality)

√
n


β̂an
γ̂an


−


βa0
γa0


d

→ N

0, I−1

a (βa0, γa0)

,

where Ia(βa0, γa0) is the Fisher information matrix evaluated at βa0 and γa0 assuming that βb0 = 0, γb0 = 0, and γc0 = 0 is
known in advance.

Part (i) of Theorem 1 presents the sparsity property and shows that our proposed method can consistently remove the
zero-effect termswith probability tending to 1. This implies that, with a sufficiently large sample, in practice ourmethod can
select the underlying true model with high probability. In part (ii) of Theorem 1, we establish that the estimates of nonzero
elements of θ0 are

√
n-consistent and asymptotically normal. The asymptotic distribution is the same as what would be

obtained if it were known in advance which elements of θ0 are 0 and which are not 0, the so-called oracle property.
Theorem 2 establishes the asymptotic behavior of the proposed method when p is very large, especially when p → ∞

as n → ∞. This is an important case in many biomedical studies, with the advance of new high throughput technologies. A
proof of Theorem 2 is given in Appendix 3, provided in the web supplementary materials (see Appendix A).

When the number of predictors may increase with the sample size n, we denote p as pn, which allows the possibil-
ity that pn → ∞ as n → ∞. Including all main effects and pairwise interactions, the total number of parameters is
qn = (pn + 1)pn/2. Similarly, when appropriate we add a subscript n to other notation, and we let dn denote the num-
ber of non-zero coefficients in the underlying true model. Then we have

Theorem 2. Under the regularity conditions (4)–(6) in Appendix 1 (see Appendix A), if pn = o(n1/5) and
√
nqnξn → 0,

√
n/qnζn → ∞ as n → ∞, then there exists a local minimizer θ̂n of Qn(θ) such that

(i) (Sparsity) P(β̂bn = 0) → 1, P(γ̂bn = 0) → 1, and P(γ̂cn = 0) → 1 as n → ∞.
(ii) (Asymptotic Normality)

√
nΩnI

1/2
an (βa0, γa0)


β̂an
γ̂an


−


βa0
γa0


d

→ N {0, Σ} ,

where Ωn is any arbitrary d × dn matrix with a finite d such that ΩnΩ
T
n → Σ , Σ is a d × d semipositive definite symmetric

matrix, and Ian(βa0, γa0) is the dn × dn Fisher information matrix evaluated at (βa0, γa0) assuming that βb0 = 0, γb0 = 0, and
γc0 = 0 is known in advance.

The reasonwe consider an arbitrary linear combinationΩn(β̂
T
an, γ̂

T
an)

T in Theorem2, instead of (β̂T
an, γ̂

T
an)

T as in Theorem1,
is because the latter has dimension dn → ∞ as n → ∞ in the current setup, while the former has finite dimension d.
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4. Computational algorithm

Expanding ln(θ) in the objective function (6), Qn(θ, λβ , λγ ) becomes

−

n
i=1

δi


p

j=1

βkXij +


1≤j<j′≤p

γj,j′βjβj′XijXij′


− log


n

r=1

I(Tr ≥Ti) × exp


p

j=1

βjXrj

+


1≤j<j′≤p

γj,j′βjβj′XrjXrj′


+ log(n)λβ

p
j=1

βj
βj
 + log(n)λγ


1≤j<j′≤p

γjj′
 βjβj′αjj′

 .
Our estimator minimizes Qn(θ, λβ , λγ ), that is, θ̂n = argminθ Qn(θ, λβ , λγ ). To carry out the optimization, we apply a
modified version of the iteratively reweighted least squares algorithm (Green, 1984) with weighted L1 penalties. Denoting
the gradient vector of the partial likelihood by l̇(θ) = −∂ ln(θ)/∂θ and the Hessian matrix by l̈(θ) = −∂2ln(θ)/∂θ∂θ T , and
using the Cholesky decomposition l̈(θ) = MMT , where M is an invertible lower triangular matrix, we define the pseudo
response vector Y = (M)−1

{l̈(θ)θ − l̇(θ)}. By the usual second-order Taylor expansion, −ln(θ) in (6) can be approximated
by the quadratic form (Y − MT θ)T (Y − MT θ)/2, and at each penalized iteratively reweighted least squares iteration we
minimize

1
2


Y − MT θ

T 
Y − MT θ


+ log(n)λβ

p
j=1

βj
βj
 + log(n)λγ


1≤j<j′≤p

γj,j′
 βjβj′αj,j′

 . (9)

Because themain effect coefficientsβ and the interaction coefficients γ are controlled at different levels, in each stepwe also
iterate between these two sets, first fixing β to estimate γ , then fixing γ to estimate β , and iterating until convergence. This
algorithm is guaranteed to converge, since the objective function decreases at each step.Whenβ is fixed, the optimization in
γ becomes a Lasso problem, hence one can use either the LARS/Lasso algorithm (Efron et al., 2004) or quadratic programming
to solve for γ efficiently. When γ is fixed, we solve for β1, . . . , βp sequentially. For each j = 1, . . . , p, we fix γ and
β[−j] =


β1, . . . , βj−1, βj+1, . . . , βp


, and the optimization becomes a simple Lasso problem with only one parameter, βj.

This is similar to the shooting algorithm (Fu, 1998; Zhang and Lu, 2007; Friedman et al., 2007). The tuning parameters are
selected by minimizing the generalized cross validation statistic,

Cpseudo−GCV =
l(θ̂)

(1 − df /n)2
,

over a reasonable range of λβ and λγ , where df is the number of nonzero parameters in the fitted model.
For a fixed λβ and λγ , the optimization algorithm proceeds as follows:

Step 1. Center and normalize each term Xj, XjXj′ , j < j′, and j, j′ = 1, . . . , p.
Step 2. Start with plausible initial values β̂

(0)
j and γ̂

(0)
j,j′ , j < j′, and j, j′ = 1, . . . , p, such as the conventional Cox regression

parameter estimates. Setm = 1.
Step 3. Compute Y and M based on the current value θ̂ (m−1). Denote

l̃(θ) = −
1
2


Y − MT θ

T 
Y − MT θ


.

Step 4. To update γ̂ , let γ̂ (m)
= argminγ

n
i=1{−l̃(β̂(m−1), γ ) + nλγ


j<j′ w

γ

j,j′
γj,j′

}.
Step 5. To update β̂ , for each j = 1, . . . , p in sequence, let

β̂
(m)
j = argmin

βj

n
i=1

{−l̃(β̂(m−1)
[−j] , βj, γ̂

(m)) + λβw
β

j

βj
}.

Step 6. If the relative difference between Qn(θ̂
(m−1)) and Qn(θ̂

(m)),

∆(m)
=

Qn(θ̂
(m−1)) − Qn(θ̂

(m))

Qn(θ̂ (m−1))

 ,

is small enough, then stop. Otherwise, incrementm to m + 1 and return to Step 3.

Since γj,j′ = αj,j′/βjβj′ , in Step 3 the minimization is actually over {αj,j′} with β = β̂(m−1). This algorithm gives exact ze-
ros for some coefficients and guarantees that the coefficients of the corresponding interactions are set to 0 whenever the
corresponding β is shrunk to 0. Based on our empirical experience, the algorithm converges quickly.
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Table 1
Percentages of correctly selected models among 100 replications.

Censoring percentage ρ for Correlation Method
Lasso Adaptive Lasso Proposed method

Model 1 25% 0 11% 70% 86%
0.5 6% 66% 79%

40% 0 3% 58% 80%
0.5 3% 54% 82%

Model 2 25% 0 43% 49% 74%
0.5 26% 31% 63%

40% 0 28% 32% 74%
0.5 22% 33% 62%

Table 2
Term-specific percentages of being selected for each main effect and interaction. (25% censoring and ρ = 0 for independent covariates.)

Method x1 x2 x3 x4 x5 x1x2 x1x3 x1x4

Model 1 Lasso 22% 100% 100% 18% 25% 15% 12% 15%
Adaptive Lasso 6% 100% 100% 3% 7% 2% 4% 1%
Proposed method 5% 100% 100% 4% 6% 5% 5% 0%

Model 2 Lasso 6% 91% 91% 6% 5% 2% 6% 3%
Adaptive Lasso 2% 87% 85% 4% 4% 1% 2% 1%
Proposed method 10% 98% 99% 11% 8% 10% 10% 1%

Method x1x5 x2x3 x2x4 x2x5 x3x4 x3x5 x4x5

Model 1 Lasso 15% 100% 13% 13% 11% 13% 15%
Adaptive Lasso 2% 100% 3% 2% 2% 2% 0%
Proposed method 1% 100% 4% 6% 4% 6% 0%

Model 2 Lasso 3% 89% 4% 3% 9% 5% 2%
Adaptive Lasso 2% 82% 1% 2% 1% 0% 0%
Proposed method 1% 97% 10% 8% 11% 8% 2%

5. Numerical results

In this section,we report results of a simulation study comparing our proposedmethodwith the Lasso and adaptive Lasso,
two popular variable selection methods for the Cox model, neither of which guarantees the strong heredity constraint. We
follow the simulation setup in Zhang and Lu (2007), but also include two-way interaction terms as candidates for the variable
selection.We consider sample size n = 200, and assume that there are p = 5 covariates of interest in each simulated dataset,
denoted by X1, X2, . . . , X5. Thus, the number of all possible two-way interaction terms is p× (p−1)/2 = 10, and there are a
total of 15 candidate terms. We assume each covariate follows a standard normal distribution, and consider two scenarios:
(i) the covariates are independent, and (ii) the covariates have pairwise correlations Corr(Xj, Xj′) = ρ|j−j′|, with ρ = 0.5.
We generate the censoring times from a Uniform distribution having support (0, τ ), with τ chosen to obtain a specified
censoring rate of either 25% or 40%.

Then suppose failure times are generated from a Cox model with constant baseline hazard λ0 = 0.1, where the
coefficients of X2, X3, and the interaction term X2 X3 are non-zero, and the other 12 coefficients are zero. We consider the
following two models:

Model 1: β0
2 = −0.8, β0

3 = −0.8, and α0
2,3 = −0.8, corresponding to large effects.

Model 2: β0
2 = −0.3, β0

3 = −0.3, and α0
2,3 = −0.3, corresponding to small effects.

We simulate each case 100 times, and apply all three methods to each simulated dataset. For all methods, the tuning
parameters are selected using the generalized cross validation criterion Cpseudo−GCV .

Table 1 summarizes the percentage of fully correct variable selection among 100 replications for each method under
each scenario. For all cases, the proposed method correctly selects the true model more frequently than the regular Lasso
and adaptive Lasso. Specifically, for all scenarios under Model 2, where important variables and interactions have small
effects, the Lasso and adaptive Lasso perform about the same, with the latter slightly better, while our proposed method
performs much better than these two methods. In Model 1, where important variables and interactions have large effects,
the advantage of our proposed method is still substantial when the censoring percentage is high, 40%. When censoring is
moderate, 25%, the adaptive Lasso becomes competitive, but still is worse than the proposed method. The performance of
the Lasso is always the worst among the three methods.

Table 2 summarizes the individual frequencies of being selected into themodel for eachmain effect and interaction term.
We only present the results here for 25% censoring under both models when the covariates are independent (ρ = 0) due
to space limitations, but similar results are observed for the 40% censored case, and correlated covariates case. As shown
in Table 2, the proposed variable selection procedure always chooses important variable and interaction terms much more
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Table 3
Mean squared error, with standard errors in parentheses.

Censoring percentage ρ for correlation Method
Lasso Adaptive Lasso Proposed method

Model 1 25% 0 0.213 (0.124) 0.072 (0.068) 0.063 (0.065)
0.5 0.219 (0.136) 0.071 (0.068) 0.069 (0.065)

40% 0 0.337 (0.209) 0.168 (0.144) 0.117 (0.219)
0.5 0.351 (0.215) 0.162 (0.172) 0.118 (0.216)

Model 2 25% 0 0.118 (0.053) 0.105 (0.055) 0.042 (0.041)
0.5 0.131 (0.059) 0.130 (0.059) 0.054 (0.048)

40% 0 0.117 (0.053) 0.122 (0.058) 0.061 (0.062)
0.5 0.137 (0.066) 0.142 (0.068) 0.082 (0.078)

often than the other two methods. Under Model 1 for large effects, the adaptive Lasso and the proposed method in general
select the unimportant terms less often than the Lasso, while for Model 2 with small effects, the proposed method actually
selects some of the unimportant terms more often. However, as illustrated in Table 1, the proposed method simultaneously
selects all the important terms and removes the unimportant ones more frequently.

A simple, ad hoc alternative approach often employed in practice for variable selection involving interaction terms is to
run either the Lasso or the adaptive Lasso, and then, depending on which terms were selected, manually add back any main
terms that were not selected but that were components of any interaction term that was selected. This ensures the strong
heredity constraint. As seen in our simulation, this practice does not help much in terms of how often the true model is
selected correctly, while the false positive error rate is greatly increased. For example, as one can see in Table 2 for model 2,
since the proposed method selected the true interaction term x2x3 more often than the other two methods, using the above
ad hoc approach following the Lasso or the adaptive Lasso still cannot beat the proposed method. For model 1 with large
effects in Table 2, the frequency of x2, x3, and x2x3 being correctly selected already achieves 100%, so this ad hoc approach
does not help at all.

To measure the prediction accuracy, we average the mean squared error CMSE = (θ̂ − θ)TΓ (θ̂ − θ) over 100 replications
by following Tibshirani et al. (1997) and Zhang and Lu (2007), where Γ is the population variance–covariance matrix of the
covariates. Standard errors are given in parentheses. For all scenarios, the proposed method has the smallest mean squared
error (Table 3), and thus outperform the other two competitors in terms of prediction accuracy.

6. Discussion

We have extended the adaptive Lasso method to accommodate the Cox proportional hazard model including interaction
terms while ensuring that the strong heredity constraint is satisfied in the selected model. Hamada andWu (1992) consider
other constraints, such asweakhereditywhere only one of the twomain terms is required to be includedwhen an interaction
term is considered. Although this situation is not of our main interest, our methods can easily be modified to handle it by
employing a different reparameterization.

Similarly, as discussed in Zhang and Lu (2007), the adaptive choice of weights may become problematic when some el-
ements of θ are not estimable. This may occur, for example, when strong collinearity exists among covariates, or when the
number of covariates p is much larger than the sample size n in high-dimensional data. In such settings, one cannot obtain
the initial estimates to determine the adaptive weights. Alternatively, robust estimation of θ , such as ridge regression, may
be considered.

Our work was motivated by the desire to identify key treatment–biomarker interactions for developing personalized
treatments, where the number of candidate biomarkers is usually fixed or may grow slowly with n. Even with a moderate
number of candidate biomarkers, however, our methodology can have an important impact on physician’s actual behavior,
if clinically meaningful treatment–biomarker effects are identified. The condition p = o(n1/5) that we used may be relaxed
though. There have been recent theoretical developments on high-dimensional survival models such as those in Bradic et al.
(2011) and Lin and Lv (2013), but their underlying theory cannot be applied directly to our setting, which uses a reparame-
terization approach for selecting important interactionswith heredity constraint. In order to relax our condition p = o(n1/5),
modification of the above theory to our settingwould be required, and this would entail a substantial amount of work.While
this is beyond the scope of the current paper, it certainly would be an interesting future research project.
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Appendix 1: Regularity conditions.

Following the notation in Andersen & Gill (1982), we consider a finite time interval [0, τ ] with

τ <∞. To facilitate the notation, let Ni(t) = I {Ti ≤ t, Ti ≤ Ci} and Yi(t) = I {Ti ≥ t, Ci ≥ t}.

DefineHi(θ, t) = Yi(t) exp {g(Xi, θ)}, S(0)(θ, t) = n−1
∑n

i=1Hi(θ, t), S(1)(θ, t) = n−1
∑n

i=1∇θHi(θ, t),

S(2)(θ, t) = n−1
∑n

i=1∇2
θHi(θ, t), and S(3)(θ, t) = n−1

∑n
i=1∇3

θHi(θ, t), where ∇θ(·) denotes the

first derivative with respect of θ, ∇2
θ(·) and ∇3

θ(·) denote the second and third order derivatives

respectively.

We assume the following regularity conditions hold for Theorem 1:

(1)
´ τ

0
λ0(t)dt <∞

(2) There exists a neighbourhood Θ of θ0 and s(0)(θ, t), s(1)(θ, t), s(2)(θ, t) and s(3)(θ, t)

defined on Θ× [0, τ ] such that for j = 0,1,2 and 3.

sup
t∈[0,τ ],θ∈Θ

∥∥S(j)(θ, t)− s(j)(θ, t)
∥∥ −→P 0

where ‖·‖ is the L1-norm.

(3) Let Θ, s(0)(·, ·), s(1)(·, ·), s(2)(·, ·) and s(3)(·, ·) be as in Condition (2) and define e =

s(1)/s(0) and v = s(2)/s(0) − e ⊗ e. For all θ ∈ Θ, t ∈ [0, τ ], s(0)(·, t), s(1)(·, t) and s(2)(·, t)

are continuous functions of θ ∈ Θ, uniformly in t ∈ [0, τ ], s(0)(θ, t), s(1)(θ, t), s(2)(θ, t), and

s(3)(θ, t) are bounded on Θ× [0, τ ]; and s(0)(θ, t) is bounded away from zero on Θ× [0, τ ]. Let
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u(2)(θ) = ∇2
θg(X, θ),

I(θ0) =

ˆ τ

0

{
ν(θ0, t)− u(2)(θ0)

}
s(0)(θ0, t)λ0(t)dt,

and we require the submatrix Ia(βa0, γa0) from I(θ0) that corresponds to the non-zero (βa0, γa0)

is positive definite.

For Theorem 2, we denoteHi(θn, t) = Yi(t) exp {g(θn, Xn,i)}. Define φi,j(θn, t) = {∂Hi(θn, t)/∂θn,j}

/{n−1
∑n

i=1Hi(θn, t)},W (1)
j (θn, t) = n−1

∑n
i=1 φi,j(θn, t),W

(2)
jk (θn, t) = n−1

∑n
i=1 ∂φi,j(θn, t)/∂θn,k,

andW (3)
jkl (θn, t) = n−1

∑n
i=1 ∂φi,j(θn, t)/(∂θn,k∂θn,l), for any j, k, l = 1, · · · , pn(pn+1)/2. We fur-

ther denoteW (1,2)
jk (θn, t) = n−1

∑n
i=1 {φi,j(θn, t)φi,k(θn, t)}

2,W (2,2)
jk (θn, t) = n−1

∑n
i=1 {∂φi,j(θn, t)/∂θn,k}

2,

andW (3,2)
jkl (θn, t) = n−1

∑n
i=1 {∂2φi,j(θn, t)/∂θn,k∂θn,l}2. We assume the following regularity con-

ditions in Theorem 2.

(4)
´ τ

0
λ0(t)dt <∞

(5) There exists a neighbourhood Θn of θn,0 and w
(1)
j (θn, t), w

(2)
jk (θn, t), w

(3)
jkl(θn, t), w

(1,2)
jk (θn, t),

w
(2,2)
jk (θn, t), w

(3,2)
jkl (θn, t), defined on Θn × [0, τ ] such that for m = 1, 2, 3,

sup
t∈[0,τ ],θn∈Θn

∥∥W (m)
· (θn, t)− w(m)

· (θn, t)
∥∥ −→P 0,

and moreover,

sup
t∈[0,τ ],θn∈Θn

∥∥W (1,2)
· (θn, t)− w(1,2)

· (θn, t)
∥∥ −→P 0

sup
t∈[0,τ ],θn∈Θn

∥∥W (2,2)
· (θn, t)− w(2,2)

· (θn, t)
∥∥ −→P 0

sup
t∈[0,τ ],θn∈Θn

∥∥W (3,2)
· (θn, t)− w(3,2)

· (θn, t)
∥∥ −→P 0.

(6) For all θn ∈ Θn, t ∈ [0, τ ], w(1)
· (·, t), w(2)

· (·, t), w(3)
· (·, t), w(1,2)

· (·, t), w(2,2)
· (·, t), w(3,2)

· (·, t)

are continuous functions of θn ∈ Θn, uniformly in t ∈ [0, τ ], and w
(1)
· (θn, t), w

(2)
· (θn, t),

w
(3)
· (θn, t) and w

(1,2)
· (θn, t), w

(2,2)
· (θn, t), w

(3,2)
· (θn, t) are bounded on Θn × [0, τ ]. Let u(2)(θn)

denote ∇2
θn
g(X, θn) and w(2)(θn, t) denote the matrix with {w(2)(θn, t)}jk = w

(2)
jk (θn, t) for all

2



j, k = 1, · · · , pn(pn + 1)/2. Then define

I(θn,0) =

ˆ τ

0

{
w(2)(θn,0, t)− u(2)(θn,0)

}
s(0)(θn,0, t)λ0(t)dt,

and let Ian(βa0, γa0) denote the submatrix of I(θn,0) with respect to the non-zero (βa0, γa0). It

satisfies 0 < C1 < λmin{Ian(βa0, γa0)} ≤ λmax{Ian(βa0, γa0)} < C2 < ∞ for all n, where λmin(·)

and λmax(·) represent the smallest and largest eigenvalues of a matrix respectively.

Appendix 2: Proof of Theorem 1.

The log partial likelihood ln(θ) can be written as

ln(θ) =
n∑
i=1

ˆ τ

0

g(Xi, θ)dNi(s)−
ˆ τ

0

log

[
n∑
i=1

Yi(s)exp {g(Xi, θ)}

]
dÑ(s)

where Ñ(·) =
∑n

i=1Ni(·). By Theorem 4.1 and Lemma 3.1 of ?, it follows that, for each θ in a

neighbourhood of θ0:

1

n
{ln(θ)− ln(θ0)} =

ˆ τ

0

[
(θ − θ0)T s(1)(θ0, t)− log

{
s(0)(θ, t)

s(0)(θ0, t)

}
s(0)(θ0, t)

]
λ0(t)dt+Op

(
‖θ − θ0‖√

n

)
.

Let ηn = n−1/2 + ξn, consider the C-ball Bn(C) = {θ : θ = θ0 + ηnδ, ‖δ‖ ≤ C} , C > 0. For any

θ ∈ Bn(C), by the second-order Taylor expansion of the log partial likelihood, and by the weak

law of large numbers, we have

1

n
{ln(θ0 + ηnδ)− ln(θ0)} =

1

n
∇T
θ ln(θ0)ηnδ −

1

2
η2
nδ

T {I(θ0) + op(1)} δ

where ‖δ‖ ≤ C. We further write δ = (u1, ..., up, v12, ..., vp−1,p)
T = (uT , vT )T . Then let

Dn(δ) ≡ 1

n
{Qn(θ0 + ηnδ)−Qn(θ0)}

= − 1

n
{ln(θ0 + ηnδ)− ln(θ0)}+

p∑
j=1

λβj,n (|β0j + ηnuj| − |β0j|)+
∑
j<j′

λγj,j′,n (|γ0j,j′ + ηnvj,j′ | − |γ0j,j′ |)

≥ − 1

n
{ln(θ0 + ηnδ)− ln(θ0)} − η2

n

 ∑
{j:β0j∈βa0}

|uj|+
∑

{(j,j′):γ0j,j′∈γa0}

|vj,j′|


3



≥ − 1

n
{ln(θ0 + ηnδ)− ln(θ0)} − η2

n (|βa0|+ |γa0|)C ≡ A1 + A2 + A3

where |·| measures the number of elements of the vector inside,

A1 = − 1

n
∇θln(θ0) (ηnδ) = Op(n

−1/2) (ηnδ)

A2 =
1

2
(ηnδ)

T {I(θ0) + op(1)} (ηnδ) =
1

2
(ηnδa)

T {Ia(βa0, γa0) + op(1)} (ηnδa)

A3 = −η2
n (|βa0|+ |γa0|)C,

and δa is the sub-vector of δ correspond to non-zero (βa0, γa0). Notice that A2 dominates A1

and A3 and is positive since Ia(βa0, γa0) is positive definite. Therefore, for any given ε > 0,

there exists a large enough constant d such that

P

{
inf

θ∈Bn(d)
Qn(θ) > Qn(θ0)

}
≥ 1− ε.

This implies that with probability at least 1−ε, there exists a local minimizer in the ball Bn(C)

such that
∥∥∥θ̂n − θ0

∥∥∥ = Op(ηn) = Op(n
−1/2).

Now for the sparsity, we first show P (β̂bn = 0) → 1. It is sufficient to show for any

{j : β0j ∈ βb0},
∂Qn(θ̂n)

∂βj
> 0 for 0 < β̂j < εn (1)

and
∂Qn(θ̂n)

∂βj
< 0 for − εn < β̂j < 0 (2)

with probability tending to 1, where εn = Cn−1/2 and C > 0 is any constant. To show (1),

notice

∂Qn(θ̂n)

∂βj
= −∂ln(θ̂n)

∂βj
+ λβj,nsign(βj) = −∂ln(θ0)

∂βj
−

p(p+1)/2∑
k=1

∂2ln(θ0)

∂βj∂θk

(
θ̂k − θ0k

)

−

p(p+1)
2∑

k=1

p(p+1)
2∑
l=1

∂3ln(θ̃)

∂βj∂θk∂θl

(
θ̂k − θ0k

)(
θ̂l − θ0l

)
+ λβj,nsign(βj),

4



where θ̃ lies between θ̂n and θ0. By the regularity conditions and
∥∥∥θ̂n − θ0

∥∥∥ = Op(n
−1/2),

∂Qn(θ̂n)

∂βj
=
√
n
{
Op(1) +

√
nλβj,nsign(β̂j)

}
.

As
√
nλβj → ∞ for j ∈ {j : β0j ∈ βb0}, the sign of ∂Qn(θ̂n)/∂βj is dominated by sign(β̂j).

Therefore,

P

[
∂Qn(θ̂n)

∂βj
> 0 for 0 < β̂j < εn

]
→ 1 as n→∞

Similarly, we can show (2), and P (β̂bn = 0)→ 1 follows. We can similarly prove that P (γ̂bn =

0)→ 1.

For (j, j′) ∈ {(j, j′) : γ0j,j′ ∈ γc0}, without loss of generality, assume that β0j = 0. Notice

that β̂j = 0 implies γ̂j,j′ = 0. Since we already have P (β̂j = 0) → 1, we can conclude

P (γ̂j,j′ = 0)→ 1 as well, i.e. P (γ̂cn = 0)→ 1 as n→∞. Thus, we finish the proof for Part (i)

of Theorem 1.

Next we show the asymptotic normality. Let Q̃n(θa) denote the objective function Qn only

on the nonzero component of θ, i.e. θa = (βTa , γ
T
a )T . We define θb = (βTb , γ

T
b , γ

T
c )T , and from

the above derivation, we have P
(
θ̂b = 0

)
→ 1. Thus,

P

[
arg min

θa
Q̃n(θa) =

(
θa − component of arg min

θ
Qn(θ)

)]
→ 1.

It means that θ̂a should satisfy

∂Q̃n(θa)

∂θj
|θa=θ̂a

= 0, ∀j ∈ {j : θj ∈ θa}

with probability tending to 1.

Let l̃n(θa) and P̃λ(θa) denote the log-likelihood function of θa and the penalty function of

θa respectively so that we have

Q̃n(θa) = −l̃n(θa) + P̃λ(θa)

Then

∇θaQ̃n(θ̂a) = −∇θa l̃n(θ̂a) +∇θaP̃λ(θ̂a) = 0 (3)
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with probability tending to 1.

By Taylor expansion, it is easy to show that

B1 = ∇θa l̃n(θ̂a) =
√
n

[
1√
n
∇θa l̃n(θa0)− Ia(βa0, γa0)

√
n(θ̂a − θa0) + op(1)

]

and

B2 = ∇θaP̃λ(θ̂a) =


 λβj,nsign(βj)

λγj,j′,nsign(γj,j′)


βj∈βa,γj,j′∈γa

+ op(1)(θ̂a − θa0)

 .

Since we have
∥∥∥θ̂a − θa0

∥∥∥ = Op(n
−1/2), together with (3), we have

√
n(θ̂a − θa0) = Ia(βa0, γa0)−1 1√

n
∇θa l̃n(θa0) + op(1).

Part (ii) of Theorem 1 then follows by applying the central limit theorem.

Appendix 3: Proof of Theorem 2.

Similarly, under the regularity conditions in Appendix 1, we argue that there exists a lo-

cal minimizer θ̂n of Qn(θ) such that
∥∥∥θ̂n − θn,0∥∥∥ = Op(

√
qn(n1/2+ξn)). Let ηn =

√
qn(n−1/2+ξn),

consider the C-ball {θn = θn,0 + ηnδ, ‖δ‖ ≤ C} , C > 0. We defineDn(δ) ≡ {Qn(θn,0 + ηnδ)−Qn(θn,0)} /n,

then for any δ = (u1, ..., up, v12, ..., vp−1,p)
T = (uT , vT )T that satisfies ‖δ‖ ≤ C, similarly as in

Appendix 2, we have

Dn(δ) ≡ 1

n
{Qn(θn,0 + ηnδ)−Qn(θn,0)} ≥ − 1

n
{ln(θn,0 + ηnδ)− ln(θn,0)} − ηn (

√
qnξn)C

= − 1

n
∇T
θnln(θn,0) (ηnδ) +

1

2
(ηnδ)

T {I(θn,0) + op(1)} (ηnδ)− η2
nC ≡ Ã1 + Ã2 + Ã3

where

Ã1 = − 1

n
∇T
θnln(θn,0) (ηnδ) and

∣∣∣Ã1

∣∣∣ ≤ n−1/2ηnOp(
√
qn)C = Op(η

2
n)C,

Ã2 =
1

2
(ηnδ)

T {I(θn,0) + op(1)} (ηnδ) =
1

2
(ηnδa)

T {Ian(βa0, γa0) + op(1)} (ηnδa) , Ã3 = η2
nC,

and δa is the sub-vector of δ correspond to non-zero (βa0, γa0). Similarly, Ã2 dominates Ã1 and

Ã3, and is positive since Ian(βa0, γa0) is positive definite. Therefore, for any given ε > 0, there
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exists a large enough constant C such that

P

{
inf
‖δ‖≤C

Qn(θn,0 + ηnδ) > Qn(θn,0)

}
≥ 1− ε.

This implies that with probability at least 1−ε, there exists a local minimizer in the ball Bn(C)

such that
∥∥∥θ̂n − θn,0∥∥∥ = Op(ηn).

We now show P (β̂bn = 0)→ 1. It is sufficient to show that for any j ∈ {j : βn,j ∈ βbn},

∂Qn(θ̂n)

∂βn,j
> 0 for 0 < β̂n,j < εn (4)

∂Qn(θ̂n)

∂βn,j
< 0 for − εn < β̂n,j < 0 (5)

with probability tending to 1, where εn = Cn−1/2 and C > 0 is any constant. Notice

∂Qn(θ̂n)

∂βn,j
= −∂ln(θ̂n)

∂βn,j
+ λβnj,nsign(βn,j)

= −∂ln(θn,0)

∂βn,j
−

qn∑
k=1

∂2ln(θn,0)

∂βn,j∂θn,k

(
θ̂n,k − θn,0k

)

−
qn∑
k=1

qn∑
l=1

∂3ln(θ̃)

∂βn,j∂θn,k∂θn,l

(
θ̂n,k − θn,0k

)(
θ̂n,l − θn,0l

)
+ λβnj,nsign(βn,j),

where θ̃n lies between θ̂n and θn,0. By the regularity conditions, and notice
∥∥∥θ̂n − θn,0∥∥∥ =

Op(
√
qn/n),

∂Qn(θ̂n)

∂βn,j
=
√
nqn

{
Op(1) +

√
n

qn
λβnj,nsgn(β̂n,j)

}
.

As
√
n/qnλ

βn
j,n →∞ for j ∈ {j : βn,j ∈ βbn}, the sign of ∂Qn(θ̂n)/∂βn,j is the same as sign(β̂n,j).

Therefore,

P

[
∂Qn(θ̂n)

∂βn,j
> 0 for 0 < β̂n,j < εn

]
→ 1 as n→∞

and (4) holds with probability tending to 1. Parallel to this, one can show (5) holds with

probability tending to 1.

Similar argument can be used to prove P (γ̂n,j,j′ = 0) → 1 as n → ∞, for γ̂n,j,j′ ∈ γ̂bn, thus

P (γ̂bn = 0)→ 1.
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For γ̂n,j,j′ ∈ γ̂cn, without loss of generality, assume that βn,0j = 0. Notice that β̂n,j = 0

implies γ̂n,j,j′ = 0, because if γ̂n,j,j′ 6= 0, then the value of the loss function does not change but

the value of the penalty function increases. Therefore, P (γ̂n,j,j′ = 0)→ 1 follows since we have

already shown P (β̂n,j = 0)→ 1.

Thus, Part (i) of Theorem 2 is proved.

Now, we prove the asymptotic normality. Denote θan = (βTan, γ
T
an)T , then

√
nΩnI

1/2
an (θan,0)

(
θ̂an − θan,0

)
=
√
nΩnI

−1/2
an (θan,0)Ian(θan,0)

(
θ̂an − θan,0

)

=
√
nΩnI−1/2

an (βa0, γa0)

{
1

n
∇ln(θan,0) + op(n

−1/2)

}

=
1√
n

ΩnI−1/2
an (βa0, γa0)

n∑
i=1

[∇ln(θan,0)] + op (1) ≡
n∑
i=1

Yni + op (1) ,

where Yni = n−1/2ΩnI−1/2
an (βa0, γa0)

∑n
i=1 [∇ln(θan,0)].

We now show that with probability tending to 1,
∑n

i=1 Yni + op (1)→d N (0,Σ):

(i) We first show Ian(βa0, γa0)
(
θ̂an − θan,0

)
= n−1∇ln(θan,0) + op(n

−1/2) . With probability

tending to 1,

0 = ∇θanQn(θ̂an) = − 1

n
∇θanln(θ̂an)+∇θan

 ∑
{j:βn,0j∈βa0}

λβnj,nβ̂n,0j +
∑

{(j,j′):γn,0j,j′∈γa0}

λγnj,j′,nγ̂n,0j,j′

 .

Taking Taylor Expansion at θan = θa0, we have

0 = −∇θanln(θa0)−
[
∇2
θanln(θa0)

] (
θ̂an − θa0

)
− 1

2

(
θ̂an − θa0

)T [
∇2
θan (∇θanln(θa0))

] (
θ̂an − θa0

)

+n∇θan

 ∑
{j:βn,0j∈βa0}

λβnj,nβn,0j +
∑

{(j,j′):γn,0j,j′∈γa0}

λγnj,j′,nγn,0j,j′

 .

Thus,

I−1/2
an (βa0, γa0)

(
θ̂an − θa0

)
= − 1

n
∇2
θanln(θa0)

(
θ̂an − θa0

)
+

{
I−1/2
an (βa0, γa0) +

1

n
∇2
θanln(θa0)

}(
θ̂an − θa0

)

=
1

n
∇θanln(θa0) +

1

2n

(
θ̂an − θa0

)T [
∇2
θan (∇θanln(θa0))

] (
θ̂an − θa0

)
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−∇θan

 ∑
{j:βn,0j∈βa0}

λβnj,nβn,0j +
∑

{(j,j′):γn,0j,j′∈γa0}

λγnj,j′,nγn,0j,j′


+

{
I−1/2
an (βa0, γa0) +

1

n
∇2
θanln(θa0)

}(
θ̂an − θa0

)
.

Therefore, it is sufficient to show that

1

2n

(
θ̂an − θa0

)T [
∇2
θan (∇θanln(θa0))

] (
θ̂an − θa0

)

−∇θan

 ∑
{j:βn,0j∈βa0}

λβnj,nβn,0j +
∑

{(j,j′):γn,0j,j′∈γa0}

λγnj,j′,nγn,0j,j′


+

{
Ian(βa0, γa0) +

1

n
∇2
θanln(θa0)

}(
θ̂an − θa0

)
= op(n

−1/2).

Denote the three terms in the above equation as D1, D2, and D3. First, by Cauchy-Schwarz

inequality,

‖D1‖2 ≤ 1

4n2

∥∥∇2
θan (∇θanln(θan,0))

∥∥2
∥∥∥θ̂an − θa0

∥∥∥4

=
1

4n2

∑
{(j,k,l):θn,j ,θn,k,θn,l∈θan}

n2Op(1)Op(
q2
n

n
) = Op(q

5
n/n

2) = op(1/n)

Secondly, because ξn = o(1/
√
nqn),

‖D2‖2 =

∥∥∥∥(λβn1,nsign(βn,01), . . . , λγnpn−1,pn,n
sign(γn,0(pn−1,pn))

)T∥∥∥∥2

≤ |θan| ξ2
n = |θan| o(1/nqn) = op(1/n)

Third, it can be shown that

‖D3‖2 ≤
∥∥∥∥Ian(βa0, γa0) +

1

n
∇2
θanln(θa0)

∥∥∥∥2 ∥∥∥θ̂an − θa0

∥∥∥2

= op(1/q
2
n)Op(qn/n) = op(1/nqn) = op(1/n)

Therefore, D1 +D2 +D3 = op(n
−1/2).

Next, we show
∑n

i=1 Yni + op(1) −→d N(0,Σ). It is sufficient to show that Yni, i = 1, . . . , n

satisfies the conditions for Lindeberg-Feller central limit theorem. For any given ε > 0, by
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Cauchy-Schwarz inequality,

n∑
i=1

E
[
‖Yni‖2 I {‖Yni‖ > ε}

]
= nE

[
‖Yni‖2 I {‖Yni‖ > ε}

]
≤ nD

1/2
4 D

1/2
5

where D4 =
[
E ‖Yni‖4] and D5 = E {I (‖Yni‖ > ε)}. Note

D4 =
1

n2
E
∥∥ΩnI−1/2

an (βa0, γa0)∇θanln(θa0)
∥∥4

≤ 1

n2

∥∥ΩT
nΩn

∥∥2 ‖Ian(θa0)‖−2E
∥∥∇T

θanln(θa0)∇θanln(θa0)
∥∥2

=
1

n2
λ2
max(Ω

T
nΩn)λ2

max

{
I−1
an (θa0)

}
O(|θan|2) = O(q2

n/n
2).

By Markov inequality,

D5 = E {I (‖Yni‖ > ε)} = P (‖Yn1‖ > ε) ≤ E ‖Yn1‖2

ε2
= O(qn/n).

Therefore,
n∑
i=1

E
[
‖Yni‖2 1{‖Yni‖ > ε}

]
≤ nO(qn/n)O(

√
qn/n) = o(1),

and part (ii) of Theorem 2 follows.
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