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Optimization of multi-stage dynamic
treatment regimes utilizing
accumulated data
Xuelin Huang,a*† Sangbum Choi,b Lu Wangc and Peter F. Thalla

In medical therapies involving multiple stages, a physician’s choice of a subject’s treatment at each stage depends
on the subject’s history of previous treatments and outcomes. The sequence of decisions is known as a dynamic
treatment regime or treatment policy. We consider dynamic treatment regimes in settings where each subject’s
final outcome can be defined as the sum of longitudinally observed values, each corresponding to a stage of the
regime. Q-learning, which is a backward induction method, is used to first optimize the last stage treatment
then sequentially optimize each previous stage treatment until the first stage treatment is optimized. During this
process, model-based expectations of outcomes of late stages are used in the optimization of earlier stages. When
the outcome models are misspecified, bias can accumulate from stage to stage and become severe, especially
when the number of treatment stages is large. We demonstrate that a modification of standard Q-learning can
help reduce the accumulated bias. We provide a computational algorithm, estimators, and closed-form variance
formulas. Simulation studies show that the modified Q-learning method has a higher probability of identifying
the optimal treatment regime even in settings with misspecified models for outcomes. It is applied to identify
optimal treatment regimes in a study for advanced prostate cancer and to estimate and compare the final mean
rewards of all the possible discrete two-stage treatment sequences. Copyright © 2015 John Wiley & Sons, Ltd.

Keywords: backward induction; multi-stage treatment; optimal treatment sequence; Q-learning; treatment
decision-making

1. Introduction

A dynamic treatment regime is a mathematical formalism for what physicians do routinely when making
therapeutic decisions sequentially. The physician chooses a first treatment using diagnostic information,
administers it, and observes the patient’s response. A second decision is based on the diagnostic infor-
mation, first treatment, and newly observed response. This process may be continued, using the patient’s
history up to the current stage for each decision, until either a satisfactory outcome is achieved or no fur-
ther treatment is considered acceptable. The dynamic treatment regime is the sequence of decision rules
embedded in the sequence of alternating observations and treatments.

Methods for evaluating dynamic treatment regimes have been used increasingly for patients undergoing
long-term care involving multi-stage therapies. It is challenging to identify optimal decision rules in such
multi-stage treatment settings because of the complicated relationships between the alternating sequences
of observed outcomes and treatments. The decision at each treatment stage depends on all observed
historical data and influences all future outcomes and treatments. In turn, outcomes at each stage are
affected by all previous treatments and influence all future treatment decisions. It is well known that
simply optimizing the immediate outcome of each stage, which is called a myopic or greedy optimization,
may not achieve the best final outcome. Simulation studies in Section 3 demonstrate this point.

Despite these complications, many approaches have been proposed to identify, estimate, or optimize
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dynamic treatment regimes based on observational data. Most methods have their origins in the seminal
papers by Robins and colleagues [1–5] and Murphy [6], including inverse probability of treatment weight-
ing (IPTW) and g-estimation for structural nested models. Many variants of IPTW and g-estimation
have been proposed [7–16]. They show the importance, when evaluating causal treatment effects, of
correcting for bias introduced by physicians’ adaptive treatment decisions based on each patient’s cur-
rent health status. Recent applications include estimation of survival for dynamic treatment regimes in
a sequentially randomized prostate cancer trial [17] and in a partially randomized trial of chemotherapy
for acute leukemia [18]. Clinical trial designs that compare multi-stage treatment strategies by adaptively
re-randomizing patients have been proposed [19–22].

We address the multi-stage decision-making problem in settings where the final outcome to be opti-
mized can be expressed as the sum of values observed at each stage. An important application is that
where survival time is the final outcome and the cumulative value at each stage is the patient’s current
survival time. Another application is a study where the cumulative outcome is the amount of time that
the patient’s health index was within a specific target range. In such situations, a natural approach is to
assume a conditional model for the outcome of each stage. However, because of the dependence of each
outcome on previous treatments and outcomes, this approach may lead to a very complex model for the
final outcome, which in turn makes global optimization of the treatment sequence difficult or intractable.

An alternative approach, called Q-learning [23–30], is to use backward induction [31] to first optimize
the last stage treatment, then sequentially optimize the treatment in each previous stage. At each stage, a
model is assumed for the cumulative rewards from this stage onward, with all the future stages already
optimized. This approach is well suited for global optimization but depends on the correct specification
of reward models at all stages. At the optimization at each stage, misspecified models cause bias, and a
severe problem is that bias is carried forward from each stage to the optimization of the previous stage.
Consequently, even small bias at each stage may produce a large cumulative bias for the optimization of
the entire regime.

In this article, we show that a slight modification of standard Q-learning can reduce cumulative bias.
At each stage, when computing the rewards from those ‘already-optimized’ future stage, standard Q-
learning uses the maximum of model-based values. The modified Q-learning uses the actual observed
rewards plus estimated loss due to sub-optimal actions. If the optimal actions were actually taken for all
future stages, then the estimated loss is zero, and the actual observed rewards are used. Consequently,
comparing with standard Q-learning, the modified Q-learning is more likely to use the originally observed
rewards instead of model-based ones; thus, it is more robust against model misspecification and less likely
to carry the bias from stage to stage during the backward reduction. This is demonstrated by simulation
studies in Section 3.

When applying the modified Q-learning to a prostate cancer study in Section 4, we provide a by-product
that is convenient for the practical use of both standard and modified Q-learning. In many situations where
the treatment options are discrete, it is often of interest to estimate the mean rewards of all the treatment
sequences. However, Q-learning does not require fully specified reward functions for all possible treat-
ment strategies. This helps achieving simplicity. On the other hand, it fails to provide all the estimates
of interest in these situations. Therefore, this seems to be a shortcoming of Q-learning. Nevertheless, in
Section 4.3, we provide a trick to use Q-learning (standard or modified) to estimate the mean rewards for
all possible multi-stage (discrete) treatment sequences and make inference about the reward differences
between any two treatment sequences. This technique of Q-learning application is useful in practice but
has not appeared in the literature, to the best of our knowledge.

The article is organized as follows. The modified Q-learning method and its properties are described in
Section 2. Its performance for identifying optimal treatment regimes in settings with misspecified reward
models is evaluated by simulation in Section 3. We apply the method in Section 4 to analyze data from
a prostate cancer trial. A summary and discussion of the modified Q-learning method are presented in
Section 5. Mathematical details are provided in Appendices.

2. Backward induction for sequential treatment optimization

We use the framework of potential (counterfactual) outcomes of all possible treatment options for
each individual and make the usual assumptions [32] that (i) an individual’s potential outcome under
the treatment actually received is the observed outcome (consistency), (ii) given the history at each
stage, the treatment decision is independent of the potential outcomes (sequential randomization or no
unmeasured confounders), and (iii) all treatment strategies being considered have a positive probability
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of being observed (positivity). To identify the optimal action at each stage of backward induction, the
estimated reward is computed for each possible action assuming that the actions at all future stages will
be optimal. This is performed by fitting a parametric model for the counterfactual future reward as a
function of actions and current history. The final cumulative reward is the estimate of what the patient’s
total reward would be if all actions were optimal. In the sequel, we will use the terms ‘payoff’ and
‘reward’ interchangeably to mean the same thing.

2.1. Notation and method

For each subject i = 1, · · · , n and stage s = 1, · · · ,K, where n denotes the sample size and K denotes the
total number of multiple stages, let Zi,s denote the time-dependent covariates measured at the beginning
of s-th stage, Ai,s, the treatment or action, and Yi,s, the observed outcome. Without loss of general-
ity, we assume that larger values of Yi,s are preferable. We denote the corresponding vectors of these
variables through s stages by Z̄i,s =

(
Zi,1, · · · ,Zi,s

)
, Āi,s =

(
Ai,1, · · · ,Ai,s

)
, and Ȳi,s =

(
Yi,1, · · · ,Yi,s

)
. At

stage 1, the subject’s history is simply H̄i,1 = Zi,1. For each subsequent stage s ⩾ 2, the history is H̄i,s

=
(
Z̄i,s, Āi,s−1, Ȳi,s−1

)
. We denote the optimal action at stage s by A𝑜𝑝𝑡

i,s , and the associated counterfac-
tual outcome that would occur if this optimal action were taken by Y∗

i,s. For all s < K, we define the

counterfactual cumulative outcome for stages s through K under
(

Ai,s,A
𝑜𝑝𝑡

i,s+1, · · · ,A
𝑜𝑝𝑡

i,K

)
as follows:

QM
i,s =𝑑𝑒𝑓 Yi,s +

K∑
r=s+1

Y∗
i,r, (1)

where each A𝑜𝑝𝑡

i,j is conditional on all the historic information observed prior to stage j, including previous
treatments and responses. For simplicity, we have suppressed conditional notation. In words, this equation
says that

[current + future payoff] = [observed stage s outcome] + [best possible future outcomes after stage s]

That is, QM
i,s is the future payoff, starting at stage s, if all actions from s + 1 to K are optimized, but the

actual (possibly suboptimal) action Ai,s is taken at stage s. For the final stage, because there are no future
actions to optimize, we define QM

i,K = Yi,K . In our notation, QM
i,s’s are random variables, rather than mean

functions as denoted by other authors.
We next define Δi,s to be the total future loss from stages s to K if action Ai,s is taken instead of A𝑜𝑝𝑡

i,s ,
while all actions from stage s+ 1 to K are optimal. Thus, if Ai,s = A𝑜𝑝𝑡

i,s , then Δi,s = 0, whereas if Ai,s is not
optimal, then Δi,s > 0. This Δi,s is essentially Murphy’s regret function [6]. Robins defined a similar blip
function by comparison with a ‘zero’ treatment instead of the optimal one [5]. We use the counterfactual
in (1) and loss Δi,s to define the cumulative future reward to patient i, from stages s to stage K, for taking
the optimal action from stage s onward as

Ri,s =𝑑𝑒𝑓 QM
i,s + Δi,s I

(
Ai,s ≠ A𝑜𝑝𝑡

i,s

)
= Yi,s +

K∑
r=s+1

Y∗
i,r + Δi,s I

(
Ai,s ≠ A𝑜𝑝𝑡

i,s

)
. (2)

The basic idea is that the reward Ri,s is obtained from QM
i,s by adding back the future loss due to taking a

suboptimal action at stage s. For example, if Yi,s is the increment in survival time for stage s, then Ri,s is
the sum of the stagewise survival times from stage s onward associated with all current and future actions
being optimal, given the past treatment and response history.

Given the aforementioned structure for the future reward Ri,s at each stage s, the counterfactual
cumulative outcome in Equation (1) can be written in the more compact form

QM
i,s = Yi,s + Ri,s+1, for s < K. (3)

If all optimal actions and Δi,s’s were known, one could simply work backward and compute Ri,s for
each s = K,K − 1, · · · , 1, and thus obtain the final payoff Ri,1. To derive A𝑜𝑝𝑡

i,K , · · · ,A
𝑜𝑝𝑡

i,1 in the steps of
the backward induction, we will exploit the decomposition given by Equations (1)–(3) by assuming an
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additive parametric regression model for QM
i,s as a function of Ai,s and the most recent history H̄M

i,s =(
Zi,s−1,Zi,s,Yi,s−1,Ai,s−1

)T
. We formulate the regression model in terms of H̄M

i,s, rather than the complete
history H̄i,s, to control the number of parameters so that the method may be applied feasibly. This requires
us to make a Markovian assumption. The fitted model will provide estimates of the Δi,s’s and thus identify
the A𝑜𝑝𝑡

i,s values and thus the optimal payoffs.
Appendix A provides details of the parametric regression model that we assume for QM

i,s. In particular,
Appendix D provides an illustration for a special case of three treatment stages with three treatment
options each stage. An important aspect of our approach is that we assume a regression model for QM

i,s,

rather than assuming simple models for Ys, 1 ⩽ s ⩽ K, which could result in a model for Y =
∑K

s=1 Ys
that may be too complicated for optimization.

2.2. Backward induction

Our method requires the the cumulative causal effect of treatment j versus l at stage s, which we define
formally, for j > l, as

Di,s(j, l) = QM
i,s

(
Ai,s = j, H̄M

i,s

)
− QM

i,s

(
Ai,s = l, H̄M

i,s

)
In words, this cumulative causal effect is

[current + future payoff for action j at stage s] − [current + future payoff for action l at stage s].

Substituting the parameter estimates obtained from the fitted regression model, given in Appendix A,
gives the estimated cumulative payoff, Q̂M

i,s, estimated causal effects, D̂i,s(j, l), and estimated cumulative
future rewards R̂i,s. The backward induction is carried out as follows:

Step 1. Start with s = K and set QM
i,K = Yi,K .

Step 2. For the current step s,

Step 2.1 Fit the regression model (15) for QM
i,s to obtain

(
𝛽s, �̂�

(2)
s , · · · , �̂� (Js)

s

)
and thus Q̂M

i,s.

Step 2.2 Use the estimated causal effects D̂i,s( j, l) given by (16) to identify the estimated optimal
action Â𝑜𝑝𝑡

i,s = argmax1⩽j⩽Js
{maxl≠j D̂i,s(j, l)}.

Step 2.3 Define the estimated future loss due to taking action Ai,s to be Δ̂i,s =𝑑𝑒𝑓 Q̂M
i,s

(
Â𝑜𝑝𝑡

i,s

)
−

Q̂M
i,s(Ai,s).

Step 2.4 By (2), step 2.3 gives the estimate R̂i,s =𝑑𝑒𝑓 QM
i,s + Δ̂i,s I

(
Ai,s ≠ Â𝑜𝑝𝑡

i,s

)
.

Step 3. If s > 1, decrement s → s− 1. By (3), set QM
i,s = Yi,s + R̂i,s+1, and go to Step 2.1 If s = 1, stop.

At the end of these steps, Â𝑜𝑝𝑡

i,1 , · · · , Â
𝑜𝑝𝑡

i,K , the optimal treatments for all subjects at all stages, have been
identified, and R̂i,1 is the estimated total payoff from taking these estimated optimal actions. With this
algorithm, the optimization is global rather than myopic or local.

Asymptotic properties of the estimators are given in Appendix B. The ‘Sandwich’ formula [33] is used
to account for the extra variation because of plugging in an estimator from a late treatment stage into the
regression models for an early stage.

2.3. Comparison with standard Q-learning

The method described previously is a robust modification of standard Q-learning [23, 28]. For all
treatment stages except the last, to estimate counterfactual outcomes under optimal actions, standard Q-
learning uses predicted values from previously fitted linear models plus estimated loss due to suboptimal
actions. In contrast, our modified Q-learning method uses the values actually observed plus the esti-
mated loss. Let Q𝑠𝑡𝑑

i,s denote the standard Q-learning method’s objective function that plays the role of our
function QM

i,s. For the first step of the backward induction used in our method, Q𝑠𝑡𝑑
i,K = QM

i,K .

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 3424–3443
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Standard Q-learning does backward induction using the same steps as our backward induction
algorithm through step 2.3, but it uses the estimated stage K reward

R̂𝑠𝑡𝑑
i,K =𝑑𝑒𝑓 Q̂𝑠𝑡𝑑

i,K + Δ̂i,K I
(

Ai,K ≠ Â𝑜𝑝𝑡

i,K

)
.

In contrast, our estimated stage K reward is

R̂i,K =𝑑𝑒𝑓 QM
i,K + Δ̂i,K I

(
Ai,K ≠ Â𝑜𝑝𝑡

i,K

)
.

The difference is that standard Q-learning uses predicted values Q̂𝑠𝑡𝑑
i,K obtained from a regression model,

while our modified Q-learning method uses the observed values QM
i,K . This difference is carried to the

next stage, s = K − 1, through the formulations of Q̂𝑠𝑡𝑑
i,K−1 = YK−1 + R̂𝑠𝑡𝑑

i,K and QM
i,K−1 = YK−1 + R̂i,K .

Similar differences are accumulated during the iteration of this process in the backward induction steps
from s = K − 1 to s = 1.

The modified Q-learning method has the following advantages. First, QM
i,s uses observed outcomes

whenever possible for any s ⩽ K, whereas Q𝑠𝑡𝑑
i,s uses model-based expectations for any s < K. Retaining

the original outcomes helps the modified Q-learning rely less on the specification of the models used in
(15), and thus improves robustness. This is shown by our simulation study in the next section when the
model (15) is misspecified, for example, when some relevant covariates are not included in the data set.
The simulations show that QM

i,s has a more robust performance than Q𝑠𝑡𝑑
i,s .

The second advantage of the modified Q-learning method follows from the fact that definition (3)
ensures QM

i,s ⩾
∑K

r=s Yi,r. This means that the predicted reward under optimal treatment regimes for stage
s + 1 onward is always at least the observed reward under the actual regimes, which may be subopti-
mal. This is a desirable property that does not always hold for standard Q-learning because, in practice,
one may observe Q𝑠𝑡𝑑

i,s <
∑K

j=s Yi for some s < K. This happens simply because, for some subjects, the
predicted rewards under optimal treatment regimes for stage s + 1 onward are less than their observed
actual reward. Furthermore, for s < K, if a patient has received the optimal treatment regimes for stage
s + 1 onward, then with the modified Q-learning, because Δi,r = 0 for all r ⩾ s + 1, the potential

outcome under the treatment sequence
{

Ais,A
𝑜𝑝𝑡

i,s+1, · · · ,A
𝑜𝑝𝑡

i,K

}
for this patient, is QM

i,s =
∑K

r=s Yi,r, the
observed reward from stage s onward. This is in agreement with the ‘consistency assumption’. This
assumption, stated at the beginning of Section 2, requires that the assumed counterfactual outcomes
under the actual observed actions must be equal to the observed outcomes. It is a very natural assump-
tion and commonly required in causal inference [34]. In contrast, with standard Q-learning, Q𝑠𝑡𝑑

i,s may

not equal
∑K

r=s Yi,r, even if a patient receives the optimal treatment regimes for stage s + 1 onward. That
is, as an estimate of the counterfactual outcome, Q𝑠𝑡𝑑

i,s may violate the consistency assumption on indi-
vidual basis, although it satisfies this assumption in expectation when the reward models are correctly
specified. We will compare the performance of standard and modified Q-learning in the next section
by simulation.

3. Simulation studies

The correct specification of reward models is very important for Q-learning [32]. In this section, we use
simulations to show that, in some scenarios, when the reward models are misspecified, the modified Q-
learning outperforms standard Q-learning. For simplicity, we evaluate two-stage treatment sequences.
Sample sizes 50, 100, 200, and 400 are considered. We use three scenarios, each simulation scenario is
replicated 1000 times.

3.1. Scenario I

In scenario I, we assume an unobserved variable V ∼ Normal(0, 22). For the first treatment stage, we
generate covariate Z1 ∼ Normal(0, 1), treatment A1 ∼ Bernoulli(0.5), and outcome Y1 = Z1(A1 − 0.5) +
V + 𝜀1, with 𝜀1 ∼ Normal(0, 1). The second stage treatment A2 ∼ Bernoulli(0.5), and outcome Y2 =
−2Z1(A1 − 0.5) + (A1 − 0.5)(A2 − 0.5) −V + 𝜀2, with 𝜀2 ∼ Normal(0, 1). The final cumulative outcome is
Y = Y1 + Y2. With the observed data of (Z1,A1,Y1,A2,Y2) for all subjects, the goal is to find the optimal
two-stage treatment regimes that maximizes Y .
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In this scenario, both treatments A1 and A2 are randomized. The optimal stage 2 treatment is A𝑜𝑝𝑡

2 =
I(A1 = 1). Then the reward for stage 2 under A𝑜𝑝𝑡

2 is R2 = −2Z1(A1 − 0.5) + 0.25 − V + 𝜀2. Recalling
that QM

2 = Y2, and QM
1 = Y1 + R2 = −Z1(A1 − 0.5) + 0.25 + 𝜀1 + 𝜀2. We assume the following model to

optimize A1.

QM
1 = 𝛽10 + 𝛽11Z1 + A1(𝜓10 + 𝜓11Z1) + e1, (4)

The true values for the aforementioned parameters are 𝛽1 = (𝛽10, 𝛽11)T = (0.25, 0.5)T and 𝜓1 =
(𝜓10, 𝜓11)T = (0,−1)T . The optimal stage 1 treatment is A𝑜𝑝𝑡

1 = I(Z1 < 0). If we use a myopic strategy to
optimize A1 by maximizing Y1 = Z1(A1−0.5)+V +𝜀1, we will obtain a wrong solution A𝑜𝑝𝑡

1 = I(Z1 ⩾ 0).
To apply the modified Q-learning, we first fit the following model,

QM
2 = Y2 = 𝛽20 + 𝛽21Z1 + 𝛽22A1 + 𝛽23Y1

+ A2

(
𝜓20 + 𝜓21Z1 + 𝜓22A1 + 𝜓23Y1

)
+ e2.

(5)

From the data generation mechanism, it can be derived that the true values for the aforementioned
parameters are 𝛽2 = (𝛽20, 𝛽21, 𝛽22, 𝛽23)T = (0.25, 0,−0.5,−0.857)T , and 𝜓2 = (𝜓20, 𝜓21, 𝜓22, 𝜓23)T =
(−0.5, 0, 1, 0)T . The coefficient 𝛽23 = −0.857 is the effect of V on Y2 through Y1, namely, 𝛽23 =
E(Y1Y2)∕E(Y2

1 ). Details about this derivation is provided in Appendix C. After fitting the above model to
obtain 𝛽2 and �̂�2, the estimated optimal stage 2 treatment is

Â𝑜𝑝𝑡

2 = I
(
�̂�20 + �̂�21Z1 + �̂�22A1 + �̂�23Y1 > 0

)
. (6)

Then let

R̂2 = Y2 + I
(
A2 ≠ Â𝑜𝑝𝑡

2

) |�̂�20 + �̂�21Z1 + �̂�22A1 + �̂�23Y1| ,
QM

1 = Y1 + R̂2 ,
(7)

with | ⋅ | denotes absolute value. We use the outcome QM
1 to fit the model in (4). After estimators 𝛽1 and

�̂�1 are obtained, the estimated optimal stage 1 treatment is

Â𝑜𝑝𝑡

1 = I(�̂�10 + �̂�11Z1 > 0) . (8)

The simulation results for samples of size 200 are given Tables I and II (each first panel from the left,
scenario I). In general, the bias is small, and the empirical and asymptotic standard errors (SE and ASE)
match well, with coverage probabilities of the 95% confidence intervals all close to nominal. The modified
Q-learning correctly identified the optimal stage 1 and stage 2 treatments 91.1% and 88.4% of the time,
respectively. Parameter estimations for other sample sizes (n=50, 100, or 400) are also performed well
by the modified Q-learning (results not shown).

We apply standard Q-learning to the same data sets. Both standard and modified Q-learning fit the
same regression models (5) for treatment stage 2. Naturally, they obtain exactly the same results for stage
2 (Table II) but differ for the stage 1 estimates (Table I). As shown in Equation (7), the outcome used
by the modified Q-learning is the actually observed values Y2 plus the estimated loss due to suboptimal
stage 2 actions. In contrast, the outcome used by standard Q-learning for stage 1 is the predicted value
Ŷ2 from stage 2 by model (5) plus the same estimated loss, as follows.

R̂𝑠𝑡𝑑
2 = Ŷ2 + I

(
A2 ≠ Â𝑜𝑝𝑡

2

) |�̂�20 + �̂�21Z1 + �̂�22A1 + �̂�23Y1| ,
Q𝑠𝑡𝑑

1 = Y1 + R̂𝑠𝑡𝑑
2 .

(9)

Using Q𝑠𝑡𝑑
1 to replace QM

1 in (4), the same linear regression model in (4) is fit to identify the optimal
stage 1 treatments. Note that QM

1 carries this information from V by using the original data Y2, but Q𝑠𝑡𝑑
1

discards this information by using the model based value Ŷ2. Due to this difference, the two methods
obtain different stage 1 estimates (Table I). Standard Q-learning gives biased estimates for 𝛽11 and 𝜓11.
Consequently, the probability that it correctly identifies the optimal stage 1 treatments is only 38.2%,
much lower than that achieved by the modified Q-learning (91.1%). In summary, standard Q-learning
uses model-based values in the construction of counterfactual outcomes and is prone to bias introduced by

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 3424–3443
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Table II. Parameter estimates for treatment stage 2.

Standard or modified Q-Learning* g-estimation** Regret Minimization**

True Est SE ASE CP Est SE ASE CP Est SE ASE CP

Scenario I: Pr(A1 = 1) = Pr(A2 = 1) = 0.5

𝛽20 0.25 0.255 0.207 0.210 0.949
𝛽21 0 0.002 0.170 0.149 0.907
𝛽22 −0.5 −0.495 0.298 0.297 0.947
𝛽23 −0.857 −0.858 0.063 0.065 0.960
𝜓20 −0.5 −0.510 0.294 0.297 0.952 −0.510 0.284 0.289 0.952 −0.509 0.282 0.292 0.947
𝜓21 0 −0.003 0.240 0.212 0.919 −0.004 0.229 0.227 0.946 −0.014 0.214 0.219 0.955
𝜓22 1 0.997 0.413 0.420 0.949 0.997 0.378 0.396 0.959 1.027 0.410 0.420 0.948
𝜓23 0 0.004 0.091 0.093 0.952 0.004 0.091 0.094 0.950 −0.002 0.100 0.097 0.932

Scenario II: logit{Pr(A1 = 1)} = Z1, logit{Pr(A2 = 1)} = 0.3Y1

𝛽20 0.25 0.019 0.217 0.220 0.823
𝛽21 0 0.006 0.194 0.165 0.904
𝛽22 −0.5 −0.501 0.321 0.319 0.942
𝛽23 −0.857 −0.842 0.070 0.069 0.939
𝜓20 −0.5 −0.517 0.309 0.316 0.965 −0.514 0.310 0.318 0.955 −0.476 0.325 0.324 0.944
𝜓21 0 −0.008 0.268 0.230 0.906 −0.004 0.269 0.258 0.933 −0.002 0.266 0.271 0.960
𝜓22 1 1.023 0.455 0.456 0.943 1.019 0.453 0.464 0.945 0.996 0.488 0.488 0.938
𝜓23 0 −0.005 0.097 0.096 0.954 −0.005 0.107 0.107 0.949 0.001 0.114 0.119 0.957

Scenario III: logit{Pr(A1 = 1)} = Z1 + V , logit{Pr(A2 = 1)} = 0.3Y1 + V

𝛽20 0.25 0.639 0.233 0.235 0.617
𝛽21 0 0.343 0.182 0.157 0.422
𝛽22 −0.5 −1.31 0.394 0.364 0.391
𝛽23 −0.857 −0.724 0.0871 0.0873 0.669
𝜓20 −0.5 −1.32 0.401 0.363 0.407 −0.965 0.409 0.399 0.774 −1.089 0.393 0.392 0.667
𝜓21 0 −0.539 0.245 0.218 0.315 −0.020 0.327 0.314 0.934 0.046 0.316 0.353 0.966
𝜓22 1 1.725 0.548 0.503 0.697 1.020 0.591 0.579 0.932 0.969 0.606 0.625 0.953
𝜓23 0 −0.010 0.124 0.123 0.948 −0.005 0.202 0.206 0.953 −0.009 0.222 0.238 0.950

*Standard and modified Q-Learning methods use the same estimating equations and give the same results for the last
treatment stage;
**g-estimation and regret minimization specify treatment selection probabilities (not shown) but do not need 𝛽s. Est,
mean of estimates; SE, empirical standard error; ASE, average of standard error estimates; ASE for g-estimation and
regret minimization obtained by 200 bootstrap samples. CP, coverage probability of 95% confidence interval.

model misspecification. As the number of treatment stages increases, the model-based values will be used
more times during the backward induction, and this bias problem will become more severe. In contrast,
the modified Q-learning achieves robustness against model misspecification by using the original data
instead of model-based values whenever possible.

Because the main goal of Q-learning is to correctly identify optimal treatments, we conducted addi-
tional simulations for a range of sample sizes and compared performance of modified Q-learning with
standard Q-learning. We also compared their performances with the myopic strategy that uses Y1 to opti-
mize A1 and Y2 to optimize A2. Figure 1 shows these probabilities under a range of sample sizes. The
modified Q-learning has larger probabilities than standard Q-learning to correctly identify the optimal
stage 1 treatments. Both the modified and standard Q-learning have much better performances than the
myopic strategy.

It is also interesting to note that in this setting with misspecified reward models, the optimal treatment
selection power of the modified Q-learning increases with sample size, but this is not true for either
standard Q-learning or myopic optimization. This shows that in situations of model misspecification, a
large sample size cannot remedy a non-robust or incorrectly designed optimization algorithm and may
even make things worse. Specifically in this simulation setting, because there are only two treatment
options at each stage, a pure random selection of any one of them has a probability of 50% of being
correct. The less than 50% power of standard Q-learning and myopic optimization shown in Figure 1
reveal that they are severely biased in such a situation with misspecified reward models. It also explains
why their empirical power levels decrease with sample size. This is because their true power levels are
less than 50% as n → ∞, and equal to 50% as n → 0 (equivalent to a pure random selection).

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 3424–3443
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Figure 1. Comparisons between the modified and standard Q-learning, myopic optimization, g-estimation and
regret minimization: probability (power) of correctly identifying the optimal stage 1 and stage 2 treatments
in scenarios I, II, and III. Note: For stage 1, in all scenarios, the power curves for the modified Q-learning,
g-estimation and regret minimization almost overlap with each other. For stage 2, in all scenarios, the power curves
for the modified and standard Q-learning and myopic optimization overlap with each other, so that only the solid
curve (modified Q-learning) is visible; they almost overlap with those for g-estimation and regret minimization

in scenarios I and II and are higher than those for g-estimation and regret minimization in scenario III.

3.2. Scenarios II and III, and other optimization methods

Treatments in scenario I are randomized. We also consider other treatment selection models. In sce-
nario II, treatment assignment probabilities depend on observed covariates and outcomes, namely, A1 ∼
Bernoulli(Z1), A2 ∼ Bernoulli(0.3Y1). In scenario III, treatment assignments further depend on the unob-
served variable V , as in the succeeding texts, A1 ∼ Bernoulli(Z1 +V), A2 ∼ Bernoulli(0.3Y1 +V). All the
other data generation mechanisms remain the same as in scenario I. The same data analyses shown in the
previous subsection for scenario I by standard and modified Q-learning, and by the myopic optimization
method, are also conducted for scenarios II and III.

As suggested by a reviewer, we also compare the proposed estimator to the estimators by Murphy
[6] and Robins [5]. Moodie et al. [25] provided a nice description of these estimators together with R
functions for implementing them, which are used below with combination of her and our notations.

In our setting of data generation, the g-estimator [5] starts with the following estimation functions.
Denote by 𝔥j the observed history prior to Aj, j = 1, 2. Let 𝛾1(𝔥1, a1;𝜓) = a1(𝜓10 + 𝜓11z1) and
𝛾2(𝔥2, a2;𝜓) = a2(𝜓20 + 𝜓21z1 + 𝜓22a1 + 𝜓23y1) be the blip functions [5] defining the expected differ-
ences in outcome, respectively, between treatments A1 = a1 and A1 = 0, and between A2 = a2 and
A2 = 0. Consequently, this would identify the optimal stage 2 treatment as d𝑜𝑝𝑡

2 (𝔥2) = I(𝜓20 + 𝜓21z1 +
𝜓22a1 +𝜓23y1 > 0), and d𝑜𝑝𝑡

1 (𝔥1) = I(𝜓10 +𝜓11z1 > 0). By the data generation described earlier, we have
𝜓1 = (𝜓10, 𝜓11)T = (0,−1)T and 𝜓2 = (𝜓20, 𝜓21, 𝜓22, 𝜓23)T = (−0.5, 0, 1, 0)T . Denote S1(a1) = a1(1, z1)T

3432
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and S2(a2) = a2(1, z1, a1, y1)T . Define

H𝑚𝑜𝑑,2(𝜓) = Y − 𝛾2(𝔥2, a2;𝜓) (10)

H𝑚𝑜𝑑,1(𝜓) = Y − 𝛾1(𝔥1, a1;𝜓) + {𝛾2(𝔥2, d
opt
2 ;𝜓) − 𝛾2(𝔥2, a2;𝜓)} (11)

Also assume treatment selection models as follows:

logit{Pr(A1 = 1|Z1)} = 𝛼10 + 𝛼11Z1 ,

logit{Pr(A2 = 1|Z1,A1,Y1)} = 𝛼20 + 𝛼21Z1 + 𝛼22A1 + 𝛼23Y1 ,

The aforementioned resulting estimator �̂� is used in the following estimating equation to estimate 𝜓 and
then find out the optimal treatment regimes

U†
j (𝜓, s, �̂�) =

[
H𝑚𝑜𝑑,j(𝜓) − E{H𝑚𝑜𝑑,j(𝜓)|𝔥j}

]
×
[
Sj(aj) − E{Sj(Aj)|𝔥j}

]
, j = 1, 2. (12)

Murphy [6] defined a regret function as the loss due to taking a suboptimal action. In the above
setting, the regret functions for the two stages can be written as 𝜇j(𝔥j, aj) = maxa{𝛾j(𝔥j, a) −
𝛾j(𝔥j, aj)} [25]. If an optimal action is taken, that is, aj = d𝑜𝑝𝑡

j (𝔥j), then the regret is zero,
namely, 𝜇j(𝔥j, aj) = 0. The true regret functions are 𝜇1(𝔥1, a1) = |z1|I{a1 ≠ I(z1 < 0)} and
𝜇2(𝔥2, a2) = |a1 − 0.5|I(a2 ≠ a1). Using the methods proposed by Murphy [6] and also adopted
by Moodie et al. [25], logistic functions as the following are used to approximate these piecewise
linear functions

𝜇∗
1(z1, a1) = (𝜓10 + 𝜓11z1)

{
exp{30(𝜓10 + 𝜓11z1)}

1 + exp{30(𝜓10 + 𝜓11z1)}
− a1

}
(13)

𝜇∗
2(z1, a1, y1, a2) = (𝜓20 +𝜓21z1 +𝜓22a1 +𝜓23y1)

{
exp{30(𝜓20 + 𝜓21z1 + 𝜓22a1 + 𝜓23y1)}

1 + exp{30(𝜓20 + 𝜓21z1 + 𝜓22a1 + 𝜓23y1)}
− a2

}
.

(14)

The true values of the above 𝜓s are the same as that for the g-estimation.
For all the methods, the parameter estimates and their empirical and asymptotic standard errors are

reported in Tables I and II. The standard and modified Q-learning and the myopic optimization use more
parameters for their outcome models (both 𝛽s and 𝜓s), whereas the g-estimation and regret minimization
use less parameters for their outcome models (only the 𝜓s). However, they use logistic regression models
for treatment selection, for which the estimated parameters are not reported. Similarly, as Moodie et
al. [25], the bootstrap method (200 randomly drawn samples from the original data with replacement)
are used to compute the asymptotic standard errors for the g-estimation and regret minimization. In the
aforementioned tables, standard Q-learning estimators show substantial bias for the stage 1 parameters
𝛽11 and 𝜓11 in all the three scenarios. The modified Q-learning, g-estimation and regret minimization
have only very small bias in scenarios I and II, but some bias in scenario III, in which both the outcome
and treatment assignment models are misspecified.

The power levels for all the methods to correctly identify the optimal treatments are depicted in
Figure 1. For stage 1, in all three scenarios, the modified Q-learning, g-estimation and regret minimization
perform almost the same, whereas the myopic optimization and standard Q-learning have poor perfor-
mance. For stage 2, the standard and modified Q-learning, and the myopic optimization have the same
performance. Comparing with them, the g-estimation and regret minimization have slightly lower power
levels in scenario III, but the same power levels in scenarios I and II. In this figure, the case of n = 50 for
g-estimation is not shown because it involves singular matrices and other computation issues.

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 3424–3443
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Table III. Estimates of Δ2 in computation of optimal potential stage 2 score
R2 = Y2 + Δ2.

Stage 1 Optimal stage 2 treatment
Actual stage 2 treatment

treatment conditional on stage 1 treatment CVD KA/VE TEC TEE

CVD TEC NA 0.03 0 0.24
KA/VE TEC 0.5 NA 0 0.55
TEC CVD 0 0.175 NA 0.25
TEE TEC 0.125 0.125 0 NA

4. Application to a prostate cancer study

We applied the modified Q-learning to analyze data from a clinical trial of advanced prostate cancer con-
ducted at MD Anderson Cancer Center from 1998 to 2006 to evaluate multi-stage therapeutic strategies
[17,19]. One hundred and fifty patients with advanced prostate cancer were randomized at enrollment to
receive one of four chemotherapy combinations, abbreviated as CVD, KA/VE, TEC, and TEE, during an
initial treatment period of 8 to 24 weeks. Thereafter, response-based assignment to the second stage treat-
ment was made. Patients with a favorable response to the initial treatment stayed on the same treatment
during the second stage (‘respond → stay’), while patients who did not have a favorable response were
randomized among the three remaining treatments (‘no response → switch’). Because 47 patients did
not follow this protocol because of severe toxicities or progressive disease or other reasons, Wang et al.
[17] defined viable dynamic treatment regimes including such discontinuation and accounting for both
efficacy and toxicity. This evaluation was based on expert score defined from the bivariate outcomes of
efficacy and toxicity in each stage. The scores for the first and second stages were denoted by Y1 and Y2,
respectively. It was further specified that patients who went off treatment during the first stage received
a score of Y2 = 0 for stage 2. We used the modified Q-learning to identify the optimal treatments for the
two stages that maximized Y = Y1 +Y2. The data set included the following covariates: patient age, radi-
ation treatment (yes or no), length of time hormone therapy was received (in months) before registration,
location of evidence of disease at enrollment, strata (low or high risk), baseline prostate-specific antigen
level, and alkaline phosphatase hemoglobin concentrations.

4.1. Stage 2 estimation

By design, patients with a favorable response in stage 1 had that treatment repeated, and we assumed that
they received the optimal A2. Because patients whose first stage treatment failed were re-randomized,
this produced a saturated factorial design with 12 different two-stage treatment sequences. Because of the
limited sample size, we fit a model with 12 indicators for the 12 treatment sequences, without including
their interactions with patients’ characteristics. The fitted model showed that for patients who received
TEC in stage 1 and did not have a favorable response, the best stage 2 treatment was CVD. For patients
who did not receive TEC in stage 1 and did not have a favorable response, the best stage 2 treatment was
TEC. The computation of potential stage 2 scores under the aforementioned optimal stage 2 treatment is
shown in Table III. If the stage 1 treatment failed, the score indicated in Table III is added to each patient’s
actual stage 2 score, Y2, to obtain a hypothetical optimal score, R2, which is used in the next step of the
analysis. For patients who had a favorable response in stage 1 treatment, we set R2 = Y2. For patients
who went off treatment during the first stage, because they did not receive any stage 2 treatment, they
could not be used in the estimation of stage 2 treatment effects. They were still included in the analyses
for stage 1 and overall outcomes by assigning R2 = 0. This had an impact on the interpretation of the
identified optimal regimes, as shown in the next subsection.

4.2. Stage 1 estimation

After the stage 2 estimation, we defined

QM
1 = Y1 + R2.

For the four stage 1 treatments, we fit a linear regression model for all main effects and interactions
associated with the stage 1 treatment with response QM

1 . All covariates mentioned at the beginning of

3434
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Table IV. Linear regression for the effects of stage 1 treatments on the potential
final outcome if their corresponding optimal stage 2 treatments had been received.

Estimate SE p-value

Intercept 1.248 0.1004 < 0.001
Age −0.0109 0.0053 0.039
KA/VE versus CVD 0.2366 0.1286 0.066
TEC versus CVD 0.2757 0.1294 0.033
TEE versus CVD 0.0475 0.1370 0.729

this Section 4 were considered. Using the Akaike information criterion (AIC) to conduct a stepwise
variable selection, we found that age seemed to be the only significant covariate. Interactions between
age and treatments were not statistically significant. Age was centered at 65 years, which is roughly the
mean. The fitted model given in Tables III and IV shows that the stage 1 treatment may be ranked in
the following order: TEC, KA/VE, TEE, and CVD, and they roughly can be put into two groups, {TEC,
KA/VE} and {TEE, CVD}, with substantial difference between the groups, but not much difference
within either group. Combining these results with those in Table III, which show the optimal stage 2
treatment conditional on stage 1 treatment, we conclude that the optimal treatment sequence (strategy)
for these patients is as follows. Start with initial treatment TEC. If a patient achieves a favorable response,
then continue to treat with TEC in the second stage. Otherwise, that is, if a patient does not achieve a
favorable response to the initial treatment, then treat with CVD in the second stage. We denote this regime
by (TEC, CVD). Other regimes are denoted similarly.

The estimates in Table IV are not for stage 1 outcomes only, but rather for the mean final rewards if
the stage 2 treatments had been optimized conditional on the stage 1 treatment. For example, compared
with CVD, the initial treatment TEC could have improved mean final outcome score by 0.2757 (standard
deviation = 0.1294), if all subjects had received their respective optimal stage 2 treatments conditional on
their stage 1 treatments. Referring to Table III, the optimal two-stage treatment strategy is (TEC, CVD)
for subjects who receive TEC in stage 1, and is (CVD, TEC) for subjects whose stage 1 treatments are
CVD. The noted difference of 0.2757 in Table IV between initial treatments TEC and CVD is actually
the difference between the two regimes (TEC, CVD) and (CVD, TEC). This difference is statistically
significant (p = 0.033).

4.3. Estimation for the mean rewards of 16 regimes

Similar to standard Q-learning, the modified Q-learning does not require fully specified reward functions
for all possible treatment strategies. For the aforementioned example, combining the results in Tables III
and IV, we have estimated the mean rewards of the following four regimes: (TEC, CVD), (KA/VE, TEC),
(TEE, TEC), and (CVD, TEC). However, we have not obtained estimates for other regimes, for example,
(TEC, TEE). There are 12 such regimes. This might be viewed as an inconvenience for Q-learning or the
modified Q-learning. One may try to introduce some extra models to estimate the mean rewards for the
other 12 regimes. However, we show in the succeeding discussions that this is unnecessary.

In Table III, our purpose was to identify the optimal regimes, thus we used the optimal stage 2 treat-
ments as references and computed the potential loss Δ2 due to not taking the optimal stage 2 treatment.
When our purpose is to compute mean final rewards for other regimes rather than identifying optimal
regimes, we replace those optimal stage 2 treatments in Table III by the treatments for which we intend
to estimate and use them as the new references. Then we figure out the new potential loss (or gain) Δ′

2
due to not taking the new reference treatments in stage 2 and compute the final reward values for regimes
using the new reference treatments in stage 2. We put these Δ′

2 values in Table V. For convenience, we
copy Table III to the top of Table V. The middle part of Table V shows the new Δ′

2 values for estimat-
ing the mean final rewards for the following regimes, (CVD, KA/VE), (KA/VE, CVD), (TEC, TEE),
and (TEE, CVD), which are referred to as target regimes. With these Δ′

2, we define a new final reward
QM′

1 = Y1 +R
′

2, with R
′

2 = Y2 +Δ′

2, and then proceed similarly to use regression models for QM′

1 as we do
for QM

1 . The bottom part of Table V uses another different set of stage 2 reference treatments to estimate
the final mean rewards for regimes (CVD, TEE), (KA/VE, TEE), (TEC, KA/VE), and (TEE, KA/VE).
Throughout Table V, the stage 2 reference treatments have Δ′

2 = 0 (or Δ2 = 0). If the label for a stage 2
reference treatment is j (hence Δ′

2j = 0), then a different stage 2 treatment k has Δ′

2k = Δ2k − Δ2j. Both

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 3424–3443
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Table V. Estimates for Δ2 and Δ′

2 with different stage 2 treatments as references.

Reference
Target Stage 1 Stage 2

Actual stage 2 treatment

regimes treatment treatment CVD KA/VE TEC TEE

Δ2

(CVD, TEC) CVD TEC NA 0.03 0 0.24
( KA/VE, TEC) KA/VE TEC 0.5 NA 0 0.55
(TEC, CVD) TEC CVD 0 0.175 NA 0.25
(TEE, TEC) TEE TEC 0.125 0.125 0 NA

Δ′

2

(CVD, KA/VE) CVD KA/VE NA 0 0–0.03 0.24–0.03
(KA/VE, CVD) KA/VE CVD 0 NA 0–0.5 0.55–0.5
(TEC, TEE) TEC TEE 0–0.25 0.175–0.25 NA 0
(TEE, CVD) TEE CVD 0 0.125–0.125 0-0.125 NA

Δ′

2

(CVD, TEE) CVD TEE NA 0.03–0.24 0–0.24 0
(KA/VE, TEE) KA/VE TEE 0.5–0.55 NA 0–0.55 0
( TEC, KA/VE) TEC KA/VE 0–0.175 0 NA 0.25–0.175
(TEE, KA/VE) TEE KA/VE 0.125–0.125 0 0–0.125 NA

Figure 2. Means and 90% confidence intervals of the final outcome (expert score) for the 12 treatment strategies
in the form of (A, B), which means to start with treatment A; if success, stay with A, otherwise switch to treatment

B, with A and B each takes one of the four values CVD, KA/VE, TEC, and TEE, and A ≠ B.

Tables III and V are intended to be used for patients who had an unfavorable stage 1 response; conse-
quently, their diagonal elements are not given because of the trial design that only those patients who
achieved a successful stage 1 response could receive a stage 2 treatment same as stage 1. The results for
12 possible regimes are shown in Figure 2.

For this particular example, standard Q-learning gives very similar results (not shown). An advantage
of both standard and modified Q-learning is that they can identify optimal dynamic treatment regimes
for each individual. This can be performed by including interactions between individual level covariates
and treatments. For example, if in the aforementioned analysis we include an interaction between patient

3436

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 3424–3443



X. HUANG ET AL.

age and stage 1 treatment, then we can identify the age-specific optimal treatment regimes. If we include
an interaction between stage 1 score and stage 2 treatment in the model in Section 4.1, then such an
identified optimal stage 2 treatment will depend on stage 1 score. These are all desirable explorations to
maximize benefit for each patient. However, because of the limited sample size, this may not yield stable
results and thus is not presented here.

Recall that for patients who went off treatment during stage 1 because of toxicity or progressive disease,
and thus did not receive any stage 2 treatment, we set R2 = 0. By doing this, all 150 patients were included
in the aforementioned analyses. This practical modification of the original treatment plan is consistent
with the idea of ‘viable treatment regimes’ of Wang et al. [17]. For example, a patient received TEC as
in stage 1, then went off treatment because of toxicity or progressive disease or other reasons and did
not receive any stage 2 treatment, the data from this patient are used in the estimation of final reward for
three regimes, namely, (TEC, CVD), (TEC, KA/VE), and (TEC, TEE).

5. Discussion

We have demonstrated a robust modification of Q-learning for optimizing a multi-stage treatment
sequence in settings where the payoff is a cumulative outcome, and intermediate values at each stage
are available. The modified Q-learning preserves more randomness in the observed outcomes, and thus
is more robust against model misspecification, has higher power to identify optimal treatments, and sat-
isfies the consistency assumption. If the treating physician happens to adopt the treatment regime that
is optimal for a given patient’s condition, the optimal outcome assumed by the modified Q-learning is
precisely the observed outcome.

Optimization of a K-stage treatment regime is difficult, because conditioning on the treatment history
can result in very complicated models. This is a common problem with all optimization algorithms for
multi-stage treatments [5, 6]. We handle this problem by making a Markov assumption. This kind of
assumption also was used in others’ simulation studies [6]. In reality, this assumption may be violated.
The degree of robustness of model results against this assumption is unknown. In such a case, if sample
size permits, it is best to explore models without this Markov assumption, that is, include a large number
of interaction terms to involve earlier stage history into the reward models. In cancer research, practical
values for K are about 2 to 5, corresponding to disease recurrences. In other areas of application where
the value of K may be much larger, the advantages of the modified Q-learning, that is, satisfying the
consistency assumption and being robust against model misspecifications, may become more prominent.

An attractive feature of both standard and the modified Q-learning is that they do not need model
treatment selection probabilities. Most other methods require this additional structure, including the
history-adjusted marginal structural models [35] and A-learning [6]. There are very subtle arguments
required with the use of modeling treatment selections. It has been argued that small misspecifications in
such selection models can accumulate over treatment stages and thus cause severe bias and convergence
problems [36]. Therefore, there is an advantage to avoid using such treatment selection models.

Appendix A: regression model for the modified Q-function

For each s = 1, · · · ,K, let 𝛽s be a parameter vector of the main effects of H̄M
i,s on QM

i,s. Using j = 1 as the
reference treatment group, for each j = 2, · · · , Js, where Js is the number of treatment options at stage s, let
𝜓

(j)
s be a parameter vector of the interactive effects of action Ai,s = j and H̄M

i,s on QM
i,s. Let {ei, i = 1, · · · , n}

be a vector of i.i.d. random errors. Denoting the indicator of an event E by I(E), the regression model
for QM

i,s is

QM
i,s = 𝛽T

s H̄M
i,s +

Js∑
j=2

I(Ai,s = j) 𝜓 (j)
s

T
H̄M

i,s + ei, (15)

where the main effects are

𝛽T
s H̄M

i,s = 𝛽s,0 + 𝛽s,1Zi,s−1 + 𝛽s,2Zi,s + 𝛽s,3Yi,s−1 +
Js−1∑
l=2

𝛽s,4,lI(Ai,s−1 = l)
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and the multiplier of I(Ai,s = j) in the sum of the interaction terms is

𝜓 (j)
s

T
H̄M

i,s = 𝜓s,0 + 𝜓
(j)
s,1Zi,s−1 + 𝜓

(j)
s,2Zi,s + 𝜓

(j)
s,3Yi,s−1 +

Js−1∑
l=2

𝜓
(j)
s,4,lI(Ai,s−1 = l).

Thus, each parameter indexed by j is the comparative effect of Ai,s = j versus action Ai,s = 1.
Under the model (15), we define the cumulative causal effect of treatment j versus l at stage s, where

j > l, as

Di,s(j, l) = QM
i,s

(
Ai,s = j, H̄M

i,s

)
− QM

i,s

(
Ai,s = l, H̄M

i,s

)
=
⎧⎪⎨⎪⎩
{
𝜓

(j)
s − 𝜓

(l)
s

}T
H̄M

i,s , if l ≠ 1

𝜓
(j)
s

T
H̄M

i,s , if l = 1,

(16)

which depends on the interaction parameters 𝜓 (j)
s , 𝜓 (l)

s , and recent history H̄M
i,s, but not on the main effects

𝛽s.
Given estimates 𝛽s and �̂�

(j)
s , j = 2, · · · , Js of the parameters in (15), denote the resulting estimates of

QM
i,s by Q̂M

i,s, estimated causal effects by D̂i,s(j, l), and estimated cumulative future rewards by R̂i,s.

Appendix B: asymptotic properties

The linear models in (15) are easy to fit. However, due to the use of later stage estimates in models for
earlier stages, the covariance formulas for the estimated regression parameters are not straightforward.
In the succeeding discussion, we provide closed-form sandwich formula estimators for the covariance
matrices. For simplicity, we assume the total number of treatment stages K = 2 in the following deriva-
tion, denote by Sk the matrix formed by H̄M

i,k, i = 1, · · · , n, and assume treatment Ak is binary, for k = 1, 2.
The results can be generalized to K > 2.

Rewrite the right-hand side of the regression model in (15) as

k

(
Sk,Ak; 𝛽k, 𝜓k

)
= 𝛽T

k Sk1 +
(
𝜓T

k Sk2

)
Ak, (17)

where Sk1 ∈ R
pk and Sk2 ∈ R

qk are sub-vectors of Sk. We allow variable selection so that the model in
(15) may not include the full set of variables in H̄M

i,k. Denote 𝜃k =
(
𝛽T

k , 𝜓
T
k

)T
, and 𝜃k0 its true value, where

𝛽k ∈ R
pk is the main effect of the current state variables on the outcome, and 𝜓k ∈ R

qk are the interactions
between current state variables and treatment. Note that QM

i,2 = Y2, and QM
i,1 is the potential cumulative

outcome given S1,i, A1,i and A𝑜𝑝𝑡

2,i . The two-stage backward induction proceeds as follows. Starting with
the second stage, we have

�̂�2 =
(
𝛽T

2 , �̂�
T
2

)T = arg min𝛽2,𝜓2
Pn

{
QM

2 −2

(
S2,A2; 𝛽2, 𝜓2

)}2 =
[
XT

2 X2

]−1
XT

2 Y⃗2,

where X2 = (ST
21,A2ST

22)
T is the stage 2 design matrix and Y⃗2 = (Y21, ..., Y2n)T . Then estimate the second

stage individual optimal outcome by �̂�2 =
(
R̂21, · · · , R̂2n

)T
, where

R̂2i = Y2i + |�̂�T
2 S22i|I {A2i ≠ I

(
�̂�T

2 S22i > 0
)}

. (18)

With this optimized outcome at stage 2, the potential cumulative outcome, given S1,i, A1,i, and A𝑜𝑝𝑡

2,i , is

Q⃗M
1 = (QM

1,1, · · · ,Q
M
n,1)

T , where QM
i,1(�̂�2) = Y1i + R̂2i. After this, we estimate the first stage parameters by

�̂�1 =
(
𝛽T

1 , �̂�
T
1

)T = arg min𝛽1,𝜓1
Pn

{
QM

1 (�̂�2) −1

(
S1,A1; 𝛽1, 𝜓1

)}2 =
[
XT

1 X1

]−1
XT

1 Q⃗M
1 ,

where X1 =
(
ST

11,A1ST
12

)T
.

The asymptotic properties of these parameter estimates are presented in the succeeding discussions,
under the following technical conditions.
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(A1) The true value for 𝜃2, denoted by 𝜃20 =
(
𝛽T

20, 𝜓
T
20

)T
, minimizes

0

{
QM

2 −2(S2,A2; 𝜃2)
}2

,

and the true value for 𝜃1, denoted by 𝜃10 =
(
𝛽T

10, 𝜓
T
10

)T
, minimizes

0

{
QM

1 (�̂�2) −1(S1,A1; 𝜃1)
}2

,

where 0 = limn Pn denotes the true probability measure. We assume that the limit exists and is
finite in the aforementioned expressions.

(A2) 𝜃0 =
(
𝜃T

10, 𝜃
T
20

)T
is an interior point in a bounded, open, convex subset Θ ⊂ m, where m =∑

k(pk+qk). For k = 1, 2, with probability one, k(Sk,Ak; 𝜃k) is at least twice continuously differ-

entiable with respect to 𝜃k, and the Hessian matrix, k0 = 0

[
▽2

𝜃k𝜃k

{
QM

k −k

(
Sk,Ak; 𝜃k

)}2
]

exists and is positive-definite.
(A3) With probability one, Pr

(
𝜓T

k Sk2 = 0
)
= 0 for k = 1, 2.

Condition A1 says that 𝜃10 and 𝜃20 are true values that minimize loss function in each step. If Qk takes
the form of the linear model (17), condition A2 is equivalent to non-singularity of the design matrix
Xk =

(
ST

k1,AkST
k2

)T
for k = 1, 2. From condition A3, we assume there is no possibility of non-regularity.

In case of Pr(𝜓T
k Sk2 = 0) > 0, it has been verified that multi-stage estimation, including standard Q-

learning, may be biased and the aforementioned asymptotic properties may be inappropriate, and thus
requiring special treatment [13, 37]. Here, we do not consider such complications.

Denote the estimating equation for 𝜃2 as PnΨ2

(
𝜃2; S2,A2

)
= 0, where

Ψ2(𝜃2; S2,A2) = {2(S2,A2; 𝜃2)∕(𝜕𝜃2)}T{Y2 −2(S2,A2; 𝜃2)}.

Theorem 1
Under conditions A1–A3, √

n
(
�̂�2 − 𝜃20

)
∼ N

{
0,V2(𝜃20)

}
, as n → ∞,

where V2(𝜃2) = D2(𝜃2)−1B2(𝜃2){D2(𝜃2)−1}T with D2(𝜃2) = −E[𝜕Ψ2(𝜃2; S2,A2)∕(𝜕𝜃2)] and B2(𝜃2) =
E
[
Ψ2(𝜃2; S2,A2)Ψ2(𝜃2; S2,A2)T

]
.

Proof
It is a direct application of the ‘Sandwich’ formula [33], so omitted.

Because the estimation of 𝜃1 depends on �̂�2, let Ψ2,2 denote the sub-equation of Ψ2, and
D2,2 denote the sub-matrix of D2, both corresponding to 𝜓2 at 𝛽2 = 𝛽20. Then, �̂�2 − 𝜓20 ≈
D2,2(𝜓20)−1

Pn[Ψ2,2(𝜓20; S2,A2)], where 𝛽20 and 𝜓20 are true values of 𝛽2 and 𝜓2.√
n
(
�̂�2 − 𝜓20

)T
S22 ∼ N

(
0,Σ2

)
, Σ2 = D−1

2,2E
{
Ψ2,2

(
ST

22S22

)
ΨT

2,2

}
D−1

2,2.

The estimating equation for 𝜃1 is

PnΨ1(𝜃1; S1,A1, �̂�2)

= Pn

[{
𝜕1(S1,A1; 𝜃1)∕(𝜕𝜃1)

}T
{

Q⃗M
1 −1(S1,A1; 𝜃1)

}]
= Pn

[{
𝜕1(S1,A1; 𝜃1)∕(𝜕𝜃1)

}T

×
{

Y1 + Y2 + |�̂�T
2 S22|I (A2 ≠ I

(
�̂�T

2 S22 > 0
))

−1(S1,A1; 𝜃1)
}]

= Pn

[
Ψ1(𝜃1; S1,A1, 𝜓20) + {𝜕1(S1,A1; 𝜃1)∕(𝜕𝜃1)}T

×
{|�̂�T

2 S22|I (A2 ≠ I
(
�̂�T

2 S22 > 0
))

− |𝜓T
20S22|I (A2 ≠ I

(
𝜓T

20S22 > 0
))}]

= Pn

[
Ψ1(𝜃1; S1,A1, 𝜓20) + {𝜕1(S1,A1; 𝜃1)∕(𝜕𝜃1)}T

×
[
I(A2 = 0)

{|�̂�T
2 S22|+ − |𝜓T

20S22|+} + I(A2 = 1)
{|�̂�T

2 S22|− − |𝜓T
20S22|−}] .
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Let
S̄2 ≡

[
ST

21, S
T
22

{
I(A2 = 0)I

(
𝜓T

20S22 ⩾ 0
)
+ I(A2 = 1)I

(
𝜓T

20S22 ⩽ 0
)}]T

.

Theorem 2
Under conditions A1–A3,√

n
(
�̂�1 − 𝜃10

)
∼ N

{
0,V1(𝜃10, 𝜃20)

}
, as n → ∞,

where V1(𝜃10, 𝜃20) can be estimated by

V̂1(𝜃10, 𝜃20) = D1(𝜃10)−1
[
Pn

{
Ψ1ΨT

1

}
+ Pn

{
X1S̄T

2 V̂2(𝜃20)S̄2XT
1

}]
D1(𝜃10)−1 ,

with D1(𝜃1) = −E[𝜕Ψ1(𝜃1; S1,A1)∕(𝜕𝜃1)].

Proof
Again, it is a direct application of the ‘Sandwich’ formula [33], so omitted.

Appendix C: simulation model

In general, suppose we have random variables X1, · · · ,Xp, and Y , and we would like to do regression of
Y on X1, · · · ,Xp with model Y =

∑p
i=1 𝛽iXi + 𝜀. If X1, · · · ,Xp are orthogonal to each other, then we have

𝛽i =
E(XiY)
E(X2

i )
.

In Section 3, we have Z1 ∼ Normal(0, 1), A1 ∼ Bernoulli(0.5), V ∼ Normal(0, 22), Y1 = Z1(A1−0.5)+
V +𝜀1 with 𝜀1 ∼ Normal(0, 1). A2 ∼ Bernoulli(0.5), Y2 = −2Z1(A1 −0.5)+ (A1 −0.5)(A2 −0.5)−V +𝜀2
with 𝜀2 ∼ Normal(0, 1). We use the following model to do regression analysis.

QM
2 = Y2 = 𝛽20 + 𝛽21Z1 + 𝛽22A1 + 𝛽23Y1

+ A2(𝜓20 + 𝜓21Z1 + 𝜓22A1 + 𝜓23Y1) + e2.

To find out the true values for 𝛽s in the aforementioned model, we consider regressing Y2 on the following
orthogonal set of random variables {1, Z1, (A1−0.5),Y1, (A2−0.5), (A2−0.5)Z1, (A2−0.5)(A1−0.5), (A2−
0.5)Y1}. That is to say, we consider the model

Y2 = 𝛽′20 + 𝛽′21Z1 + 𝛽′22(A1 − 0.5) + 𝛽′23Y1

+ (A2 − 0.5)(𝜓 ′
20 + 𝜓 ′

21Z1 + 𝜓 ′
22(A1 − 0.5) + 𝜓 ′

23Y1) + e2.

By using the formula 𝛽i =
E(XiY)
E(X2

i )
mentioned at the beginning of this Appendix, we obtain

Y2 = 0 + 0Z1 + 0(A1 − 0.5) − 0.857Y1

+ (A2 − 0.5)(0 + 0Z1 + (A1 − 0.5) + 0Y1) + e2.

For the aforementioned coefficients, the only one that is not straightforward is

𝛽′23 = E(Y1Y2)∕E(Y2
1 ) =

−E(V2) − 2E[Z2
1(A1 − 0.5)2]

E(V2) + E[Z2
1(A1 − 0.5)2] + E(𝜀2

1)
= −4.5

5.25
≈ −0.857.

Note e2 = 𝜀2 − 2Z1(A1 − 0.5) − V + 0.857Y1. It can be verified that e2 is orthogonal to all explanatory
variables on the right-hand side of the above equation, justifying its validity as a residual term.

Appendix D: an illustration for > 2 stages and > 2 treatment options in each stage

Section 2 and Appendix A provide a general description for any number of stages (K), and any number of
treatment options in each stage (Js), for s = 1, · · · ,K. As suggested by a referee, for easy understanding,
we illustrate through an example in the succeeding discussions. We skip the data generation and pick a
particular regression model for each stage. Suppose we observe (Zs,As,Ys) for each stage s = 1, 2, 3,
with As = 1 , 2, or 3, indicating three different treatment options for each stage s. Here, As = 1 and
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As′ = 1 do not necessarily mean the same medical treatment for stages s ≠ s′. The modified Q-learning
proceeds as follows.

Let QM
3 = Y3. Fit a linear regression model as below to find out the optimal treatment for stage 3

conditional on current covariates Z3, previous treatment A2 and outcome Y2.

QM
3 =

3∑
j=1

I(A3 = j)

{
𝜓30,j + 𝜓31,jZ3 +

3∑
l=1

𝜓32,jlI(A2 = l) + 𝜓33,jY2

}
+ e3.

Then the conditional optimal treatment is just the one that maximize the mean reward in stage 3, which
is mathematically described as

Â𝑜𝑝𝑡

3 = argmaxj=1,2,3

{
�̂�30,j + �̂�31,jZ3 +

3∑
l=1

�̂�32,jlI(A2 = l) + �̂�33,jY2

}
. (19)

Then we estimate the potential optimal reward R3 in stage 3 each individual would have achieved had
he/she received his/her conditional optimal treatment as indicated previously. If an individual actually
received his/her conditional optimal treatment, the estimated reward R̂3 is set to be the observed Y3 by
our modified Q-learning. Otherwise, R̂3 is set to be Y3 plus the difference between the rewards for the
optimal and actual treatments.

R̂3 = Y3 + I
(
A3 ≠ Â𝑜𝑝𝑡

3

)[
max

j=1,2,3

{
�̂�30,j + �̂�31,jZ3 +

3∑
l=1

�̂�32,jlI(A2 = l) + �̂�33,jY2

}

−
3∑

k=1

I(A3 = k)

{
�̂�30,k + �̂�31,kZ3 +

3∑
l=1

�̂�32,klI(A2 = l) + �̂�33,kY2

}]
.

By solving the above equation, the optimal stage3 treatments conditional on historical information are
identified. Here, the Markov assumption is used in the above linear regression model so that it depends on
A2 and Y2, but does not go further to depend on A1 or Y1. Without such an assumption, the aforementioned
linear regression would have too many predictors and require an extremely large sample size to have a
reasonable fit. This Markov assumption is for practical rather than theoretical consideration.

Now consider optimizing treatments for stage 2. Define QM
2 = Y2 + R̂3 . Similarly, as previously

discussed, first fit a linear model as follows:

QM
2 =

3∑
j=1

I(A2 = j)

{
𝜓20,j + 𝜓21,jZ2 +

3∑
l=1

𝜓22,jlI(A1 = l) + 𝜓23,jY1

}
+ e2.

Then find out the optimal stage 2 treatment conditional on current covariates Z2, previous treatment A1
and outcome Y1, as below.

Â𝑜𝑝𝑡

2 = argmaxj=1,2,3

{
�̂�20,j + �̂�21,jZ2 +

3∑
l=1

�̂�22,jlI(A1 = l) + �̂�23,jY1

}
. (20)

The potential total reward from stage 2 onwards (i.e., sum of rewards from stages 2 and 3), R2, had a
subject received his optimal stage 2 treatment and his corresponding optimal stage 3 treatment, can be
estimated as follows:

R̂2 = Y2 + I(A2 ≠ Â𝑜𝑝𝑡

2 )

[
max

j=1,2,3

{
�̂�20,j + �̂�21,jZ2 +

3∑
l=1

�̂�22,jlI(A1 = l) + �̂�23,jY1

}

−
3∑

k=1

I(A2 = k)

{
�̂�20,k + �̂�21,kZ2 +

3∑
l=1

�̂�22,klI(A1 = l) + �̂�23,kY1

}]
.
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For stage 1, similarly as previously discussed, define QM
1 = Y1 + R̂2. Then fit a linear regression model

QM
1 =

3∑
j=1

I(A1 = j)(𝜓10,j + 𝜓11,jZ1) + e1.

This will give estimates for the optimal treatment stage 1 treatments conditional on Z1 as follows:

Â𝑜𝑝𝑡

1 = argmaxj=1,2,3{�̂�10,j + �̂�11,jZ1} . (21)

Under this optimal stage 1 treatment and corresponding optimal stages 2 and 3 treatments, the total
optimal reward is R1, which can be estimated by

R̂1 = Y1 + I(A1 ≠ Â𝑜𝑝𝑡

1 )

[
max

j=1,2,3

{
�̂�10,j + �̂�11,jZ1

}
−

3∑
k=1

I(A1 = k)
{
�̂�10,k + �̂�11,kZ1

}]
.

The aforementioned procedures are to derive the optimal treatments using a backward induction. After
the estimation results are obtained, to apply them in practice, the optimal treatment decision rules are
determined as follows. First use (21) to find out the optimal treatment conditional on covariate Z1. Sup-
pose this gives A1 = 1. After receiving this treatment A1 = 1, the observed stage 1 outcome is Y1. At the
beginning of stage 2, covariate Z2 is observed. Then at this moment, the optimal stage 2 treatment can be
determined by (20) based on Z2, A1 = 1 and the observed Y1. Suppose the optimal treatment conditional
on these variables is A2 = 3. After receives this treatment A2 = 3, the observed stage 2 outcome is Y2.
At the beginning of stage 3, covariate Z3 is observed. At this time, the optimal stage 3 treatment is deter-
mined by (19) based Z3, A2 = 3 and the observed Y2. Suppose the observed stage 3 outcome is Y3. The
above optimal treatment identification method is supposed to maximize Y = Y1 + Y2 + Y3.
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