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If a regular infinitely divisible (Poisson cluster) point process is Coxian (doubly stochastic
Poisson, subordinated Poisson), then the number of points per cluster either takes on each positive
integer value with positive probability or is identically equal to one. In particular, a Gauss-Poisson
process can not be Coxian.
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1. Introduction and summary

Let £ be a regular infinitely divisible (Poisson cluster) point process, and denote
by k the (random) number of points in a given cluster. It is the purpose of this
note to show that if £ is also a Cox (doubly stochastic Poisson, subordinated Poisson)
process, then « either takes on each positive integer value with positive probability
or is degenerate at one. The essential importance of this result lies in its implications
for modeling, insofar as each of these general classes presently enjoys rather wide
usage. The literature on cluster processes is extensive and well known, and the
family of Cox processes is the limiting class for a broad variety of special cases, as
shown most generally in [5]. Given the prominent role of Cox and in particular
mixed Poisson processes in stochastic geometry and point process theory, the
theorem is of interest in that it shows what a Cox process can not be. It follows
from our Theorem, for example, that the doubly stochastic Poisson process sug-
gested as a possible example of a Gauss-Poisson process, per satisfaction of certain
admissibility conditions, by Milne and Westcott [10, pp. 170, 171] does not exist.

A Cox process ¢ may be thought of as a Poisson process having an intensity
which is itself stochastic, in consequence of ¢ evolving in a continuum subject to
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some externally motivated random effect. See, for example, Kingman [6], Mecke
[9], Krickeberg [7], Kallenberg [4, 5]. A Poisson cluster process, equivalently a
regular infinitely divisible (i.d.) point process (cf. Matthes, Kerstan and Mecke [8,
Chapter 4]), may be constructed by superposing a sequence of independent clusters
of points, each centered around or generated by one point of a ‘parent’ Poisson
process. See [1, 2, 3, 8, 10], among many others. For both models, the degenerate
case is that of the Poisson process where, respectively, «k =1 a.s. for the Poisson
cluster process and the intensity is nonrandom for the Cox process. The Theorem
below asserts that, aside from the degenerate case, a given point process cannot
arise via both of these mechanisms working at once unless « is unbounded. This
formally includes the singular i.d. case where P[k =0]>0, although this class is
not treated here per se.

L.d. Cox processes have been considered by several authors. The present article
was motivated in part by a note of Shanbhag and Westcott [11], who also cite some
earlier work. Kallenberg [5, Exercise 8.6] gives an example of an i.d. Coxian
variable having a directing variable which is not i.d. Cox and Isham [3, pp. 80, 81]
give an example of a regular i.d. Cox process ¢ having rate function A(r)=
L; w(t —u)é(du), where & is a Poisson process and w a suitable weight function.
In this case £ is a Neyman-Scott process with P[k =k]>0 for all positive
integer k.

The proof of the Theorem exploits characteristic representations for the respec-
tive Laplace functionals of the Cox and regular i.d. processes, in conjunction with
standard Laplace functional inversion theory. The argument also relies on Mecke’s
elegant characterization of the Cox process as a point process which is, for any
p €(0, 1], a p-thinning of some point process.

2. Notation and preliminaries

Let the state space S be a locally compact second countable Hausdorff space
endowed with the ring @ of bounded Borel subsets. Denote by . the set of all
locally finite (Radon) measures u on (S, #), with %4 the smallest sigma-algebra
over #( for which all mappings u > uB, B € 93, are measurable. A random measure
(rm.) n is any measurable mapping from a probability space into (M, B4);
equivalently o is any random element of . Denote Z={0,1,2,.. .}, Z, =Z—{0},
and the zero element of / by 0. A stochastic point process (spp) is any a.s. /-valued
r.m., where ' ={u e #: uB ¢ Z, B € B} and we define B, = B4 NAN. Let F be the
set of nonnegative real-valued measurable functions on § which have compact
support, and for convenience denote uf = [ f du, f€ &, u € M. The Laplace func-
tional £, of ar.m. n is defined by £, (f)=E(e iy fe€ %, and the Laplace transform
Lx of an R, =[0, c)-valued r.v. X by Lx(8)=E(e™"), §>0. Thus Fa(81p) =
L.g(8), where 1p is the indicator function of the set B. For any u € ., denote by
IT, the probability distribution of a Poisson process ¢ having mean measure
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(intensity) w ; Z(f) = exp(— (1 —e ™)) in this case, and we write & iﬂ’u. By allowing
p to be replaced by the r.m. n having distribution V, the distribution Py =
.« 11,V (dge) uniquely deﬁnes the Cox process directed by m. In this case, % (f) =
Fa(l—e ), and we write £ = C(n}

The fact that the distribution of any r.m. (R.-valued r.v.) is characterized by its
Laplace functional (transform) will be used implicitly in all that follows. A detailed
treatment of Laplace functionals, as well as proofs of our Lemmas 1 and 2 below,
can be found in Kallenberg [4].

Lemma 1 (Mecke). An spp ¢ —iC(n) if agd only if, for every pe(0,1], £ is a
p-thinning of some spp £, In this case, £’ =C(p 'n).

Lemma 2. An spp ¢ is infinitely divisible if and only if

log(e(f) = [ [ -1 (aw), fes, @1)
N
where A is the unique measure on (N —{0}, B satisfying A{uB > 0}<co, Be®.

An i.d. spp is regular if and only if A is concentrated on {n eN: uS <o} and
singular if and only if A is concentrated on {u € /': u§ = o0}

Lemma 3. (Ammann and Thall). The following three statements are equivalent:

£is aregularid. spp;

o k
tog(# (M= X | (exp(- % 7)) ~1) autate), fes, 23)
k=14Js =1
where Ay is a symmetric Radon measure on (S*, B°), k eZ.,, such that
o<y ¥ ( )A(B"XS' *) <0, Be®B:
k=1r=k
log(Ze(f)) = L 1‘1 [e"¥-1]0k(dn), fe#, (2.4)

sk j=

where Qi is a symmetric Radon measure on (S*, ), k e Z., such that

0= af (-1)*'Qc(BX) <0, Be®.

k=1

The equivalent representations of %, given in (2.3) and (2.4) are related by the
formulae

0

®=3 (

m=0

m+k

¢ )Am.w(s x8™), (2.5.1)
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4=z (", )(—1)”‘om+k(3x5'"), Be®B* keZ.. (2.5.2)

® (m+k
=0} (

The representation (2.3) is obtained from that given in (2. 1) via the identification
Ax(dt) =k!A{8, ++ - -+8,}, where B = 15(¢). Intuitively, Ay is the (transformed)
component of A accounting for clusters which contain & unit atoms, referred to
hereafter as ‘k-clusters’. Since only the regular case is considered here, there are
no ‘co-clusters’. Any of the Ac’s in (2.3) may be multiplied by corresponding
nonnegative constants without destroying the validity of the representation, pro-
vided that the existence condition still holds. However, if some A,, appears in the
expression for % given in (2.3), or equivalently if the process has m-clusters, then
all of the Q.’s, 1 <k <m, must appear in the alternate expression for Z; given in
(2.4). For brevity, denote by @, the class of regular i.d. spps for which 4,70 but
Ar =0 for all k >m, i.e. those processes having a maximum of m unit atoms in
each cluster. Let @« denote those regular i.d. spps for which A,#0, ke Z., i.e.
clusters of all sizes occur with positive probability.

3. Regular i.d. Cox processes
Theorem. If an spp ¢ is both Coxian and regular i.d. then either £ € D, or § € D

Proof. Assume first that £ € 9@, for some integer m =2. By Lemma 1, for each
p (0, 1] there exists an spp £’ such that £ is a p-thinning of £® . Fix p. The Laplace
functional of £ takes the general form given by (2.4), with m in place of c, and
moreover

ZLe(f)=Zeo(—log[l—p(1—eN]), feZ (3.1)

Upon setting 6k = —log[1—p(1—e )] for 8 >0 and inverting (3.1), since { € D, it
follows that

Leon®)=Zeotom = £ [ TP -1p~ 0w 62

k=1 Jgk j=1

for 0< 6 <||h||""(~log(1~-p)), & € #. By analytic continuation, temporarily regard-
ing 6 as an element of the complex plane, we have this expression for Lgw valid
for all 8 >0, and hence it is valid for £ for all h € Z.

Regarding & as a C(n) process, since Z¢(f) = Z,(1—e /) we may likewise invert
this equation (cf. [5, p. 17]) to obtain

L.s(8)=%,0015)=e™**®, Be®B 0<6<1, (3.3)

where (6, B) = ka=1{—~1)k"16k0k(8k). Again by analytic continuation, expression
(3.3) holds for all § > 0.
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If (6, B)<0 for some >0 and B €%, then L,5(#)>1, which is impossible.
Writing p = 6" for 8 =1, we see that the condition in (2.4) of Lemma 3 is satisfied,
so that £”’ e @, for all p € (0, 1], with p_ka in place of Qi and m in place of ©
in the expression for %, By the nature of the thinning mechanism, £ must have
k-clusters with positive probability, equivalently A, #0,forallk =1, ..., m. Denot-
ing by {A’}¢- the measures appearing in the alternate form (2.3) of the Laplace
functional of £, it follows from equation (3.1) that

m:k +k
ae=p* 3 (1) U-praut s, 1<k<m. (3.4)
(p)

Upon evaluating this expression for £k =m —1 and k =m and solving for A", it
follows that, for any Be 3™,

AL (B)<0 if p<(mA,(BxS))/(mAn(BXS)+An_1(B)).

(p)

Since this contradicts the existence conditions for £’ given in Lemma 3, it must

be the case that m =1 or m =0,

4. Complements and extensions

The following Corollary is an immediate consequence of the formal inversion of
#¢ performed in the proof of the Theorem.

(p)

Corollary. Suppose that ¢ is a p-thinning of an spp £’ for some p € (0,1]. Then

£€ D, if and only if €7 € B, for each m € Z,|_J{o}.

Given an spp £ € 9,, and p € (0, 1], Proposition 1.13.3 of [8] ensures the existence
of a signed r.m. £® of which ¢ is a p-thinning, and it is easily seen that £7 s
purely atomic. However, £® is not necessarily an spp, unless m =1 or m =, and
for m e Z,—{1} if £ is an spp then it must be in 9,.. In any case, ¥, takes the
* form given in (2.3) with
m—k

4 ="y (

r=0

r+k

k )(—q)'P_(”“AHk(- xS") (4.1)

in place of A, for each k.
The proof that no element of 2, can be Coxian is somewhat easier for m even.
Here a contradiction can be obtained by deriving L,5(#) as before and then choosing

é= et ) {Qu-1(B* ™)/ Quk(B*)},

which implies that L,5(8)> 1. In particular, this is a quick proof that the class of
Gauss-Poisson processes (%, in our notation) is disjoint from the class of Cox
processes.
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The Theorem says essentially that randomizing the intensity of a Poisson process
is phenomenologically compatible with clustering, provided that the spp has clusters
of all sizes. Given this restriction, it seems reasonable to consider a process in some
9, which is subject to certain random effects due to the environment in which it
evolves. This might be formulated by independently endowing each point of a Cox
process with a cluster, or more generally by considering the entire spp to be subject
to the externally generated random effects. To this end, define a probability
distribution V on the set of all canonical measures A which satisfy the conditions
of Lemma 2, along with the appropriate specification of an algebra of measurable
sets of such measures. A generalized Cox process would then have a distribution
defined by the mixture | Z,V(dA), where =, denotes the probability law of an
element of 9, having canonical measure A. This construction is valid provided that
Z.(f) is measurable in A for all f € %, by Lemma 1.7 of [S]. For this process, mixing
A is equivalent to randomizing {A}'-1, which is in turn equivalent to randomizing
the intensity, distribution of « and spatial distribution of the clusters, obtaining a
doubly stochastic Poisson cluster process.
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