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1.1 Introduction

“Intuition is a poor guide when facing probabilistic evidence.”

Dennis V. Lindley

Outcome adaptive randomization (AR) in a clinical trial uses both the assigned treatments

and observed outcomes of previous patients to compute randomization probabilities for newly

accrued patients. In this chapter, we will focus on two types of AR. The scientific goal of a

randomized comparative trial (RCT) of two treatments is to decide whether one treatment is

substantively better than the other. Fair (also called 50:50, 1:1, or coin flip) randomization

in a RCT fixes the treatment assignment probabilities at .50 throughout in order to obtain

data that provide unbiased estimators of the parameters used for this comparison. While

fair randomization serves the needs of future patients, flipping a coin to decide a patient’s

treatment looks strange to many non-statisticians, and may seem at odds with maximizing

benefit to the patients in the trial and hence ethically undesirable. It also may appear to

imply that the patient’s physician is unduly ignorant. Many physicians refuse to participate

in trials with fair randomization because they have strong beliefs about which treatment is

superior. At the other extreme is a “greedy” algorithm wherein each new patient simply

is given the treatment having the currently larger empirical success rate or mean survival

time. It is well-known that greedy sequential decision algorithms that always choose the

next action to maximize a given optimality criterion are ‘sticky,’ in that they have a non-

trivial risk of getting stuck at a locally optimal action that is globally suboptimal. See,

for example, Sutton and Barto (1998). In RCTs, a competitor to fair randomization is

AR, which intentionally unbalances the sample sizes by interimly assigning patients to the

empirically superior arm with higher probability (cf. Cornfield, et al., 1969; Berry and Eick,

1995; Hu and Rosenberger, 2006). For RCTs, AR provides a compromise between greedy and

fairly randomized treatment assignment. For treatment assignment in a RCT with binary

outcomes, Thompson (1933) first conceived AR using a Bayesian framework.

The second type of AR that we will discuss is used in early phase trials where treatment
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regimes, which usually are doses, doses pairs, or dose-schedule combinations, are chosen

sequentially for successive cohorts of patients. This is done, rather than randomizing fairly

among the regimes, since little is known about their safety, and the fear of increasing risk of

regimen-related toxicity or death with increasing dose makes fair randomization unethical.

The goal is to optimize the treatment regime. Such trials usually are known as phase I if

they are based on toxicity, and as phase I-II if based on both efficacy and toxicity. Recently,

AR has been used in several early-phase trial settings as an additional design component to

reduce stickiness (Azriel, Mandel, and Rinott, 2011; Thall and Nguyen, 2012; Thall, et al.

2013). Discussions of stickiness in the phase I setting are provided by Oron and Hoff (2013)

and Carlin, et al. (2013).

There are many ways to do AR in RCTs. We will discuss several Bayesian methods.

Similarly to Thall and Wathen (2007), our focus will be a trial with up to N = 200 patients

with the goal to compare treatments A and B based on a binary response with probabilities

θA and θB. Denote the achieved interim samples sizes by nA, nB, and n = nA + nB, and

the final achieved sample sizes by NA, NB, and N = NA + NB. We assume that θA and θB

follow independent beta(.25, .75) priors, and use the posterior probabilities pA<B = Pr(θA <

θB | datan) and pB<A = 1 - pA<B to compute AR probabilities. It is important to keep in

mind the important fact that pB<A is a function of the data, hence is a statistic. This will

play a critical role in the methods that we will discuss, and is true in general for any data-

dependent adaptive treatment assignment rule. We denote Bayesian AR wherein patients

are randomized to A with probability rA = (pB<A)c/{(pB<A)c + (pA<B)c} and to B with

probability rB = 1− rA for c > 0 by AR(c). We will consider AR(1), which was introduced

by Thompson (1933), the commonly used AR(1/2), and AR(n/2N). For each AR method,

the trial is stopped with A declared superior to B if pB<A > .99 and B declared superior to

A if pA<B > .99, with these rules applied continuously.

As a first comparator to AR, we include a design with fair randomization that also makes

decisions continuously, and for this we used the same cut-off pA<B > .99 or < .01 as used

for the AR methods. We will refer to this as “Fair Contin.” As a second comparator that is
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closer to what would be used in practice, we consider the group sequential Bayesian design

that randomizes patients fairly between A and B with the rule, applied at n = 50, 100, 150,

and 200 patients, that stops and concludes B is superior to A if Pr(θA + .20 < θB | datan) >

a − b(n/200), that A is superior to B if Pr(θB + .20 < θA | datan) > a − b(n/200), and

otherwise continues to N = 200 and makes a final decision. The cut-off parameters a = .95

and b = .80 were used to ensure overall type I error probability ≤ .05. We will refer to this

design as “Fair GS.” For both comparators, we randomize patients fairly in blocks of size 8

to avoid interim sample size imbalance.

The motivation for using AR in place of fair randomization is to obtain NA and NB

unbalanced in favor of the arm having larger true success probability, i.e. to obtain NB

substantively larger than NA if θtrueB is substantively larger than θtrueA . An important practical

consideration is that, like many adaptive statistical procedures, AR sometimes behaves in

ways that are not intuitively obvious. For application in actual RCTs, it is important to be

aware that AR may have some undesirable properties, which we will illustrate and discuss in

turn. These include :

1) introduction of substantial variability into the distributions of NA and NB far beyond

that introduced by fair randomization;

2) the fact that there may be a surprisingly high probability of a sample size imbalance in

the wrong direction, with a much larger number of patients assigned to the inferior treatment

arm, so that AR has an effect that is the opposite of what was intended;

3) introduction of substantial bias, resulting from any continuous outcome-adaptive treat-

ment comparison, that with AR is worsened if there is parameter drift due to either improving

or worsening patient prognosis over time;

4) the practical problem that, for covariate-adjusted AR, is is not unlikely that patient

baseline covariates may be recorded incorrectly, which potentially can have disastrous conse-

quences.

The severity of each of these problems depends on the particular AR method used and the
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specific trial design parameters. These problems may be mitigated by adopting some sort of

fix-up strategy, such as stratifying or blocking (Cornfield, 1969; Jennison and Turnbull, 2000;

Karrison, Huo and Chappell, 2003), doing an initial ‘burn-in’ using fair randomization before

applying AR, modifying the AR probabilities to shrink them toward .50 as AR(c) does, or

correcting for bias in some post hoc manner. With such fix-up methods, the resulting gain

in the number of patients treated with the superior treatment over the inferior treatment, if

in fact θtrueB and θtrueA differ, often becomes much smaller. Consequently, it is worthwhile to

consider the actual gain with AR in light of the noted problems and the increased risk of an

incorrect conclusion, that in turn may lead to giving an inferior treatment to a large number

of future patients.

1.2 Achieved Sample Size Distributions

While it is well known that any form of random treatment assignment produces random

achieved sample sizes, it is important to consider the particular forms of the distributions of

NB and NA for a given AR method. Simulation-based properties of AR methods often are

reported in terms of the means, E(NB) and E(NA). The difference E(NB−NA) often is used,

per se, to quantify a putative advantage of an AR method over fair randomization, which

has E(NB −NA) = 0, for specific θtrueB > θtrueA . Mean sample sizes alone may be misleading,

however, due to the fact that AR produces much more disperse sample size distributions

compared to fair randomization.

For all simulations, each combination of trial conduct method and case was replicated

10,000 times. Table 1 gives simulation results for a trial run using each of the three AR and

two fair designs. We write “A > B” in place of “θA > θB” for brevity. These simulations

are similar to those reported by Thall and Wathen (2007). We note some important typos in

that paper: (i) The prior of θA and θB actually used for the simulations was not beta(.50, .50)

as reported, but rather was beta(.25, .75) as used here; (ii) in the left-hand column on page

862 ‘A’ and ‘B’ are incorrectly reversed; (iii) in the header of Table 1, Pr(NA > NB + .20)

should be Pr(NA > NB + 20).

The simulation results reported here in Table 1 show that, while the mean of NB −NA is
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quite large for each AR method when θtrueB = .35 or .45 and θtrueA = .25, the distributions of

this difference and of the total sample size N = NA +NB both are much more disperse with

AR compared to fair randomization. Figure 1 illustrates this important point by giving the

empirical distributions of NB −NA for each of the three AR designs in the case where θtrueA

= .25 and θtrueB = .35. The densities of NB −NA for the two fair randomization designs are

not included because they are very concentrated near 0 thus would distort the figure. While

E(NB−NA) > 0 for each AR method, Figure 1 shows that the distribution of NB−NA has a

very long left tail for AR(1) and AR(1/2). This is because because these AR methods carry a

nontrivial risk of getting “stuck” with a larger sample for the inferior arm A early in the trial,

due to the low sample size, and hence high variability in the posterior of arm B. When this

occurs, many patients are treated on the inferior arm A, the stopping boundary for correctly

declaring B superior is not crossed, and consequently the distribution NB−NA ends up with a

long left tail. The second possibility is that a small to modest number of patients are treated

with A and a larger number are treated with B, which is the goal of the AR procedures,

and thus the distribution of NB − NA is shifted to the right. The third possibility is that,

due to the play of chance, the AR method does not favor either arm substantially and the

distribution of NB −NA is centered near 0, as with fair randomization.

The long left tail of the distribution of NB −NA has a very undesirable consequence. For

example, in the case where θtrueA = .25 and θtrueB = .35, while AR(1) gives E(NB −NA) = 66,

due to the long left tail of the distribution of NB−NA, which has 2.5th percentile -164, AR(1)

has the ethically very undesirable property that π20 = Pr[NA > NB + 20] = .14. That is, in

this case, AR(1) has a 14% chance of producing a sample size imbalance of 20 patients or

more in the wrong direction. AR(1/2) reduces this probability to π20 = .069, and AR(n/2N)

has π20 = .03, while π20 = 0 for both designs with fair randomization. These values of

π20 for the three AR methods may be considered as trade-offs for the corresponding values

E(NB − NA) = 66, 37, and 21. This example illustrates two important points. First, since

NB and NA are highly disperse with AR, using mean achieved sample sizes is not enough

to adequately describe a given method’s behavior. Second, the general claim that any AR
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method is ethically more desirable than fair randomization is false.

Another interesting result shown by Table 1 is that, for the cases θtrueB = .35 or .45 where

B is superior to A, all four methods that make decisions continuously have much larger bias

in the final estimate of θB − θA compared to fair GS. That is, most of the bias appears to be

due to continuous treatment comparison, rather than AR per se. In general, the magnitude

of this bias increases with the frequency of comparative decision making and θtrueB − θtrueA .

The Fair Contin method exhibits as much or slightly more bias than the AR designs, while

the Fair GS design reduces the bias by 66% to 71% compared to all the other designs.

Figure 2 gives the distributions of the posterior mean of ∆ for the Fair GS, AR(n/2N),

and AR(1) designs for the three cases where ∆true = 0, .10, or .20. The density plots of

the estimates provide graphical illustrations of the nature of the bias and dispersion of the

posterior means obtained from the competing methods given in Table 2. For all three designs,

the distributions are multi-modal in all three cases, including the null, with a large mode at

∆true and smaller modes located quite far from the null. In the two alternative cases where

∆true = .10 or .20, all three methods have a mode to the right of ∆true, and the two AR

methods have much more probability mass to the right of ∆true compared to Fair GS. These

plots illustrate why the AR methods have larger bias compared to Fair GS. The general

messages are that all adaptive designs introduce bias, as is well known, but that the bias is

much larger when AR methods are used rather than Fair GS, and that AR(1) produces by

far the largest bias.

It also is worth mentioning that, for Bayesian methods that make decisions continuously,

the seemingly trivial difference between assuming a beta(.50, .50) prior or a beta(.25, .75)

prior can have non-trivial effects on the design’s properties. A beta (.50, .50) prior decreases

the probability of correctly concluding that B > A for AR(1) or AR(1/2). For example, when

θtrueB = .35, AR(1) and AR(1/2) have respective power figures .20 and .35 compared to .30

and .40 with a beta(.25, .75) prior. This effect is due to the great variability in the statistic

pA<B for small samples early in the trial. AR(n/2n) does not suffer from this problem since

its AR probabilities are very close to .50 for small n, i.e. it behaves similarly to Fair Contin
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early in the trial.

A modification of AR methods that commonly is used to mitigate these problems arising

with small early sample sizes is to begin the trial with a “burn-in” using fair randomization,

and start using AR once the data from the burn-in are obtained. If a burn-in with 20 fairly

randomized patients is used for each of the three AR methods, there is virtually no effect on

power but, as might be expected, the sample size dispersion is reduced. In the case where

θtrueA = .25 and θtrueB = .35 in Table 1, this in turn reduces the π20 values .138, .069, .028 for

AR(1), AR(1/2), AR(n/2N) to .084, .050, .024, respectively. Starting the trial with a burn-in

also slightly decreases the bias, but also reduces the values of NB −NA.

1.3 Drift and Bias

One of the most prominent arguments against the use of AR is that it can lead to biased

estimates in the presence of parameter drift. This occurs, for example, if θA and θB both

increase over time due to improving prognosis of patients enrolled over the course of the trial,

but the comparative effect θB − θA remains constant. Karrison, Kuo and Chappell (2003)

recommended a blocking method to mitigate the biasing effects of drift when using AR, and

provided a detailed simulation study. To examine the effects of drift on the behavior of the

designs in Table 1, we re-simulated each case with θA and θB each increasing linearly from its

initial value to that value plus .20 at the end of the trial. In each case, θA took on the true

values θA(n)true = .20 + .20(n/200) when n patients had been accrued while, for example in

each case where nominally θB = .35, it took on the true values θB(n)true = .35 + .20(n/200).

Thus, the treatment effect θB(n)− θA(n) remained constant throughout the trial, while each

probability increased.

The results of these simulations are summarized in Table 2. While drift had little effect

on the sample size distributions, it substantively increased the false positive rate of AR(1)

from .18 to .36 and of AR(1/2) from .24 to .32. Drift also increased the bias of all three

AR methods for θtrueB = .35 or .45, with larger increases seen for AR(1) and AR(1/2). It

is important to note that the bias for the Fair GS design changed trivially when drift was

introduced, with b̂ias(θtrueB = .35) = .017 and b̂ias(θtrueB = .45) = .032 without drift (Table
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1) compared to b̂ias(θtrueB = .35) = .019 and b̂ias(θtrueB = .45) = .033 with drift (Table 2).

It thus appears that, while the Fair GS design does introduce some bias, this is not made

substantively worse by drift. In contrast with the results in Table 1, in the presence of drift

the Fair Contin method produces slightly less bias than the AR designs, although the Fair

GS design still greatly reduces the bias, by at least 67%. It also should be noted that the

estimates of θA and θB in Table 2 do not really correspond to the tabled θtrueA and θtrueB values,

but rather θA(n)true and θB(n)true changed over time.

1.4 Adaptive Use of Patient Covariates

1.4.1 A Highly Structured Design

Thall and Wathen (2005) described a Bayesian adaptive design for a randomized comparative

trial of two chemotherapy regimes, T = G+D (gemcitabine+ docetaxel) and T = G (gemc-

itabine alone) for advanced or metastatic unresectable soft tissue sarcoma. The design was

quite ambitious. It accounted for up to four stages of therapy, each stage lasting six weeks,

with stage k having ordinal outcome, Yk, taking on the three possible values {R,F, S} where

R = complete or partial remission (response), F = progressive disease or death (failure), and

S = neither R nor F (stable disease). It included a within-patient outcome-adaptive decision

rule for k =1, 2, 3, reflecting actual physician behavior, that terminated therapy if Yk = F or

R and continued if Yk = S. Thus, outcome was not a univariate binary variable, but rather

was a longitudinally observed vector (Y1, · · · , Yk) of random length k =2, 3, or 4. In addition

to including stage-specific treatment effects, the underlying model and method also accounted

for two binary baseline covariates, Z = (Z1, Z2), indicating whether the patient had received

previous pelvic radiotherapy (PPR) and whether the patient’s disease was a leimeiosarcoma

(LMS) or some other sarcoma subtype. A generalized logistic conditional probability model

for Yk in stage k = 1,2,3,4 accounted for T , Z, treatment-covariate interactions, and previous

outcome history, (Y1, · · · , Yk−1), giving a total of nine distinct possible likelihood contribu-

tions for each (T,Z). The AR was based on the posteriors of the probabilities ξT (R,Z, θθθ) and

ξT (F,Z, θθθ) of overall treatment success and failure, respectively, by the end of the patient’s
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regime. Using weights elicited from the physicians to quantify the relative importance of

overall success and overall failure, the AR treatment assignment probabilities were rT (Z, θθθ)

= 0.435 ξT (R,Z, θθθ) + 0.565 {1−ξT (F,Z, θθθ)}, for T = G,G+D. This AR method was applied

after a burn-in of fair randomization with the first 30 patients. This is an example of a

dynamic treatment regime (cf. Moodie, et al., 2007) in that, for each patient, the medical

decision at each stage k > 1 was based on the patient’s history of previous treatments and

outcomes.

A website-based user interface for real-time data entry was constructed, written in ASP.NET,

with physicians and research nurses at all participating clinical centers each given a user name

and a password for access. The website had modules for both training and trial conduct, in-

cluding detailed, explicit instructions, to allow each user to become familiarized with the

program before enrolling patients.

1.4.2 What Actually Happened in the Sarcoma Trial

Most clinical trials are not conducted exactly as designed, for a variety of reasons, includ-

ing the fact that medical oncology practice is inherently complex. Conduct of a trial with

sequential outcome-adaptive rules that rely on accumulating data requires an extra step in

the clinic to enter the necessary patient outcome information into a database. This may be

delayed or forgotten because physicians and nurses are busy treating patients. Moreover,

while a research nurse may have scored a patient’s outcome, the attending physician must

sign off on it before it can be recorded officially.

In the sarcoma trial, the covariates Z were to be determined at patient entry and entered

into the database. Unfortunately, people make mistakes, and this occurred many times in

this trial. Table 3 summarizes the final actual and website-based failure count data at the

end of the trial, and the corresponding AR probabilities, for each covariate subgroup. The

table shows that incorrect Z values were entered into the website for many patients, and that

this had substantial effects on the AR probabilities rG+D(Z, θθθ) in two of the four subgroups.

While all incorrect AR probabilities were unbalanced in the right direction, this was due to

sheer luck, since it turned out that G+D was superior to G in all four subgroups (Maki, et
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al., 2007).

The take-away message from this trial is that, while accounting for patient covariates

when making interim adaptive decisions may seem like a good idea from an ideal perspective,

there is a non-trivial probability that covariates will be entered incorrectly, or not at all.

As seen in the sarcoma trial, this may have a severe detrimental effect on a design’s actual

behavior. While there is always a risk that people may make mistakes when entering vari-

ables into database, if these variables are used as the basis for real-time adaptive treatment

decisions then such mistakes can have very severe consequences in terms of actual treatment

assignments. The likelihood of these types of errors can be reduced by including second-party

verification of all data that is used in adaptive decision making.

A similar logistical problem arises for biomarker covariates, such as gene or protein signa-

tures, which may require a non-trivial amount of time to be evaluated using a blood or tissue

sample. This delays computation of any covariate-specific adaptive treatment assignment

rule, and thus delays the actual time when the patient’s treatment may begin. Consequently,

such biomarker-adaptive rules may be ignored by physicians or nurses in the clinic in order

to treat patients in a timely fashion.

1.5 Adaptive Randomization to Reduce Stickiness

AR in RCTs should not be confused with the use of AR in sequentially adaptive early phase

trials, where the goal is to select an optimal regime (dose, dose pair, schedule, or dose-

schedule combination). In such trials, using AR is motivated by the desire to reduce the

probability of getting stuck at a suboptimal regime due to the sequential use of a greedy

algorithm such as the CRM or posterior mean utility optimization. For trials based on

toxicity alone, this usually is done using closeness to a targeted probability, as done by the

continual reassesment method (CRM, O’Quigley, et al.; Cheung, 2011). Trials using both

efficacy and toxicity employ a criterion that quantifies the trade-off between toxicity and

efficacy (cf. Braun, 2002; Thall and Cook, 2004) or their joint utility (cf. Thall and Nguyen,

2012). In this setting, most methods use a greedy algorithm that optimizes the criterion

based on the current data to select a regime for each cohort.
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In general, for bivariate ordinal outcome Y taking on values y = (yE, yT ), let U(y) denote

elicited joint consensus utilities, d = dose, and θθθ the parameter vector for the probability

π(y|d,θθθ) = Pr(Y = y|d,θθθ). A greedy utility-based algorithm chooses each new cohort’s dose

to maximize the posterior mean utility

φ(d, data) = E

[
E
{
U(YE, YT )|d,θθθ}|data

]
=

∫
θθθ

∑
y

U(y)π(y|d,θθθ)p(θθθ|data)dθθθ,

where p(θθθ|data) is the posterior computed using the current data. An alternative AR method

assigns dose d with probability

rd(data) =
φ(d, data)∑m
x=1 φ(x, data)

, for d = 1, · · · ,m.

In practice, the trial begins using the greedy algorithm, constrained by safety requirements,

and AR is begun after a specified amount of initial data are obtained. A frequentist version

of this would use a plug-in estimator θ̂θθ instead of computing the posterior expectation, and

φ(d, θ̂θθ) = E
{
U(YE, YT )|d, θ̂θθ} =

∑
y

U(y)π(y|d, θ̂θθ)

would be used to define rd.

An example is given in Thall and Nguyen (2012), who present a Bayesian utility-based

phase I-II design for a trial to optimize palliative radiation therapy dose for pediatric brain

tumors. Each patient’s outcome is characterized as Y = (YE, YT ) where YR is the number

of improvements in clinical symptoms, radiographic appearance of the tumor, or quality of

life, hence has possible values yE = 0, 1, 2, or 3, and YT is toxicity severity, categorized as yT

= low, moderate, high, or severe, so there are 16 possible elementary outcomes. Application

of AR in this type of setting, as an alternative to a pure greedy algorithm, is useful because

it reduces the probability of getting stuck at a suboptimal dose. Compared to the greedy

utility-based method, AR gives slightly smaller probabilities of selecting the best regime in

some settings, but much larger correct selection probabilities in settings where the greedy

algorithm has very poor performance. Thus, in early phase trials, AR may be considered

insurance against disaster in some cases, with the price being slightly worse performance on
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other cases. This methodology also may be applied in more complex phase I-II settings,

where the goal is to jointly optimize dose and schedule (Thall, et al., 2013).

1.6 Discussion

“If it ain’t broke, don’t fix it.”

Colloquial advice.

We have described problems with AR in RCTs, in the context of both a simple toy trial

and a complex trial involving multi-stage regimes that actually was conducted. Our general

aim has been to provide simple illustrations of important practical problems with AR that

have both ethical and scientific consequences. In many actual applications of AR methods, it

appears that the practitioners do not fully understand the properties of their methodologies.

While the first author of this chapter certainly has been guilty of this failing in the past, it

seems worthwhile to learn from one’s mistakes in order to avoid repeating them.

The use of AR methods in place of fair randomization in clinical trials remains controver-

sial. In the setting where treatment A is standard therapy and B is experimental, Korn and

Freidlin (2011) compared BAR(n/2N) to unbalanced randomization with fixed probabilities

in the proportions rA:rB = 1:1, 2:1, 4:1, or 9:1. They modified the Thall and Wathen (2007)

design by capping the AR probabilities at .80, not including any early stopping rules, and

setting N = 140 rather than 200. They concluded that a trial with AR should use block-

randomization and a block-stratified analysis, as given in Jennison and Turnbull (2000) and

discussed by Karrison and Chappell (2003), and conclude “Adaptive randomization is inferior

to 1:1 randomization . . .” in terms of benefit to future patients, and that it offers “modest

to no benefit” to the patients in the trial. Two aspects of the particular AR design that Korn

and Freidlin studied are worth noting. First, in general all elements of a clinical trial design

affect its operating characteristics, and effects on design performance of the interplay between

different elements, such as a particular AR method and various other design components and

parameters, often are non-trivial and cannot be anticipated based on intuition. Second, con-
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ducting a 2-arm RCT without any early stopping rule is at odds with actual practice, and

may be considered unethical. Their article triggered a letter by Yuan and Yin (2012), who

noted that the optimal AR that minimizes the mean number of nonresponders has alloca-

tion ratio
√

(θB) :
√

(θA), but that in many settings the actual gain of such an optimal AR

with rA =
√

(θ̂A)/{
√

(θ̂A) +
√

(θ̂B)} using the continuously updated empirical estimates θ̂A

and θ̂B compared to using 2:1 fixed probability randomization is small. Yuan and Yin also

state, “The gain from using AR in terms of reducing the number of nonresponders actually

decreases when the response rate of the experimental arm increases.” Of course, statistically,

distinguishing between θA and θB that are far apart is easy and distinguishing between θA

and θB that are close to each other is hard. Given these facts, and the well-known fact that

balanced sample sizes provide a nearly optimal allocation for efficient (minimum variance)

estimation of θA − θB, discarding this important advantage of fair randomization by using

AR does not not seem to make sense in any case.

Comparison of AR(n/2N) to a simpler design with fair block randomization and a Bayesian

group sequential stopping rule showed that the latter performs quite well, and does not suffer

from the risks of adverse effects carried by AR. These adverse effects include (1) a nontrivial

probability of greatly unbalancing sample size in the wrong direction, (2) increased bias

in the final inferences due to continuous treatment comparison, which is increased if there

is parameter drift, and (3) logistical difficulties during trial conduct in recording, either

accurately or at all, patient covariates at accrual.

In recent years there as been an explosion of a wide variety of methods to correct for various

sources of bias in observational data, or to correct for noncompliance in RCTs (cf. Robins,

1994; Hernan et al., 2000; Robins, 2005; Austin, 2009). This suggests that such methods may

be used to analyze data from trials conduct using AR. These techniques essentially attempt

to correct for bias by using the available data to create a dataset as close as possible to what

would have been obtained with fair randomization, and they rely on the assumption that

no unobserved confounders are at play. Of course, all of this can be avoided by using fair

randomization in the first place.
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Our conclusions and recommendations are as follows. First, in sequentially adaptive early

phase trials, such as phase I-II dose-finding, where the goal is to select a best treatment

regime from several candidates, adding suitably calibrated AR to a greedy algorithm can

improve both the design’s reliability and its ethical desirability. One caveat is that, in some

cases, the use of additional dose acceptability rules may reduce or obviate the advantage of

adding AR. For AR in RCTs, where the goal is unbiased comparison, there are several central

issues. AR introduces greater bias, and this is worsened by drift. Additionally, AR produces

much greater variability of NB−NA and NB +NA, which carries the risks of unbalancing the

sample size in the wrong direction and reducing the reliability of the estimates of θB − θA.

Certainly, some of these problems are due to continuous decision making, which is associated

with any continuously adaptive procedure, and can be mitigated by the use of a group

sequential decision scheme or blocking. Similarly, the simple but disastrous problem with

incorrect values of patient covariates being input that occurred in the sarcoma trial could

arise in any trial that uses covariates adaptively in real time, and is not limited to AR. For AR,

important fix-ups include some sort of shrinkage of the AR probabilities toward .50, blocking,

and the use of a burn-in with fair randomization. Inclusion of such design elements, however,

requires careful preliminary simulation study of the design’s behavior and calibration of its

parameters on that basis. Consequently, for RCTs, given the severity and consequences of

the problems with AR that we have discussed, broadly recommending the use of AR with

available computer software is not unlike giving a loaded gun to a child with the instruction,

“Shoot all the bad guys.” Based on our simulation results, the simulation results of many

others, and our experiences with AR in real trials, it is clear that AR often introduces more

problems than it solves. For RCTs where treatment comparison is the primary scientific

goal, it appears that in most cases designs with fixed randomization probabilities and group

sequential decision rules are preferable to AR scientifically, ethically, and logistically.
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Table 1: Operating characteristics of three Bayesian adaptively randomized designs, and

two fairly randomized Bayesian designs with either continuous or group sequential (GS)

comparisons. The fair randomizations were done in blocks of size 8 to obtain balanced

samples. We denote π20 = Pr(NA > NB + 20), the probability of a large imbalance in the

wrong direction, and bias = (θ̂B- θ̂A) - (θtrueB − θtrueA ). In all cases, maximum N = 200 and

θtrueA = .25.

Pr(Conclusion) Mean (2.5th, 97.5th) Estimates

θtrueB Design B > A A > B NB −NA N π̂20 θ̂A θ̂B b̂ias

.25 AR(1) .09 .09 0(-186,186) 180(17,200) .431 .222 .222 .000

AR(1/2) .12 .12 0(-100,100) 164(12,200) .327 .237 .237 .000

AR(n/2N) .12 .13 0(-60,60) 161( 6,200) .220 .254 .250 -.004

Fair Contin .12 .12 0(-1,1) 160(5,200) .000 .258 .258 .000

Fair GS .024 .026 0(0,0) 196(100,200) .000 .251 .250 -.001

.35 AR(1) .30 .03 66(-164,188) 162(12,200) .138 .196 .348 .052

AR(1/2) .41 .04 37(-50,116) 140( 8,200) .069 .208 .366 .058

AR(n/2N) .44 .04 21(-22,74) 135( 5,200) .028 .220 .383 .063

Fair Contin .46 .04 0(-2,2) 134(5,200) .000 .223 .387 .064

Fair GS .34 .00 0(-2,2) 180(50,200) .000 .243 .360 .017

.45 AR(1) .59 .01 80(-62,184) 128(6,200) .048 .182 .469 .087

AR(1/2) .80 .01 38(-7,116) 94(5,200) .010 .188 .483 .095

AR(n/2N) .84 .01 16(-7,70) 85( 5,200) .002 .202 .498 .096

Fair Contin .86 .02 0(-2,2) 82(5,200) .000 .202 .498 .096

Fair GS .86 .00 0(-2,2) 130(50,200) .000 .235 .467 .032
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Table 2: Comparison of the designs in Table 1 when (θtrueA (n), θtrueB (n)) drift upward to-

gether over time, with maximum drift .20 at the end of the trial, corresponding to improving

prognosis of enrolled patients over time. All other parameters are as in Table 1.

% Conclusion Mean (2.5th, 97.5th) Estimates

θtrueB (n) Design B > A A > B NB −NA N π̂20 θ̂A θ̂B b̂ias

.25 AR(1) .18 .18 0(-174,176) 165(17,200) .426 .292 .292 .000

AR(1/2) .16 .16 0(-98,96) 157(11,200) .331 .311 .312 .001

AR(n/2N) .14 .14 -1(-60,58) 159( 6,200) .216 .329 .331 .002

Fair Contin .12 .13 0(-1,1) 160(5,200) .000 .336 .335 -.001

Fair GS .04 .04 0(0,0) 195(100,200) .000 .347 .347 .000

.35 AR(1) .47 .05 56(-142,178) 147(12,200) .145 .244 .424 .080

AR(1/2) .51 .04 33(-52,110) 133( 8,200) .075 .261 .436 .075

AR(n/2N) .50 .04 19(-26,70) 134( 5,200) .032 .280 .453 .073

Fair Contin .43 .04 0(-2,2) 136( 5,200) .000 .292 .450 .058

Fair GS .36 .00 0(-2,2) 177(50,200) .000 .330 .449 .019

.45 AR(1) .74 .02 66(-72,180) 113(8,200) .060 .214 .526 .112

AR(1/2) .85 .02 33(-8,110) 87( 5,200) .011 .221 .527 .106

AR(n/2N) .88 .01 14(-8,64) 83( 5,200) .002 .237 .541 .104

Fair Contin .84 .02 0(-2,2) 85(5,200) .000 .242 .543 .101

Fair GS .87 .00 0(-2,2) 129(50,200) .000 .297 .530 .033

20



Table 3: Comparison of the Website versus Actual treatment failure count data from the completed

trial of G = gemcitabine versus G + D = gemcitabine + docetaxel for unresectable soft tissue

sarcoma. Patient covariates are Z1 = I(Leimyosarcoma) and Z2 = I(prior pelvic radiation). For

each combination of covariate pair (Z1, Z2), Data = Website or Actual, and chemotherapy arm =

G+D or G,the tabled values are Number of failures / Number of patients.

Z1 Z2 Data G+D G rG+D(Z, θθθ)

1 1 Website 5/10 5/6 .90

Actual 5/10 2/3 .91

1 0 Website 13/24 12/12 .96

Actual 9/19 6/6 .52

0 1 Website 7/10 5/7 .66

Actual 6/8 8/8 .97

0 0 Website 14/29 17/24 .71

Actual 19/36 23/32 .79

Totals 39/73 39/49
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AR(1) 
AR(1/2) 

AR(n/2N) 

NB - NA 

Figure 1: Distributions of the sample size difference, N(B)−N(A), for AR(1), AR(1/2), and

AR(n/2N) when θtrueA = .25 and θtrueB = .35, for a 200-patient trial.
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Figure 2: Distributions of the posterior means of ∆ = θB−θA for a 200-patient trial conducted

using the Fair GS, AR(n/2N), or AR(1) methods when θtrueA = .25 and θtrueB = .25, .35, or

.45, corresponding to ∆true
A = 0, .10, or .20.
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