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1 Introduction

This chapter is based on my experiences as a biostatistician working with oncologists and
statisticians in clinical trial design and data analysis. I will focus on sequentially adaptive
decision regimes used routinely by physicians over multiple stages of a patient’s therapy,
known variously as treatment policies, multi-stage adaptive treatment regimes, dynamic
treatment regimes (DTRs), or simply “regimes.” A useful review of DTRs is given by Moodie,
Richardson and Stephens (2007). Since this book is about sequential, multiple assignment,
randomized trials, or SMARTs, (Murphy, 2005; Murphy et al., 2007; Lavori and Dawson,
2007), which aim to evaluate and compare DTRs in an unbiased fashion, this chapter will
consist of my opinions followed by descriptions of two SMARTs conducted at M.D. Anderson
Cancer Center (MDACC). The first is a completed trial in advanced prostate cancer, and the
second is an ongoing trial of DTRs constructed from targeted agents for metastatic kidney
cancer. The basic idea underlying both designs was to randomize each patient at enrollment
and re-randomize the patient to a different treatment if and when his/her initial (frontline)
treatment fails. This was motivated by the recognition that, because DTRs formalize what
oncologists actually do, it is a good idea to evaluate and compare the regimes rather than
only the treatments given at a particular stage of the regime, as is done conventionally. This
idea originated from Randy Millikan, a clinical oncologist with whom it was my privilege to
collaborate. In retrospect, the designs for these trials turned out to be both smarter and
stupider than we realized when we constructed them.

In a utopian medical practice, each physician would tailor each patient’s treatment based
on the patient’s prognostic covariates to ensure that therapeutic success is certain. A very
popular idea is that this may be accomplished using genetic, protein, or other biological
markers, to choose an optimal treatment for each patient. This is the fantasy called “per-
sonalized medicine” that has been promulgated widely in recent years. Of course, in the real
world such perfect knowledge and perfect treatments seldom exist. Physicians know this,
and to treat patients in the real world they have been practicing real personalized medicine
for thousands of years. Real personalized medicine begins with recognition of the fact that
a given treatment typically works in some patients and not in others. One practical way
for a physician to deal with imperfect knowledge in a stochastic world is to use each pa-
tient as their own control and proceed sequentially. A general algorithm for doing this, used



routinely by practicing physicians, is “Try something. If it works, give it again until the
disease is cured or you can’t give it any more. If it doesn’t work, try something else.” One
may call this the “Repeat a winner and switch away from a loser (RWSL)” rule. The un-
derlying idea is that whether a given treatment succeeds in a given patient is due to in large
part to random variation, between-patient heterogeneity, and possibly treatment-prognostic
covariate interactions that are not fully understood. RWSL rules typically use established
conventional prognostic covariates, such as disease subtype and severity, whether the patient
has been treated previously for their disease, age, and performance status.

Because physicians proceed sequentially, cancer therapy and many other areas of medical
practice routinely involve multiple stages, with adaptive decisions made by the physician in
each stage based on the patients latest history of treatments and outcomes. The RWSL rule
is an example of a more general form of physician behavior: “Observe → act → observe →
act . . . until some criterion for stopping therapy is met.” Here, “act” can mean any sort of
therapeutic action that a physician may take based on the patient’s most recent history. A
wide variety of algorithms that may be described generally by such an alternating sequence
of observations and adaptive actions are used widely by physicians to treating many forms of
cancer, infections, drug addiction, alcoholism, high blood pressure, or other chronic diseases.
The formalism for the sequence of adaptive actions is a DTR. A regime typically takes the
more specific form “Evaluate the patient’s baseline covariates to diagnose the disease, make
an initial treatment decision, treat the patient, evaluate the patient’s outcomes and possibly
updated covariates, make a second treatment decision, etc.” The distinction between the
physician choosing a treatment and actually using it to treat the patient is important because
things may not go as planned, including patient noncompliance or drop-out, a pharmacy
giving the wrong drug or dose, or a delay in treatment administration for logistical reasons.

2 Dynamic Treatment Regimes in Oncology

The main anti-cancer treatment modalities are chemotherapy (chemo), radiation therapy
(RT), surgery, stem cell transplantation, and immunotherapy. Each modality carries its
own risks of particular regimen-related AEs. For many cancers, a patient’s regime may
include two or more modalities. In general, patient outcome at any stage of cancer ther-
apy often is complex and multivariate, typically including both desirable and undesirable
treatment effects that have non-trivial probabilities of occurrence. Even for a single stage,
this complicates treatment choice and outcome evaluation, and consideration of trade-offs or
risk-benefit ratios between efficacy and AEs are inherent in therapeutic decision making. All
of these issues are embedded in the more complex problem of multi-stage decision-making
when treating a cancer patient. In oncology, actions may include choosing a treatment, mod-
ifying the dose or schedule of a treatment given in a previous stage, suspending treatment
due to a regimen-related adverse event (AE), typically called “toxicity,” or terminating ther-
apy because success has been achieved, the patient is unable or unwilling to receive further
treatment, or it is considered futile to continue.

Conventional oncology trial designs intentionally reduce variables by focusing on only one
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stage of therapy and ignoring its multi-stage structure. Unfortunately, this produces results
that are of limited use to practicing oncologists. Two or more treatments given sequentially
may have effects that are not obvious if the treatments given at each stage are evaluated
separately. A very common practice is to compare frontline treatments in terms of overall
survival while ignoring adaptive treatment decisions made by the physicians based on what is
seen after frontline. Subsequent treatments may include use of consolidation chemo, salvage
treatment, or modifications of dose or administration schedule to deal with interim toxicity.
Ignoring such components of the actual regime easily may lead to misleading conclusions,
essentially because overall effects of multi-stage regimes often are non-intuitive. A simple
but important illustration is that very aggressive frontline chemo may maximize the stage 1
response rate, but if it fails then the patient patient’s immune system and overall health are
so compromised that any stage 2 chemo must be given at a reduced dose and so is unlikely
to achieve a response. As a toy illustration, suppose that the goal is to achieve a response in
one or two stages of therapy, with stage 2 given only if the stage 1 outcome is not a response.
For treatments {a, b, c}, and response indicators (y1, y2) in the two stages, denote πa1,1 =
Pr(y1 = 1|a1 in stage 1) and πa2,2(a1) = Pr(y2=1 | y1 = 0 with a1 in stage 1, a2 in stage 2).
If πa,1 = .60 and πb,1 = .50, but πc,2(a) = .10 and πc,2(b) = .50, this implies that the 2-stage
strategy (a, c) has success probability .60 + .40 × .10 = .64 while the 2-stage strategy (b, c)
has success probability .50 + .50 × .50 = .75. So a is better than b in stage 1, but (b, c)
is a better 2-stage strategy than (a, c). Unfortunately, many oncologists make the error of
starting with a treatment like a.

In some settings, SMART designs cannot be applied. For example, so-called “trimodal-
ity” therapy for esophageal cancer may or may not begin with induction chemo to debulk
the disease, then continue with a combination of a different chemo plus RT (chemoradia-
tion therapy, CRT), after which a surgeon decides whether surgery is feasible based on the
patient’s CRT outcomes and, if surgery is performed, one of several different procedures is
chosen. In radiation therapy for esophageal cancer at MDACC, the CRT sub-regime usually
is constructed from 3 possible chemos, 3 possible RT modalities, and 2 different radiation
fields. If performed, surgery may be of 7 different types. In this setting, in theory there
are 2 × 3 × 3 × 2 × (7+1) = 288 possible regimes, although in practice only about 80
(28%) of these possibilities actually have been used. While this may seem like a good setting
to conduct a SMART, algorithms for each treatment decision are well established and it is
considered either unethical or infeasible to randomize among the choices at each stage. In
Section 4, I will discuss two oncology trials where SMART designs were considered appro-
priate. To make any progress comparing the effects of the DTRs in the trimodality setting,
methods that correct for bias in observational data must be applied, as was done in the
following example.

In conventional evaluation of anti-cancer treatments, most published analyses focus on
frontline treatments and, when evaluating overall survival or progression-free survival (PFS)
time, ignore effects of salvage therapies given when frontline treatments fail. A typical ex-
ample is Estey, et al. (1999), who gave results of a randomized trial of four chemotherapy
combinations for acute leukemia, and concluded that there were no significant differences
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between the treatment arms. As done conventionally, the analyses in Estey et al. com-
pared the frontline chemos while ignoring non-randomized salvage treatments given if the
patient had disease resistant to frontline chemo or that progressed after an initial remis-
sion was achieved. Wahed and Thall (2013) re-analyzed this dataset accounting for salvage
therapies and identifying 16 possible multistage regimes including both frontline and salvage.
These analyses included both inverse probability of treatment weighting (IPTW)(Robins and
Rotnitzky, 1992; Murphy, van der Laan and Robins, 2001; Wahed and Tsiatis, 2004) and
G-estimation (Robins, 1986; Robins, Hernan, and Brumback, 2000) to correct for bias. This
re-analysis estimated mean overall survival time for each regime, and reached very different
conclusions. If this trial were conducted today, ideally, the design of choice would include
re-randomization at salvage, i.e. it would be a SMART.

In principle, many of the ideas discussed here are applicable to studies outside oncol-
ogy, such as trials of therapeutic regimes for substance abuse, behavioral disorders, or other
chronic diseases. It should be kept in mind, however, that behavioral intervention trials are
very different from oncology trials, essentially because cancer therapy typically is aggres-
sive and not infrequently carries the risk of severe and possibly irreversible AEs, including
regimen-related death.

3 Why Use SMART Designs?

3.1 Some Opinions on Trial Design

Since there is more to being smart about clinical trials than using SMART designs, it is
worthwhile to provide a more general framework for trial design. A clinical trial is a medical
experiment with human subjects. Its two purposes are to treat the patients in the trial, and
to obtain useful information about treatment effects that may benefit future patients. A good
design should do a reasonable job of serving both goals, despite the fact that they may be at
odds with each other. To achieve this, both medical and statistical thinking must be applied
carefully while constructing a trial design. This process should begin with the statistician(s)
determining key elements from the physician(s), including the disease(s), trial entry criteria,
treatment(s) and/or doses or treatment combinations to be evaluated, any existing standard
treatment(s) that the patients would receive if they were not enrolled in the trial (which I call
the “Compared to what?” question), administration schedule(s), within-patient multi-stage
adaptive rules (since DTRs are ubiquitous, and should be identified), a range of anticipated
accrual rates, a range of feasible sample sizes, costs, regulatory issues, and human resources.
In my experience, the physician-statistician conversation may lead the physician(s) to re-
think and modify some aspect of the therapeutic process, and it also may motivate the
statistician(s) to develop a new design methodology.

Most clinical trials are inherently comparative, whether the protocol design is framed
that way or not. This is true even for simple single-arm phase 2A “activity” trials (Gehan,
1961; Thall and Sung, 1998) in settings where no effective standard treatment exists, and
the question is whether giving the experimental therapy is better than doing nothing. The
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real scientific goals of a clinical trial are exploration, estimation, treatment refinement, and
possibly modification of future physician behavior. The use of frequentist hypothesis testing
as a framework to construct trial designs often obfuscates these goals, and often leads to
erroneous conclusions. Flaws with frequentist hypothesis testing include :

1) sample size computations based on numerically artificial alternatives, often with little or
no attention to practical significance of the alternatives,

2) ignoring the uncertainty of estimates of key parameters used to construct a design,

3) rejection of a null hypothesis being wrongly interpreted as acceptance of a prespecified
alternative hypothesis (Ratain and Karrison, 2007),

4) incorrect interpretation of p-values as probabilities of some type of error, and

5) incorrect use of p-values to quantify strength of evidence.

Useful discussions are given by Berger and Sellke (1987), McClosky (1995), and Ioannidis
(2005). In contrast, Bayesian methods, such as the use of Bayes Factors (Jeffrys, 1961; Kass
and Raftery, 1995), for dealing with multiple testing rely solely on the assignment of prior
probabilities to models or hypotheses, and use the observed data rather than hypothetical
data. A useful paper for practitioners is Westfall, Johnson, and Utts (1997). The poten-
tially crippling effects of reliance on frequentist methods for testing multiple hypotheses are
especially troubling with SMARTs, since in many settings it is very easy to generate quite a
large number of regimes that should, and possibly can, be evaluated.

Statisticians often talk about “optimal designs.” Methodological research to define and
derive optimal designs can be quite useful if it leads to good designs that actually can
be applied. Any claim of optimality almost invariably is misleading, however, unless it
is qualified by a careful explanation of the particular criterion being used to determine
what is best. In the real world, no clinical trial can ever be globally optimal, because
the utilities of physicians, administrators, government agencies, pharmaceutical companies,
patients enrolled in the trial, and future patients are all different. The practical goal of
a clinical trial is not optimality, but rather to do a good job of treating the patients and
producing data of sufficient quality that, when analyzed sensibly, may benefit future patients.
When designing a clinical trial, never let the perfect be the enemy of the good. The two
overarching questions in constructing a clinical trial design are whether it serves the medical
needs of the patients enrolled in the trial and whether it will turn out to have been worthwhile
once it is completed.

Interactions between physicians and statisticians are only part of a complex process
involving medicine, statistics, computing, ethics, regulatory issues, finances, logistics, and
politics. At the institutional level, elaborate administrative processes often must be followed
for protocol review that involve one or more Institutional Review Boards. A major logistical
issue is that trial conduct can be complicated by interim outcome-adaptive rules that must
be applied in real time. A clinical trial protocol, no matter how detailed, is an idealized
representation of how the trial actually will play out. One can never know in advance
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precisely how new medical treatments or regimes will act in humans. For example, it may
be necessary to suspend accrual and modify a design in mid-trial if unexpected AEs occur,
the accrual rate is much higher or much lower than expected, or results of another ongoing
or recently completed trial substantively change the original rationale for the trial design.

3.2 Some Opinions On SMART Design

SMART designs are a bold attempt to do a better job of evaluating what physicians actu-
ally do. They are motivated by two key elements. The first is the multi-stage nature of
actual medical therapy. The second is the scientific goal to obtain unbiased comparisons.
Combining these two elements motivates randomizing in order to compare the regimes in an
unbiased fashion, and more specifically randomizing at more than one stage of the regime.
Each randomization must be ethically acceptable in that, at that stage of the regime, the
treatments or actions among which the patient is being randomized given their current his-
tory must be equally desirable. This criterion, applied at each stage, is the same as the usual
requirement of equipoise in conventional randomized trials. If it is decided to evaluate multi-
stage regimes rather than individual treatments by using a SMART design, it is essential to
begin by determining the actual regimes that will be studied. This should include the key
consideration that all regimes that are possible in the SMART design must be viable (cf.
Wang, et al. 2012), that is, each regime must be a sequence of actions that the physicians
actually would take.

To determine trial sample size, the first step is to elicit the anticipated accrual rate,
which often may be range of values, the longest individual patient follow up time, and the
maximum trial duration that the investigators planning the trial consider feasible. Simple
back-of-an-envelope arithmetic then can determine a range of feasible sample sizes. This
exercise may motivate either reducing the complexity of the design if a simpler feasible trial
still is worthwhile, or concluding that a multi-center trial will be needed to accrue enough
patients to obtain useful results. More formal sample size computation methods can be
applied, including those of Feng and Wahed (2009), Dawson and Lavori (2010), and Li and
Murphy (2011). The sample size computation method of Almirall et al. (2012) is quite easy
to implement, and is tailored for SMARTs that aim to be pilot studies, which is likely to
be the actual reality in many SMARTs. In any case, the design should be simulated on
the computer, for each of a range of sample sizes under each of a reasonable set of possible
scenarios, to determine the design’s operating characteristics. Computer simulation results
typically are extremely informative, provide a basis for calibrating design parameters, may
motivate design modifications, and are an ethical necessity for complex trials. In my opinion,
it is more desirable to kill computer generated patients, rather than real ones, in order to
calibrate design parameters. A simple practical rule is to avoid any design that specifies a
trial that never will be run because it is not feasible, or that is unlikely to be completed for
one or more practical or political reasons.

Since the goals of a SMART include unbiased or approximately unbiased estimation, this
provides a basis for reliably ranking the DTRs, which in turn may facilitate elimination of
DTRs likely to be inferior and identification of DTRs likely to be superior. This sort of
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inference is very useful to the physicians or health professionals conducting the trial. A nice
property of the Bayesian framework is that it allows one to compute posteriors of ranks.
In a SMART, suppose that a total of m DTRs indexed by j = 1, · · · ,m are studied, and
µµµ = (µ1, · · · , µm) denotes the vector of means of the final outcome. For example, if the
outcome is survival time, then a larger value of µj corresponds to the jth regime being more
desirable. In this case, one may define the rank of µj as Rj(µµµ) =

∑m
r=1 I(µj ≤ µr), so Rj(µµµ)

= 1 corresponds to the best regime, Rj(µµµ) = 2 to the second best, and so on. The posterior
p(µµµ | data) induces a posterior p(R1(µµµ), · · · , Rm(µµµ) | data) on the ranks. In practice, these
posteriors are computed easily using Markov chain Monte Carlo methods (Gilks, Richardson
and Spiegelhgalter, 1996). A useful property of the posterior on the ranks is that, while
for each µµµ the vector (R1(µµµ), · · · , Rm(µµµ)) is a re-arrangement of the integers (1,...,m), the
support of the marginal posterior of each Rj(µµµ) is not restricted to these integers but rather
has support on the interval [0, m], thus quantifying posterior uncertainty about the rank of
the jth regime.

It is not an accident that the community of statisticians currently promoting SMART
designs arose from the larger community of statisticians developing and using methods to
correct for bias when analyzing observational data. It is well known that bias correction
methods such as IPTW or case matching essentially attempt to construct data that are as
close as possible to what would have been obtained if a randomized clinical trial (RCT)
had been conducted. One rationale for randomization to compare treatments (or regimes)
a and b is that it gives, in expectation, what would be achieved if there were two copies of
each patient so that one could be treated with a and the other with b, with the difference
ya−yb in outcomes the so-called causal effect of a versus b, and the mean of these differences
across the sample of counterfactual pairs the desired estimate. Still, randomization is not
a perfect solution to the problem of obtaining unbiased comparisons simply because the
world is imperfect. Those involved in the design and conduct of a SMART trial should
recognize that it is hard to do real-time adaptive decision-making reasonably, much less
optimally. Practical complications include patient heterogeneity, delayed outcomes, errors
in recording or entering the outcomes or covariates used for interim adaptive decisions into
a database, patients not treated as assigned due to error or physician decision, patient non-
compliance, and informative drop-outs. All of these complications typically are associated
with treatment, making conventional “intention to treat” analysis substantively misleading.
The consequence of all this is that clinical trial data, from a RCT or a SMART, quite often
resemble observational data. Consequently, in analyzing data from RCTs, in particular from
SMARTs, it often is necessary to employ bias correction methods originally developed for
analysis of observational data. An example of this is given in the following section.
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4 A Trial in Advanced Prostate Cancer

4.1 The Trial Design

Randy Millikan and I designed the first SMART in oncology. The goal was to evaluate
four chemotherapy combinations (chemos), denoted by A = {CVD, KA/V E, TEC, TEE},
for advanced prostate cancer. The trial was conducted at M.D. Anderson Cancer Center
(MDACC) from December 1998 to January 2006 and enrolled 150 men. The first account
of the trial design was given by Thall, Millikan, and Sung (2000). Various analyses of the
trial data, including descriptions of the design and a wide variety of statistical methods
for analyzing the data, are given by Thall et al. (2007), Bembom and van der Laan (2007),
Millikan et al. (2008), Wang et al. (2012), and by the discussants of this last paper, Almirall,
Lizotte and Murphy (2012), and Chaffee and van der Laan (2012).

Rather than simply conducting a conventional four-arm RCT, we designed the prostate
cancer trial trial to evaluate multi-stage treatment regimes, each constructed using chemos
from A, that mimic the way that oncologists who treat prostate cancer behave. To do
this, Randy Millikan defined a RWSL algorithm, and he chose the four chemos in A. The
algorithm was defined as follows. At enrollment, each patient’s disease and prostate specific
antigen (PSA) level were evaluated to obtain baseline values, and the patient was randomized
fairly among the four chemos. The patient’s disease and PSA level were re-evaluated at the
end of each of up to four successive eight-week treatment stages. A key distinction was made
between success for the chemo administered in a given stage, called “per-stage success,” and
overall success of the entire multi-stage regime. For a chemo used for the first time in any
stage k = 1, 2, or 3, initial per-stage success (yk = 1) was defined as a drop of at least 40%
in PSA compared to baseline and absence of advanced of disease (AD). If this occurred, then
that chemo was repeated for that patient in the next stage; if not, then that patient’s chemo
in the next stage was chosen by re-randomizing fairly among the three chemos not given
initially to that patient. Success in stage k = 2, 3, or 4 following a success in stage k − 1
with the same chemo was defined as a drop of at least 80% in PSA level compared to baseline
and absence of AD. A maximum of two stages without per-stage success were allowed, and
the patient’s therapy was terminated if this occurred. Overall success was defined as two
consecutive successful stages which, per the algorithm, could only be achieved using the same
chemo in both stages. The oncologists in the Genitourinary Medical Oncology Department
at MDACC dubbed this trial “The Scramble.”

Formally, a1 ∈ A, was chosen by fair randomization for all patients. For k = 2, 3, or 4,
if yk−1 = 1 then ak = ak−1 with probability 1, and if yk−1 = 0 then ak 6= ak−1 = a1, with ak
chosen by fair re-randomization among the three chemos in A− a1. Because a maximum of
two stages with failures were allowed, each patient received 2, 3, or 4 stages of chemo. This
algorithm, applied using the chemo set A, produced 12 possible two-chemo regimes, each
represented by a pair (a, b) where a, b ∈ A with a 6= b. In the parlance of oncology, a was
the patient’s frontline chemo and b was the salvage chemo given if a failed. The primary
goal of the trial was to evaluate and compare the 12 possible two-chemo regimes in terms
of their overall success rates. This goal was very different from that of a conventional trial,
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Table 1: Possible per-stage and overall outcomes with regime (a, b) in the prostate cancer
trial. S = overall success = two consecutive successful stages, and F = overall failure = Sc.

Per-stage Outcomes Chemos Overall Outcome Number of stages

(y1, y2) = (1,1) a1 = a2 = a S 2
(y1, y2, y3) = (0,1,1) a1 = a, a2 = a3 = b S 3

(y1, y2, y3, y4) = (1,0,1,1) a1 = a2 = a, a3 = a4 = b S 4
(y1, y2) = (0,0) a1 = a, a2 = b F 2

(y1, y2, y3) = (1,0,0) a1 = a2 = a, a3 = b F 3
(y1, y2, y3) = (0, 1,0) a1 = a, a2 = a3 = b F 3

(y1, y2, y3, y4) = (1,0,1,0) a1 = a2 = a, a3 = a4 = b F 4

which would be to evaluate and compare only the chemos given initially, in stage 1. The
trial was considered to be hypothesis generating, with the aim to use the results as a basis
for planning a future, confirmatory phase III trial. The seven possible outcomes generated
by the algorithm are summarized in Table 1.

4.2 The First Round of Analyses

For our first analysis of the data from this trial in 2007, nine years after we began the
process by establishing the design and starting the trial, Dr. Millikan insisted that we use
the model and method given in our initial 2000 paper. At that time, our plan was to apply
more sophisticated methods, in particular to correct for bias and informative dropouts, in
a later analysis to be done in collaboration with Xihong Lin. While our paper describing
these initial analyses was under review at Journal of the National Cancer Institute, Oliver
Bembom contacted Dr. Millkan and asked him to provide the trial data. Dr. Millikan
complied, providing the data as requested, and a paper by Bembom and van der Laan,
focusing on the importance of using inverse probability of treatment weighting (IPTW)
methods for data analysis, appeared in the same issue of this journal as our paper (Bembom
and van der Laan, 2007; Thall, et al. 2007).

A rather different reaction was given by Armstrong, et al. (2007a), who actually waited
for us to publish our results before writing their letter. Armstrong et al. (2007a) cited results
of the so-celled “TAX327” study (Tannock, et al., 2004), which concluded that docetaxel
+ prednisone was superior to mitoxantrone + prednisone in terms of overall survival for
treating men with advanced prostate cancer. Armstrong et al. (2007a) criticized us for
not including a “docetaxel single-agent comparator,” described our therapeutic approach as
“aggressive and toxic,” and provided several other interesting opinions, including criticism
of our use of change in PSA to characterize outcome along with AD. To respond to these
criticisms, we proceeded empirically by using estimated effects of docetaxel + prednisone on
survival. We first obtained the fitted survival time regression model derived in the analysis
of the TAX327 study data given by Armstrong, et al. (2007b). Using the actual covariates
of the patients in The Scramble with this fitted prognostic model, we computed covariate-
specific estimates of how long each of our patients would have been expected to survive
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if he had received docetaxel + prednisone every 3 weeks, as in the superior arm of the
TAX327 study. We then compared the resulting predicted survival curve associated with
this hypothetical treatment to the Kaplan-Meier estimate based on the actual survival time
data of our patients. The two curves are given in Figure 1, which is reproduced from Millikan,
Logothetis and Thall (2008). This figure appears to indicate that, amazingly, the patients
in The Scramble survived much longer than they would have survived if they had been
treated with docetaxel + prednisone. This survival time comparison was graphical, and
furthermore it was informal in that we made no correction for potential bias due to between-
trial effects or other possible confounding variables, nor did we perform a comparative test
of hypothesis. Although survival time was not the primary endpoint of The Scramble, it
seems that the trial’s RWSL algorithm, applied with the four chemos noted earlier, provided
greatly improved survival for the patients enrolled in The Scramble compared to what would
have been obtained with docetaxel + prednisone if they had been enrolled in that arm of the
TAX327 study. A possible alternative explanation is that the oncologists and supportive care
at MDACC were superior compared to the corresponding elements of the TAX327 study,
although this seems dubious given the high level of communication between oncologists at
large medial centers. This graphical comparison, while crude, appears to provide an empirical
illustration of how a SMART design can benefit the patients enrolled in the trial, at least in
the setting of treatment for advanced prostate cancer. A more formal comparison would use
the combined data from both trials and apply some form of IPTW, G-estimation, matching,
or other bias correction method. To my knowledge, such a formal comparative analysis of
these two particular data sets has not yet been carried out.

4.3 The Second Round of Analyses

The first analyses of The Scramble, described above, were based on the 150 eligible patients
who were randomized. However, 47 (31%) of these patients did not complete the multistage
regime as specified by the protocol algorithm. Both Bembom and van der Laan (2007)
and Thall et al. (2007) classified these 47 patients as dropouts, assumed that dropout was
noninformative, and carried out a complete case analysis. Given this background, Xihong
Lin, Lu Wang, and Andrea Rotnitzky (“The Harvard Gang”) and I decided to re-analyze
the data, this time accounting for the possibility that these dropouts were informative. To
start, Dr. Lin asked me to ask Dr. Millikan the specific reason for each dropout. My
subsequent conversation with Dr. Millikan turned out to be quite important, since it led to
a process that actually introduced new information into the data set and motivated the use
of a utility function. This was because it turned out that, for 35 of the 47 patients whom
we had considered to be dropouts, in fact their therapies were stopped by their attending
physicians due to either progressive disease (PD) or severe toxicity. This adaptive decision
rule was not included in the multi-stage algorithm given in the protocol because, as Dr.
Millikan explained to me, it is such standard clinical practice that it did not seem worth
formalizing. After a very heated and highly productive discussion, we agreed to account
for these adaptive decision rules by defining the per-stage outcome in terms of both efficacy
and toxicity. This yielded a much more accurate and more informative bivariate ordinal
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Table 2: Elicited utilities of the seven actual possible per-stage outcomes in the prostate
cancer trial. Toxicity = 0 for no severe toxicity, 1 for toxicity that precludes further therapy
but allows efficacy to be evaluated, and 2 for toxicity precluding further therapy and not
allowing efficacy to be evaluated. Efficacy = 0 for favorable response, 1 for no favorable
response but no PD, 2 for PD, and 3 for inevaluable efficacy due to PD.

Per-Stage Efficacy
0 1 2 3

Per-Stage 0 1.0 0.5 0.1 –
Toxicity 1 0.8 0.3 0 –

2 – – – 0

per-stage outcome yk = (yk,T , yk,E), for k = 1,2,3,4. We defined yk,T = 0 if there was no
toxicity, 1 if toxicity occurred at a level severe enough to preclude further therapy but allow
efficacy to be evaluated in that stage, and 2 if toxicity occurred at a level severe enough to
preclude further therapy and not allow efficacy to be evaluated in that stage. For efficacy,
we defined yk,E = 0 if a favorable per-protocol response was observed, 1 if a favorable per-
protocol response was not observed but PD did not occur, 2 if PD occurred, and 3 if efficacy
was inevaluable due to severe toxicity. Dr. Millikan revisited the data and went through the
painstaking process of determining yk for each stage of each patient. In fact, only seven of
the 12 possible combinations (yk,T , yk,E) could occur, and I elicited joint utilities U(yk) for
each of these seven possibilities from Dr. Millikan. These are given in Table 2.

The results of our analyses of this extended version of the data set from The Scram-
ble are described by Wang et al. (2012), which includes detailed accounts of the newly
extended DTRs, which we dubbed “viable switch rules,” IPTW methods, inferences for dif-
ferent numerical versions of the utility function, descriptions of counterfactual outcomes,
and an analysis of the 12 remaining informative dropouts. While Wang et al. (2012) called
U(yk) a “scoring function” in order to avoid potentially controversial connotations of the
word “utility,” in fact U(yk) is a utility function, and it is very similar to those used by
Thall et al. (2011, Table 1) and Thall and Nguyen (2012, Table 1) for sequentially adaptive
dose-finding. One notable event in this process was that, after I inveigled Dr. Millikan to
travel to Crystal City to give an invited talk at an ENAR meeting, he and Dr. Rotnitzky
met in person and were able to discuss several key scientific issues. While initially it was
our intention to analyze only the per-stage outcomes, Dr. Rotnitzky insisted that we also
perform a survival analysis of the regimes, which gave a much more complete picture of the
actual viable regime effects. In their discussion of this paper, Almirall, Lizotte and Murphy
(2012) explained how The Scramble fit into the world of SMARTs, and provided a very
useful sensitivity analysis of the utility functions. Chaffee and van der Laan (CVDL, 2012),
in their discussion, reiterated the well-known fact that, because the regimes in a SMART are
specified by design, when there are few dropouts IPTW can improve efficiency by weighting
for the conditional probabilities of dropout. Of course, this is why Wang et al. (2012) used
IPTW. CVDL also argued that targeted maximum likelihood ought to be used for SMARTs
with high rates of ignorable dropouts. While assuming ignorability of dropouts in any trial
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unavoidably is controversial, it seems pretty clear that, in most cancer trials, because each
patient’s life is at stake it is difficult to believe that any dropout is truly ignorable.

It is useful to summarize what we actually learned from this 14-year process. First,
The Scramble illustrates the fact that one cannot design an experiment optimally until
after it already has been carried out. The second point is that, because dropouts and
other deviations from protocol designs occur quite commonly, analysis of data from a well-
designed randomized trial often is very similar to analysis of observational data. Third, my
recommendation to a medical statistician who wants to do a good job of study design or data
analysis is that they should talk to their doctor. This often is not one conversation, but rather
is a process than may play out over many months or years, during which the statistician must
learn about specific medical practices and the physician must learn about statistical methods.
Not infrequently, this process results in improvements of both paradigms. Fourth, what
initially appear to be dropouts in a clinical trial actually may be patients whose treatment
was stopped by a physician applying an adaptive decision rule as part of routine medical
practice. Such a rule, once recognized and made well-defined, should be operationalized as
part of the DTR in the statistical paradigm. Fifth, if you want to do a better job analyzing
a complicated data set that you do not fully understand, find people who are smarter than
you and listen carefully to what they say. This is why I enlisted The Harvard Gang for
this challenging project. Finally, lest we become enamored with the beauty and clarity of
new statistical methods and the scientific process, it should be kept in mind that prostate
cancer has not yet been cured. Perhaps it is time for statisticians to devote more attention
to treatment discovery and refinement, rather than only study design and data analysis.

5 A Trial in Metastatic Kidney Cancer

Given the successful completion of the prostate cancer trial, the GU Oncology Department
at MDACC embraced the idea of evaluating DTRs, rather than only individual treatments.
This motivated a SMART in metastatic kidney cancer, called Sequential Two-agent Assess-
ment in Renal Cell Carcinoma Therapy, “START.” This was activated in 2010, and Nizar
Tannir is the trial’s PI. A detailed account of the design is given in Thall, et al. (2007). This
trial was motivated by the lack any truly effective treatment for metastatic renal cell cancer,
which has a median PFS of nine months.

The START trial evaluates six two-stage DTRs constructed from the three targeted
agents pazopanib (p), bevacizumab (b), and everolimus (e). Both p and b are VEGF pathway
inhibitors, which means that they are designed to block the tumor’s blood supply, while e
inhibits the rapamycin (mTOR) pathway, which is a central regulator of cell metabolism,
growth, proliferation, and survival. Initially, each patient is randomized among {p, b, e}
using the Pocock-Simon (1975) method to balance on two prognostic covariates, an indicator
of whether the patient received prior cytokine or vaccine treatment, and a three-level risk
category variable. The stage 1 outcome is time to overall treatment failure, measured from
the date of randomization to the date of disease progression (worsening compared to baseline
at first randomization), discontinuation of protocol treatment for any reason, or death. The
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stage 1 outcome is the final failure if a patient drops out or dies. Only patients whose stage 1
outcome is disease progression receive a stage 2 treatment, which is chosen by re-randomizing
the patient fairly between the two agents not received initially by that patient. The six two-
stage regimes are thus D = {(p, b), (p, e), (b, e), (b, p), (e, b), (e, p)}. Denote the stage 1
time to progression by t1 and observed failure time by to1 with δ1 = I(to1 = t1), and define
(to2, t2, δ2) similarly for stage 2. The per-stage outcomes are yk = (tok, δk), for k = 1, 2, and
overall time-to-failure is y = to1 + δ1 t

o
2. The goal is to estimate µd = E(y | d) for each d ∈ D

and select the best regime on that basis. An important point is that, if the patient’s therapy
ends with discontinuation or death at to1 in stage 1, then the stage 1 agent contributes to the
estimates of µd for two regimes. For example if a patient is randomized to p and drops out
or dies, then δ1 = 0 and to1 contributes to the estimates of both µ(p,b) and µ(p,a).

An important property of this design is that each agent appears as either the first or
second element of four of the six regimes. This is attractive for a pharmaceutical company
making a given agent a since, for example, if a more conventional three-arm RCT were
conducted based on stage 1 only, then a would be given to only 33% of the patients, rather
than 66%. More generally, with DTRs of this form, for each individual agent the number
of opportunities to be part of a winning sequence is larger than the corresponding number
if the agent is considered alone. A key point is that accounting for the six regimes allows
the possibility that, for example, the effect on t2 of b given after p may differ from the effect
of b given after e. A possible ethical question is why the START design apparently does
not include an established standard treatment comparator arm. At the time the trial was
begun, based on conventional trials pazopanib was an established standard for frontline and
everolimus an established standard for second line treatment for these patients. Thus, the
strategy (p, e) may be considered a (frontline, second line) “control” arm.

There were several practical complications to deal with in constructing the START design.
These included interval censoring of progression times and possible delay in starting the stage
2 therapy. A specialized computer program necessarily was required to simulate the design
and establish its operating characteristics. There were several very time consuming iterations
of this process due to successive requirements and advice from various parties involved. The
first design (February, 2006) had a maximum of N = 240 patients, studied 12 strategies
constructed from 4 agents, and assumed an accrual rate of 12 patients per month. To
respond to criticisms and suggestions from individuals at the Cancer Therapy Evaluation
Program (CTEP)of the National Cancer Institute (NCI), we excluded two agents from the
stage 1 pool, yielding 8 regimes, assumed an accrual rate of 9 patients per month, and re-
designed and re-simulated the trial (April, 2006). Subsequently, we were informed by the
regulators at CTEP/NCI that they were no longer interested in our trial. In January, 2007,
after individuals at several pharmaceutical companies expressed an interest, the trial was
designed a third time, now with the current 6-regime structure of START, but with different
agents and N = 360, assuming an accrual rate of 12 patients per month. At the behest
of Christopher Logothetis, Chair of the GU Oncology Department at MDACC, I made the
arduous journey from Houston to Chicago and presented this latest version of the design at
the annual meeting of the Kidney Cancer Association (October, 2007). Following the advice
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of several oncologists at this meeting, I decreased N to 240 and added the the following
Bayesian interim weeding rule. Denoting µmax = maximum of the six regime mean failure
times, a strategy d will be stopped if Pr{µd < µmax− 3 months | data} > .90, applied when
120 patients are fully evaluated (May, 2007). This rule, which does not appear in Thall et
al. (2007), does appear in the trial protocol, and may be called a between-regime “drop the
losers” rule. Between establishing this design in 2007 and trial activation in 2010, extensive
negotiations with various pharmaceutical companies resulted in the three agents {p, b, e}
that actually are being studied in the START trial. Thus, the process from first design to
trial activation included multiple design modifications and took four years.

Important issues in the START trial are the rationale for the maximum sample size of
240, and how the trial might have been designed using conventional tests of hypotheses. The
main criteria for choosing sample size were feasibility and the ability to obtain reasonable
correct selection rates under an array of different scenarios specified in terms of E(t1) and
E(t2). Based on N = 240 patients, assuming that 20% of patients will discontinue therapy
in stage 1, 32 patients are expected to receive both stages of each strategy. If, instead,
a hypothesis test based approach were taken, the 15 pairs of regimes might be compared
using a two-sided test with null median failure time 15.7 months and power .80 to detect
a targeted value of 22 months, a 40% improvement, controlling overall type I error rate at
.05. This would require a maximum of 611 patients for each pair of strategies, thus 1833
patients total. The expected maximum trial duration would be slightly over 13 years. The
START design also replaces the conventional approach in oncology of doing three single arm
trials in what here we call stage 1, and doing three more single arm trials of the agents as
second line therapy for patients who progress in stage 1. In this regard, a useful way to
think of the total sample size of 240 is to compare the START trial to these six conventional
single-arm phase II trials, each of size 40. The data from these six trials would be of very
limited use because the failure to randomize would provide data of little use for for unbiased
comparisons. Moreover, conducting six single-arm trials would fail to account for the joint
effects of two agents given sequentially. Another alternative approach would be to conduct
two trials, each with 120 patients randomized among {p, b, e}. One trial would compare these
as frontline agents, and the second trial would compare them as second line agents. With this
approach, as with six single-arm trials, the benefits of linking each (frontline, salvage) pair
would be lost. This is an essential advantage of START, since the effects of pairs of agents
given in sequence are not intuitively clear based in how each agent may behave in one stage
of therapy, as either frontline or salvage. Logistically, the additional effort of randomizing
240 patients sequentially in a single trial among the six strategies is minimal. Moreover,
administratively, it is much easier to organize one trial rather than two or six trials.

6 Discussion

DTRs reflect actual physician behavior. Compared to conventional trials that focus on one
stage of therapy, SMARTs reflect this behavior by providing a basis for unbiased estimation of
multi-stage strategy effects. This, in turn, provides a relaible basis for identifying strategies
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likely to be either superior or inferior. These are practical goals that are more concordant
with how therapeutic advances actually are achieved, compared to testing hypotheses.

In most applications, designing a SMART is more challenging and time-consuming than
constructing a conventional RCT. This is because DTRs are inherently more complex than
single-stage treatments, statistical modeling of the sequences of treatments and outcomes is
required, the properties of the trial must be validated by computer simulation, and computer
software must be developed for this purpose. In contrast, conduct of a trial to evaluate and
compare DTRs actually is very similar to that of a conventional trial that includes within-
patient adaptive rules.

The idea of designing clinical trials to study multi-stage treatment sequences is just catch-
ing on. SMART trials are rare in oncology. When confronted by simple explanations of why
focusing on only one stage of therapy in a clinical trial can lead to very misleading con-
clusions, many physicians simply are unwilling to be convinced, and more than a few react
angrily. From a purely logical viewpoint this may seem strange, since so much of medical
practice, and indeed most human behavior, involves sequences of adaptive decisions. The
explanation seems to lie in the fact that, while human beings act sequentially, actually plan-
ning more than one step ahead can be very difficult and non-intuitive. Moreover, for clinical
trialists, the implication of SMARTs and the theory underlying DTRs is that “Everything
you know is wrong,” which can be very unsettling. Still, it is quite encouraging that the
physicians in the GU Oncology Department at MDACC, and many others in the medical
community, understand the advantages of SMARTs and have begun to use them to design
and conduct actual trials.

Acknowledgements
This research was supported by NIH/NCI grant RO1 CA 83932. Figure 1 originally appeared
in the Journal of the National Cancer Institute, and is reproduced here with the permission
of Oxford University Press.

Bibliography

1. Almirall D, Compton SN, Gunlicks-Stoessel M, Duan N, Murphy SA. (2012). Designing
a pilot sequential multiple assignment randomized trial for developing an adaptive
treatment strategy. Statistics in Medicine, 31(17), 1887-1902

2. Almirall D, Lizotte D, Murphy SA. Comment on “Evaluation of Viable Dynamic Treat-
ment Regimes in a Sequentially Randomized Trial of Advanced Prostate Cancer” by
Wang, Rotnitzky, Lin, Millikan, and Thall. Journal of the American Statistical Asso-
ciation, 107, 509-512, 2012.

3. Armstrong AJ , Garrett-Mayer ES, Eisneberger M. Comment on ‘Adaptive therapy
for androgen independent prostate cancer: A randomized selection trial including four
regimens’ by Thall et al., J National Cancer Institute. 100:681-682, 2008.

15



4. Armstrong AJ , Garrett-Mayer ES , Yang YC , de WR , Tannock IF , Eisenberger M.
A contemporary prognostic nomogram for men with hormone-refractory metastatic
prostate cancer: a TAX327 study analysis . Clin Cancer Res. 13 (21): 6396 6403,
2007.

5. Bembom O, van der Laan, M. Statistical methods for analyzing sequentially random-
ized trials. J Natl Cancer Inst 99: 1577 82, 2007.

6. Berger JO, Sellke T. Testing a point null hypothesis: the irreconcilability of P values
and evidence. Journal of the American Statistical Association 82(397) : 112-122, 1987.

7. Chaffee P, van der Laan M. Comment on “Evaluation of Viable Dynamic Treatment
Regimes in a Sequentially Randomized Trial of Advanced Prostate Cancer” by Wang,
Rotnitzky, Lin, Millikan, and Thall. Journal of the American Statistical Association,
107, 513-517, 2012.

8. Dawson R, Lavori PW. Sample size calculations for evaluating treatment policies in
multi-stage design. Clinical Trials. 7:643652, 2010.

9. Estey EH, Thall PF, Pierce S., Cortes, J., Beran, M., Kantarjian, H., Keating, M.J.,
Andreeff, M. and Freireich, E. Randomized phase II study of Fludarabine +Cytosine
Arabinoside+ Idarubicin +/- All Trans Retinoic Acid +/- Granulocyte-colony stimu-
lating factor in poor prognosis newly diagnosed acute myeloid leukemia and myelodys-
plastic syndrome. Blood, 93:2478-2484, 1999

10. Feng W, Wahed A. Sample size for two-stage studies with maintenance therapy. Statist.
Med., 28, 20282041, 2009

11. Gehan EA. The determination of the number of patients required in a follow-up trial
of a new chemotherapeutic agent. Journal of Chronic Diseases. 13:346-353 1961.

12. Gilks WR, Richardson S, Spiegelhalter DJ. Markov Chain Monte Carlo in Practice.
Chapman & Hall/CRC: Boca Raton, 1996.

13. Ioannidis JPA. Why most published research findings are false.PLoS Medicine. 2:0696-
0701, 2005.

14. Jeffreys H. Theory of Probability, 3rd ed. Oxford Classic Texts in the Physical Sciences.
1961. Oxford Univ. Press, Oxford.

15. Kass R, Raftery A. Bayes factors. Journal of the American Statistical Association 90,
773-795, 1995.

16. Lavori PW, Dawson R. Improving the efficiency of estimation in randomized trials of
adaptive treatment strategies. Clinical Trials. 4(4):297308, 2007.

16



17. McCloskey DN. The insignificance of statistical significance. Scientific American 272(4)
: 104-105, 1995.

18. Millikan R, Logothetis C, Thall PF. Response to comments on ’Adaptive therapy for
androgen independent prostate cancer: A randomized selection trial including four
regimens’ by P.F. Thall et al., J National Cancer Institute. 100(9):682-683, 2008.

19. Murphy SA. An experimental design for the development of adaptive treatment strate-
gies. Statistics in Medicine. 24(10):14551481, 2005

20. Murphy SA, Collins LM, Rush AJ. Customizing treatment to the patient: Adaptive
treatment strategies. Drug and Alcohol Dependence. 88:S1S3, 2007.

21. Murphy SA, van der Laan M, Robins JM, and CPPRG. Marginal mean models for
dynamic treatment regimes. Journal of the American Statistical Association, 96,
14101424, 2001.

22. Pocock SJ, Simon R. Sequential treatment assignment with balancing for prognostic
factors in the controlled clinical trial. Biometrics 31:102-115,1975

23. Ratain MJ, Karrison TG. Testing the wrong hypothesis in phase II oncology trials:
There is a better alternative. Clinical Cancer Research. 13:781-782, 2007.

24. Robins JM. A new approach to causal inference in mortality studies with sustained
exposure periods application to control of the healthy survivor effect. Math. Modeling,
7:13931512, 1986.

25. Robins, J. M., Hernan, M. A. and Brumback, B. Marginal structural models and causal
inference in epidemiology. Epidemiology, 11, 550560, 2000.

26. Robins JM, Rotnitzky A. Recovery of information and adjustment for dependent cen-
soring using surrogate markers. In AIDS Epidemiology, Methodological Issues (eds N.
Jewell, K. Dietz and V. Farewell), pp. 297331, 1992. Boston: Birkhuser.

27. Tannock IF, de Wit R, Berry WR, et al. Docetaxel plus prednisone or mitoxantrone
plus prednisone for advanced prostate cancer. New England Journal of Medicine.
351(15): 1502 1512, 2004.

28. Thall PF, Logothetis C, Pagliaro L, Wen S, Brown MA, Williams D, Millikan R.
Adaptive therapy for androgen independent prostate cancer: A randomized selection
trial including four regimens. J National Cancer Institute. 99:1613-1622, 2007

29. Thall PF, Millikan R, Sung, H-G. Evaluating multiple treatment courses in clinical
trials. Statistics in Medicine, 19: 1011-1028, 2000.

30. Thall PF, Nguyen HQ. Adaptive randomization to improve utility-based dose-finding
with bivariate ordinal outcomes. J Biopharmaceutical Statistics 22:785-801, 2012.

17



31. Thall PF, Sung H-G. Some extensions and applications of a Bayesian strategy for
monitoring multiple outcomes in clinical trials. Statistics in Medicine, 17:1563-1580,
1998.

32. Thall PF, Sung H-G, Estey EH. Selecting therapeutic strategies based on efficacy and
death in multi-course clinical trials. J American Statistical Assoc, 97:29-39, 2002.

33. Thall PF, Szabo A, Nguyen HQ, Amlie-Lefond CM, Zaidat OO. Optimizing the concen-
tration and bolus of a drug delivered by continuous infusion. Biometrics. 67:1638-1646,
2011

34. Thall PF, Wooten LH, Logothetis CJ, Millikan R, Tannir NM. Bayesian and frequentist
two-stage treatment strategies based on sequential failure times subject to interval
censoring. Statistics in Medicine. 26:4687-4702, 2007.

35. Li Z, Murphy SA. Sample size formulae for two-stage randomized trials with survival
outcomes. Biometrika. 98:503-518, 2011.

36. Wahed AS, Thall PF. Evaluating joint effects of induction-salvage treatment regimes
on overall survival in acute leukemia. J Royal Statistical Society, Series C (Applied
Statistics). 62:67-83, 2013.

37. Wahed AS, Tsiatis AA. Optimal estimator for the survival distribution and related
quantities for treatment policies in two-stage randomization designs in clinical trials.
Biometrics, 60, 124133, 2004.

38. Wang L, Rotnitzky A, Lin X, Millikan R, Thall PF. Evaluation of viable dynamic
treatment regimes in a sequentially randomized trial of advanced prostate cancer. J
American Statistical Assoc. 107:493-508, 2012. (Rejoinder to comments, pages 518-
520)

39. Westfall PH, Johnson WO, Utts JM. A Bayesian perspective on the Bonferroni adjust-
ment. Biometrika 84:419-427,

18



Figure 1: The solid line is the Kaplan-Meier plot computed using the actual survival time
data from the trial reported by Thall et al. (2006). The dotted line was computed using the
covariates of the patients from this trial and the parameter estimates from the fitted survival
model given by Armstrong, et al. (2007b) using data from the TAX327 trial. The dotted
line represents a hypothetical survival time distribution that might have been obtained if
the patients in the trial reported by Thall et al. (2006) had be treated with docetaxel +
prednisone.
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