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Simple Summary: Clinicians often erroneously discount prognostic information as unlikely to
change patient management. This is fueled by the mistaken belief that only “predictive” subgroups
or biomarkers can modify the differences in clinical benefit between treatment choices. We use the
treatment of metastatic clear cell carcinoma as an example to illustrate how clinical decisions can
be informed by prognostic variables. Diametrically opposite decisions can be made depending on
individual patient prognosis and on the clinical outcome of interest that clinicians choose to focus on.
We also demonstrate why such patient-specific treatment decisions inevitably should be guided by
each patient’s goals and values, which can be explicitly represented by utility functions.

Abstract: We argue that well-informed patient-specific decision-making may be carried out as
three consecutive tasks: (1) estimating key parameters of a statistical model, (2) using prognostic
information to convert these parameters into clinically interpretable values, and (3) specifying joint
utility functions to quantify risk–benefit trade-offs between clinical outcomes. Using the management
of metastatic clear cell renal cell carcinoma as our motivating example, we explain the role of
prognostic covariates that characterize between-patient heterogeneity in clinical outcomes. We
show that explicitly specifying the joint utility of clinical outcomes provides a coherent basis for
patient-specific decision-making.

Keywords: individualized inferences; patient-specific decision-making; precision medicine; prognos-
tic biomarkers; utilities

1. Introduction

Although clinicians regularly make individualized decisions for their patients, the
question of how statistical evidence can be used most efficiently to guide such decisions
has remained elusive [1]. Due to the abundance of approved therapeutic options and
the availability of large observational datasets [2,3], we have used the management of
metastatic clear cell renal cell carcinoma (mccRCC), the most common kidney cancer
subtype, as our motivating example to illustrate a utility-based approach to patient-specific
decision-making. The International Metastatic Renal Cell Carcinoma Database Consortium
(IMDC) has facilitated the development of robust prognostic scores for mccRCC [3], which
are used by organizations such as the National Comprehensive Cancer Network (NCCN) to
guide treatment selection [4]. The IMDC risk score for mccRCC is calculated for individual
patients by combining biomarkers and clinical variables such as anemia, thrombocytosis,
neutrophilia, hypercalcemia, Karnofsky performance status, and time from diagnosis to
treatment [3]. Based on their individual IMDC scores, patients can be classified as having
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favorable-, intermediate-, or poor-risk disease, reflecting the substantial heterogeneity in
survival outcomes among patients with mccRCC [3,5,6]. The IMDC score thus is a very
useful tool to examine how individual covariates can be used to inform clinical decisions.

In this article, we have used the mccRCC and IMDC paradigms to illustrate the
statistical and patient-specific considerations involved in making individualized clinical
decisions. In the examples given below, for simplicity, we will choose between two
treatment options for each mccRCC patient considered. The concepts are generalizable to
more complex treatment options and other scenarios, such as diagnostic and surveillance
strategies. The sources of our illustrative data will be randomized clinical trials (RCTs),
because they are simple but powerful clinical experiments that can provide unbiased effect
estimates [7,8]. This will allow us to focus on how clinicians can make patient-specific
decisions informed by statistical analyses of data, which may be derived from randomized
or non-randomized sources. We argue that coherent individualized treatment decisions
may be carried out as three consecutive tasks (Table 1): (1) estimating key parameters
of a statistical model, (2) using prognostic information to convert these parameters into
clinically interpretable outcomes, and (3) specifying joint utility functions to quantify
risk–benefit trade-offs between clinical outcomes.

Table 1. Steps needed for patient-specific decision-making.

Task Scale Used Example Outputs Distinct Considerations

Statistical
estimation Estimation scale

Hazard ratios (derived from
loge hazards)
Odds ratios (derived from loge odds)

Simple, powerful, and flexible summaries of
effect size differences; not directly
interpretable clinically but can be used to
compare clinical effects of interest;
non-collapsible parameters may be
preferable for categorical and
time-to-event models

Clinical outcome
prediction Outcome scale

Median survival, mean survival,
three-month survival probability,
one-year survival probability, risk
difference, absolute risk reduction

Interpretable by clinicians and patients;
require knowledge of each patient’s baseline
prognostic risk for the outcome of interest;
can directly contradict each other depending
on which parametric effect is used;
collapsible parameters are preferable for
categorical and time-to-event outcomes

Clinical decision
making Utility scale Utility of clinical outcomes

Allows a focus on the clinical outcomes of
interest for specific patient prognostic
groups; depends on the subjective goals and
values of the patient/decision-maker

2. Statistical Estimation

The primary goal of statistical models and methods is to provide accurate and precise
estimates of conceptual objects termed “parameters”, such as the hazard rate, probability
of response, median survival time, or the effects of patient prognostic variables on a clinical
outcome. For comparing treatments, the parameters most commonly estimated from
RCTs in oncology and other medical fields are ratios such as the hazard ratio (HR) or the
odds ratio (OR) [9–11]. Ratios express the relative effects of one treatment compared with
another, and obtaining unbiased estimates of comparative treatment effects represented by
ratios is the principal goal of RCTs.

HRs are ratios of hazard rates, and estimated HRs are used to compare event–time
distributions, with survival time being the most common primary endpoint in oncology.
The hazard rate at a particular time from the start of therapy is the instantaneous rate of a
patient experiencing a particular outcome, such as death in an overall survival analysis or
failure (death or disease progression) in a progression-free survival analysis, given that the
patient has not yet experienced the event. If the hazard rate does not vary with time, then it
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is expressed in a single value, h. The odds of an event are the probability, P, that it will occur
divided by the probability, 1 − P, that it will not, formally P/(1 − P). For HRs and ORs,
conventionally, the treatment group (T) is used in the numerator and the control group (C)
in the denominator, so the HR = hT/hC and the OR = (PT/(1 − PT))/(PC/(1 − PC)). Thus,
HR = 1.0 means that the treatment and control groups have the same hazard rate of the
event of interest. HR < 1.0 indicates that the treatment group has a lower hazard rate than
that of the control group, whereas the opposite is true for HR > 1.0. It is a fundamental
mistake to interpret a HR as a measure of relative risk; hazard rates are instantaneous
rates that can range from zero to infinity, whereas risks are probabilities that range from
zero to one [11]. Probabilities can also be expressed equivalently as percentages, instead
of proportions, in which case they can range from 0% to 100%. Like hazard rates, the
treatment and control group odds, PT/(1 − PT) and PC/(1 − PC), used to compute the OR,
can each range from zero to infinity.

The clinical meaningfulness of effect size differences is a key concept in interpreting
HRs and ORs. For survival outcomes, it is commonly accepted in practice that HRs rang-
ing between 0.8 and 1.25 (or less conservatively between 0.9 and 1.1) represent clinically
non-meaningful differences. HRs lower than 0.8 or higher than 1.25 may be considered
to be clinically meaningful effect size differences, favoring the treatment or control group,
respectively (Figure 1). The uncertainty of the effect size estimate is commonly represented
by the width of a 0.95 confidence interval (CI). As illustrated in Figure 1 (middle estimate),
effect size estimates with wide CIs can be inconclusive due to being statistically compatible
with both clinically meaningful and non-meaningful differences. Two treatments can be
considered practically equal when the effect size estimate is only compatible with clinically
non-meaningful differences (Figure 1, bottom estimate). Accurately interpreting CI esti-
mates can be a complex endeavor, and frequentist CIs (the most commonly presented CIs)
can counterintuitively be narrow and imprecise if, for example, the underlying statistical
model does not fit the clinical data well [12]. For the purposes of the present article, we
make the common assumption that narrow CIs indicate increased precision and refer those
interested to detailed overviews of frequentist CIs and Bayesian credible intervals for
further discussion of the related nuances [12–14].
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Figure 1. Examples of HR point estimates (red circles) of effect size and their corresponding 0.95 CIs
(blue horizontal lines). The areas shaded in gray represent clinically meaningful effect sizes. The
top estimate is precise (narrow CI width) and compatible at the 0.05 level with clinically meaningful
differences favoring the treatment group. The middle estimate is imprecise (wide CI width) and
inconclusive because it is compatible at the 0.05 level with both clinically meaningful and non-
meaningful effect sizes. The bottom estimate is precise (narrow CI width) and compatible at the
0.05 level with clinically non-meaningful differences.

2.1. Advantages and Limitations of Estimated Parameters

Because hazard rates and odds take values between zero and infinity, HRs and ORs
have the mathematical advantage that they can easily accommodate inverting the reference
group: a HR of 0.5 with the control group as the denominator is equivalent to an inverted
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HR of 1.0/0.5 = 2.0 with the treatment group as the denominator. This symmetry does
not hold for a risk ratio, RR = PT/PC, which is sensitive to “framing effects” because
probabilities have an upper limit of 1. If the RR = 2.0 and the denominator for the control
group has a risk of PC = 0.6, then the numerator for the treatment group would be PT = 1.2,
which violates the axiom that probabilities cannot have values greater than 1.0. If the
RR = 2.0, this implies that PC can be at most 0.5. This sort of numerical problem is a major
reason why HRs and ORs are the parameters that are predominantly estimated in order
to compare treatments. Typically, model-based estimates are computed as the natural
logarithm of the HR (loge HR) or OR (loge OR) on a mathematical scale that we will call
the “estimation scale.” Exponentiation of the estimation scale parameters produces the HR
or OR estimates commonly presented in the analysis of RCTs. An additional advantage
of using hazard rates to model survival outcomes statistically is that they are directly
identifiable from censored event time data and allow for general censoring processes [15].

Parameters directly estimated by statistical models are mathematical constructs that,
on their own, may lack clinical meaning. Neither clinicians nor patients can easily under-
stand what a hazard rate represents or how it pertains to clinical care. However, parameters
defined on the estimation scale can be converted into clinically interpretable values that cor-
respond to the distinct “outcome scales” produced during the clinical outcome prediction
step (second step), which we will describe below (Table 1).

An additional consideration that has generated much discussion is the collapsibil-
ity of estimated parameters [16–21]. A parameter is collapsible when its value for the
whole group (also known as the “marginal” value) is a weighted average of its values
for patient subgroups (known as a “conditional” value for a subgroup of interest) and is
therefore invariant when adjustment for these subgroups is performed. In contrast, non-
collapsible parameters demonstrate the counterintuitive behavior whereby the marginal
value is not a weighted average of the subgroup values and, therefore, adjustment for
subgroups alters the measured parameter even in the absence of confounding or effect
modification [17,20,21]. A numerical example is provided in Appendix A. Parameters can
be non-collapsible when the outcome is categorical or represents a time-to-event, but are
always collapsible when the outcome is continuous. Interested readers are referred to two
detailed recent overviews describing the nuances of this phenomenon [17,18], which is
pertinent to clinical inference because two of the most commonly estimated parameters
in clinical research, loge ORs and loge HRs (and the corresponding ORs and HRs), are
non-collapsible.

An intense debate is ongoing, with some considering the non-collapsibility of ORs
and HRs to be an advantage for statistical modeling because the mathematical features
that render a parameter non-collapsible also provide the properties that facilitate statistical
analyses on the estimation scale, including the unlimited range of odds and hazard rates
and the fact that they are non-linear functions of probabilities [9,22]. Others, however,
argue that collapsible measures such as risk difference and mean survival time difference
are preferable parameters to use because, in addition to being difficult to interpret clinically,
the non-collapsibility of ORs and HRs adds to problems of transportability and makes it
harder to compare estimates across studies [17,23]. As shown in Table 1, our proposed
framework harmonizes these contrasting views by distinguishing between the tasks of
statistical estimation on the estimation scale and clinical outcome prediction on the outcome
scales. The first task can be facilitated by the mathematical advantages of non-collapsible
parameters, and this is why loge ORs and loge HRs are so much more commonly used for
statistical estimation than their collapsible counterparts. As has been argued eloquently by
Sander Greenland [24], statistical models used in health sciences research act as smoothing
or noise reduction devices and not as embodiments of physical laws. A key step is to utilize
additional information, such as an individual patient’s baseline risk, to convert statistical
estimates, such as loge ORs and loge HRs, into clinically interpretable collapsible outcomes
such as risk differences and mean survival time (on the outcome scales).
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2.2. Subgroup Analysis on the Estimation Scale

Clinicians commonly attempt to make patient-specific inferences by looking for dif-
ferences between subgroups in estimation scale parameters, such as the loge HR. This
practice is commonly referred to as looking for “predictive” subgroups, and/or biomarkers
corresponding to these subgroups, that can guide treatment choices for individual patients.
Mathematically, these “predictive” biomarkers have a multiplicative relationship with
the parameter of interest (e.g., the loge HR) in the regression equation used for statistical
estimation. For example, to determine the predictive effect of IMDC risk on overall survival
in an RCT comparing two treatments, the statistical model should be constructed on the
estimation scale to include a product or “interaction” term between treatment and IMDC
risk, b1 · (treatment) + b2·IMDC + b3· (treatment) · IMDC, where the term (treatment)
equals 1 for one treatment and equals 0 for the other, and b1, b2, and b3 are parameters that
quantify the magnitude of each effect. This is in contrast with “prognostic” variables that
only have an additive effect on the estimation scale: b1· (treatment) + b2·IMDC. The termi-
nology “prognostic” and “predictive” can be misleading because “prognostic” biomarkers
can be efficiently used to predict clinical outcome heterogeneity. However, we will adopt
these terms for the purposes of the present paper, with the understanding that an additive
effect on the estimation scale can powerfully impact clinical outcomes once transformed to
the outcome scale (Table 1).

Predictive subgroup effects from RCT data are commonly represented by forest plots,
which are sets of point estimates and confidence intervals (CIs) that were originally de-
veloped for meta-analysis of RCTs [25], but are increasingly used for subgroup analyses
within single RCTs. When interpreting forest plots, such as the example shown in Figure 2,
the vertical dotted line corresponding to the overall treatment effect is more important than
the vertical line corresponding to the no-effect point [26]. In Figure 2, the HR estimates
from all subgroups other than subgroup 5 are statistically compatible with the overall treat-
ment effect. In actual RCT data, subgroups 1–4 (Figure 2) are by far the most commonly
encountered scenarios, whereas patterns such as that of subgroup 5, in which the subgroup
HR estimate is incompatible with the overall treatment effect, are exceedingly rare. For
example, when looking at first-line immunotherapy combinations for mccRCC, all the
forest plots of subgroups from every major publication of phase 3 RCT trials published to
date correspond to one of the scenarios represented by subgroups 1–4, and thus they do not
provide any conclusive evidence of subgroup differences on the estimation scale [27–32].
The authors of the STAMPEDE phase 3 RCT, which established the addition of abiraterone
to androgen deprivation therapy as a treatment option for locally advanced or metastatic
prostate cancer, estimated effects in many implausible subgroups before finally identifying
one that more closely resembled subgroup 5 than subgroups 1–4 [33]. This practice is
known, generally, as “data dredging”, and the authors of STAMPEDE used this as an
example of the type I error inflation that muddies the interpretation of forest plots [33,34].
It is well known that if one looks at enough subgroups in a dataset, eventually a seemingly
“statistically significant” treatment effect will emerge even if, in fact, there is no actual
treatment effect at all [35].

A major reason why predictive subgroups are identified so rarely from RCT data
is that these are multiplicative treatment–subgroup interactions that often are weak and
thus would require very large sample sizes to be estimated accurately [36]. As a result, a
fundamental assumption behind most statistical models used in clinical drug development
is that predictive subgroup effects can safely be ignored, whereas prognostic informa-
tion should always be incorporated to increase the efficiency of inferences from the fitted
model [10]. Indeed, the statistical models used for all primary endpoint analyses for the
phase 3 RCTs of first-line immunotherapy combinations in mccRCC did not incorporate
any predictive subgroup effects but accounted for prognostic subgroup information, such
as the IMDC risk [27–32]. As we demonstrate below, prognostic subgroup information
can be used similarly to make patient-specific inferences using strategies informed by the
“risk-modeling” approach described by the Predictive Approaches to Treatment effect Het-
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erogeneity (PATH) consensus statement [37]. Although predictive biomarkers certainly do
exist and can be clinically valuable when identified, it is often more practical to inform their
discovery using laboratory experiments and robust translational correlative analyses. Once
credible potential for predictive biomarker interactions has been established preclinically,
to obviate problems with post hoc data dredging, RCT designs can focus prospectively on
identifying such effects [37–39].
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Figure 2. Forest plot with different HR estimates within subgroups from a single randomized
controlled trial (RCT). The dotted vertical line shows the overall treatment effect. For each subgroup,
the red squares represent the HR estimates, the size of the squares correspond to the sample size, and
the blue horizontal lines represent the 0.95 CI. The HR estimates from subgroups 1–4 are statistically
compatible with the overall HR effect estimate, and a claim of subgroup difference cannot be made.
Subgroup 5 is the only subgroup with a statistical estimate suggesting a difference compared with
the overall group.

Potential confounding is another caveat that is often overlooked when examining
forest plots to look for predictive subgroups/biomarkers [40]. We will employ causal
diagram techniques using directed acyclic graphs (DAGs) to show how such confounding
can happen even in RCT datasets [41–43]. Consider a hypothetical RCT to compare the
use of the anti-PD1 immune checkpoint inhibitor (ICI) nivolumab plus the anti-CTLA4 ICI
ipilimumab versus the tyrosine kinase inhibitor sunitinib as a first-line therapy in patients
with mccRCC. The IMDC risk score is used for treatment choices and is known to affect
overall survival (OS) outcomes. Suppose that correlative tissue and blood analyses from
the RCT also identified a gene signature that seems to predict lower OS with nivolumab
plus ipilimumab and higher OS with sunitinib in a particular patient subset. Further
assume that mutations in the PBRM1 gene, the second most commonly mutated gene
in mccRCC, which is known to affect OS outcomes [44–46], alter the expression of the
hypothetical gene signature. As shown in Figure 3A,B, although randomization removes
confounding induced by the IMDC score or by any other potential confounders that can
affect treatment choice, it does not remove the confounding induced by PBRM1 mutation
status or by any other putative confounders affecting the gene signature biomarker and OS.
Thus, to properly estimate the mediating effect of the gene signature on OS by treatment
choice we need to include knowledge of PBRM1 mutation status in the statistical regression
model. This suggests that, in general, prospectively modeling treatment interaction effects
based on evidence from preclinical correlative studies is preferable to forest plots for effects
in subgroups that were not specified a priori [37,38]. Notably, as shown in Figure 3B,
randomization turned the IMDC risk score from a confounder into a purely prognostic
biomarker that, when incorporated additively into the statistical regression model, can
improve the power of null hypothesis tests [16,47]. We next explore how one can also
harness the information provided by prognostic biomarkers, such as IMDC score, to predict
clinical outcomes for individual patients.
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Figure 3. Directed acyclic graphs (DAGs) for a hypothetical trial that identified a gene signature
mediating the effect of treatment choice (nivolumab plus ipilimumab or sunitinib) on overall survival.
Gene signature is a mediator of the effect of treatment choice on the overall survival outcome.
Confounders are highlighted in red boxes. Prognostic variables, highlighted in blue boxes, can
improve the power of null hypothesis tests used to evaluate the effect of treatment choice on overall
survival. In the non-randomized version of the trial (A), the International Metastatic Renal Cell
Carcinoma Database Consortium (IMDC) score is a confounder that can bias the effect of treatment
choice on overall survival. The red arrow highlights the effect of IMDC score on treatment choice,
which is removed through the process of randomization, as shown in (B). However, randomization
does not remove confounders of the mediator–outcome relationship, such as PBRM1 mutation status.

3. Clinical Outcome Prediction

Estimated parameters, such as loge HR, can be used to calculate estimates of clinically
interpretable parameters, such as median or mean survival time, three-month survival
probability, or one-year survival probability, which correspond to easily interpretable
clinical outcomes. Knowledge of each patient’s baseline risk using prognostic variables such
as IMDC score allows more accurate and individualized predictions of survival outcomes.

Instead of using a clinically opaque metric such as the HR, one might be tempted
to compare two treatments using only clinical outcome parameters, such as differences
in median survival times or absolute risk reduction (ARR). Denoting D as time of death,
this is defined as the difference between the control and treatment probabilities of dying
by a given time, such as ARR = PC(D < 3 months) − PT(D < 3 months). A remarkable
paper by Snapinn and Jiang [48] shows why such comparisons can be problematic when
performed in isolation. They argue that, for any survival outcome, the worse the prognosis
(determined, for example, by the IMDC score in mccRCC), the greater the difference in
survival at a given time point yielded by a given treatment benefit, as determined by the
HR. Conversely, a worse prognosis also will reduce the impact of that same treatment
benefit on the time survived, thus resulting in smaller differences in median survival. This
was shown to be the case when assuming an exponential distribution for survival time,
which assumes a constant hazard rate and is the most commonly used distribution when
modeling survival times in medicine. The same phenomenon was also noted when the
two treatment groups had the same shape parameter in the more general Weibull survival
distribution, which allows for increasing or decreasing hazard rates over time [48].

To see the profound effects that prognosis and parameter domain can have on a treat-
ment comparison, consider a hypothetical phase 3 RCT comparing a new immunotherapy
drug named superlumab with the approved single-agent ICI nivolumab as salvage thera-
pies for patients with mccRCC. Suppose that superlumab has a worse side effect profile, is
more expensive, and requires longer and more frequent infusions than nivolumab, and
therefore is associated with worse quality of life (QOL). We assume exponential distribu-
tions for OS times with HR = 0.5 favoring superlumab over nivolumab, irrespective of
IMDC risk score. Figure 4 shows the OS curves of patients for each treatment, stratified by
IMDC favorable- or poor-risk subgroups. An HR of 0.5 means that the median survival
of patients treated with superlumab is double that of patients treated with nivolumab.
Thus, if patients with favorable-risk disease, as determined by IMDC, have a median OS of
18 months when treated with nivolumab, then the median OS is 36 months when treated
with superlumab, resulting in a difference in median survival times of 36 − 18 = 18 months.
Due to their much worse overall prognosis when compared with their favorable-risk coun-
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terparts, our hypothetical patients with poor-risk disease determined by IMDC have a
median OS of 2 months when treated with nivolumab and 4 months when treated with
superlumab, yielding a difference in median survival times of only 4 − 2 = 2 months. Thus,
when focusing on survival time as the clinical outcome of interest, for a HR of 0.5, in terms
of differences between median survival times the benefit of superlumab is clearly much
larger for patients with favorable-risk mccRCC. Under an exponential distribution, mean
survival = 1.44 ·median survival; thus, the difference between the mean survival times of
superlumab and nivolumab for patients with favorable-risk IMDC is 26 months, whereas
for poor-risk IMDC it is still only 2.9 months. The difference between mean survival
differences, 26 − 2.9 = 23.1 months in favorable- versus poor-risk patients, is even larger
due to the mean-to-median scaling parameter, 1.44. Therefore, in terms of either median or
mean survival, the superiority of superlumab over nivolumab is clinically very meaningful
in patients with favorable-risk mccRCC, whereas the difference is quite small for patients
with poor-risk mccRCC.
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Figure 4. Overall survival time curves, assuming an exponential distribution for patients with
metastatic clear cell renal cell carcinoma (mccRCC) treated in a hypothetical randomized controlled
trial with either superlumab or nivolumab. The red dotted lines correspond to the median survival
difference, whereas the orange dotted lines correspond to the absolute risk reduction at 3 months.
The HR is assumed to be 0.5, favoring superlumab over nivolumab, irrespective of International
Metastatic Renal Cell Carcinoma Database Consortium (IMDC) prognostic risk classification. For
patients with favorable risk determined by IMDC (A), the median survival difference favoring
superlumab is 18 months, whereas the absolute risk reduction at 3 months is 5%. For patients with
poor risk determined by IMDC (B), the median survival difference favoring superlumab is 2 months,
whereas the absolute risk reduction at 3 months is 25%.

The survival probability of patients treated with each drug, accounting for their IMDC
score, may be calculated using the formula P(D > t) = e−ht, where e = 2.718 is Euler’s
number, h is the hazard rate, and t is the time point of interest (e.g., 3 months). The
hazard rate, h, depends on the prognosis of each patient, as expressed by their IMDC
score, with poor-prognosis patients having higher hazard rates than favorable-prognosis
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patients. Because the HR = 0.5, patients with the same IMDC risk treated with superlumab
have half the hazard rate of those treated with nivolumab. The hazard rate, h, can be
calculated from the median survival time using the formula h = loge(2)/(median survival).
Thus, for patients with an IMDC favorable risk, the three-month survival probability is
P(D > 3) = 0.89 if treated with nivolumab and 0.94 if treated with superlumab, yielding
an ARR of 0.05. Conversely, for patients with poor-risk IMDC scores, the three-month
survival probability is P(D > 3) = 0.35 for those treated with nivolumab and 0.60 for those
treated with superlumab, yielding an ARR of 0.25. Thus, when focusing on ARR at three
months as the parameter of interest, the results are clearly much more impressive for
patients with poor-risk mccRCC. Although ARR is a well-established, widely accepted,
and clinically meaningful metric [49–51], the two outcome criteria (ARR versus median
or mean survival differences) lead to opposite conclusions in our hypothetical RCT. ARR
favors the use of superlumab more in patients with poor prognosis, whereas other clinically
meaningful parameters such as median or mean survival differences favor superlumab
more in patients with favorable prognosis, despite the HR being the same across prognostic
subgroups. The dependence of comparative treatment effects on both the prognosis and
the outcome domain is illustrated in Figure 4. The figure shows that the ARR probability
difference, computed at a particular time, and the difference between median survival
times are actually two very different parameters that depend on the particular shapes of
the two survival curves being compared. Moreover, the shapes of the two curves may
both change dramatically with the prognosis. This phenomenon applies quite generally to
any clinical setting with time-to-event outcomes. For example, in clinical scenarios where
adjuvant therapy is considered, patients with lymph node–positive disease are generally
more likely to have a higher risk of disease recurrence compared with those with lymph
node–negative disease, paralleling the higher death hazard rates seen in patients with
IMDC poor-risk versus favorable-risk mccRCC.

The assumed constancy of loge HRs across patient subgroups is a major reason why
this parameter is the one used most commonly for survival comparisons on the estimation
scale. However, practicing clinicians must make decisions for individual patients based
on clinically interpretable outcomes. However, different clinical outcome measures may
directly contradict each other. For example, if a new agent is associated with increased
mean survival and decreased quality of life (QOL) compared with a control, it becomes
inevitable that therapeutic decision-making should account for each patient’s specific goals
and values in terms of the trade-off between survival time and QOL. In the following
section, we show how this may be made explicit.

4. Making Clinical Decisions

Consider a clinician seeing two mccRCC patients, A and B, who differ only in their
IMDC prognostic group, similarly to the patients treated with superlumab or nivolumab in
our hypothetical phase 3 RCT (Figure 4). The primary wish of each patient is to be alive
at three months from treatment initiation to see their child graduate from college. Their
secondary wish is to have good QOL. The only difference between the two patients is that
patient A has IMDC-favorable-risk, whereas patient B has IMDC-poor-risk mccRCC. For
patient A, P(D > 3 with superlumab) = 0.94 and P(D > 3 with nivolumab) = 0.89, so she is
very likely to be alive at three months, regardless of whether she receives nivolumab or
superlumab. However, in terms of QOL, the improved side effect profile and logistical and
financial advantages of nivolumab make it a better choice for patient A. On the other hand,
for patient B, P(D > 3 with superlumab) = 0.60 and P(D > 3 with nivolumab) = 0.35, so the
superlumab-versus-nivolumab ARR = 0.25. If superlumab is used, patient B will be much
more likely to be alive at three months, thus making superlumab a better choice.

Next, consider another set of preferences for the two patients: Suppose that they both
are due to retire in 12 months, and any additional time gained after that would be highly
valuable to them and better tolerated even under a therapy with a worse side-effect profile
that requires longer and more frequent infusions. For patient A, choosing superlumab over
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nivolumab would probably add substantially more time to her retirement, thus making
superlumab the better choice. On the other hand, patient B would be very unlikely to gain
any meaningful amount of additional time for her retirement by choosing superlumab, and
thus the QOL advantages of nivolumab make it a better choice.

We can make this treatment choice process explicit by using utility functions to
represent and quantify the preferences of clinical outcomes in terms of both survival time
and QOL for our patients, where combinations of survival and QOL outcomes having
greater numerical utility values are more desirable (Figure 5 and Tables 2 and 3). The
approach of computing expected personal utility functions using probability distributions
that include individual patient variables is the most commonly used framework in decision-
making research [52–54]. We use it here to illustrate how clinicians can choose between
treatment options by maximizing the expected utility for their patients. Exponential
and isoelastic utility functions are commonly used for medical decisions because they
provide simple but plausible representations of risk aversion with respect to survival
duration [55]. For the first set of preferences, which focuses on surviving for longer than
three months, we use an exponential utility function. For m=mean survival time and
QOL= good or poor, the exponential utility function is U1(m, good) = (1 − e−m·0.5)·100,
and U1(m, poor) = (1 − e−m·0.5)·85, as shown in Figure 5A and Table 2. For this utility, most
gains occur early on, and better QOL is always favored for any given mean survival time
(Figure 5 and Table 2). We can use the survival probability distribution shown in Figure 4
to determine the mean survival time, m, for each treatment (n for nivolumab and s for
superlumab) and IMDC risk subgroup (f for favorable risk and p for poor risk). For patient
A with IMDC-favorable-risk mccRCC, the utility, U1, if she is treated with nivolumab,
which yields good QOL, will be U1(mn,f, good QOL) = 100, whereas if she is treated with
superlumab, it will be U1(ms,f, poor QOL) = 85, favoring nivolumab over superlumab. For
patient B with IMDC-poor-risk mccRCC, the utility, U1, if she is treated with nivolumab
will be U1(mn,p, good QOL) = 76, whereas if she is treated with superlumab, it will be
U1(ms,p, poor QOL) = 80, favoring superlumab over nivolumab (Table 4).

Table 2. First joint utility function, U1(m, QOL), of mean survival time (m, in months) and quality of
life (QOL) combinations for patients with metastatic clear cell renal cell carcinoma, defined by U1(m,
good QOL) = (1 − e−m·0.5) · 100 and U1(m, poor QOL) = (1 − e−m·0.5) · 85, given that U1(0, good or
poor QOL) = 0.

Mean Survival Time (Months)
QOL 1 2 3 4 12 18 24 30 36

Good 39 63 78 86 100 100 100 100 100
Poor 33 53 66 74 85 85 85 85 85

Table 3. Second joint utility function, U2(m, QOL), of mean survival time (m, in months) and quality
of life (QOL) combinations for patients with metastatic clear cell renal cell carcinoma, defined by
U2(m, good QOL) = 10 · m0.2/0.2 and U2(m, poor QOL) = 9.5 · m0.3/0.3, given that U2(0, good or
poor QOL) = 0.

Mean Survival Time (Months)
QOL 1 2 3 4 12 18 24 30 36

Good 50 57 62 66 82 89 94 99 103
Poor 32 39 44 48 67 75 82 88 93
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Figure 5. Two different utility functions of mean survival time (m, in months) and quality of life
(QOL). Each curve is plotted as a function of m for each QOL subgroup (good versus poor). Panel
A shows the first utility function, which is an exponential function of m that places more value on
surviving for longer than 3 months. The utility function of m for good QOL is U1(m, good QOL) =
(1 − e−m·0.5) · 100, and for poor QOL is U1(m, poor QOL) = (1 − e−m·0.5) · 85. Panel B shows the
second utility function, which places more value on QOL differences for shorter survival times. The
utility function for good QOL is U2(m, good QOL) = 10 ·m0.2/0.2, and for poor QOL is U2(m, poor
QOL) = 9.5 ·m0.3/0.3.

Table 4. Patient-specific decisions for two patients using data from a hypothetical phase 3 randomized controlled trial that
reported a hazard ratio of 0.5, favoring superlumab over nivolumab across all International Metastatic Renal Cell Carcinoma
Database Consortium (IMDC) prognostic subgroups.

Parameter Patient A Patient B Conclusions

IMDC prognostic subgroup Favorable risk Poor risk The two patients differ only in their
prognostic status

Nivolumab Superlumab Nivolumab Superlumab
Median overall survival

(months) 18 36 2 4 The median and mean survival
differences are more pronounced for
patient A compared with patient BMean overall survival

(months) 26 52 5.8 2.9

Survival probablity at
3 months 89% 94% 35% 60%

The absolute risk reduction at
3 months is more pronounced for

patient B compared with patient A
Utilities based on the first

joint utility function
(Figure 5A and Table 2)

100 85 76 80 Choose nivolumab for patient A and
superlumab for patient B

Utilities based on the second
joint utility function

(Figure 5B and Table 3)
96 109 62 56 Choose superlumab for patient A and

nivolumab for patient B



Cancers 2021, 13, 2741 12 of 17

For the second set of preferences, which place more value on QOL differences for
shorter survival times, we use an isoelastic utility function, U2(m, good) = 10 ·m0.2/0.2, and
U2(m, poor) = 9.5 ·m0.3/0.3, as shown in Figure 5B and Table 3. For the survival probability
distribution shown in Figure 4, for patient A with IMDC-favorable-risk mccRCC, if she
is treated with nivolumab then U2(mn,f, good QOL) = 96, whereas if she is treated with
superlumab U2(ms,f, poor QOL) = 104, favoring superlumab over nivolumab. For patient B
with IMDC-poor-risk mccRCC, if she is treated with nivolumab U2(mn,p, good QOL) = 62,
whereas if she is treated with superlumab U2(ms,p, poor QOL) = 54, favoring nivolumab
over superlumab (Table 4).

As a formal basis for making personalized treatment decisions, we have advocated
assigning numerical utilities to patient outcomes, with the utility assignments tailored
to both mean survival time and QOL. This was done to reflect differences in the relative
importance of outcomes such as survival time and QOL for patients with different subjec-
tive utilities. Our examples show that two different utility functions can lead to different
treatment decisions for a given patient. Consequently, the patient’s utility function, as
well as their covariates, should guide therapeutic decision making. Although we used
exponential and isoelastic utility functions to reflect two qualitatively different types of
preferences, other functional forms may be used. We have defined QOL as a binary out-
come for simplicity, but a similar approach can be used to generate utility functions for
more complex ordinal QOL measures. The numerical utility assignments are subjective in
order to reflect risk–benefit trade-offs, which are inherently subjective. This subjectivity
is a strength of the methodology, rather than a weakness. If two or more different utility
functions are being considered, then the computations can be carried out using each of
them, as a method of sensitivity analysis to better inform physicians and patients as to how
each utility assignment translates into treatment decisions.

In conventional decision theory, one assigns utilities to combinations of actions and
states of nature, which in this case are treatment decisions and parameter values, respec-
tively. The notion of utility has been a longstanding topic in various fields, including eco-
nomics [56], statistics [52], and game theory [57], but has been underexplored in medicine
due to the inherent subjectivity of utilities, as well as difficulties in elicitation. However, as
we showed in our hypothetical phase 3 RCT scenario, it is advantageous to include subjec-
tive patient preferences explicitly in clinical decision-making. Accordingly, utility-based
statistical designs are now increasing being used to facilitate treatment comparisons in
RCTs [58,59] and to guide dose finding in phase 1/2 trials [60,61]. The evolving literature
thus now includes examples of utility function elicitation from physicians to account for
risk–benefit tradeoffs [62–65]. Within the context of mccRCC, in-depth interviews with
clinical experts, patients, and members of the public have been conducted to determine
societal preferences and corresponding utility values in the United Kingdom for patients
with mccRCC undergoing first-line therapy [66]. Utility functions can also be used to
incorporate financial cost considerations for patients and healthcare systems. Such cost–
utility analyses traditionally estimate the incremental cost per quality-adjusted life year
(QALY) [67,68]. However, as we showed above, different preference-based valuations of
health outcomes, such as those emphasizing 3-month or 12-month survival probability, can
be used instead of QALYs in cost–utility analyses. Ideally, all pertinent parties should agree
on the utility functions incorporating efficacy, adverse events, quality of life, and economic
cost. When there are multiple stakeholders with conflicting utilities, a universally optimal
decision rule is unattainable. In these situations, dedicated software and graphical tools
can be developed to demonstrate the impact of different utility functions used as inputs to
generate patient-specific recommendations. Utility elicitation from patients should ideally
occur in real-time from the actual patient or family involved, and can start by framing the
patient’s hopes within pertinent scenarios, such as “I want to live long enough to see my
child graduate from college in 3 months” or “I plan to work for 12 more months and then
retire”, which can then be used to generate utility functions such as those shown in Figure 5
and Tables 2 and 3. Patients can then review the corresponding graphical and tabular utility
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information, using accessible representation formats, such as those established within the
patient decision aid literature [69–71], to ensure that the elicited utility functions accurately
represent their goals and values.

5. Conclusions

Although the estimation of parameters such as HRs is invaluable in carrying out
statistical inferences, it is only the first step toward patient-specific decision-making. The
next step is to calculate estimates of parameters that correspond to clinically interpretable
outcomes informed by individual patient prognostic variables, such as the IMDC score, to
account for heterogeneity between patients. Because different outcome scales can produce
contradictory inferences, a more complete analysis requires the specification of utility
functions that represent each patient’s goals and values, to quantify trade-offs between
different clinical outcome variables. The utility functions may be used, along with patient
prognostic variables and parameter estimates, to facilitate better-informed patient-specific
clinical decisions.
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Appendix A

The following numerical example of collapsible and non-collapsible parameter es-
timates for categorical outcomes is adapted from Greenland et al. [21]. Consider a ran-
domized controlled trial (RCT) testing the efficacy of a hypothetical new tyrosine kinase
inhibitor (TKI) supertinib (n = 500 patients), compared with standard-of-care cabozantinib
(n = 500 patients) as first-line therapy in patients with metastatic clear cell renal cell carci-
noma (mccRCC). Based on their International Metastatic Renal Cell Carcinoma Database
Consortium (IMDC) risk score [3], patients were stratified into two subgroups: those with
favorable prognosis and those with poor prognosis. The clinical outcome of interest is
survival at 12 months. The results of the RCT are shown in Figure A1 below.

Using the data produced by the hypothetical RCT, we can calculate the marginal
values for the OR and RR for the probability of being alive at 12 months in the total popu-
lation of patients with mccRCC treated with supertinib versus cabozantinib. In the total
population of patients, the proportion of patients treated with cabozantinib who are alive
at 12 months is P(cab|all) = 200/500 = 0.4. The proportion of patients treated with supertinib
who are alive at 12 months is P(sup|all) = 300/500 = 0.6. The OR for the total population
is ORall = (P(sup|all)/(1 − P(sup|all)))/[P(cab | all)/(1 − P(cab|all))) = (0.6/0.4)/(0.4/0.6) = 2.25.
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The risk ratio is RRall = P(sup|all)/P(cab | all) = 0.6/0.4 = 1.5. The risk difference is RDall =
P(sup|all) − P(cab|all) = 0.6 − 0.4 = 0.2.
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Figure A1. Estimated odds ratios (ORs), risk ratios (RRs), and risk differences (RDs) from a hypothet-
ical RCT evaluating survival at 12 months for patients with mccRCC randomized to the new TKI
supertinib or cabozantinib control.

We can similarly calculate the conditional values of the OR and RR for the prob-
ability of being alive at 12 months in each of the favorable and poor prognosis sub-
groups of patients with mccRCC treated with supertinib versus cabozantinib. For the
subgroup of favorable-prognosis patients, the proportion of those treated with cabozan-
tinib alive at 12 months is P(cab | fav) = 150/250 = 0.6. The proportion of those treated
with supertinib alive at 12 months is P(sup|fav) = 200/250 = 0.8. For the supertinib-versus-
cabozantinib comparisons in the favorable-prognosis subgroup, the ORfav = (P(sup|fav)/(1−
P(sup|fav)))/(P(cab|fav)/(1− P(cab|fav))) = (0.8/0.2)/(0.6/0.4) = 2.67, the RRfav = P(sup|fav)/P(cab|fav)
= 0.8/0.6 = 1.33, and the RDfav = P(sup|fav) − P(cab|fav) = 0.8− 0.6 = 0.2.

Repeating these computations for the subgroup of poor-prognosis patients, the pro-
portion treated with cabozantinib remaining alive at 12 months is P(cab|poor) = 50/250 = 0.2,
and the proportion treated with supertinib remaining alive at 12 months is P(sup|poor)
= 100/250 = 0.4. The OR for the poor prognosis subgroup is ORpoor = (P(sup|poor)/(1
− P(sup|poor)))/(P(cab|poor)/(1 − P(cab|poor))) = (0.4/0.6)/(0.2/0.8) = 2.67. The risk ratio
is RRpoor = P(sup|poor)/P(cab|poor) = 0.4/0.2 = 2.00, and the risk difference is RDpoor =
P(sup|poor) − P(cab|poor) = 0.4 − 0.2 = 0.2.

Consistently with a common assumption of statistical models used to analyze clinical trial
data [9,10], the conditional odds ratio is stable across prognostic subgroups: ORfav = ORpoor = 2.67.
However, the marginal value is ORall = 2.25, which intuitively should be an average of ORfav =
ORpoor = 2.67. The problem stems from the fact that (1) the overall table for the 1000 patients
was obtained by summing the values in each of the four cells of the two subgroup-specific
tables, (2) the OR was then computed for each table, although (3) the OR is a highly non-
linear function in terms of the four cell proportions. Measures such as the OR, for which
the marginal value is not equal to the conditional value, are called non-collapsible [21]. Col-
lapsible measures are those that have equal marginal and conditional values. Risk difference
is a collapsible measure, and for this reason its value remains constant: RDall = RDfav =
RDpoor = 0.2. The risk ratio is not collapsible because its value varies between subgroups:
RRfav 6= RRpoor. When a particular summary of the conditional measures does equal the
marginal value, then this summary is said to be collapsible. For risk ratios, the standardized
risk ratio is an example of such a collapsible summary, and it can be calculated using the
following formula [21], which first weighs each subgroup-specific proportion by multiply-
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ing it by the probability of the subgroup: RRstandardized = (P(favorable risk) · P(sup|fav) +
P(poor risk) · P(sup|poor))/(P(favorable risk) · P(cab|fav) + P(poor risk) · P(cab|poor)) = ((0.5 · 0.8)
+ 0.5 · 0.4))/(0.5 · 0.6) + (0.5 · 0.2) = 1.50. Thus, the standardized RR is equal to the marginal
risk ratio (RRstandardized = RRall = 1.50).
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