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Simple Summary: Randomization is used infrequently in small early-phase clinical trials of
several different treatments or multiple doses of a single agent. When a trial’s goals include
comparing treatments or doses based on early clinical outcomes, however, randomization
provides much more useful data than single-arm trials because it facilitates fair between-
treatment comparisons. Randomization does this by preventing confounding of treatment
effects with between-study differences in the distributions of prognostic variables. This pa-
per provides Bayesian criteria for estimating treatment effects to facilitate the planning and
analysis of small randomized trials. Practical guidelines are given for determining sample
sizes, choosing the number of treatment arms, specifying safety and futility monitoring
rules, and constructing a balanced randomization scheme. The methods are illustrated by a
trial of engineered cells to treat steroid-refractory graft-versus-host disease.

Abstract: Randomization is a well-established statistical tool for obtaining fair treatment
comparisons in clinical trials. Despite this, most investigators conducting small early-
phase oncology trials of different experimental treatments or doses of a single agent do
not randomize patients. This may be due to convention, physicians’ desire to choose
personalized treatments for their patients, or the belief that randomization is of little
value in small trials. We argue that, when it is feasible and ethical, randomization is
very desirable in early-phase trials because it gives fair treatment comparisons despite
the small sample sizes. Illustrations are provided of how confounding and bias may arise
when comparing treatments using data from separate single-arm trials. By eliminating
confounding treatment effects with between-study differences in known or unknown
prognostic variables, randomization provides unbiased treatment comparisons. To facilitate
the planning and analysis of small randomized trials, Bayesian criteria for comparing
treatments based on response and toxicity rates are provided. Practical guidelines are given
for determining sample sizes, specifying Bayesian safety and futility monitoring rules, and
constructing a balanced randomization scheme. The methods are illustrated by a trial of
engineered cells for treating steroid-refractory graft-versus-host disease.

Keywords: Bayesian statistics; clinical trial; feasibility; randomization; safety monitoring;
futility monitoring

1. Introduction
Although randomization is not commonly used in small early-phase trials, recognition

by clinical investigators that such trials are inherently comparative has led increasingly to
its use to obtain fair treatment comparisons [1,2]. The question of whether to randomize
patients in early-phase treatment evaluation has a long history, and it remains controver-
sial [3–11]. In this paper, we argue that randomization is very useful in small, early-phase
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clinical trials rather than only in large trials. Our primary goals are to convince clinical
trialists to randomize in small trials and to describe practical Bayesian methods for planning
and analysis of small randomized clinical trials (SCRTs), including making comparative
inferences from small samples.

SRCTs of two or more treatments or of multiple doses of a new agent, play a key
role in the treatment evaluation process. Data about treatment feasibility, safety, and early
efficacy in humans may be used either as a bridge between preclinical experiments and
a large confirmatory phase 3 trial or to decide that a phase 3 trial is not warranted. In
practice, overall sample sizes of early-phase trials are determined primarily by resource
constraints, including financial costs, accrual rate, and availability of the new treatment or
treatments being studied. Consequently, rather than presenting formulas for computing
sample sizes using power calculations based on tests of hypotheses, we provide a heuristic
approach to sample size determination. This includes assessing both practical constraints
and the statistical reliability of per-arm sample sizes in terms of Bayesian posterior credible
intervals for estimating between-treatment effects.

An SRCT with K = 2, 3, or 4 treatment arms and N = 20 to 60 patients may be
conducted to choose the best dose, schedule, or treatment, screen out unsafe or ineffective
treatments, or obtain preliminary treatment comparisons. Examples include trials to make
preliminary comparisons of different engineering processes of cellular immunotherapy
for hematologic malignancies, optimize the dose of a targeted molecule, or evaluate a
biologically targeted agent. Most commonly, the clinical effects of a new treatment are
characterized by the probabilities of early clinical response (Res), severe toxicity (Tox),
and possibly biological variables related to treatment. Given longer follow-up, mean or
median progression-free survival (PFS) time or overall survival (OS) time may also be
estimated. With randomization, preliminary estimates of PFS or OS time distributions for
the experimental treatments being studied and standard of care may provide an empirical
basis for making a “Go–No Go” decision of whether to conduct a phase 3 trial.

An SRCT that uses Res and Tox for treatment evaluation and interim safety or futility
monitoring may be regarded as a randomized phase 2 or phase 1–2 trial [5,12–14]. An SRCT
provides a scientifically attractive alternative to conducting a single-arm phase 1 trial based
on Tox alone followed by an expansion cohort or a single-arm phase 2 trial based on Res.
This is in accordance with FDA Project Optimus [15,16], which was initiated to address
the problem that many doses chosen in conventional phase 1 trials later are found to be
excessively toxic or ineffective in a phase 3 trial or clinical practice, leading to ad hoc dose
adjustments. A key recommendation of Project Optimus was to randomize patients among
doses when appropriate. Provided that safety monitoring rules to stop accrual to overly
toxic doses are included, and if there is no compelling reason to assume that either Pr(Tox)
or Pr(Res) must increase with dose, randomization is ethical. Otherwise, a sequentially
adaptive dose-finding method may be more appropriate than randomizing patients among
doses [13].

It is well established that conventional “3 + 3” algorithms used for dose finding in
many phase 1 trials are likely to make bad decisions when choosing a maximum tolerable
dose (MTD) or a recommended phase 2 dose (RP2D) [13,14,17,18]. While there are many
different 3 + 3 algorithms, nearly all choose doses sequentially for successive cohorts of
size 3, starting the trial with the first dose level, which often is either the lowest dose or
the next to lowest dose, specified by the investigators prior to the trial. For a new dose
where patients have not yet been treated, if no DLT is seen in any of the first cohorts of
3 patients, denoted by 0/3, then 3 additional patients are treated at the next higher dose
level. If, instead, 1/3 of patients have a DLT at a new dose, then 3 more patients are treated
at that dose. Dose escalation continues until 2 or more patients, out of either 3 or 6 patients
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treated at a dose, experience DLTs, that is, if 33% or more patients have a DLT at a new
dose level. In this case, the dose is considered excessively toxic, and the MTD is defined
to be one dose level below the excessively toxic dose. A variant of this algorithm requires
that at least 6 patients must be treated at the MTD to obtain better reliability. However,
this rule may lead to a problem; for example, an initially chosen MTD later may turn
out to have 2 or 3 DLTs in 6 patients, in which case further de-escalation is needed. All
3 + 3 algorithms carry a high risk that the selected MTD or RP2D will cause severe toxicity,
primarily because the per-dose sample sizes are far too small to estimate Pr(DLT) reliably.

For example, a phase 1 trial of the tyrosine kinase inhibitor ponatinib for treating
Philadelphia chromosome-positive leukemias using a 3 + 3 algorithm chose the unsafe dose
of 45 mg PO daily [14,19]. This later was modified to start with 45 mg PO daily but drop
to 15 mg PO daily once ≤1% BCR-ABL was achieved. A phase 1 trial of the monoclonal
antibody onartuzumab for treating non–small cell lung cancer using a 3 + 3 algorithm chose
a dose with a low response rate [14,20]. This might have been avoided, for example, if a
phase 1–2 design using both Res and Tox had been used [12–14].

In general, any phase 1 dose-finding design based on Tox alone has a substantial risk
of choosing an ineffective dose because it ignores Res. For example, in the extreme case
where no responses are seen at any dose, a conventional phase 1 design still will choose
an MTD or RP2D, despite the fact that the observed data show the selected dose is likely
to be completely ineffective. This problem may also arise with the continual reassessment
method (CRM) [17], which chooses each new cohort’s dose to have an estimated Pr(Tox)
closest to a fixed target probability. This relies on the underlying assumptions, which are
seldomly stated, that both Pr(Tox) and Pr(Res) increase with dose and that there is a trade-
off between the risk of Tox and the chance of Res at any given dose. These assumptions were
originally motivated by studies of cytotoxic agents, but they may not hold for biological
agents, such as cellular therapies. For example, a CRM design with a Pr(Tox) target of
0.25 considers a dose with Pr(Tox) = 0.40 more desirable than a dose with Pr(Tox) = 0.05. A
possible rationale for this is the belief that the dose with Pr(Tox) = 0.40 is likely to have a
higher Pr(Res) than the dose with Pr(Tox) = 0.05 and that this unknown higher response
rate is a trade-off for the 40% Tox rate. This example illustrates why any early-phase clinical
trial design should include explicit decision criteria that use both Res and Tox, rather than
only using Tox [12,13].

The goals of this paper are to explain problems that arise from conducting early-
phase trials without randomizing, and to provide practical Bayesian methods for design,
conduct, and analysis of SRCTs. It will be assumed that the goals of an SRCT are to obtain
preliminary comparative estimates of key parameters, including Pr(Res), Pr(Tox), and
possibly mean or median PFS and OS time, and to use the comparative estimates as a basis
for deciding how to proceed in the treatment evaluation process. Practical guidelines are
provided for computing and interpreting Bayesian posterior estimates, planning sample
sizes, constructing Bayesian safety and futility monitoring rules, and specifying a balanced
randomization scheme. The methods are illustrated by a real-world oncology trial, and the
paper closes with a brief discussion.

2. Confounding, Bias, and Randomization
In all that follows, the usual statistical distinction will be made between a parameter,

which is a property of a patient population being studied, such as Pr(Res) or Pr(Tox) for a
given treatment or dose, and a statistical estimator of the parameter computed from data.
For a two-arm SRCT comparing an experimental treatment, E, to the standard of care, S, for
brevity, denote θk = Pr(Res with treatment k) for k = E or S. The trial’s data may be used to
obtain a preliminary estimate of θE − θS, the comparative E-versus-S effect on the response
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rate, and similar parameters for TOX and PFS. Similarly, for a three-arm SRCT of S and two
experimental treatments, E1 and E2, the comparative experimental-versus-S effects are θE1

− θS and θE2 − θS. While the precision of comparative effect estimators is limited by the
small per-arm sample sizes of an SRCT, the estimators are still useful as an empirical basis
for deciding how to proceed in the clinical evaluation process. Possible decisions may be to
discard one or more experimental treatments due to excessive toxicity or ineffectiveness
or to investigate one or more of the treatments further in a larger randomized trial based
on long-term PFS or OS. The ultimate goal of a sequence of clinical trials is to provide an
empirical basis for deciding whether to replace S with a new treatment in clinical practice.

The causal motivation for randomization may be explained by the following thought
experiment [21]. Suppose that one could make two identical copies of each patient, treat
one copy with E and the other with S, and observe their future potential outcomes, Y(E) and
Y(S). The difference, Y(E) − Y(S), then would be the causal effect of E versus S on the patient.
Repeating this for all patients in a trial and averaging would provide a sample mean causal
effect. While this experiment is impossible and a causal effect cannot be observed [21],
it provides a conceptual basis for proving mathematically that randomization gives an
unbiased statistical estimator of the mean causal effect. That is, if patients are randomized,
then the approximate mean of a conventional estimator is θE − θS [22,23].

To see the advantages of randomizing patients when comparing treatments, it is useful
to consider what can go wrong if one does not randomize. Suppose that separate trials of E
and S are conducted or a single-arm trial of E is conducted with the plan to use historical
data on S for comparison. The actual estimand of a conventional statistical estimator based
on data from such trials is θE − θS + [between-trial effect], rather than the E-versus-S
effect θE − θS. That is, a conventional estimator is biased because the between-treatment
effect of interest is confounded with a between-trial effect that arises from systematic
differences in patient characteristics between the E and S datasets. The result is that an
apparent treatment effect difference obtained using a conventional statistical estimator
computed from non-randomized data may be due, in part or entirely, to the effects of
patient prognostic covariates that are unbalanced between the two datasets. A numerical
example of this problem is given in Table 1a, which shows true response probabilities and
data for E and S in Good and Poor prognosis patient subgroups. While the true response
probabilities are assumed to be known in this example, in practice, they are not known and
must be estimated from available data. Suppose that a single-arm trial of E enrolls only
good prognosis patients and has a sample response rate of 15/30 (50%), while historical
data on S, including both good and poor prognosis patients, give overall response rate
36/100 (36%). If prognosis is ignored, or if this unfair sampling is not known, then it
appears that E has a higher overall response rate than S. If, instead, one knows that the E
patients all had good prognosis while the S sample included both good and poor prognosis
patients, then it is obvious that the comparison is unfair. While this example is very simple,
in practice, non-comparable samples may arise in numerous ways from non-randomized
trials, and in many settings, between-study bias may be due to external variables that are
not known.
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Table 1. Two illustrations of E-versus-S treatment comparisons, (a) for Good and Poor prognosis
subgroups and (b) for biomarker Positive and Negative subgroups. True response probabilities
and sample proportions are given for each treatment, E and S, in each subgroup and overall. It
is assumed that Pr(Good Prognosis) = 0.20 in each sub-table, which implies that, in sub-table (a),
Pr(Res, E) = (0.50 × 0.20) + (0.25 × 0.80) = 0.30 and Pr(Res, S) = (0.60 × 0.20) + (0.30 × 0.80) = 0.36.
Similarly, in subtable (b), Pr(Res, E) = (0.80 × 0.20) + (0.10 × 0.80) = 0.24 and Pr(Res, S) = (0.50 × 0.20)
+ (0.50 × 0.80) = 0.50.

(a) Prognostic Subgroups

Treatment Good Prognosis Poor Prognosis Overall

True Pr(Res) Data True Pr(Res) Data True Pr(Res) Data

E 0.50 15/30 0.25 - 0.30 15/30

S 0.60 12/20 0.30 24/80 0.36 36/100

(b) Biomarker Subgroups

Positive Negative Overall

True Pr(Res) Data True Pr(Res) Data True Pr(Res) Data

E 0.80 24/30 0.10 - 0.24 24/30

S 0.50 10/20 0.50 40/80 0.50 50/100

A common misconception is that if one wishes to compare E to S, conducting a small
single-arm trial of E, often with 20 to 40 patients, is perfectly acceptable because historical
data on S may be used for comparison. This is based on the mistaken belief that one can
correct for confounding, for example, by fitting a conventional logistic regression model for
Pr(Res) or a survival time regression model such as a Cox model for PFS, to the combined
data, if the model includes key prognostic variables [24]. It is well known that, in general,
this is not true [25]. A naïve regression analysis of non-randomized data on E and S may
easily give biased estimators of between-treatment effects.

Well-established methods to correct for bias when analyzing non-randomized, obser-
vational data include inverse probability of treatment weighting (IPTW), pair matching,
and generalized estimation [26–32]. IPTW uses the propensity score of each patient, which
is a statistical estimate, p*(Z), based on the patient’s baseline covariates, Z, such as age,
disease severity, or other characteristics, of the probability p(Z) that they would receive
the treatment that they actually received. The estimate p*(Z) may be obtained by fitting
a logistic or probit model for the patient treatment indicator as a function of Z. For IPTW
estimation, each patient’s outcome Y, which, for example, may be an indicator of Res, or
possibly PFS time, is replaced with the weighted value Y/p*(Z). The aim is to correct for
the possible biasing effect that Z may have had if it was used to choose patients’ treatments.
A simpler method, which often works surprisingly well in practice, is to include p*(Z) as
an additional covariate in a regression model for Y as a function of Z. These bias correction
methods are practical if the trial and historical samples are both sufficiently large and both
samples include key patient covariates related to the clinical outcomes being compared.
In practice, however, sample sizes of single-arm trials often are too small to implement
bias correction methods reliably, and moreover, some key covariates may not be available
for all patients in the trial and historical datasets. A common practice when reporting
the results of a single-arm trial is to give estimated rates of Res, Tox, and other outcomes
while citing corresponding historical rates seen with S. This implicitly invites the reader
to compare numerical values of estimators that are not comparable due to confounding
by between-study effects. Similarly, for PFS or OS time, plotting two Kaplan-Meier curves
based on data from separate trials of E and S is a common example of this practice since it
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leads the reader to visually compare survival curves that are not comparable. The practical
consequence of failure to randomize in a small trial is that it is likely to produce data that
are of little use for comparing treatments fairly and are misleading due to confounding [33].

If E is a biologically targeted agent, there may be important additional issues to address
in an SRCT. The phrase “precision (personalized, individualized) medicine” is often used
to refer to the use by physicians of biomarkers that designed molecules or immunological
agents have been engineered to attack to choose each patient’s treatment [34–38]. Based
on its construction, a biological agent should have a greater anti-disease effect than S in
patients who are biomarker-positive. For example, vascular endothelial growth factor
(VEGF) inhibitors, such as bevacizumab, sorafenib, and sunitinib, are targeted agents
designed to reduce blood flow to a tumor by blocking its angiogenesis. For such agents, the
biomarker indicates that the patient is VEGF positive. Table 1b illustrates a setting where a
targeted agent, E, is highly effective in biomarker-positive patients, with a true Res rate of
80%, while the Res rate of E drops to 10% for biomarker-negative patients. The Res rate of S
is 50% regardless of biomarker status. In this setting, preclinical in vitro or in vivo data may
suggest that comparing E to S in humans is relevant only in biomarker-positive patients. In
this setting, averaging the response rates of E for biomarker positive and negative patients
to obtain one overall rate makes little sense since the optimal treatment may not be the
same in these two subgroups. A fair apples-to-apples comparison for biomarker-positive
patients correctly shows that E is greatly superior to S in that subgroup, where patients
have the biological target that E is engineered to attack. In such settings, it may make
sense to conduct an SRCT of E versus S in biomarker-positive patients only. However, an
important caveat is that E also may have a meaningful anti-disease effect in biomarker-
negative patients due to an undiscovered biological pathway. Thus, because there often is
much to be learned about a new targeted agent in an early-phase trial, it may be worthwhile
to enroll biomarker-negative as well as positive patients. In any case, E-versus-S effects
should be estimated separately in the biomarker positive and negative subgroups.

3. Bayesian Inference
Bayesian methods are particularly well-suited for making inferences from small sam-

ples, constructing practical safety and futility monitoring rules for clinical trials [38,39],
and making predictions [40–43]. Because Bayesian inferences are valid for any sample size,
they avoid the problem that many frequentist methods, such as estimators of treatment
effects obtained from fitted Cox or logistic regression models, rely on asymptotic statistical
distribution theory that is not valid for small samples.

A Bayesian model includes two types of objects. The first is observable variables,
such as indicators of Res or Tox, or numerical values of PFS, OS, or last follow-up time.
The second is parameters, denoted by θ, which are conceptual quantities such as Pr(Res),
Pr(Tox), or median PFS time with a given treatment. The Bayesian paradigm considers θ to
be random and includes a prior distribution on θ. The randomness of data is characterized
by a likelihood function, such as a binomial distribution for count data or an exponential
distribution for event times. Bayes’ theorem combines the prior with the likelihood of the
observed data to obtain a posterior, p(θ|data), which is used to make inferences about θ. A
common Bayesian estimator is the posterior mean, which is a weighted average of the prior
mean and the sample mean. To quantify uncertainty about θ, it is useful to accompany the
posterior mean by a 95% posterior credible interval (CrI), which by definition is a pair of
numbers [L, U] for which Pr(L < θ < U|data) = 0.95. For example, to represent little prior
knowledge, it may be assumed that θ = Pr(Res) follows a beta(0.50, 0.50) prior, which has a
mean of 0.50 and effective sample size ESS = 0.50 + 0.50 = 1. For binomial data consisting
of X = number of responses out of n patients with θ = Pr(Res), the posterior p(θ|X) is
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beta(0.5 + X, 0.5 + n − X). For example, if X = 8 responses are observed in n = 20 patients,
then θ follows a beta(8.5, 12.5) posterior, which has a mean 8.5/21 = 0.405 and gives 95% CrI
[0.21, 0.62] for θ. More generally, if θ follows a beta(a, b) prior, which has mean a/(a + b),
then the posterior p(θ|X, n) is beta(a + X, b + n − X), which has mean (X + a)/(n + a + b),
and may be written as the weighted average {n/(n + a + b)}(X/n) + (a + b)/(n + a + b)
{a/(a + b)}. This gives weight n/(n + a + b) to the sample proportion X/n, and weight
(a + b)/(n + a + b) to the prior mean a/(a + b), thus “shrinking” the conventional estimator
X/n toward the prior mean a/(a + b). All Bayesian estimators have this shrinkage property,
which provides more stable estimators and reduces the effects of sampling errors and the
risk of overfitting data. Median PFS time may be estimated similarly by assuming an
exponential-gamma Bayesian model.

There is extensive literature on how a prior should be specified for a Bayesian
model [40–43]. A strict Bayesian analysis requires a prior to be elicited from one or more
area experts. A common criticism of Bayesian statistics is that an elicited expert prior that
is highly informative may lead to inferences that are based mainly on subjective opinions
rather than data. For example, suppose that an investigator optimistically believes that
the mean of Pr(Res, Ek) for a new treatment Ek is 0.80 and has very little uncertainty so
that the investigator’s prior is beta(80, 20). Since this prior has an effective sample size
ESS = 80 + 20 = 100, it will dominate any inferences based on a sample of n = 20 patients.
As an extreme example, if no responses were observed, the posterior of Pr(Res, Ek) would
be beta(80, 40), which has a mean of 0.67. In contrast, a frequentist analysis has no prior,
and for this dataset, it would estimate Pr(Res, Ek) more simply by using the empirical
rate 0/20 = 0. While the beta(80, 20) prior, which arguably is overly informative, leads to
a posterior mean estimate that sharply disagrees with the observed data, the frequentist
estimate of 0 says that Res is impossible.

To avoid this sort of problem when using a Bayesian model in practice, an “operational”
prior typically is assumed to facilitate computation and obtain a sensible data analysis in
the setting at hand. For an SRCT, the prior should be non-informative in that it carries a
small amount of information, so posterior inferences are dominated by the observed data
rather than by the prior. For example, if a beta(a, b) distribution is assumed for Pr(Res, Ek)
in an SRCT, a typical operational requirement is that the ESS = a + b = 1, or at most 2. This
is needed so that, for example, the Bayesian monitoring rules described below will have
good operating characteristics. A common practical approach is to elicit the physician’s
prior mean, set this to equal the beta mean a/(a + b), set a + b = 1, and solve for a and
b. For example, if the elicited mean of Pr(Res, Ek) is 0.40, then a beta(0.40, 0.60) prior is
assumed. In the above example where 0/20 responses were observed, one may assume a
beta(0.80, 0.20) prior, which has the optimistically large mean of 0.80 but ESS = 1. This leads
to a beta(0.80, 20.2) posterior, which has a mean of 0.04 and 95% CrI [0.00, 0.15]. This CrI
says that, given the data, there is a 95% chance that Pr(Res, Ek) is smaller than 0.15. Since it
incorporates uncertainty, this Bayesian analysis may be considered more informative than
simply saying that the response rate is estimated to be 0.

Comparing Pr(Res), Pr(Tox), or median PFS between arms based on SRCT data pro-
vides a quantitative basis for deciding how to proceed with treatment development. For
each experimental treatment, E, in the trial, the between-treatment effect, θE − θS, may
be estimated by a posterior mean and accompanying 95% CrI. Additionally, the posterior
probability that E provides at least a δ improvement over S in response probability is
Pr(θE > θS + δ|data), which may be computed for a meaningfully large improvement, such
as δ = 0.15 or 0.20.

An SRCT with n = 10 to 30 patients per arm gives Bayesian estimators of between-
treatment effects that are approximately unbiased, but they are imprecise due to the small
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sample size. Figure 1 illustrates how statistical reliability increases with sample size by
giving the posteriors and 95% CrI’s of θE − θS for each of four two-arm RCT datasets, each
with empirical response rates of 40% for E and 20% for S, assuming that both parameters
follow a beta(0.50, 0.50) prior. Since a distribution represents probability by area under
its curve, in each plot, the shaded area under the curve between L = the 2.5th percentile
of the posterior and U = the 97.5th percentile equals 0.95, so [L, U] is a posterior 95%
CrI for θE − θS. The upper left posterior, obtained from samples of n = 20 patients per
arm, gives the widest 95% CrI, [−0.08, 0.45], which has a width of 0.53. The CrI’s become
successively narrower as the per-arm sample sizes increase from 20 to 40, 100, and 200.
Figure 1 illustrates the key point that, when comparing E to S, it is misleading to cite
response rates of 40% and 20% without also giving the sample sizes from which they
were computed or a CrI or confidence interval to quantify uncertainty. As noted earlier, if
patients were not randomized between E and S, then the posterior distribution would be of
θE − θS + [confounding effects] rather than of θE − θS. In this case, this sort of Bayesian
computation would be invalid, and its results would be misleading. Thus, to compare
treatments, randomization is essential.
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It is also useful to compare the distributions of two parameters visually by plotting
their posteriors together. Figure 2 shows posteriors of θE and θS based on samples of size n
= 15 per arm (top row) and n= 20 per arm (bottom row). Given observed response rates
7/15 for E and 3/15 for S (upper left), a 95% CrI for θE – θS is [−0.07, 0.55], and Pr(θE

> θS|data) = 0.94 but Pr(θE > θS + 0.20|data) = 0.63. Thus, θE is likely to be larger than
θS, but E is not very likely to provide a 0.20 improvement over S in response probability.
Observed response rates 10/15 for E and 3/15 for S (upper right) give 95% CrI [0.12, 0.71]
for θE − θS, with Pr(θE > θS + 0.20|data) = 0.93, so here E may be considered promising
since it is likely to provide a 0.20 improvement over S in response rate. The bottom row
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gives similar comparisons, where the observed rates are 8/20 for E versus 4/20 for S (lower
left), with 95% CrI [−0.08, 0.45] for θE − θS and Pr(θE > θS + 0.20|data) = 0.48. The data
12/20 for E versus 4/20 for S (lower right) give 95% CrI [−0.08, 0.45] for θE − θS and Pr(θE

> θS + 0.20|data) = 0.90, so in this case E is promising. Again, without randomization, all
of these computations would be invalid due to confounding between-treatment effects
with between-trial effects. Similar Bayesian posterior computations may be carried out to
compare Pr(Tox) or median PFS times between E and S.

Figure 2. Comparisons of the posteriors of response probabilities for E and S based on data from per
arm sample sizes of n = 15 (top row) or n = 20 (bottom row).

4. Trial Design Guidelines
Including S as a treatment arm in an SRCT is highly desirable because it provides

unbiased answers to the question of how each experimental treatment E compares to S in
terms of their Res and Tox rates. If a given E is not eliminated by preliminary screening
when compared to S in terms of the observed early Res and Tox rates, then E may be
compared to S in a later phase 3 trial based on PFS or OS time. A single-arm trial of E
cannot provide this sort of comparative inference.

4.1. Determining Sample Sizes

Conventionally, a design for a large randomized clinical trial (RCT) is based on a test
of hypotheses, and its sample size is planned by fixing the test’s overall type I error rate,
typically at 0.05 or 0.10, and doing power computations for hypothesized improvements of
E over S in terms of median PFS or OS time [44,45]. In contrast, small early-phase trials are
conducted to obtain preliminary estimates of Res, Tox, and PFS rates that are used to screen
treatments and plan future trials. Thus, rather than being used to test hypotheses, small
sample parameter estimates obtained from SRCTs may be used to generate hypotheses for
testing in future trials.
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For an SRCT, given K = the number of treatments to be studied and n = the per-arm
sample size, the maximum total sample size is N = Kn. As noted above, in theory, one
might formulate hypotheses in terms of P(Res) to compare each Ek to S, specify a statistical
test of the hypotheses, and perform a power computation to derive N. In practice, such
computations are of limited use because N is determined primarily by financial constraints,
drug availability, accrual rate, and K. A typical SRCT has N = 20 to 60 patients and K = 2,
3, or 4 arms. Since N = Kn, a simple heuristic approach for determining (N, K, n) is to
examine how a design behaves for a few possible triples. This may be carried out by
quantifying how precisely θE − θS may be estimated for different values of n using one or
two hypothetical datasets and computing future posterior 90% or 95% CrI’s for θE − θS and
improvement probabilities Pr(θE > θS + δ|data) for δ = 0.15 or 0.20. These computations
may be accompanied by an evaluation of within-arm safety monitoring rules, which are
described below. In general, an SRCT should have at least n = 10 patients per arm for
minimal precision, and if this is not feasible, then it probably is not worthwhile to conduct
the trial.

For example, suppose that practical limitations allow at most N = 30 patients, and
it is desired to study K = 3 treatments, E1, E2, and S. This implies that n = 10. If, instead,
N = 45 is feasible, then n = 15, and N = 60 gives n = 20. If one can afford a total sample
size up to N = 60, then for K = 3 arms, one may decide between n = 10, 15, or 20 per arm,
equivalently N = 30, 45, or 60, by computing posterior results that might be obtained from
hypothetical future data. Table 2 gives 95% posterior CrI’s for θE − θS and the posterior
improvement probability Pr(θE > θS + 0.15|data) for different values of n and hypothetical
response data on E and S, assuming non-informative beta(0.50, 0.50) priors on θE and θS. In
Table 2, the notation “6/10 with E vs. 3/10 with S” means that 6 out of 10 patients treated
with E responded, and 3 out of 10 patients treated with S responded. Alternatively, if at
most N = 30 is feasible, but per-arm sample size n = 10 is considered too small to be useful
in a trial of S with two experimental treatments, E1 and E2, which are versions of a new
agent given at two different doses or schedules, then as a compromise one may choose
instead to conduct a two-arm trial of E1 and S with n = 15 per arm.

Table 2. Comparisons of per-arm sample sizes n = 10, 15, and 20 in terms of posterior 95% credible
intervals (CrI's) for θE − θS and posterior probabilities of at least a 0.15 improvement of E over S,
Pr(θE > θS + 0.15|data).

Posterior Quantities

n = Number of
Patients Per Arm

Overall
N Hypothetical Future Data 95% CrI for θE − θS Pr(θE > θS +0.15|data)

10 30 6/10 with E vs. 3/10 with S −0.13, 0.63 0.74

15 45 10/15 with E vs. 5/15 with S −0.02, 0.61 0.84

20 60 14/20 with E vs. 7/20 with S 0.04, 0.60 0.90

If N = 48 is feasible, and one wishes to decide between studying K = 2 or 3 treatments,
then either (N, K, n) = (48, 2, 24) or (48, 3, 16). One may compare these, for example, by
considering hypothetical future empirical response rates of 50% for E and 25% for S. If
n = 24 and K = 2, then 12/24 responses with E and 6/24 responses with S give posterior
95% CrI [−0.02, 0.49] for θE − θS, which has width = 0.51. For the smaller per-arm sample
size n = 16 in a 3-arm trial of E1, E2, and S, if 8/16 responses are observed with E1 and 4/16
with S, this would give posterior 95% CrI [−0.08, 0.53] for θE1 − θS, which has width = 0.61.
If, instead, one were to impose the requirement that the posterior 95% CrI for θE1 − θS

should have a much smaller width = 0.20, this would require n = 600 patients per arm since
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the empirical response rates 300/600 and 150/600 would give posterior 95% CrI [0.20, 0.30]
for θE1 − θS For K = 2, this would require total sample size N = 1200, making it a phase
3 trial. These examples illustrate the general fact that small samples give relatively wide
CrI’s, and large samples give narrow CrI’s.

4.2. Constructing Within-Arm Monitoring Rules

Bayesian interim monitoring rules are very useful tools for deciding whether to drop a
treatment or dose if it is found to be either unsafe or ineffective in an early-phase trial [39,46].
To monitor θk(Tox) for each Ek in an SRCT, one first must ask the physicians planning
the trial to specify a fixed upper limit θ* on θk(Tox) = Pr(Tox with Ek) that is the largest
acceptable value, and also a larger value θ** > θ* that is unacceptably large. In the numerical
example given below, θ* = 0.20 and θ** = 0.40. Assuming a non-informative beta prior
for θk(Tox), a Bayesian criterion for stopping accrual to Ek is the posterior probability
that θk(Tox) is larger than θ*. Formally, a Bayesian posterior stopping criterion is Pr{
θk(Tox) > θ*|data } > cT. This rule may be applied after successive cohorts of patients have
been treated with Ek and their Tox outcomes have been evaluated. The decision cutoff cT,
which most often is a value between 0.80 and 0.95, should be calibrated, using computer
simulation of the trial, to give a small early stopping probability, PSTOP, if θk(Tox)true = θ*,
that is, if the probability of toxicity is acceptably low, and a large PSTOP if θk(Tox)true = θ**,
that is, if the probability of toxicity is unacceptably high.

To monitor θk(Res) similarly for Ek, the physicians must specify a fixed lower limit
θ* on θk(Res) = Pr(Res with Ek) that is the smallest acceptable value and also a smaller
probability θ** < θ* that is an unacceptably small Pr(Res with Ek). The posterior early
stopping rule for Ek is then based on the posterior probability that θk(Res) is smaller than
θ*, given by Pr{θk(Res) < θ*|data} > cR. In a two-arm trial of E versus S, if E is stopped early
for safety or efficacy, then the trial should be stopped. In a three-arm trial of E1, E2, and S,
if either E1 or E2 is stopped early, then, to improve reliability, the remaining sample of the
terminated arm should be randomized among the remaining treatments. This is known as
enrichment [47]. If, instead, the overall sample size is reduced after stopping accrual to an
arm, this would be a false economy because it would produce a smaller precision for all
final posterior estimators.

Stopping rules may be applied using several possible monitoring schedules. For
example, if n = 20, then the rule may be applied at interim sample sizes of 10 and
15, while if n = 24, then it may be applied at 8 and 16. The decision cutoffs cT and cR

may be refined [48] to change with sample size, taking the form α(n/N)β, where the
parameters α and β are calibrated to give specific values of Pstop for θk(Tox)true = θ* and
θk(Tox)true = θ**. For example, to monitor safety with n = 24 using the posterior of θE(Tox),
suppose that the specified upper limit is θ* = 0.20, while θ** = 0.40 is considered unaccept-
ably high. Following Thall et al. [38,39,45], one may assume the non-informative prior
θE(Tox)~beta(0.20, 0.80). As a random comparator in the rule to play the role of θ* = 0.20,
one may use θS (Tox)~beta(200, 800), which has a mean of 0.20 and is highly informative
with ESS = 1000. If n = 24 per arm, a within-arm Bayesian safety rule may be to stop accrual
to E if Pr{θE(Tox) > θs(Tox)|data} > cT. Setting cT = 0.90 and applying the rule after cohorts
of size 8 will stop accrual to E if.

[Number of Tox with E]/[number of patients treated with E] is greater than or equal to
4/8 or 6/16. Computer simulations show that this rule has Pstop = 0.10 for arm E if θE(Tox)
true = 0.20 and Pstop = 0.70 for arm E if θE(Tox) true = 0.40.
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4.3. Determining a Randomization Scheme

To facilitate safety monitoring with small samples, it is useful to restrict the randomiza-
tion so that the interim per-arm sample sizes are equal each time the safety rule is applied.
For example, if N = 48 patients are randomized to K = 2 arms with up to n = 24 patients each,
and the within-arm monitoring rules are applied at 8 and 16 patients, then the randomiza-
tion sequence may be determined so that the per-arm sample sizes are perfectly balanced
at 16, 24, 32, 40, and 48 patients. To do this, one may pre-specify successive treatment
assignment blocks of size 8 each, with each block a randomly scrambled sequence of four
E’s and four S’s, such as (E,S,S,E, E,S,E,S). These blocks are used to assign patients to E or S
as they are enrolled.

One may account for patient heterogeneity by defining subgroups (“strata”) using
patient covariates that may influence clinical outcomes. Stratified randomization may then
be used, with a separate randomization scheme specified within each stratum to obtain
balanced sample sizes. An important caveat is that, because the per-treatment arm sample
size n is small, refining this by stratification will produce very small treatment-subgroup
sample sizes.

5. A Randomized Cell Therapy Trial
A 3-arm randomized phase 1–2 trial was conducted to compare two doses of engi-

neered cells added to a Jak kinase inhibitor (JKI) versus the JKI alone for treating steroid-
refractory acute graft versus host disease (srGVHD) in allogeneic stem cell transplant
patients. Because srGVHD can be rapidly fatal [49] with a six-month survival rate of 50%,
two co-primary outcomes were defined: Res = [partial, very good partial, or complete
response at day 28] and Tox = [grade > = 3 regimen-related toxicity within 28 days]. An
additional long-term treatment success outcome was defined as S180 = [alive without
srGVHD at 180 days]. It was planned to study three treatment arms: JKI alone (Arm S),
JKI + 106 cells (Arm E1, low cell dose), and JKI + 2 × 106 cells (Arm E2, high cell dose).
A maximum of N = 48 patients would be randomized, with exactly n = 16 per arm. For
example, writing θEk(T) = Pr(TOX in Arm Ek}, if 8/16 patients responded with E1, and
4/16 responded with S then, assuming beta(0.50, 0.50) priors on θE1(Res) and θS(Res), a
posterior 95% CrI for θE1(Res) − θS(Res) would be [−0.08, 0.53] and p{θE1(Res) > θS(Res) +
0.15|data} = 0.71.

The following Bayesian safety monitoring rule was used in each cell therapy arm,
based on a maximum of n = 16 patients per arm. Given the fixed upper limit of 0.30 on each
θEk(T) specified by the clinicians planning the trial, accrual to Arm Ek would be terminated
early if Pr(θEk(Tox) > 0.30|data) > 0.90. This Bayesian rule formalizes the idea that the data
show that the Tox rate is unacceptably high in arm Ek. Applying the stopping rule when
Tox had been evaluated for 4, 8, and 12 patients in Ek, this posterior criterion implies that
accrual to Ek would be stopped early if [# patients with Tox in Ek]/[number of patients
evaluated in Ek] was greater than or equal to 3/4, 5/8, or 6/12. The randomization was
restricted to balance interim per-arm sample sizes at 4 + 4 + 4 = 12, 8 + 8 + 8 = 24, and
12 + 12 + 12 = 36 to facilitate application of the safety monitoring rule. This was carried
out by generating random treatment assignment sequences in 8 blocks of size 6, such as
(2, 1, 3, 1, 3, 2). The operating characteristics of the within-arm safety monitoring rule are
summarized in Table 3. If both cell therapy arms were stopped early, the trial would be
terminated with neither E1 nor E2 selected. If one cell therapy arm was stopped early, then
all patients, up to the maximum total of N = 48, would be randomized fairly between S and
the remaining cell therapy arm. If neither cell therapy arm was stopped for safety, then the
arm Ek with a larger posterior mean Pr(Res, Ek) would be selected as best for future study.
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Table 3. Operating characteristics of the cell therapy trial’s within-arm safety monitoring rule.

True Pr(Tox28) Pr(Stop Early) Sample Size Quartiles

0.30 0.16 16, 16, 16

0.40 0.40 8, 16, 16

0.50 0.66 4, 12, 16

0.60 0.86 4, 8, 16

Interim data from the cell therapy trial showed no Tox events and moderately promis-
ing efficacy for each cell therapy arm compared to S at days 28 and 180. The interim empiri-
cal response rates are summarized in Table 4a, which shows a benefit for each JKI + cellular
therapy arm over JKI alone. Since the interim sample sizes were small, it is useful to do
Bayesian comparisons. For the 28-day outcomes, write θk(Res28) = Pr(Res28 in Arm k) for
k = S, E1 or E2, and assume Beta(0.50, 0.50) priors. Bayesian posterior criteria comparing E1

to S and E2 to S in terms of posterior 95% CrI’s and probabilities of a 0.15 improvement
for 28-day response and 180-day treatment success are given in Table 4b. For example,
for Arm E1 (JKI + low cell dose), the posterior 95% CrI for the E1-vs-S effect, θE1(Res28)
− θs(Res28), was [−0.05, 0.65] and Pr{θE1(Res28) > θS(Res28) + 0.15|data} = 0.82. Consid-
ered together, these interim results, while far from confirmatory due to the sample sizes,
appeared sufficiently promising to motivate expanding the trial sample size from 48 to 96,
with 32 patients for each of the three arms.

Table 4. (a) Observed interim treatment success rates at days 28 and 180 for the trial of JKI +/− cell
therapy for steroid-refractory GVHD. (b) Posterior criteria for comparing E1 and E2 to S in terms
of Pr(day 28 response) and Pr(day 180 success) for the trial of JKI +/− cellular therapy for steroid-
refractory GVHD, computed from the data in (a).

(a)

Treatment Arm Day 28 Res Alive Without GVHD
at 180 Days

JKI 5/9 (56%) 2/6 (33%)

JKI + 106 cells 9/10 (90%) 5/8 (63%)

JKI + 2 × 106 cells 10/11 (91%) 7/9 (78%)

(b)

Outcome Treatment Effect 95% Posterior
Credible Interval

Posterior Probability
of >0.15 Improvement

Over S

Res28
θE1(Res28) − θs(Res28) [−0.05, 0.65] 0.82

θE2(Res28) − θs(Res28) [−0.02, 0.66] 0.83

Res180
θE1(Res180) − θs(Res180) [−0.21, 0.67] 0.68

θE2(Res180) − θs(Res180) [−0.06, 0.77] 0.86

6. Conclusions
We have argued that small early-phase trials provide an important link between

preclinical research and large confirmatory phase 3 trials and that between-treatment
comparisons may be used when deciding how to proceed in the treatment evaluation
process. This motivates randomizing in small trials to obtain fair treatment comparisons.
We have proposed and illustrated practical Bayesian methods for comparing event rates
and constructing safety and futility monitoring rules based on the data from such trials.
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While randomization provides protection against biased comparisons that may result
from single-arm trials, it is not a panacea. Because patients enter a clinical trial sequentially,
it is not possible to balance treatment arms perfectly on patient covariates, and covariate
distributions will always differ randomly between treatment arms. Additionally, while
the use of safety and futility monitoring rules reduces the risk of choosing an unsafe or
ineffective dose, no design is perfect, and there is always the possibility that later data will
show an inference to be wrong.

Throughout most of our discussion, we implicitly have assumed homogeneity. How-
ever, as pointed out by Senn [50], it does not make sense to ignore observed patient
covariates because one has randomized. Provided that a small set of prognostic covariates
is prespecified in the clinical protocol, to improve precision when estimating between-arm
effects defined in terms of Pr(Res) or Pr(Tox), one may fit a logistic or probit regression
model including the covariates. Here, Bayesian regression is particularly useful because
it does not rely on large sample approximations required by corresponding frequentist
regression models. To implement these Bayesian regression models, as recommended by
Gelman et al. [51], default priors may be assumed for treatment and covariate parameters.
Similarly, if a substantial imbalance is seen between strata, such as males and females, then
one may perform post-stratification by computing a comparative between-treatment esti-
mate within each stratum and using these to compute an appropriately weighted average
across the strata.

A final caveat is that while SRCTs can be very useful, it is important to resist the
temptation to overinterpret positive results. While, for example, an observed response rate
of 9/15 for a new treatment Ek may be encouraging, citing the 60% empirical response
rate alone is misleading due to the small sample size n = 15. It is important to temper this
optimistic estimate by quantifying one’s uncertainty. This may be carried out by giving a
95% posterior CrI for Pr(Res, Ek), which runs from 0.35 to 0.81 for this dataset. That is, an
SRCT is not a confirmatory trial.
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