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Background Traditionally, the purpose of a dose-finding design in cancer is to find the

maximum tolerated dose based solely on toxicity. However, for molecularly targeted agents

(MTAs), little toxicity may arise within the therapeutic dose range and the dose-efficacy

curves may not be monotonic. This challenges the principle that more is better, which is

widely accepted for conventional chemotherapy.

Methods We propose three adaptive dose-finding designs for trials evaluating MTAs.

The goal of these designs is to find the optimal biological dose (OBD), which is defined as

the lowest dose with the highest rate of efficacy while safe. The first proposed design is

parametric and assumes a logistic dose-efficacy curve for dose finding; the second design is

nonparametric and uses the isotonic regression to identify the optimal biological dose; and

the third design has the spirit of a “semiparametric” approach by assuming a logistic model

only locally around the current dose.
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Results We conducted extensive simulation studies to investigate the operating char-

acteristics of the proposed designs. Simulation studies show that the nonparametric and

semiparametirc designs have good operating characteristics for finding the OBD and out-

perform the existing slope-sign design.

Limitations The proposed designs assume a binary endpoint. Extension of the pro-

posed designs to ordinal and time-to-event endpoints worth further investigation.

Conclusion Among the three proposed designs, the nonparametric and semiparametirc

designs yield consistently good operating characteristics and thus are recommended for

practical use. The software to implement these two designs is available for free download

at http://odin.mdacc.tmc.edu/∼yyuan/.

1 Introduction

Traditionally, the primary goal of a phase I cancer clinical trial for a cytotoxic drug is to

identify the maximum tolerated dose (MTD) of the new agent, based on the assumption that

both efficacy and toxicity increase monotonically with the dose. The recent development of

novel molecularly targeted agents (MTAs) has challenged this paradigm as the monotonic

assumption of dose-toxicity and dose-efficacy relationships may not hold for MTAs. MTAs

are developed to modulate specific aberrant pathways in cancer cells while sparing normal

tissue. As a result, the toxicities of the MTAs are often expected to be minimal within

the therapeutic dose range and the dose-efficacy curves of MTAs may not follow monotonic

patterns [1, 2, 3, 4]. For example, Postel-Vinay et al.[5] investigated the dose-efficacy rela-

tionship of monotherapy MTAs based on 135 patients enrolled in phase I trials at the Royal

Marsden Hospital from 5 January 2005 to 6 June 2006. The patients were classified into

three cohorts A, B and C according to the dose received as a percentage of the MTD (0-33%,

34-65%, >66%). The efficacy endpoint was the non-progression rate, i.e., complete/partial
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response or stable disease for at least 3 months. The monotherapy MTAs demonstrated a

nonmonotonic dose-efficacy relationship: the NPR for the patients in cohorts A, B and C

were 21%, 50% and 31% at 3 months and 11%, 27% and 14% at 6 months after receiving the

treatments. That is, the median dose of the MTA (i.e., cohort B), rather than the highest

dose (i.e., cohort C), leads to the highest efficacy.

The primary goal of a dose-finding design for MTAs is to find the optimal biological dose

(OBD), which can be defined in different ways according to the goal of the clinical trial. In

this article, we define the OBD as the lowest dose that has the highest effectiveness efficacy

rate while simultaneously safeguarding patients. This definition has been used by some

existing trial designs [6, 7]. Due to the nonmonotonic dose-efficacy relationship, the OBD

of an MTA is not always the highest dose and may appear in the middle of the investigational

dose range. This challenges the principle that more is better, which is widely accepted for

conventional chemotherapy [8]. In practice, the dose-efficacy curves for MTAs are often

expected to be unimodal (or umbrella-shaped[9]) or to plateau within the therapeutic dose

range, that is, the dose-efficacy curves first increase and then remain constant as the dose

increases. Although more complicated multimodal dose-efficacy curves are possible, they

rarely occur within the therapeutic dose range. Thus, in this paper, we focus on finding the

OBD for MTAs with unimodal or plateaued dose-efficacy curves.

In contrast to the rich body of literature on phase I dose-finding trial designs for cytotoxic

agents, research on phase I trial designs for MTAs is limited [10, 11]. Under the assumption

of minimal toxicity, Hunsberger et al. [6] proposed the slope-sign design to find the biological

adequate dose (BAD) for MTAs, which has similar definition as OBD but is defined as the

lowest dose in the plateau. The slope-sign design directs the dose finding based on the sign

of the estimate of the slope of the dose-efficacy curve using the efficacy data collected from

a certain number of adjacent dose levels. If the sign of the estimate of the slope is positive,

the dose level is escalated; otherwise, the trial is terminated and the dose level with the
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highest efficacy response rate is recommended as the BAD. This slope-sign design is simple,

and requires small sample size because it terminates the trial once the estimate of the slope

is negative. Due to different trial design goals, some designs adopted other definitions of

the OBD for dose finding. Zhang et al. [12] proposed the trinomial continual reassessment

method to find the optimal biological dose, defined as the dose with the highest probability

of yielding efficacy but no toxicity. Mandrekar et al. [13] extended this method as a way of

investigating dual-agent drug combinations. Polley and Cheung [14] proposed a two-stage

design with a futility interim analysis for identifying the optimal dose, which was defined

as the minimum dose that exhibited adequate drug activity.

In this article, we propose three new dose-finding designs to search for the OBD of MTAs.

Be different with Hunsberger et al. [6], we investigate the case in which the MTA under

investigation has substantial toxicity; thus both efficacy and toxicity need to considered

for dose finding. Our first design models the entire dose-efficacy curve with a Bayesian

logistic regression and adaptively assigns patients based on the model estimates. To improve

the robustness of the design, the second design fits the dose-efficacy curve with a isotonic

regression without making any parametric assumption as to the shape of the curve. The

third proposed design has the spirit of a “semiparametric” approach by assuming a logistic

model only locally around the current dose.

The rest of this article is organized as follows. In Section 2 we propose three new designs

to find the OBD of MTAs. In Section 3 we carry out comprehensive simulation studies to

evaluate the performance of the proposed designs. Based on the simulation studies, we

provide concluding comments and recommendations in Section 4.
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2 Dose-finding methods

2.1 Toxicity monitoring

Compared to conventional cytotoxic agents, toxicity is often of less concern for MTAs and

the dose finding of the OBD is mainly driven by efficacy. However, it is still important to

monitor toxicity during the dose finding to ensure patients’ safety. Let (d1, . . . , dJ) denote a

set of J pre-specified increasing doses for the MTA under investigation and and qj denote the

toxicity probability of dose level j. Assuming that xj out nj patients experienced toxicity

at dose level j, we model the toxicity of each dose level independently using a beta-binomial

model

xj ∼ binom(nj , qj)

qj ∼ beta(a, b)

where binom(·) and beta(·) denote binomial and beta distributions, respectively, and a and

b are hyperparameters. In most applications, a vague prior should be preferred by setting

a+ b at a small number, such as 0.5, noting that a+ b can be interpreted as a prior sample

size.

Let φ denote the target toxicity upper bound, the safety of dose level j can be monitored

by the posterior probability Pr(qj > φ|nj , xj), which has a convenient closed-form Pr(qj >

φ|nj , xj) = 1−Beta(φ; a+xj , b+nj −xj) where Beta(·) is the cumulative density function

of a beta distribution evaluated at φ with parameters a+ xj and b+ nj − xj . Specifically,

we define the admissible set A as a set of doses satisfying the following safety rule:

A = {j : P̃r(qj > φ|nj , xj) < CT , j = 1, . . . , J} (1)
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where P̃r(qj > φ|nj , xj) is the isotonically transformed posterior probability Pr(qj > φ|nj , xj)

based on the pool adjacent violators algorithm (PAVA) [16, 17], and CT is a pre-specified

toxicity threshold. The isotonic transformation is used to impose dose-toxicity monotonicity

and borrow information across dose levels. As described in the following sections, during

the dose finding, we restrict dose assignment and selection within the admissible set A,

thereby protecting patients from overly toxic doses. Before treating any patient in the trial,

all investigational doses should be in A and open for testing. This can be done by choosing

the values of hyper parameters a and b such that Beta(φ; a, b) = 1 − CT + δ, where δ is a

small positive number, e.g., δ = 0.05. That is, a priori, all doses just satisfy the safety rule

given in (1).

2.2 Logistic design

We assume that efficacy is recorded as a binary outcome. Let pj denote the probability of

efficacy at dose level j. We note that like many phase I trial designs (e.g., CRM), the dose

values {dj} are not actual clinical dose values, but are rescaled dose values, for example,

with some pre-specified mean and standard deviation. The rescaling of the dose improves

model estimation stability and also facilitates the prior elicitation, as we will discuss later.

Because the dose-efficacy curve for an MTA is often non-monotonic, an intuitive method

for fitting this curve is the logistic regression with a quadratic term, which can be written

as

log (pj/(1− pj)) = α+ βdj + γd2j , j = 1, . . . , J.
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Assume that at dose level j, yj out of nj patients experienced efficacy, the likelihood for

the observed data D = {yj , nj ; j = 1, . . . , J} is given by

L(D|α, β, γ) ∝
J∏
j=1

(
eα+βdj+γd

2
j

1 + eα+βdj+γd
2
j

)yj (
1

1 + eα+βdj+γd
2
j

)nj−yj
;

and the posterior of unknown regression parameters α, β and γ is

f(α, β, γ|D) ∝ f(α, β, γ)L(D|α, β, γ). (2)

where f(α, β, γ) is the prior distribution of α, β and γ.

The specification of the prior f(α, β, γ) requires some care. In typical phase I trials, data

are sparse, especially at the beginning of the trial when only a few patients are enrolled. As

a result, the commonly used noninformative flat prior (or vague normal prior with a large

variance) tends to lead to improper posteriors and unstable estimation, and thus should

be avoided here. To address the issue of sparse data, we adopt the weakly informative

prior proposed by Gelman et al [15]. Specifically, we specify a Cauchy prior distribution

with center 0 and scale 10 for α, i.e., Cauchy(0, 10); and two independent Cauchy priors

Cauchy(0, 2.5) for β and γ, respectively. These weakly informative priors are regularized

such that a dramatic change in efficacy probability (e.g., from 0.01 to 0.5) is unlikely to

happen when the dose changes by one level, which substantially improves the estimation

stability while also being vague enough to ensure that the data are able to dominate the

priors when more data accumulate. In order to use these priors, we need to fix the scale of

the covariate dj , which is done by standardizing the values of (d1, . . . , dJ) with a mean of 0

and a standard deviation of 0.5. The posterior distribution (2) can be easily sampled based

on the Markov chain Monte Carlo (MCMC) method and used for guiding dose escalation

and de-escalation.

The proposed Bayesian logistic model-based dose-finding method can be summarized as
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follows:

1. The first cohort of patients is treated at the lowest dose d1, or at the physician-specified

dose.

2. At the current dose level j, based on the toxicity outcomes, applying safety rule (1)

to find the admissible set A.

3. Identify the dose level j∗ which has the highest posterior estimate of efficacy proba-

bility within A. If j∗ > j, the dose level is escalated to j + 1; if j∗ < j, the dose level

is de-escalated to j − 1; otherwise, the dose level remains at j.

4. Once the maximum sample size is reached, the dose that has the highest estimate of

efficacy probability within A is selected as the OBD.

This parametric design is straightforward and easy to implement, but may be sensitive

to model misspecifications. In the subsection that follows, we propose a nonparametric

approach based on the isotonic regression.

2.3 Isotonic design

Within conventional phase I trial designs for cytotoxic agents, various isotonic designs

have been proposed to find the MTD without making any parametric assumption beyond

the monotonicity on the dose-toxicity curve. These designs have been based on isotonic

regression, which is typically implemented using the PAVA. For example, Leung and Wang

[18] proposed an isotonic design that fits an isotonic regression to accumulated data to

determine dose escalation based on the PAVA. Conaway et al. [19] suggested isotonic

designs for drug combination trials. Yuan and Chappell [20] proposed isotonic designs for

trials with ordered groups. The existing isotonic designs cannot be directly used to find

the OBD for MTAs because in order to conduct isotonic regression, these designs require
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that the dose-response order constraint is known (e.g., monotonicity), which may not be

satisfied for MTAs.

Specifically, for the MTAs with unimodal or plateaued dose-efficacy curves, our goal is

to find the OBD, the dose level j∗ such that

p1 ≤ · · · ≤ pj∗ ≥ · · · ≥ pJ . (3)

In other words, before we identify the OBD, the order constraint (3) is actually unknown.

Therefore, the standard isotonic regression cannot be directly applied to find the OBD. To

overcome this difficulty, we take the approach of double-sided isotonic regression [21]. In this

approach, we first enumerate all J possible locations of j∗, j∗ = 1, . . . , J . Given each of the

locations, say j∗ = k, the isotonic estimates {p̂(k)j ; j = 1, . . . , J} can be obtained by fitting

two separate standard isotonic regressions: one for p1, . . . , pj∗ with the constraint p1 ≤ · · · ≤

pj∗ and the other one for pj∗+1, . . . pJ with the constraint pj∗+1 ≥ · · · ≥ pJ . Each of these

two isotonic regressions can be done using the PAVA algorithm[16, 17], which yields isotonic

estimates by replacing any adjacent observations violated the monotonicity assumption

with their (weighted) average. For example, assuming that the observed efficacy rates at

three doses are (1/10, 3/10, 1/5), under the monotonically increasing order assumption, the

efficacy rates of dose levels 2 and 3 (i.e., 3/10 and 1/5) violate the monotonicity assumption.

The PAVA algorithm replaces 3/10 and 1/5 with their average 4/15, yielding the isotonic

estimates (1/10, 4/15, 4/15).

After applying this procedure to each of J possible locations of j∗, we obtain J sets

of possible isotonic estimates {p̂(k)j }, k = 1, . . . , J . We select as the final isotonic estimates

{p̂j} = {p̂(k
∗)

j }, the set of isotonic estimates with the smallest sum of the square error, i.e.,

k∗ = argmink∈(1,...,J)

J∑
j=1

(p̂
(k)
j −

yk
nk

)2
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Our isotonic design can be described as follows:

1. Treat the first cohort of patients at the lowest dose d1, or at the physician-specified

dose.

2. At the current dose level j, based on the toxicity outcomes, applying safety rule (1)

to find the admissible set A.

3. Identify the dose level j∗ that has the highest isotonic estimate of efficacy probability

among the tried doses within A. Where there are ties, we select j∗ as the lowest dose

level among the ties. Let jt denote the highest dose level tried thus far. If j∗ > j,

we escalate the dose level to j + 1; if j∗ < j, we de-escalate the dose level to j − 1; if

j∗ = j = jt, we escalate the dose level to j + 1 given that j + 1 is in A, otherwise we

retain the dose level j.

4. Once the maximum sample size is reached, we select as the OBD the lowest dose that

has the highest estimate of efficacy probability within A.

One limitation of the isotonic regression is that it cannot estimate the efficacy proba-

bilities for the untried doses at which no patients have been treated. That is, the isotonic

regression cannot extrapolate the dose-efficacy curve beyond the range of the observed data.

Therefore, during the trial conduct, when the dose with the highest estimate of efficacy is

the highest tried dose (i.e., j∗ = j = jt), there is no information to determine whether

we have achieved the maximum point of the dose-efficacy curve or not. To overcome this

limitation, in the above dose-finding algorithm, when j∗ = j = jt we automatically escalate

the dose level to further explore the dose-efficacy curve and search the maximum point,

given that the next higher dose level is safe (i.e., within the admissible set A).
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2.4 Local logistic design

We have proposed designs based on parametric logistic regression and nonparametric iso-

tonic regression. We now propose the third approach, which we call the L-logistic design to

denote the local logistic regression design. The L-logistic design can be regarded as a “semi-

parametric” approach in the sense that, rather than imposing a parametric dose-efficacy

curve that spans the whole dose range, it assumes a parametric form around only the neigh-

bors of the current dose. It is worthy noting that for our purpose, we are not interested in

estimating the whole dose-response curve but only the local trend around the current dose

in order to direct the dose escalation or de-escalation. Our approach can also be viewed as

a Bayesian extension of the slope-sign design proposed by Hunsberger et al. [6].

In the L-logistic design, we fit a local Bayesian linear logistic model based on the local

data Dj = {yk, nk; k = j − l + 1, . . . , j} collected from the current dose level j up to the

previous l − 1 dose levels as,

log (pk/(1− pk)) = α+ βdk, k = j − l + 1, . . . , j.

α ∼ Cauchy(0, 10), β ∼ Cauchy(0, 2.5),

where 2 ≤ l ≤ J . We take the weakly informative Cauchy prior distribution for α and β,

as described in Section 2.1. Again, dose dk is standardized with a mean of 0 and a standard

deviation of 0.5. We require l ≥ 2 to ensure that there are adequate data points to identify

the two regression parameters α and β. When l = J , the model uses all data for estimation

and becomes a fully parametric approach. In phase I trials, the number of investigational

dose levels is typically small (e.g., ≤ 10), therefore a value of l between 2 and 4 is often

a reasonable choice. We recommend l = 2 because we find that increasing the value of l

yields similar or even worse operating characteristics in our simulation studies.

One may question how reliable the estimation of the parameters for the local logistic
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model is based on data observed from 2 doses. We note that for the purpose of dose finding,

our goal here is not to obtain precise estimates of the model parameters, but to capture

the local trend (e.g., increasing or decreasing) of the dose-response curve for directing dose

escalation/deescalation. As long as the estimates correctly identify the trend of the curve

(i.e., the sign of the slope), they lead to appropriate dose escalation and deescalation.

Simulation studies in Section 3 show that the L-logistic design based on two local doses

yields good operating characteristics, suggesting that the estimation using local data is

adequately stable to identify the local trend of the dose-response curve.

To direct the dose escalation/de-escalation in a trial, we calculate the posterior prob-

ability Pr(β > 0|Dj) based on the local logistic model. Let CE1 and CE2 be pre-specified

efficacy cutoffs and CE1 > CE2. If Pr(β > 0|Dj) > CE1 (i.e., the current trend of the

dose-efficacy curve is increasing), we escalate the dose because the next higher dose level

is expected to have higher efficacy. In contrast, if Pr(β > 0|Dj) < CE2, which indicates

a decreasing dose-efficacy curve, we de-escalate the dose because the lower dose level is

expected to have higher efficacy. Otherwise, i.e., CE2 ≤ Pr(β > 0|Dj) ≤ CE1, we stay at

the current dose to accumulate more data. The values of CE1 and CE2 can be calibrated

by simulation to obtain good operating characteristics. Typically, CE1 should be larger

than CE2 by a certain reasonable margin, such as 10% to 20%. By using the posterior

probability Pr(β > 0|Dj) as the criterion of dose escalation, we automatically account for

the uncertainty associated with parameter estimation. That is, we escalate or de-escalate

the dose only when we achieve a certain degree of confidence that β > 0 or β < 0.

The dose-finding algorithm for the proposed L-logistic design is described as follows:

1. Starting from the lowest l dose levels, treat one cohort of patients at each dose levels.

2. At the current dose level j, based on the toxicity outcomes, applying safety rule (1)

to find the admissible set A.
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3. Based on the efficacy outcomes from the current and previous l−1 dose levels, calculate

the posterior probability Pr(β > 0|Dj). If Pr(β > 0|Dj) > CE1, the dose level is

escalated to j+1 when j+1 is in A and otherwise retain at j; if Pr(β > 0|Dj) < CE2,

the dose level is de-escalated to j−1; otherwise, i.e., CE2 ≤ Pr(β > 0|Dj) ≤ CE1, the

dose level j is retained.

4. Once the maximum sample size is reached, based on all the observed data, we carry

out a double-sided isotonic regression and select the lowest dose that has the highest

estimate of the efficacy probability as the OBD.

One potential problem of the above dose-finding algorithm is that the dose movement

may bounce back and forth between dose levels j and j + 1 when the dose level j is the

maximum point of the dose-efficacy curve. This is because in this case, it may happen that

Pr(β > 0|Dj) > CE1 (i.e., the dose-efficacy curve is increasing from dose level j − 1 to j)

and Pr(β > 0|Dj+1) < CE2 (i.e., the dose-efficacy curve is decreasing from dose level j to

j + 1). Therefore, when the current dose level is j, we will escalate the dose level to j + 1

because Pr(β > 0|Dj) > CE1; and once we move to the dose level j + 1, at the next dose

assignment, we will de-escalate back to the dose level j because Pr(β > 0|Dj+1) < CE2;

and so on. To avoid this problem, before conducting any dose escalation, we will determine

whether Pr(β > 0|Dj+1) < CE2 whenever the dose level j + 1 has been used to treat any

patients. If Pr(β > 0|Dj+1) < CE2, indicating that the dose level j is the maximum point

of the curve, we will retain the current dose level. The values of CE1 and CE2 are calibrated

according to the desirable operating characteristics.
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3 Simulation studies

3.1 Dose-finding studies

We investigated the operating characteristics of the proposed designs through simulation

studies under eight efficacy and toxicity scenarios, as listed in Table 1. We considered five

dose levels and started the trials at the lowest dose level. We assumed a target toxicity

upper bound of φ = 0.3, a toxicity threshold of CT = 0.8 and a maximum sample size of

30 in cohorts of size 3. Under each scenario, we simulated 5,000 trials. For the L-logistic

design, we specified efficacy cutoffs CE1 = 0.4 and CE2 = 0.3 according to the calibration

study. We used two adjacent doses (i.e., l = 2) to fit the local logistic model in the proposed

L-logistic design. We examined other choices for the number of adjacent doses and found

very similar performance levels (results not shown). We compared our designs with the

slope-sign design and a traditional design. In the slope-sign design, three adjacent dose

levels were used to estimate the slope, and safety monitoring was carried out using the

method described in Section 2.1. Under the traditional approach, we first conducted the

dose escalation using the conventional “3+3” design, and once the MTD is identified, we

then randomized the remaining patients between the MTD and the dose one level lower

than the MTD.

Table 1 shows the simulation results, including the dose selection probability, the aver-

age percentage of patients treated at each dose level, the average percentages of patients

experienced efficacy and toxicity, and the averaged sample size under the slope-sign, logis-

tic, isotonic and L-logistic designs. In practice, besides the OBD, the other doses with high

efficacy and low toxicity are often interested to investigators as well. Therefore, we also

reported the selection percentage of the OBD region, which is defined as the two doses that

have the highest response rates within the admissible set A.

In scenario 1, the dose-efficacy curve is unimidal and the fourth dose level is the OBD
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with the highest efficacy rate and acceptable toxicity rate. The traditional design yield the

lowest OBD selection percentage of 19.8%, The logistic and Isotonic designs outperformed

the slope-sign design and the traditional design with a selection percentage of 31.1% and

45.6% respectively. The L-logistic design performed best and selected the OBD 54.4% per-

cent of the time, respectively. The three proposed designs also yielded the highest selection

percentages of the OBD region, ranging from 69% to 79%. In addition, the proposed designs

assigned higher percentages of patients to the OBD than the other two designs. Specifically,

the percentages of patients allocated at the OBD under the logistic, isotonic and L-logistic

designs were 6.6%, 12.2% and 13.9% higher than that under the slope-sign design and 6.2%,

11.8% and 13.5% higher than that under the traditional design. However, the slope-sign

design used the smallest sample size. In scenario 2, the OBD was located at dose level 2

whereas the MTD was located at dose level 5. As the traditional design focuses on evaluat-

ing the doses around the MTD, it selected dose 4 as the OBD with a percentage of 42.1%

whereas only 22.8% of selecting dose 2 as the OBD. All the other designs performed signif-

icantly better than the traditional design. Specifically, the isotonic and L-logistic designs

outperformed other designs and selected dose level 2 with the percentages of 78.6% and

77.0%, respectively.

Scenarios 3 to 4 also considered unimodal patterns, with different toxicity profiles.

Across these two scenarios, the logistic design demonstrated a large variation:it yielded the

highest OBD selection (51.8%) in scenario 4 but the lowest selection percentage (36.4%) in

scenario 3, suggesting the sensitivity of this parametric approach. In contrast, the proposed

isotonic and L-logistic designs performed consistently and outperformed the slope-sign de-

sign and the traditional design across these two scenarios.

Scenarios 5 examined the performance of the designs when the dose-efficacy curve was

monotonic. We can see that the proposed designs consistently outperformed the other two

designs and the L-logistic design performed best. Indeed, the OBD selection percentages of
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the L-logistic design was 19.6% higher than that of the slop-sign design; and the percentages

of patients treated at the OBD using the L-logistic design was also 13.6% higher than that

of the slope-sign design. Scenarios 6 simulated the cases in which efficacy initially increased

with dose and then plateaued. In these cases, the target OBD was the lowest dose yielding

the highest efficacy rate. The slope-sign design performed worst and other designs yielded

similar percentage of OBD selection.

In summary, the proposed designs outperformed the slope-sign design and the traditional

design in terms of selecting the target doses and allocating patients to the efficacious doses.

The slope-sign design has the advantage of using smaller sample sizes. Among the three

proposed designs, the isotonic and L-logistic designs yielded consistently good operating

characteristics, and are recommended for practical use. The software to implement these

two designs is available for free download at http:// odin.mdacc.tmc.edu/∼yyuan/. We do

not recommend the parametric logistic design because of its sensitivity for the dose-efficacy

and dose-toxicity curves. In addition, we note that finding OBD without the monotonicity

assumption is substantially more difficult than finding the MTD for cytotoxic agents, which

assume monotonicity. This is because without the monotonicity assumption, the uncertainty

on the shape of the dose-response curve is substantially higher and at each decision making

of dose assignment, we face two possible directions (i.e., the dose higher or lower than the

current dose) for dose transition. In our simulation, with a sample size of 30, the selection

percentage of the OBD is generally lower than 50%. If we aim a higher selection percentage,

a larger sample size should be used.

3.2 Sensitivity analysis

In the proposed logistic and L-logistic designs, we adopted the weakly informative Cauchy(0, 2.5)

prior recommended by Gelman et al [15] for regression parameters β and γ. To assess the

sensitivity to this prior, we examined the operating characteristics of the proposed methods
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under a tighter prior β, γ ∼ Cauchy(0, 1.25) and a more vague prior β, γ ∼ Cauchy(0, 5).

Table 2 showed the results where the true efficacy rate was (0.4,0.6,0.8,0.7,0.55) and we

assumed minimal toxicity with the dose level range. We can see that the results are rather

stable across different priors, suggesting that our designs are not sensitive to the prior

distribution.

We conducted another sensitivity analysis to assess the robustness of the proposed de-

signs with respect to the number of dose levels under investigation. Starting from 4 dose

levels, we gradually increased the number of dose levels to 8 by inserting additional doses

under the minimal toxicity assumption. As shown in Figure 1. the parametric logistic de-

sign was sensitive to the number of dose levels and its performance deteriorated when the

number of dose levels increased. This is because when the number of dose levels was large,

the dose-efficacy curve tended to have more local features and consequently the parametric

logistic model was more likely subject to the model misspecification. Comparatively, the

isotonic and L-logistic designs was less sensitive to the number of dose levels as they utilized

more robust nonparametric and semiparametric approaches to modeling the dose-efficacy

curve. When the number of dose levels increased, the performance the isotonic and L-

logistic designs downgraded somewhat, but that was mainly because under a larger number

dose levels, the designs had a smaller average sample size (per dose) to search the OBD, not

because of the model misspecification. Hence, we recommend the isotonic and L-logistic

designs to be used in practice when the number of dose levels is large.

4 Discussion

The introduction of molecularly targeted agents has changed the drug development of the

traditional phase I clinical trials. Compared with the dose-finding designs for conventional

chemotherapy which escalates or de-escalates the dose based on the toxicity endpoint, the

optimal biological dose is the primary goal of a dose-finding design for MTAs which is
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based mainly on the efficacy endpoint. However, the dose-efficacy relationship for molecu-

larly targeted agents may not be monotonic, which restricts the adoption of the traditional

dose-finding designs (e.g. 3+3 or CRM) under this circumstance. Hence, novel dose-finding

designs for identifying optimal biological dose for molecularly targeted agents without mak-

ing any monotonic assumption need to be developed.

In this article, we have proposed three dose-finding trial designs, namely, the logistic,

isotonic and L-logistic designs to determine the optimal biologic dose for molecularly tar-

geted agents. The logistic design is purely parametrical; the isotonic design is based on

the nonparametric isotonic regression; and the L-logistic assumes a logistic dose-response

model only locally around the current dose. During the trial, the three designs continu-

ously update the estimate of the dose-response curve, which in turn is used to determine the

dose assignment for new patients. Simulation studies show that the isotonic and L-logistic

designs have good operating characteristics for finding the OBD and outperform the slope-

sign design, which is one of the trial designs currently available in practice. However, the

logistic design is sensitive to the parametric model assumption and is not recommended for

practical use. In addition, all the proposed design use more patients than the slope-sign

design.

The proposed designs are appropriate for trials in which the efficacy outcome is binary

and observable shortly after the initiation of the treatment. They cannot be applied directly

to cases in which the efficacy outcome requires a long follow-up time to be assessed. To

address this delayed outcome issue, a simple method is to use the observed data to fit the

model and make the decision of dose assignment for newly enrolled patients. This method

is simple and works reasonably well in the case that the accrual rate is slow [22]. However,

when the accrual rate is fast, it may subject to large estimation bias. A better strategy

is to treat the delayed efficacy outcome as a missing data problem and using missing data

methodology to handle it. For example, Yuan and Yin [23] proposed an EM algorithm to
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estimate the toxicity rate based on delayed outcomes for dose finding, and Liu, Yin and Yuan

[22] developed the Bayesian data augmentation method to deal with delayed toxicity for

finding the MTD of cytotoxic agents. The similar approach can be adopted here for handle

the delayed outcome for finding OBD, and future research in this direction is warranted.
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Table 1: The dose selection percentage, average percentage of patients treated at each
dose level, average percentage of efficacy and toxicity, average percentage of promising
dose selection and average sample size under the slope-sign, logistic, isotonic and L-logistic
designs.

Dose level % of % of % of # of
Design 1 2 3 4 5 efficacy toxicity promising dose sample

Scenario 1
True efficacy 0.2 0.4 0.6 0.8 0.55
True toxicity 0.08 0.12 0.2 0.3 0.4

Slope-sign Selection (%) 3.4 23.6 36.5 30.3 6.2
Patient(%) 26.3 26.3 26.3 14.1 7.0 47.4 17.8 66.8 12.0

Traditional Selection (%) 22.8 27.4 27.0 21.6 1.1
Patient(%) 32.4 26.1 21.8 13.8 5.9 44.4 16.5 48.6 30.0

Logistic Selection (%) 12.8 11.4 39.9 31.1 4.7
Patients (%) 22.0 18.3 32.0 20.7 7.3 51.7 19.7 71.0 30.0

Isotonic Selection (%) 12.5 15.8 23.4 45.6 2.7
Patients (%) 21.0 22.0 21.0 26.3 9.7 52.0 20.3 69.0 30.0

L-logistic Selection (%) 6.8 10.0 24.9 54.4 3.9
Patients (%) 16.7 19.3 20.3 28.0 15.7 54.3 22.3 79.3 30.0

Scenario 2
True efficacy 0.6 0.8 0.5 0.4 0.2
True toxicity 0.01 0.05 0.10 0.15 0.3

Slope-sign Selection (%) 13.3 59.1 23.9 3.5 0.2
Patient(%) 31.2 31.2 31.2 6.0 0.4 62.5 6.4 72.4 9.8

Traditional Selection (%) 4.3 24.4 25.9 40.0 5.4
Patient(%) 14.9 18.2 22.4 27.0 17.5 49.0 12.6 28.7 30.0

Logistic Selection (%) 25.3 64.4 9.4 0.4 0.5
Patients (%) 32.9 45.1 19.3 2.6 0.2 66.4 5.0 89.7 30.0

Isotonic Selection (%) 14.0 78.6 5.4 2.0 0.0
Patients (%) 21.8 58.4 15.0 4.1 0.7 68.6 5.6 92.6 30.0

L-logistic Selection (%) 11.4 77.0 9.1 2.5 0.0
Patients (%) 14.9 49.3 22.4 9.8 3.8 64.4 6.2 88.4 30.0

Scenario 3
True efficacy 0.2 0.4 0.6 0.8 0.55
True toxicity 0.06 0.08 0.14 0.2 0.3

Slope-sign Selection (%) 5.7 16.5 29.4 38.7 9.7
Patient(%) 25.4 25.4 25.4 14.9 8.9 47.4 13.3 68.1 12.4

Traditional Selection (%) 12.6 18.1 22.7 43.6 2.9
Patient(%) 23.2 21.4 21.4 21.0 12.9 50.0 14.2 66.3 30.0

Logistic Selection (%) 12.3 9.2 35.4 36.4 6.7
Patients (%) 21.3 17.0 30.3 22.7 8.3 52.3 14.0 71.8 30.0

Isotonic Selection (%) 12.0 13.7 16.8 52.7 4.7
Patients (%) 20.3 20.7 18.7 29.0 11.0 53.0 14.7 69.5 30.0

L-logistic Selection (%) 4.1 7.7 18.6 62.8 6.8
Patients (%) 14.3 18.0 18.3 30.0 19.3 55.7 16.7 81.4 30.0
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Table 1 continues.

Dose level % of % of % of # of
Design 1 2 3 4 5 efficacy toxicity promising dose sample

Scenario 4
True efficacy 0.2 0.4 0.6 0.8 0.55
True toxicity 0.05 0.1 0.25 0.5 0.6

Slope-sign Selection (%) 4.1 22.9 48.1 23.0 1.9
Patient(%) 26.8 26.8 26.8 15.0 4.7 46.5 22.1 71.0 11.7

Traditional Selection (%) 18.8 41.7 30.4 9.0 0.1
Patient(%) 30.5 33.9 25.3 8.9 1.4 42.6 20.5 72.1 30.0

Logistic Selection (%) 12.5 21.1 51.8 12.2 2.3
Patients (%) 21.7 21.7 36.0 15.3 5.3 50.0 23.3 72.9 30.0

Isotonic Selection (%) 12.4 25.4 49.5 12.1 0.6
Patients (%) 20.7 25.0 27.7 19.3 7.7 50.3 24.7 74.9 30.0

L-logistic Selection (%) 5.8 21.4 50.0 21.7 1.1
Patients (%) 15.3 23.3 29.7 21 10.7 52.7 27.3 71.4 30.0

Scenario 5
True efficacy 0.05 0.25 0.45 0.65 0.8
True toxicity 0.05 0.1 0.15 0.2 0.5

Slope-sign Selection (%) 2.1 20.0 19.7 35.0 23.2
Patient (%) 25.0 25.0 25.0 15.1 9.8 35.6 16.0 54.7 12.6

Traditional Selection (%) 13.7 20.2 27.4 31.7 7.0
Patient (%) 24.8 22.3 23.8 20.5 8.7 37.6 15.5 59.0 30.0

Logistic Selection (%) 6.1 12.3 30.6 44.5 6.4
Patients (%) 15.3 18.7 28.7 24.7 12.7 44.3 18.3 75.1 30.0

Isotonic Selection (%) 6.1 14.3 19.9 53.3 6.4
Patients (%) 15.0 21.3 20.7 26.0 17.0 45.7 20.0 73.2 30.0

L-logistic Selection (%) 3.5 5.6 16.1 64.6 10.2
Patients (%) 13.3 16.3 19.3 28.7 22.3 50.0 22.2 80.7 30.0

Scenario 6
True efficacy 0.1 0.3 0.5 0.5 0.5
True toxicity 0.1 0.2 0.4 0.5 0.6

Slope-sign Selection (%) 7.8 36.7 38.8 12.2 4.5
Patient (%) 28.3 28.3 28.3 11.9 3.0 33.3 29.1 44.5 11.0

Traditional Selection (%) 44.5 41.9 12.3 1.2 0.2
Patient (%) 52.2 30.1 13.6 3.5 0.6 23.1 23.5 86.4 30.0

Logistic Selection (%) 19.0 42.2 31.1 6.4 1.3
Patient (%) 23.7 30.6 32.0 11.3 2.5 34.2 28.7 61.2 30.0

Isotonic Selection (%) 18.3 42.3 31.0 7.9 0.5
Patients (%) 23.0 32.1 27.5 12.8 4.7 34.2 29.3 60.6 30.0

L-Logistic Selection (%) 18.1 39.3 27.7 12.4 2.5
Patient (%) 23.4 28.4 24.9 15.9 7.4 35.3 30.2 57.4 30.0
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Table 2: Prior sensitivity analysis for the logistic and L-logistic designs.
Dose level

Design 1 2 3 4 5 % of efficacy

True efficacy 0.4 0.6 0.8 0.7 0.55

β, γ ∼ Cauchy(0, 1.25)
Logistic Selection (%) 17.5 5.8 61.4 11.1 4.2

Patients (%) 27.0 15.3 41.3 13.4 3.0 63.7
L-logistic Selection (%) 4.1 13.5 48.1 27.9 6.4

Patients (%) 15.3 18.3 25.3 24.3 16.8 63.3

β, γ ∼ Cauchy(0, 2.5)
Logistic Selection (%) 12.9 10.4 60.7 11.5 4.5

Patients (%) 22.7 17.3 42.7 14.0 3.3 65.1
L-logistic Selection (%) 4.6 11.7 51.1 26.8 5.9

Patients (%) 14.0 17.3 27.3 24.3 16.7 64.3

β, γ ∼ Cauchy(0, 5)
Logistic Selection (%) 13.7 11.7 59.4 10.7 4.5

Patients (%) 25 18.3 40.7 12.7 3.3 64.1
L-logistic Selection (%) 5.6 11.0 51.5 26.9 5.0

Patients (%) 16.0 19.3 30.3 22.3 12.1 64.3
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Figure 1: The OBD selection percentages (left panel) and the percentages of patients treated
at the OBD (right panel) under different numbers of dose levels. The efficacy rates are (0.4,
0.8, 0.45, 0.2) for 4 dose levels; (0.4, 0.55, 0.8, 0.45, 0.2) for 5 dose levels; (0.4, 0.55, 0.8,
0.6, 0.45, 0.2) for 6 dose levels; (0.4, 0.55, 0.8, 0.6, 0.45, 0.4, 0.2) for 7 dose levels, and (0.4,
0.55, 0.8, 0.6, 0.45, 0.4, 0.2, 0.1) for 8 dose levels.
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