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General Framework Sufficient Dimension Reduction

Sufficient dimension reduction

Basic regression (supervised learning) setup:

study the conditional distribution of Y ∈ IRr given X ∈ IRp

find a p × d matrix γ = (γ1, . . . , γd), d ≤ p, such that

Y X |γTX ⇔ Y |X = Y |γTX ⇔ X |(γTX ,Y ) = X |γTX

replace X with γTX = (γT
1 X , . . . , γT

dX ) without losing any regression
information of Y |X
(γT

1 X , . . . , γT
dX ) are called the sufficient predictors

γ is not unique!
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General Framework Key Concepts

Key concepts

Central subspace:

Y |X = Y |γTX ⇒ SDRS = Span(γ) ⇒ SY |X = ∩SDRS

Examples:

Y = f (γT
1 X ) + σε

Y = f1(γT
1 X ) + f2(γT

2 X )× ε

logit = γT
1 X , where logit = log

{
P(Y = 1|X )

1− P(Y = 1|X )

}
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General Framework Key Concepts

Key concepts

Central mean subspace:

E (Y |X ) = E (Y |γTX ) ⇒ SE(Y |X )

For many models, SY |X = SE(Y |X )

Examples:

Y = f1(γT
1 X ) + . . .+ fd(γT

dX ) + ε

Y = f1(γT
1 X ) + f2(γT

2 X )× ε
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General Framework Estimation Approaches

Estimation approaches

Inverse moment based:

sliced inverse regression (Li, 1991) and many variants: E (X |Y )

sliced average variance estimation (Cook and Weisberg, 1991)
Cov(X |Y )

directional regression (Li and Wang, 2007)

Kernel smoothing based:

minimum average variance estimation (Xia et al. 2002): estimation of
the derivative of E (Y |X )

variants: Xia (2007), Wang and Xia (2008)

Others: (not complete)

ordinary least squares (Li and Duan, 1991)

reproducing kernel Hilbert space (Fukumizu, Bach and Jordan, 2004,
2009)

contour based (Li, Zha and Chiramonte, 2005, Li, Artemious and Li,
2010)
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General Framework Estimation Approaches

Estimation approaches

Comparison:

Inverse moment based:

very easy and fast to compute
requires a relatively large sample size
requires conditions on the distribution of X (linearity condition)

Kernel smoothing based:

works well for small sample size
requires no condition on X
requires kernel smoothing
relatively slow
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Basic Dimension Reduction Approaches Sliced Inverse Regression

Sliced inverse regression

Foundation: under the linearity condition,

Σ−1
x E{X − E (X )|Y } ∈ SY |X

Spectral decomposition formulation:

Σx |yγj = λjΣxγj , j = 1, . . . , p,

where Σx |y = Cov[E{X − E (X )|Y }] and Σx = Cov(X ).

obtain the first d eigenvectors (γ1, . . . , γd) corresponding to the
largest d positive eigenvalues λ1 ≥ . . . ≥ λd > 0, then
Span(γ1, . . . , γd) ⊆ SY |X
assumes Y is categorical or slice Y to estimate E (X |Y )

asymptotic test / permutation test / BIC to determine d
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Basic Dimension Reduction Approaches Sliced Inverse Regression

Sliced inverse regression

The linearity condition:

E (X |γTX ) is a linear function of γTX for a SY |X basis γ

X is elliptically symmetric; X is normally distributed

approximately true as p →∞ with a fixed d

involves no Y or Y |X , so nonparametric or model-free

Some important variants:

canonical correlation analysis: maxCorr2{h(Y ), bTX} over h(·) and b

letting β ≡ E [h(Y )Σ−1
x E{X − E (X )|Y }] = Σ−1

x Cov{h(Y ),X}, then
β ∈ SY |X

Beyond SIR:

sliced average variance estimation: 2nd inverse moment; exhaustive

directional regression: 1st and 2nd inverse moments; exhaustive
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Basic Dimension Reduction Approaches Other Dimension Reduction Approaches

Other dimension reduction approaches

Principal components analysis:

spectral decomposition of Σx

unsupervised; linear combinations of X

Partial least squares:

at the population level, PLS = OLS; under the linearity condition,
PLS estimates SE(Y |X ) (Li, Cook and Tsai, 2007)

supervised; linear combinations of X

Multidimensional scaling and nonlinear dimension reduction:

unsupervised; nonlinear combinations of X

Indepedent components analysis:

unsupervised; linear combinations of X
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Some Potentially Useful Extensions Classification

Classification

Discriminant analysis:

directly applicable to categorical Y

at the population level, SIR ⇔ LDA ⇔ Fisher’s discriminant analysis;
SAVE ⇔ QDA

SIR/SAVE produce sufficient predictors instead of classification rule;
LDA/QDA produce probability estimate of Y = g |X and a
classification rule

SIR/SAVE require the linearity condition (normality) on X ;
LDA/QDA require the normality assumption on X |Y

Why useful:

of course ...
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Some Potentially Useful Extensions Variable Selection

Variable selection

Basic ideas:

rewrite the SDR estimation in least squares, then apply L1 type
penalty (adaptive group Lasso, SCAD)

foundation: Y XA|XI ⇔ corresponding rows of γ = 0

differ from most model-based variable selection approaches in that no
parametric model on Y |X is imposed

Consistency in selection:

fixed p, n→∞ (Ni, Cook and Tsai, 2005, Bondell and Li, 2009)

diverging p →∞, n→∞, p < n (Wu and Li, 2010)

p = o(an) for any fixed a > 1 (Zhu, Li, Li and Zhu, 2010)

Why useful:

help interpretation, e.g., identifying regions of brain that are relevant
to phenotype
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Some Potentially Useful Extensions Complex Responses

Multivariate and complex responses

Basic ideas:

dimension reduction is still on X instead of Y

key observations:

SE(Y |X ) = SE(Y1|X ) ⊕ . . .⊕ SE(Yr |X )

SY |X ⊇ SY1|X ⊕ . . .⊕ SYr |X

multivariate reduced rank model (Cook and Setodji, 2003): one
response at a time

projective sampling (Li, Wen and Zhu, 2008): sample a on a unit ball
O(n) times, and regress aTY on X

Why useful:

e.g., voxel-wise imaging genetics (ignore the spatial information)

what if Y has structures, such as spatial information in MRI, or
positive definiteness in DTI? — open question
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Some Potentially Useful Extensions Complex Predictors

Predictors with structures

Basic ideas:

predictors have group structure, and dimension reduction (linear
combinations) should be within groups (Li, 2009, Li, Li and Zhu,
2010)

direct sum structure: γ1 ⊕ . . .⊕ γg
partial dimension reduction, e.g., genetic / imaging information plus
clinical / demographical information

Why useful:

fusion of different data modalities

what if X has, e.g., network structures? — open question
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Some Potentially Useful Extensions Complex Predictors

Matrix or array valued predictors

Basic ideas:

predictor is a matrix or an array instead of a vector, and dimension
reduction wishes to preserve interpretation

dimension folding (Li, Kim and Altman, 2010):

γTXη = (η ⊗ γ)Tvec(X)

tensor PCA / tensor ICA

Why useful:

MRI or fMRI
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Some Potentially Useful Extensions Complex Predictors

Functional predictors

Basic ideas:

predictor is a functional curve (dense / sparse)

sliced inverse regression in functional space (Ferré and Yao, 2003,
2005, Hsing and Ren, 2009, Li and Hsing, 2010):

functional PCA

Why useful:

common nowadays in genetics and imaging data
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Some Potentially Useful Extensions Nonlinear Sufficient Dimension Reduction

Nonlinear sufficient dimension reduction

Basic ideas:

map X to φ(X ), then do linear SDR in the φ(X ) space (Wu, Liang
and Mukherjee, 2008, Zhu and Li, 2010)

the optimal separating hyperplane (Li, Artemious and Li, 2010)

Why useful:

categorical predictors

n < p

predictors with complex structures

how to do variable selection in this setup? — open question
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Conclusion and Discussion

Conclusion and discussion

application of existing SDR solutions to imaging data

motivate new methodology development for dimension reduction
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Conclusion and Discussion

Thank You!
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