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Summary

We introduce a multiple testing procedure that controls global error rates at multiple levels
of resolution. Conceptually, we frame this problem as the selection of hypotheses that are orga-
nized hierarchically in a tree structure. We describe a fast algorithm and prove that it controls
relevant error rates given certain assumptions on the dependence between the p-values. Through
simulations, we demonstrate that the proposed procedure provides the desired guarantees under
a range of dependency structures and that it has the potential to gain power over alternative
methods. Finally, we apply the method to studies on the genetic regulation of gene expression
across multiple tissues and on the relation between the gut microbiome and colorectal cancer.

Some key words: False discovery rate; Hierarchical testing; Multiple testing; Selective inference.

1. Introduction

In modern scientific studies researchers may be interested in examining a massive number of
variables. Given the resulting large number of hypotheses considered, it is of critical importance
to properly account for multiplicity, as this is one way to increase the replicability of results.
Addressing this challenge, Benjamini & Hochberg (1995) proposed the false discovery rate,
the expected proportion of rejected hypotheses that represent incorrect rejections, as a relevant
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576 M. Bogomolov et al.

measure of error. The procedure to control the false discovery rate that they introduced has
been widely applied across many fields; but despite its importance and success, it is not without
limitations. In particular, it treats the entire collection of tested hypotheses as a single family;
while this is appropriate in many circumstances, it overlooks structure that might be relevant
for scientific investigations. Specifically, hypotheses may naturally be organized into classes or
placed within a hierarchy. For example, in genomic studies, mutations can be grouped by the genes
in which they occur, and studies often emphasize findings at this level, rather than focusing on
individual genetic variants. Critically, controlling the false discovery rate in the entire collection
of hypotheses, spanning all levels, does not guarantee error control for discoveries within a level.
Conversely, controlling the false discovery rate only among the finer, more specific, hypotheses
may not control error rates for discoveries grouped at a higher level. To demonstrate this limitation
in particular, consider a case where many true discoveries are made in a rightfully discovered
group, for example corresponding to many genetic variants within the same gene. The small
proportion of false discoveries allowed by false discovery rate control may be scattered within
many groups, as genes, that include no other true discovery, leading to a high group false discovery
rate. Hence, even though the false discovery rate is controlled at the finer level, it is not controlled
at the group level.

In this paper, we introduce a novel framework for testing hypotheses organized into a hierarchy
with arbitrarily many levels. We propose both a new error rate and a testing procedure. Together,
they guarantee control of error rates at multiple levels of resolution, with a built-in coordination
between discoveries at different levels. To better appreciate the issues at hand, it is useful to
survey previous work.

The presence of a hierarchical structure between the tested hypotheses has been recognized
as being important for two reasons: (i) it allows researchers to control error rates relative to
the discoveries that are finally reported, and (ii) it can be leveraged to increase power. With
regard to (i), a number of papers have studied how to control the false discovery rate at multiple
levels of resolution in specific contexts, such as fMRI imaging (Perone Pacifico et al., 2004;
Benjamini & Heller, 2007), copy number variant detection (Siegmund et al., 2011) and genome-
wide association studies (Brzyski et al., 2017). More generally, Benjamini & Bogomolov (2014)
and Heller et al. (2017) considered the question of how to test groups of hypotheses at a high
resolution when their p-values have been used to select promising groups at a low resolution.
To this end, Benjamini & Bogomolov (2014) defined a version of the false discovery rate that
incorporates the results of selection and introduced a procedure to control it. Heller et al. (2017),
taking a different direction, proposed controlling conditional error rates by applying a multiple
testing procedure within each selected group of hypotheses. This strategy can be pursued only
when p-values conditioned on the selection of the group can be computed; see also Heller et al.
(2019). Finally, the p-filter method of Foygel Barber & Ramdas (2016) controls the false discovery
rate at the group level for each given division of the hypotheses into groups.

Explicitly accounting for the structure among hypotheses at the testing stage presents an
opportunity to improve power. Exploring this idea, Yekutieli et al. (2006) and Yekutieli (2008)
described a setting where hypotheses can be arranged in a tree structure, with the most specific
or finest-resolution hypotheses in the leaf nodes. By testing the hypotheses in sequential order
starting from the root of the tree, interesting branches can be identified, which would allow a more
generous significance threshold for discoveries in those portions of the tree, while investigation
into branches that contain low amounts of signal could be avoided, reducing the effort involved.

Another body of work dealing with trees and more general directed acyclic graphs includes
the papers of Goeman & Mansmann (2008), Meinshausen (2008) and Rosenbaum (2008). Their
procedures attempt to control the familywise error rate, or the probability of making any false
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Hypotheses on a tree 577

discoveries at all. While a strategy that limits the probability of at least one false discovery lends
itself to easier interpretation across resolutions, controlling the familywise error rate can be overly
stringent for studies focused on discovery or hypothesis generation and often results in low power.
Previous work aimed at false discovery rate control in these settings either relies on very strong
independence assumptions (Yekutieli, 2008) or proposes strategies that lead to the control of the
false discovery rate on the total discoveries, without enabling interpretation of results at multiple
layers of resolution (Lynch & Guo, 2016; Lei et al., 2020; Ramdas et al., 2019).

The present paper capitalizes on the results of Benjamini & Bogomolov (2014). Our procedure
controls marginal error rates at each resolution, while making use of the hierarchical structure to
potentially gain power. By testing from the most general to the more specific hypotheses down
the hierarchy, our method selectively chooses which family of hypotheses to test. This approach
is also adapted to sequential testing, as we do not require data for all the hypotheses upfront. The
methodological development presented in this paper not only provides new theoretical results,
but also allows us to consider a wide range of new applications, such as analysis of microbiome
data, which follow a multi-level tree structure.

2. A tree of families of hypotheses

We consider a collection of hypotheses F = {H1, . . . , Hm} that are organized in a tree structure
with L levels, where hypotheses on the same level correspond to scientific statements made at
the same resolution. In a microbiome study, for example, the root node might correspond to the
hypothesis that there is no relation at all between bacterial communities in the oral cavity and
the incidence of caries; the hypotheses at level 1 might specialize this statement to each of the
phyla of bacteria, those in level 2 to each of the classes, and so on, following the branching of
the taxonomic tree.

Formally, each hypothesis Hi has only one parent, but can have multiple children, so that when
one null hypothesis is true, all of its descendants are true, and when one null hypothesis is false, all
of its ancestors are false. These logical relations hold, for example, when each parent hypothesis is
the intersection of all its children; see Fig. 1 for an example. The level of a hypothesis corresponds
to its distance from the root node. Because of the important role of levels, we explicitly include
them in our notation, denoting by F�+1

i the family of hypotheses at level � + 1 that has Hi at
level � as its parent hypothesis.

The testing strategy that we are interested in is hierarchical, starting from the coarser hypotheses
and increasing in resolution, similar to the procedure inYekutieli (2008). The root node hypothesis
H0, residing at level 0, is regarded as a parent of the hypotheses at level 1. If there is no real
interest in testing the hypothesis corresponding to this global null, we artificially add a root node
and consider it to be always rejected. As we move down the tree, hypotheses are tested only if
their parent node was rejected, and all hypotheses at the same level are tested at the same time.

Figure 1 depicts the organization of hypotheses and the direction of testing within a four-level
tree. Ancestors of a given hypothesis are the hypotheses at the preceding levels that are connected
to the given hypothesis by a path consisting of one or more arrows. For example, the ancestors
of H4 are H0 and H1, while the ancestors of H9 are H0, H1 and H4.

We assume that valid p-values for all the hypotheses in the tree can be calculated on the basis
of the data, which can be gathered in an on-line fashion, with more precise information becoming
available as we move down the tree, or prior to any testing. When the same data are used to test all
hypotheses, the p-values across the tree will have complex dependencies, making it impossible to
rely on the results in Yekutieli (2008). Scientists might use a variety of strategies to calculate p-
values for hypotheses at different levels to maximize power, or they might rely on the p-values for
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Fig. 1. Hierarchical structure of hypotheses in a four-level tree. Circles represent true null hypotheses, while squares
denote false nulls. Children of the same parent constitute a family of hypotheses. To give an example of the sequential
order of testing, nodes corresponding to tested hypotheses are unfilled, while grey nodes indicate hypotheses that are
not tested. A red border distinguishes rejected hypotheses. Tested families are enclosed within dashed borders, with

some labelled as F j
i to illustrate the notation.

the finer-scale hypotheses and obtain the remainder with combination rules. The latter situation,
for example, is typical of studies of genetic regulation, where p-values for the hypotheses of no
association between individual variants and the expression of specific genes are calculated and
then combined to test more global hypotheses, leading for instance to the discovery of genes
whose expression is regulated by DNA variants. It is not the goal of this work to investigate the
most powerful tests; rather, we focus on the development of multiplicity adjustment strategies
that accept any collection of valid p-values for the hypotheses in the tree.

In our theory and simulations, aiming at a general-purpose rule, we emphasize the case where
each parent hypothesis is the intersection of all its children, and the p-values for the level-(�− 1)

hypotheses are derived by using the method of Simes (1986) on the p-values of the family of
hypotheses they index at level �, starting from the available valid level-L p-values and working
up from the bottom of the tree. Specifically, the p-value for hypothesis Hi at level �− 1, indexing
family F�

i , is obtained as

p = min
j

p(j) × k

j
, (1)

where the set {pj : j = 1, . . . , k} corresponds to the collection of p-values for the hypotheses
belonging to F�

i , so that k = |F�
i |, and the index in parentheses signifies that the p-values

have been sorted in increasing order. Simes’ rule is relatively robust to dependence, and has
nice properties when used in conjunction with the Benjamini–Hochberg procedure (Benjamini
& Hochberg, 1995); see § 4 for more details.

3. Error rate

We now introduce a level-specific false discovery rate for a general multi-level tree that reflects
a hierarchical order of testing, incorporates the logical constraints across the levels in the tree, and
preserves the advantages of a marginal error measure. Our error rate assigns a specific role to the
error measures within families, adjusting for the data-based selection process that leads to testing
those families. It allows us to increase power when the signal is not uniformly distributed across
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Fig. 2. Illustration of the bottom-up calculation of the proposed error rate for level 4, sfdr
4, using the same configuration

of hypotheses as in Fig. 1. The error measure Ej(4) is defined for rejected hypotheses and indicated by the red number
in the node corresponding to each rejection. The hypotheses not distinguished by red borders are not rejected and so
do not receive any error measure. If the rejections are nodes at the level of interest, which is level 4 in this illustration,
the error measure is 1 for an incorrect rejection and 0 otherwise. For a node at a higher level, the error measure is the
average of the error measures assigned to its children if it has one or more rejected child hypotheses and is 0 otherwise.

the tree of hypotheses, and it accounts for the entire testing strategy that leads to the findings at
the resolution of interest.

We start by giving a recursive definition of our error rate, as illustrated in Fig. 2. To define
an error measure for level �, we begin by assigning Type I error indicators to the hypotheses
rejected at level �; that is, for each rejected Hi, Ei(�) = I , where Hi is null. Moving upwards
to coarser resolutions, each rejected hypothesis Hj is assigned an error measure Ej(�) that is the
average of the error measures assigned to its rejected children or 0 if it has no rejected children.
So, for example, at level � − 1 we define as the error of a parent hypothesis the proportion of
false discoveries among its children. Hence, the error assigned to a hypothesis at level � − 1
is 1 when all discoveries among its children are false, is 0 when none is a false discovery, and
can take values in between. Generally, letting Sj be the set of indices of rejected hypotheses in
the family Fj, where we have suppressed the superscript indicating the level of the family, we
define

Ej(�) =
∑

r∈Sj
Er(�)

|Sj| ,

where the sum over an empty set is evaluated as 0 and the fraction 0/0 is defined to be 0. The
proposed selective false discovery rate sfdr

� is obtained by iterating this process until the root
hypothesis E0(�) is reached and then taking the expectation of its error measure:

sfdr
� = E{E0(�)}.

If the root node is not rejected, no hypothesis is rejected, so in this case E0(�) is trivially equal
to 0. Writing explicitly the expression for E0(�), denoted by sfdp

� hereafter, we can see how it is
the weighted average of false discovery proportions in tested families at level �, with the weights
depending on the numbers of rejected hypotheses along the path leading to the families:

sfdp
� =

∑
i∈S�−1

w�
i fdp(F�

i )
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for � � 1. Here S�−1 is the set of indices of the rejected hypotheses at level �− 1, fdp(F�
i ) is the

false discovery proportion within F�
i , defined as 0 if no hypothesis within F�

i is rejected, and

w�
i = 1∏

j∈A(i) |Sj| (2)

for � > 1 while w1
0 = 1, with A(i) denoting the set of indices of ancestors of Hi. In other words,

w�
i for � > 1 is the inverse of the product of the numbers of rejections in the families that include

ancestors of the family F�
i . This definition makes explicit how the random weights for the false

discovery proportion of the family F�
i are adaptive to the number of rejections along the branch

that resulted in the selection of the family. It also allows us to see the similarity between sfdr and
more traditional false discovery rates. The weight of the level-1 family F1 is always 1, and so
if the root node hypothesis is always rejected, then sfdr

1 is equal to fdr
1, the level-1 restricted

false discovery rate. Similarly, sfdr
2 is equal to the error criterion introduced in Benjamini &

Bogomolov (2014), i.e., the expected average false discovery proportion across all the selected
level-2 families.

Alternative weighting schemes, such as equal weights, could also be used. We choose to focus
on adaptive weights, however, as they account for heterogeneity in the amount of signal across
different branches in the tree: as the number of rejections in the path leading to familyF�

i increases,
the selection effect is less pronounced, and the cost of a false discovery in F�

i decreases. Like
the false discovery rate, which is adaptive to the amount of signal within a family, becoming less
stringent when there are many effects, sfdr

� is adaptive to the amount of signal in the selected
families at level � and their ancestor families.

In the Supplementary Material we illustrate the computation of sfdp
� as the weighted random

average in (2) for the tree in Figs. 1 and 2. The signals are more concentrated in level-2 and level-3
families that are descendants of H1 than in families that are descendants of H2, which leads to
more rejections within the former families. This results in smaller weights for the false discovery
proportions of selected level-4 families whose ancestor is H1. For example, the weight for the
false discovery proportion within the family {H14, H15} is 1/8, and the weight for {H25, H26} is
1/2, while the false discovery proportion is the same for both families. The selection process
leading to the latter family is more stringent, leading to a higher price for the false discovery
proportion within that family. The global false discovery proportion for level-4 discoveries is
3/7; however, it does not account for the fractions of errors within the selected families. See the
Supplementary Material for additional examples illustrating the motivation for controlling sfdr

�

rather than the global level-� false discovery rate.

Remark 1. The definition of sfdr
� can be extended to error measures other than the false

discovery proportion within the selected families. Specifically, for each selected family F�
i , one

can replace fdp(F�
i ) in (2) by Ci(F�

i ), where Ci is a discrepancy measure such that E(Ci) is a
known error rate, e.g., the weighted false discovery rate, familywise error rate or false discovery
exceedance pr{fdp(F�

i ) > γ }. Moreover, sfdr
� admits any hierarchical selection process leading

to selection of families at level �. For example, the selection rule may reduce to selecting each
hypothesis at level k � � − 1 if the minimum p-value within the family it indexes is below 0.05,
and its parent hypothesis is selected, regarding the root hypothesis as being always selected.
Although any hierarchical selection process is admitted, the concept of sfdr

�, which gives higher
penalties for false discoveries within families that are more carefully selected, makes sense only
for the selection rules that choose the most promising families at level �. Such selection rules
appear quite reasonable in practice.
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4. Testing strategy

4.1. The TreeBH procedure

TreeBH is a hierarchical testing strategy that targets the control of sfdr
� to a prespecified

bound q(�) for all � ∈ {0, . . . , L} simultaneously. The name reflects the fact that it extends the
Benjamini–Hochberg procedure to the context of tree-structured hypotheses. Testing is conducted
in a stepwise fashion, starting from the root node. At each level of the tree, the Benjamini–
Hochberg procedure is applied separately to each selected family of hypotheses, with a working
target that is more stringent if fewer rejections were made in previous steps. If there is a hypothesis
of interest corresponding to the root node, the procedure starts by testing the root node at level
q(0), and proceeds to the following steps only if this hypothesis is rejected. If there is no such
hypothesis, the root node is considered to be always rejected, and the procedure starts from Step 1.
The procedure is defined as follows.

Step 1. Apply the Benjamini–Hochberg procedure with the bound q(1) to the p-values of
family F1

0 . If S1
0 = φ, i.e., if no hypothesis is rejected in F1

0 , then stop; otherwise, proceed to
Step 2.

Step 2. For � ∈ {2, . . . , L}, apply the following steps sequentially.

Step �. For each family F�
i whose parent Hi is rejected, apply the Benjamini–Hochberg

procedure to the p-values of family F�
i with working target q(�) multiplied by the product of

proportions of rejected hypotheses within the families that contain ancestors of the family F�
i :

qi =
{ ∏

j∈A(i)

|Sj|
|Fj|

}
q(�) = qP(i)

|SP(i)|
|FP(i)|

q(�)

q(�−1)
,

where j = P(i) if Hj is the parent of Hi, and q0 = q(1). If no rejections are made or if � = L, then
stop; otherwise, proceed to step � + 1.

The working target for level-2 tested families is equal to q(1) multiplied by the proportion
of selected level-1 hypotheses, |S1

0 |/|F1
0 |. This is the adjustment suggested by Benjamini &

Bogomolov (2014) for control of sfdr
2, accounting for selective inference on level-2 families,

which is the procedure we generalize here. For families at the same level � > 2, the targeted
bound may be different, depending on the proportion of selected hypotheses within their ances-
tor families. For example, for the rejection pattern illustrated for the tree in Fig. 1, the family
{H14, H15} is tested using the Benjamini–Hochberg procedure with bound q(4), because all the
hypotheses are rejected within the families of its ancestors, while the family {H25, H26} is tested
with bound q(4)/4, because the proportions of rejections within the families containing ancestors
of {H25, H26} are 1, 1/2 and 1/2. This corresponds to the value of sfdp

�.
One can replace the Benjamini–Hochberg procedure by another procedure in each step. For

example, the power of TreeBH can be improved by applying different variants of the Benjamini–
Hochberg procedure within the selected families, possibly incorporating prior-knowledge weights
on the hypotheses (Genovese et al., 2006) or the estimator of the proportion of nulls within a family
(Storey et al., 2004; Ramdas et al., 2019). More radically, one can adopt a procedure controlling an
error rate other than the false discovery rate, as discussed in Remark 1. The theoretical properties
of the TreeBH procedure and its extensions are described in the next subsection.
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4.2. Error rate control

Before examining under what conditions TreeBH controls sfdr
�, we state a property relating

to the consistency of discoveries across levels. The fact that sfdr
� incorporates information on

the hierarchical order of testing leads to coherence between the findings at different levels: a
discovery at a finer scale can happen only if the corresponding coarser hypothesis has been
rejected. If we impose an additional consonance condition, requiring that whenever a parent
hypothesis is rejected, at least one of the hypotheses in the family it indexes must be rejected, we
can obtain the following result that derives control of sfdr

�−1 from the control of sfdr
� at the

higher level for a general hierarchical testing procedure.

Proposition 1. The following properties hold:
(i) If a hierarchical testing procedure is consonant, then for each � � 1 we have that sfdr

�−1 �
sfdr

�, with equality when the proportion of true null hypotheses in each family at level �

is either 0 or 1.
(ii) When the p-value for each parent hypothesis is computed using Simes’ method applied to

the p-values within the family it indexes and the targeted sfdr
� bounds satisfy q(0) � q(1) �

· · · � q(L), it is guaranteed that the TreeBH procedure is consonant.

We are now ready to state precisely when TreeBH results in control of sfdr
�. We consider

assumptions pertaining to the dependency between the p-values, the tree structure, the relations
between the hypotheses and between their p-values, and error and procedure properties. To study
false discovery rate control, the following notion of positive dependence has proven useful.

Definition 1 (Benjamini & Yekutieli, 2001). The vector X = (X1, . . . , Xm) is positive regres-
sion dependent on a subset I0 ⊆ {1, . . . , m} if for any increasing set D such that x ∈ D and y � x
coordinatewise imply y ∈ D, and for each i ∈ I0, pr(X ∈ D | Xi = x) is nondecreasing in x.

Consider the following dependency structures.

Assumption 1. The vector of p-values for the hypotheses at the finest level L is positive
regression dependent on a subset of indices corresponding to true null hypotheses.

Assumption 2. The p-values in each family at level L are independent of the p-values in any
other family at level L.

Consider the following assumptions on the structure and construction of the tree.

Assumption 3. The p-value for each parent hypothesis Hi is a combination of the p-values
within the family it indexes, satisfying Pi = fi(PFi), where PFi is the vector of p-values for the
family Fi and fi : [0, 1]|Fi| → [0, 1] is a coordinatewise nondecreasing combination function.

Assumption 4. Each hypothesis Hi at level � � L − 1 satisfies Hi = ⋂
j∈F�+1

i
Hj.

Assumptions 3 and 4 are discussed in the Supplementary Material. To obtain results that are
valid in the greatest number of cases, we consider different combinations of the assumptions
above. We start with a lemma relative to the highest resolution.

Lemma 1. Under Assumptions 1 and 3, the TreeBH procedure guarantees sfdr
� � q(�) for

the finest level � = L.
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The next theorem deals with the case where each parent hypothesis is the intersection of
the hypotheses within the family it indexes, and provides a specific choice of the combination
function for which the TreeBH procedure controls sfdr

� for each level � ∈ {0, . . . , L}, if the
targeted sfdr

� bounds are equal.

Theorem 1. If Assumptions 1, 4 and 3 with (1) as the combination function hold and if the
targeted sfdr

� bounds are equal, i.e., satisfy q(0) = q(1) = · · · = q(L) = q for some q ∈ [0, 1],
then the TreeBH procedure guarantees sfdr

� � q for each � ∈ {0, · · · , L}.
Remark 2. Similarly to the Benjamini–Hochberg procedure for which fdr = q when all null

hypotheses are true, with independent and uniformly distributed p-values, the TreeBH procedure
guarantees sfdr

� = q for each level � under the same conditions, in the setting of Theorem 1.

We now show how Theorem 1 follows directly from Proposition 1 and Lemma 1. Assume that
the assumptions of Theorem 1 hold. Then we obtain that sfdr

L � q by Lemma 1. In addition,
Proposition 1 shows that in this case the TreeBH procedure is consonant, and sfdr

� � sfdr
L

for each � ∈ {0, . . . , L}, which gives the result of Theorem 1. Using the techniques developed in
Ramdas et al. (2019), one can prove that in this case all the p-values in the tree are valid.

Theorem 1 concerns the basic yet useful version of the TreeBH procedure. Generalizations of
the TreeBH procedure are possible, as discussed in § 4.1. Specifically, following the hierarchical
process of TreeBH, each selected family F�

i may be tested by an E(Ci)-controlling procedure with
the same working target qi, possibly replacing the false discovery rate-controlling Benjamini–
Hochberg procedure. Consider the following assumptions regarding such a generalized TreeBH
procedure.

Assumption 5. The error rate E(Ci) is such that Ci takes values in a countable set.

Assumption 6. Each selected family F�
i is tested by a procedure that can control E(Ci) at any

target level under the dependency structure therein, and the procedures are simple selection rules,
i.e., they satisfy the following condition. For each rejected hypothesis Hj in F�

i , fixing all the
p-values in the family except Pj and changing Pj so that Hj is still rejected will not change the
number of rejected hypotheses in F�

i .

Theorem 2. Under Assumption 3 and the dependency satisfying Assumption 2, the gener-
alized TreeBH procedure which satisfies both of Assumptions 5 and 6 guarantees that for each
� ∈ {1, . . . , L},

E

⎧⎨
⎩

∑
i∈S�−1

w�
i Ci(F�

i )

⎫⎬
⎭ � q(�) (3)

for w�
i defined in (2), where Ci(F�

i ) is the error measure Ci within F�
i .

General conditions that guarantee the equality in (3) are given in the proof of Theorem 2.

Remark 3. Assumption 5 is very lenient. For all common error rates of the form E(Ci), includ-
ing the familywise error rate, the false discovery rate and its weighted variant, Ci takes values in
a countable set.

Remark 4. Many multiple testing procedures are simple selection rules, as required by
Assumption 6. Specifically, any step-up or step-down multiple testing procedure with prespeci-

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/108/3/575/5923288 by M
. D

. Anderson C
ancer C

enter - R
esearch M

edical Library user on 25 April 2022
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fied thresholds defines a simple selection rule (Benjamini & Bogomolov, 2014). In particular,
the Bonferroni and Benjamini–Hochberg procedures define simple selection rules. Moreover, the
adaptive Bonferroni and Benjamini–Hochberg procedures, based on Storey’s plug-in estimator
for the proportion of true nulls, are also simple selection rules. These procedures have been shown
to control the familywise error rate (Finner & Gontscharuk, 2009) and the false discovery rate
(Storey et al., 2004) under independence. See Ramdas et al. (2019) for a further extension of the
adaptive Benjamini–Hochberg procedure, incorporating weights on the hypotheses, which also
defines a simple selection rule and controls the false discovery rate under independence.

Now consider a tree satisfying Assumptions 3 and 4 and also the following assumption.

Assumption 7. The p-value for each hypothesis at level L − 1 is computed by Simes’ method
(1), and the p-value for each hypothesis at level � < L − 1 is computed using any combination
method that gives a valid global null p-value under independence, such as Simes’, Fisher’s and
Stouffer’s (Stouffer et al., 1949) methods.

Corollary 1. In the generalized TreeBH procedure for a tree satisfying Assumptions 3, 4
and 7, test each selected level-L family using the Benjamini–Hochberg procedure or its weighted
variant suggested by Genovese et al. (2006), and test any other selected family using any mul-
tiple testing procedure that guarantees false discovery rate control under independence. When
Assumptions 1 and 2 both hold, this generalized TreeBH procedure guarantees that for each
� ∈ {1, . . . , L}, sfdr

� � q(�).

The dependency structure in Corollary 1 is more restrictive than that in Theorem 1. It therefore
allows the use of potentially more powerful methods for combining the p-values and for testing the
selected families. For general dependence, a more conservative variant of the TreeBH procedure
gives the same theoretical guarantees. However, based on our simulation results and the robustness
of the Benjamini–Hochberg procedure, we believe that modification of the TreeBH procedure is
not required for many types of dependencies encountered in applications.

5. Examples and simulation

In this section we use an example to illustrate the differences between the error rates and
procedures proposed here and other methods in the literature. More simulations can be found
in the Supplementary Material. For simplicity we limit ourselves to trees with L = 3, where all
hypotheses within a given tree level have the same number of children. In these three-level trees we
can use an index system for the hypotheses that explicitly indicates logical relations: hypotheses
at level 3 are Hijt , those at level 2 are Hij• = ⋂

t Hijt , and those at level 1 are Hi•• = ⋂
j Hij•.

We can then describe the configurations of true and false nulls using a matrix containing all the
level-3 hypotheses; see the Supplementary Material. Each row includes all the hypotheses Hijt
corresponding to one value of i, so that the presence of a nonnull hypothesis in row i signifies
that Hi•• is false. Each column corresponds to one pair (j, t), with all the columns that have the
same value of j being adjacent, so that within a row, blocks of columns correspond to the families
in level 3, and the presence of a nonnull hypothesis in row i block j signifies that Hij• is false.

We compare the performance of different approaches in terms of level-specific error rates and
power. Specifically, we calculate the false discovery rate for discoveries at levels 1, 2 and 3,
denoted by fdr

� for � = 1, 2, 3, as well as the selective sfdr
� for levels � = 2, 3. We omit sfdr

1

since in this example fdr
1 = sfdr

1. For the hypotheses at each level, we also calculate the power.
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Table 1. Hypothesis configuration for the example, with the nonnull hypotheses marked in red
H1,1,1 H1,1,2 H1,2,1 H1,2,2 H1,3,1 H1,3,2 H1,4,1 H1,4,2 H1,5,1 H1,5,2 H1,6,1 H1,6,2 . . . H1,6,90

H2,1,1 H2,1,2 H2,2,1 H2,2,2 H2,3,1 H2,3,2 H2,4,1 H2,4,2 H2,5,1 H2,5,2 H2,6,1 H2,6,2 . . . H2,6,90

H3,1,1 H3,1,2 H3,2,1 H3,2,2 H3,3,1 H3,3,2 H3,4,1 H3,4,2 H3,5,1 H3,5,2 H3,6,1 H3,6,2 . . . H3,6,90

H4,1,1 H4,1,2 H4,2,1 H4,2,2 H4,3,1 H4,3,2 H4,4,1 H4,4,2 H4,5,1 H4,5,2 H4,6,1 H4,6,2 . . . H4,6,90

H5,1,1 H5,1,2 H5,2,1 H5,2,2 H5,3,1 H5,3,2 H5,4,1 H5,4,2 H5,5,1 H5,5,2 H5,6,1 H5,6,2 . . . H5,6,90

H6,1,1 H6,1,2 H6,2,1 H6,2,2 H6,3,1 H6,3,2 H6,4,1 H6,4,2 H6,5,1 H6,5,2 H6,6,1 H6,6,2 . . . H6,6,90

The following methods are included in our comparison: (i) the Benjamini–Hochberg procedure
applied across the pooled set of p-values for the entire matrix of hypotheses, which guarantees
control of fdr

3; (ii) the Benjamini–Bogomolov method applied with hypotheses grouped into
a two-level hierarchy with Hi•• at level 1, each indexing a family F2

i = {Hijt : j = 1, . . . , m;
t = 1, . . . , ki}, where the selection in level 1 is done by using the Benjamini–Hochberg procedure
on Simes’ p-values for Hi••, guaranteeing control of fdr

1; (iii) the p-filter applied to the matrix
of hypotheses, with groups defined by the pooled set of all hypotheses, rows and columns, which
guarantees control of fdr

1; (iv) a hierarchical variant of the p-filter applied with groups defined
by the pooled set of all hypotheses, rows and sets of columns, in nested fashion, so as to mimic
our hierarchical procedure; this guarantees control of fdr

� for � = 1, 2, 3; (v) TreeBH using three
levels, guaranteeing control of fdr

1, sfdr
2 and sfdr

3.
We consider six hypotheses at level 1, each indexing a family of six hypotheses, parents of

families at level 3 that contain 2, 2, 2, 2, 2 and 90 hypotheses, respectively, with truth assignments
as described in Table 1.

First we discuss the implications of the configuration in Table 1 for error rates. Here five out of
six level-1 hypotheses are false, so we can expect fdr

1 to be contained for any method. Consider
the error control for level-3 discoveries; methods such as the Benjamini–Hochberg procedure
and the p-filter, which do not take account of families, will weigh any false discovery against the
many possible true discoveries in family F3

1,6, the family that contains 90 nonnull hypotheses. In
contrast, for the selective methods we propose, any false discovery in families F3

i,6 for i = 3, . . . , 6
would result in fdp

3
i,6 = 1, and this would contribute a substantial weight to the average in sfdr

3.
We next examine how the power of the different procedures is influenced by the configuration

in Table 1. A large number of the level-3 families are homogeneous; this gives an advantage to
testing procedures that recognize such families, allowing the Benjamini–Hochberg threshold for
significance to adapt to the different proportions of nonnull hypotheses. Figure 3 displays the
results of a simulation in which all the error rates are targeted using a bound of 0.1, and for each
realization the p-values Pi for each of the hypotheses are generated independently as follows:

Xi ∼ μ + N (0, 1), Pi = 1 − �(Xi),

where � denotes the standard normal cumulative distribution function, μ = 0 for null hypotheses,
andμ > 0 for nonnull hypotheses, with larger values ofμ corresponding to greater signal strength.

Figure 3 underscores how each of the methods controls its target error rates, but not others.
The Benjamini–Hochberg procedure does not control any level-1 or level-2 error rates, nor does it
control sfdr

3, and the p-filter methods do not control all of the sfdr
�. In this set-up it appears that

the Benjamini–Bogomolov procedure controls the sfdr
�, but we will see in other examples that

this is not always the case. Figure 3 also shows how the TreeBH procedure, despite exhibiting
the most stringent error control in this example, has the highest power across levels, beaten
substantially only by the Benjamini–Hochberg procedure in level 1, where this procedure has no
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Fig. 3. Results for the example. Each point corresponds to the average of 1000 realizations. Dashed horizontal lines
indicate the target values for the error rates. The methods under comparison are the Benjamini–Hochberg procedure
(orange diamonds), the Benjamini–Bogomolov method (red squares), the nonhierarchical version of the p-filter (pink

circles), the hierarchical version of the p-filter (purple circles) and TreeBH (blue triangles).

false discovery rate control. Interestingly, its power in levels 2 and 3 is higher than that of the
Benjamini–Bogomolov method, which shares some of its hierarchical features and happens to
control the selective error rates in this case. The increased power at higher levels is due to the fact
that testing is carried out in more homogeneous families. Higher power at level 1 is due to the
fact that in calculating the Simes’ p-values for Hi•• one uses six p-values rather than 100, and,
at least for i = 3, 4, 5, five of those are going to be very small, owing to the nonnull status of the
hypotheses they represent; the effect of these p-values would be more washed out in the entire
pool of 100 hypotheses.

The Supplementary Material includes two additional simulation studies: one that facilitates
comparison with Foygel Barber & Ramdas (2016), and one that illustrates the applicability of
our procedure to multi-trait genetic association studies. In the first of these simulations, the
nonhierarchical p-filter, although controlling the level-1 false discovery rate, fails to control the
level-2 false discovery rate or the level-2 and level-3 selective error rates. The hierarchical version
of the p-filter is able to control all error rates considered, but achieves lower level-3 power than
does TreeBH. The TreeBH method, on the other hand, yields the best overall performance in terms
of error control and power, even if many of the differences are small. The second simulation in
the Supplementary Material studies the association of more than 8000 genetic variants with the
expression of 250 genes in each of five tissues. By using actual genetic data we obtain a realistic
dependence structure among the p-values. As the p-filter method was not able to finish running in
less than 24 hours given similar groupings to those in the simulation with independent p-values, we
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focused on comparing the Benjamini–Hochberg procedure, the Benjamini–Bogomolov method
and TreeBH. Our results show that TreeBH appears to control the targeted error rates, unlike the
Benjamini–Hochberg procedure, and it has a similar false discovery rate, sfdr and power to the
Benjamini–Bogomolov method.

6. Case studies

The first application we consider is the study of genetic regulation across multiple tissues
in the human body. The goal of expression quantitative trait loci analysis is to identify DNA
variants that influence the expression of genes. Since gene expression levels differ across tissues,
expression quantitative trait loci analysis may reveal both shared and tissue-specific patterns of
regulation, with important implications for the understanding of disease mechanisms.

Typically, for each tissue t, the hypotheses Hijt regarding the association of each gene with
nearby genetic variants are tested using a linear model with normalized expression for gene
j as the response and the estimated number of copies of the minor allele for variant i as the
predictor, and covariates are included to account for potential confounding factors. The most
common approach has been to perform error control in each tissue separately (Nica et al., 2011;
Grundberg et al., 2012). Results for different tissues are then compared and conclusions are
drawn on the tissue-specific nature of the detected associations. However, this approach is prone
to error, and joint analysis of multiple tissues is likely to result in lower numbers of false positives
and false negatives. Methodology based on meta-analysis (Sul et al., 2013) and Bayesian model
selection (Flutre et al., 2013; Li et al., 2017) has been developed to address this shortcoming.
The testing procedure we propose here provides some of the advantages of these methods while
maintaining the computational benefits of the simpler approach.

One problem of interest in multi-tissue expression quantitative trait loci analysis is to find a set
of eSNPs, i.e., single nucleotide polymorphisms, that play a functional regulatory role in at least
one tissue. With this goal in mind, we could naturally group the hypotheses into a hierarchical
structure with SNPs at level 1, genes at level 2, and tissues at level 3. The level-1 hypothesis Hi••
addresses the question of whether SNP i has an effect on expression in any tissue. We consider
SNP i to be an eSNP if we reject Hi••, and we consider a SNP-gene pair to be discovered if we
reject Hij•. The p-values are defined starting from the leaf hypotheses, which receive the p-value
from the linear association test. The p-values for the level-2 and level-1 hypotheses are then
defined using Simes’ method. Given this organization of the hypotheses, the TreeBH procedure
controls the false discovery rate for eSNPs, the expected average proportion of false SNP-gene
associations across the selected SNPs, and the expected weighted average of the proportion of
false tissue discoveries for the selected SNP-gene pairs.

Table 2 reports the results of the analysis of a multi-tissue gene expression dataset using the
proposed method and a pair of benchmark comparisons. Details of the data, p-value computation,
procedures, and additional comparisons can be found in the Supplementary Material. The TreeBH
procedure is much more conservative at the SNP level, because it provides control of the eSNP
false discovery rate, but is less stringent in selecting the genes and tissues for these eSNPs,
resulting in a similar number of genes associated with each eSNP to the Benjamini–Hochberg
approaches, an increased number of selected tissues for each SNP-gene pair discovered, and a
lower percentage of SNP-gene pairs that were discovered in only one tissue. Given the conjecture
that local regulatory relationships are likely to be shared across tissues, the TreeBH results seem
more biologically plausible than those obtained from the Benjamini–Hochberg methods.

The second application is a microbiome study, concerning the association between gut
microorganisms and colorectal cancer. A full description of the data and analysis is given
in the Supplementary Material. Here we simply report the results in Fig. 4. This is a clear
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Table 2. Numerical comparison of selection results obtained using the Benjamini–Hochberg
procedure applied separately by tissue, the Benjamini–Hochberg procedure applied to the

pooled set of p-values from all tissues, and the TreeBH procedure
Separate Pooled TreeBH

Level 1
# eSNPs 9.1e4 8.6e4 4.5e4
% eSNPs 30% 28% 15%

Level 2
# SNP-gene pairs 1.9e5 1.8e5 9.3e4
# genes per eSNP 2.1 2.0 2.1

Level 3
# SNP-gene-tissue triplets 6.4e5 6.2e5 5.1e6

# tissues per SNP-gene pair 3.3 3.5 5.4
% SNP-gene pairs 1 tissue only 61% 61% 48%

# eSNPs, number of selected SNPs; % eSNPs, selected SNPs as a percentage of the total number of SNPs tested for
association; # SNP-gene pairs, number of associated SNP-gene pairs discovered; # genes per eSNP, average number of
genes per eSNP across all discovered eSNPs; # SNP-gene-tissue triplets, number of associated SNP-gene-tissue triplets
discovered; # tissues per SNP-gene pair, average number of tissues per SNP-gene pair across all discovered SNP-gene
pairs; % SNP-gene pairs 1 tissue only, percentage of associated SNP-gene pairs that were discovered in only one tissue.
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Fig. 4. Taxonomic tree of selections obtained using the TreeBH procedure. Additional discoveries of TreeBH that
were not found with the Benjamini–Hochberg procedure are marked in red.

example of a collection of hypotheses that can be organized on a tree, where scientists are inter-
ested in responses at multiple resolutions corresponding to the levels of the taxonomic tree.
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Compared with the Benjamini–Hochberg procedure, TreeBH yields additional discoveries that
appear scientifically meaningful, while reducing the number of findings that are difficult to
interpret.

Discussion

The TreeBH procedure introduced here has many aspects in common with the p-filter (Foygel
Barber & Ramdas, 2016; Ramdas et al., 2019): both procedures control some form of level-specific
false discovery rate, and in both of them one assumes that p-values for the finer-scale hypotheses
are available, which are summarized using a certain combination method to obtain p-values for the
group-level hypotheses. When adapted to our hierarchical organization of hypotheses, the p-filter
controls the level-restricted false discovery rate, but takes no account of the distinct families that
make up the collection of hypotheses at a given level; therefore, it does not control our selective
error rates and cannot gain power by adapting to the different sparsity levels across families.
Finally, the computational time required to run the p-filter is substantially greater than that for
TreeBH, making its application to genomic problems difficult.

Our procedures are extensions of the proposals in Benjamini & Bogomolov (2014) and so have
some of the same merits and limitations. In particular, recent work of Heller et al. (2017) has
underscored how selective error rates could be controlled with higher power when a conditional
approach to testing is possible; the authors demonstrated the feasibility for a two-layer structure
and under independence at the second level. In principle, as long as exact conditional distributions
can be evaluated, it may be possible to adopt the conditional testing approach of Heller et al.
(2017) to also control the selective error rates that we introduced here.

Supplementary material

Supplementary Material available at Biometrika online includes proofs of the theoretical
results, the methodology for general dependence, an additional illustration of the proposed error
rate, the relation to previous work for two-level trees, further details of the p-filter example, the
simulation for multi-trait genetic association studies, and the two case studies. Moreover, we
provide an implementation of the TreeBH procedure in the R (R Development Core Team, 2021)
package TreeBH.
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