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Hierarchical Normalized Completely Random
Measures for Robust Graphical Modeling

Andrea Cremaschi∗,†, Raffaele Argiento‡,§, Katherine Shoemaker¶,‖,
Christine Peterson∗∗ and Marina Vannucci††

Abstract. Gaussian graphical models are useful tools for exploring network struc-
tures in multivariate normal data. In this paper we are interested in situations
where data show departures from Gaussianity, therefore requiring alternative mod-
eling distributions. The multivariate t-distribution, obtained by dividing each com-
ponent of the data vector by a gamma random variable, is a straightforward gen-
eralization to accommodate deviations from normality such as heavy tails. Since
different groups of variables may be contaminated to a different extent, Finegold
and Drton (2014) introduced the Dirichlet t-distribution, where the divisors are
clustered using a Dirichlet process. In this work, we consider a more general class
of nonparametric distributions as the prior on the divisor terms, namely the class
of normalized completely random measures (NormCRMs). To improve the effec-
tiveness of the clustering, we propose modeling the dependence among the divisors
through a nonparametric hierarchical structure, which allows for the sharing of
parameters across the samples in the data set. This desirable feature enables us
to cluster together different components of multivariate data in a parsimonious
way. We demonstrate through simulations that this approach provides accurate
graphical model inference, and apply it to a case study examining the dependence
structure in radiomics data derived from The Cancer Imaging Atlas.

Keywords: graphical models, Bayesian nonparametrics, normalized completely
random measures, hierarchical models, radiomics data, t-distribution.

1 Introduction

Graphical models describe the conditional dependence relationships among a set of
random variables. A graph G = (V,E) specifies a set of vertices V = {1, 2, . . . , p} and
a set of edges E ⊂ V × V . In a directed graph, edges are denoted by ordered pairs
(i, j) ∈ E. In an undirected graph, (i, j) ∈ E if and only if (j, i) ∈ E (Lauritzen, 1996).
Here we focus on undirected graphical models, also known as Markov random fields. In
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this class of models, the absence of an edge between two vertices means that the two
corresponding variables are conditionally independent given the remaining variables,
while an edge is included whenever the two variables are conditionally dependent.

In the context of multivariate normal data, graphical models are known as Gaussian
graphical models (GGMs) or covariance selection models (Dempster, 1972). In this set-
ting, the graph structure G implies constraints on the precision matrix (the inverse of
the covariance matrix). Specifically, a zero entry in the precision matrix corresponds to
the absence of an edge in the graph, meaning that the corresponding nodes (variables)
are conditionally independent. Since graphical model estimation corresponds to estima-
tion of a sparse matrix, regularization methods are a natural approach. In particular, the
graphical lasso (Meinshausen and Bühlmann, 2006; Yuan and Lin, 2007; Friedman et al.,
2008), which imposes an L1 penalty on the sum of the absolute values of the entries
of the precision matrix, is a popular method for achieving the desired sparsity. Among
Bayesian approaches, the Bayesian graphical lasso, proposed as the Bayesian analogue
to the graphical lasso, places double exponential priors on the off-diagonal entries of the
precision matrix (Wang, 2012; Peterson et al., 2013), while approaches which enforce
exact zeros in the precision matrix have been proposed by Roverato (2002), Jones et al.
(2005), and Dobra et al. (2011). Gaussian graphical models have been widely applied
in genomics and proteomics to infer various types of networks, including co-expression,
gene regulatory, and protein interaction networks (Friedman, 2004; Dobra et al., 2004;
Mukherjee and Speed, 2008; Stingo et al., 2010; Telesca et al., 2012; Peterson et al.,
2016).

Some extensions of standard Gaussian graphical models exist in the literature for the
analysis of data that show departures from normality. Among others, Pitt et al. (2006)
used copula models and Bhadra et al. (2018) used Gaussian scale mixtures. Here, we
build upon the approach of Finegold and Drton (2011, 2014), who introduced a vector
of positive latent contamination parameters (divisors) regulating the departure from
Gaussianity and then modeled those as a sample from a nonparametric distribution,
specifically a Dirichlet process. Their model, however, does not allow the exchange of
information among the vectors of observed data, since independent Dirichlet process
priors are used for each of the n samples. We propose to use a more flexible class of
nonparametric prior distributions, known as normalized completely random measures
(NormCRMs), and consider a hierarchical construction where the nonparametric priors
for the divisors are conditionally independent, given their centering measure, which is it-
self a completely random measure. NormCRMs were first introduced by Regazzini et al.
(2003) with the name of Normalized Random Measures with Independent increments
(NRMI), and subsequently studied by several researchers in statistics and machine learn-
ing (James et al., 2009; Lijoi and Prünster, 2010; Caron and Fox, 2017). One of the most
commonly used measures in this class is the Normalized Generalized Gamma (NGG)
process (Lijoi et al., 2007). For illustrations of the use of this prior in mixture models, see
Argiento et al. (2010), Barrios et al. (2013), and Argiento et al. (2016). Theoretical and
clustering properties of hierarchical CRMs were first investigated by Camerlenghi et al.
(2019) (see also Camerlenghi et al., 2017, 2018). Subsequently, Argiento et al. (2019)
have focused on clustering and computational issues arising under mixture models built
upon this class of priors. In this paper, we exploit the clustering characterization of
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these constructions to induce sharing of information. More specifically, we focus our at-
tention on the normalized generalized gamma process, which has been shown to yield a
quite flexible clustering structure. Furthermore, we devise a suitable MCMC algorithm
for posterior sampling.

We are motivated by an application to radiomics data derived from magnetic reso-
nance imaging (MRI) of glioblastoma patients collected as part of The Cancer Imaging
Atlas. In the development of personalized cancer treatment, there is great interest in
using information from tumor imaging data to better characterize a patient’s disease,
as these medical images are collected as a routine part of diagnosis. There have been
a large number of different numerical summaries proposed, but the interpretation of
these features is not immediate. It is hypothesized that clinically relevant features may
be capturing related aspects of the underlying disease. Statistical modeling of the de-
pendencies in radiomics data poses challenges, however, as the features exhibit outliers
and overdispersion due to heterogeneity of the tumor presentation across patients.

The paper is organized as follows: we begin in Section 2 with a review of graphical
models. In Section 3, we lay out the proposed model and summarize computational
methods for inference. We then illustrate the application of the method to both simu-
lated and a publicly available radiomics data set in Section 4. Finally, we conclude with
a discussion on the current model as well as future directions in Section 5.

2 Background

2.1 Gaussian Graphical Models

Let Xi ∈ R
p be a random vector, with i = 1, . . . , n. In GGMs, the conditional inde-

pendence relationships between pairs of nodes encoded by a graph G correspond to
constraints on the precision matrix Ω = Σ−1 of the multivariate normal distribution

Xi ∼ Np(μ,Σ), i = 1, . . . , n, (1)

with μ ∈ R
p the mean vector and Σ ∈ R

p × R
p a positive definite symmetric matrix.

Specifically, the precision matrix Ω is constrained to the cone of symmetric positive
definite matrices with off-diagonal entry ωij equal to zero if there is no edge in G
between nodes i and j.

In Bayesian analysis, the standard conjugate prior for the precision matrix Ω is the
Wishart distribution. Given the constraints of a graph among the variables, Roverato
(2002) proposed the G-Wishart distribution as the conjugate prior. The G-Wishart is
the Wishart distribution restricted to the space of precision matrices with zeros specified
by a graph G. The G-Wishart density WG(b,D) can be written as

p(Ω|G, b,D) = IG(b,D)−1|Ω|(b−2)/2 exp
{
− 1

2
tr(ΩD)

}
, Ω ∈ PG

where b > 2 is the degrees of freedom parameter, D is a p×p positive definite symmetric
matrix, IG is the normalizing constant, and PG is the set of all p × p positive definite
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symmetric matrices with ωij = 0 if and only if (i, j) /∈ E. Even when the graph structure
is known, sampling from this distribution poses computational difficulties since both the
prior and posterior normalizing constants are intractable. Dobra et al. (2011) proposed
a reversible jump algorithm to sample over the joint space of graphs and precision ma-
trices that does not scale well to large graphs. Wang and Li (2012) and Lenkoski (2013)
proposed sampler methods that do not require proposal tuning and circumvent com-
putation of the prior normalizing constant through the use of the exchange algorithm,
improving both the accuracy and efficiency of the computations. Mohammadi and Wit
(2015) proposed a sampling methodology based on birth-death processes for the ap-
pearance or removal of an edge in the graph. Their algorithm, implemented in the R
package BDgraph, can be used with the approximation of the normalizing constant of
the G-Wishart prior calculated either via the Monte Carlo method of Atay-Kayis and
Massam (2005) or the Laplace approximation of Lenkoski and Dobra (2011).

To sum up, we can write the standard Gaussian graphical model in the Bayesian
setting as:

X1, . . . ,Xn|μ,Ω,
iid∼ Np(μ,Ω),

μ ∼ Np(μ0, Ip/σ
2
μ) (2)

Ω|G ∼ G-Wishart(G, b,D),

G ∼ π(G),

with the symbol Ip indicating the identity matrix of dimension p. The last ingredient
to fully specify the model is the prior for the graph G. When prior knowledge is not
available, a uniform prior is often used (see Lenkoski and Dobra, 2011). However, it
is well known that this prior is not optimal for sparsity as it favors graphs with a
moderately large number of edges. To overcome this issue, Dobra et al. (2004) and
Jones et al. (2005) suggested assigning a small data-dependent inclusion probability to

each edge, i.e., π(G) ∝ d|E|(1− d)(
p
2)−|E|, with d = 2/(p− 1). This prior, adopted also

in this paper, is called the Erdős-Rényi prior, and it reduces to the uniform prior when
d = 0.5.

2.2 Robust Graphical Models

Assume Yi ∈ R
p is a vector of observed data on p variables for subject i, with i =

1, . . . , n. When data show departures from normality, robust models are needed. In
particular, as noted by Finegold and Drton (2011, 2014), t-distributions are well-suited
to accommodate heavy tails, and result in minimal loss of efficiency when the data are
in fact normal. They propose introducing the normal variables Xi in model (2) as latent
quantities, and modeling the observed data as:

Yij = μj +
Xij√
θij

j = 1, . . . , p, (3)

where θi = (θi1, . . . , θip), for i = 1, . . . , n, are data and variable specific perturbation
parameters (divisors), taking into account the deviation from normality of the obser-
vations. Using the invariance under linear transformation property of the Gaussian
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distribution, we can express the sampling model as:

Yi|μ,Ω,θi
iid∼ Np(μ, diag(

√
θi) Ω diag(

√
θi)), i = 1 . . . , n. (4)

Different distributions of the vector θi yield different models. Let P0 denote a
gamma(ν/2, ν/2) distribution with mean 1 and variance 2/ν. If θi1 = θi2 = · · · = θip
and θi1 ∼ P0 (i.e., just one common divisor for all the components), then a multivariate
t-distribution is assumed for the observations. We refer to this model as Yi ∼ tp,ν(μ,Ω).

On the other hand, if θi1, . . . , θip
iid∼ P0 (i.e., p different divisors, one for each compo-

nent of the data), then Yi is distributed according to an alternative t-distribution, as
introduced by Finegold and Drton (2011), and denoted by Yi ∼ t∗p,ν(μ,Ω). As an inter-

mediate case, Finegold and Drton (2014) consider θi1, . . . , θip|Pi
iid∼ Pi, Pi ∼ DP (κ, P0),

where Pi ∼ DP (κ, P0) is the Dirichlet process with mass parameter κ and centering
measure P0. We refer to this model as Y ∼ tκp,ν(μ,Ω). A realization from the Dirichlet
process Pi is almost surely a discrete random probability measure. To give an illustra-

tion, let p = 2. Therefore, if (θi1, θi2)|Pi
iid∼ Pi, then with probability P(θi1 = θi2) =

1
κ+1 ,

and Yi = (Yi1, Yi2) ∼ t2,ν(μ,Ω). On the other hand, with probability κ
κ+1 we have the

alternative t case. Indeed, the two are limiting cases of the Dirichlet t-distribution when
κ → 0 or κ → +∞, respectively. Even though the Dirichlet process has proven to per-
form well in several contexts, it is well known that the clustering it induces is often
inaccurate as it is affected by the so-called rich-gets-richer effect. In the next section,
we propose a more flexible approach to mitigate this behavior and to allow for a more
flexible clustering structure.

3 Proposed Method

3.1 Robust Graphical Modeling via Hierarchical Normalized
Completely Random Measures

We propose an extension of the Dirichlet t model that uses a more flexible class of
nonparametric distributions, namely the class of hierarchical normalized completely
random measures (NormCRM). Through the use of these measures, we are able to
address some of the limitations of the Dirichlet process. First, the tendency towards
a highly skewed distribution of cluster sizes can be mitigated by the use of the more
flexible NormCRM. In addition, we show how exploiting a hierarchical construction
facilitates the sharing of information across cluster components in the dataset.

Let Θ be the Euclidean space and let us consider the class of almost surely discrete
random probability measures that can be written as:

P̃ (·) =
∑
l≥1

Jl
T δτl(·) =

∑
l≥1

wlδτl(·), (5)

where T =
∑

l≥1 Jl. We assume P̃ to be a homogeneous NormCRM, whose law is char-
acterized by a Lèvy intensity measure ν that factorizes into ν(ds, dτ) = α(s)P (dτ)ds,
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where α is the density of a nonnegative measure, absolutely continuous with respect to
the Lebesgue measure on R

+ and regular enough to guarantee that 0 < T < ∞ almost
surely, and P is a probability measure over (Θ,B). In general, such a factorization does
not hold true, but by adopting it we ensure that the random jumps {Jl}l≥1 and the
random locations {τl}l≥1 are independent sequences. The random locations τ1, τ2, . . .
are independent and identically distributed according to the base distribution P , while
the unnormalized random masses J1, J2, . . . are distributed according to a Poisson ran-
dom measure with intensity α. The Dirichlet process is encompassed by this class when
α(s) = κs−1e−s, for κ > 0 and s > 0. Even though our approach can be implemented
with a general NormCRM, in what follows we consider the specific case of the nor-
malized generalized gamma (NGG) process (Lijoi et al., 2007), which is obtained by
choosing α(s) = κ

Γ(1−σ)s
−1−σe−s, for 0 ≤ σ < 1. This nonparametric prior has been

shown to be very effective for model-based clustering (Lijoi et al., 2007). We also refer
readers to Argiento et al. (2015), for an application in biostatistics. Note that, when
σ = 0, the Dirichlet process is recovered.

A sample θ1, . . . , θp|P̃ iid∼ P̃ =
∑

l≥1 wlδτl can be represented via the set of variables

l = (l1, . . . , lp)|{wl}l≥1
iid∼ Discrete({wl}l≥1), by letting θj = τlj , for j = 1, . . . , p. Let

l∗ = (l∗1, . . . , l
∗
K) be the set of the K unique values in l. A partition ρ = {C1, . . . , CK} of

the indices {1, . . . , p} can be defined by letting Ch = {j : lj = l∗h}, for h = 1, . . . ,K. The
partition ρ is called l-clustering. Let now θ∗h = τl∗h . When the centering measure P is
diffuse, the θ∗hs coincide with the unique values in θ = (θ1, . . . , θp) and the l-clustering
coincides with the natural clustering, i.e., we can also write Ch = {j : θj = θ∗h},
for h = 1, . . . ,K. The l-clustering and the natural clustering can be different when
the centering measure P is discrete (see Argiento et al., 2019). In particular, in the
discrete case, each θ∗h is the value shared by all the indices in the so-called l-cluster Ch,
for h = 1, . . . ,K. Furthermore, extending the results in Pitman (1996), Ishwaran and
James (2003), and Argiento et al. (2019), one can show that, for P either atomic or
diffuse, the following characterization holds:

L(ρ, dθ∗1 , . . . , dθ∗K) = L(ρ)L(dθ∗1 , . . . , dθ∗K |K) = eppf(e;κ, σ)

K∏
h=1

P (dθ∗h), (6)

with e = (e1, . . . , eK) the vector of l-cluster sizes in the partition ρ, such that eh = #Ch,
for each h = 1, . . . ,K, and with the notation eppf(e;κ, σ) indicating the exchangeable
partition probability function (eppf) of the NGG process, a symmetric function of the
cluster sizes e, as introduced by Pitman (2003). The explicit analytical form of the
eppf of a generic (homogeneous) NormCRM can be derived (see formulas (36)-(37) in
Pitman (2003)) and enables the construction of a Gibbs sampler based on the Chinese
restaurant process representation. In the Dirichlet process case, De Blasi et al. (2015)
pointed out that the predictive distribution induced by (6), i.e., the probability that θp
belongs to a new l-cluster given (θ1, . . . , θp−1), depends only on the dimension p, while
in the NGG process case this probability depends on both p and K, leading to a more
flexible prior. Furthermore, the probability that θp belongs to a previously observed
l-cluster Ch is proportional to eh − σ, for h = 1, . . . ,K. These two properties mitigate
the rich-gets-richer behavior arising when considering the Dirichlet case.
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The first step towards our proposed robust graphical modeling construction is to
replace the Dirichlet prior on the divisors with an NGG process, yielding the following
robust graphical model:

Yi|μ,Ω,θi
iid∼ Np(μ, diag(

√
θi) Ω diag(

√
θi)), i = 1 . . . , n,

θi1, . . . , θip|Pi
iid∼ Pi, i = 1, . . . , n, (7)

P1, . . . , Pn|κ, σ iid∼ NGG(κ, σ, P ),

where P is the distribution on the space of the divisors. Suitable prior distributions
can be assigned to κ, σ, μ, and Ω. We denote by ρi = {Ci1, . . . , CiKi} the l-clustering
induced by Pi in each data vector, for i = 1, . . . , n, as described earlier in this section.

When P is diffuse, model (7) does not allow for sharing of information across the
data vectors. This can be seen by using characterization (6) to marginalize model (7)
with respect to the infinite-dimensional parameters P1, . . . , Pn, and rewriting the last
two lines of (7) as:

ρi|κ, σ ind∼ eppf(ei;κ, σ), i = 1, . . . , n,

θ∗i1, . . . , θ
∗
iKi

|Ki
iid∼ P, i = 1, . . . , n,

where (ρi,θ
∗
i ) represent the partition and the vector of unique values induced by Pi

on the data components, and ei = (ei1, . . . , eiKi) is the vector of l-cluster sizes in the
partition ρi, such that eih = #Cih, for each h = 1, . . . ,Ki. By this re-writing, it is clear
that the sharing of information among the different clustering structures is achieved
only via the conditional dependence of ρi given κ and σ. In particular, we cannot have
shared divisors across data vectors, but only across components of the same data vector,
since θ∗’s are all i.i.d. from the diffuse distribution P . We overcome this limitation by
considering a more flexible hierarchical model formulation that allows for additional
sharing of information across the samples. Specifically, we assume P to be a random
probability measure, namely an NGG process centered on a diffuse measure P0. In
formulas, the proposed model can be written as follows:

Yi|μ,Ω,θi
iid∼ Np(μ, diag(

√
θi) Ω diag(

√
θi)), i = 1 . . . , n,

θi1, . . . , θip|Pi
iid∼ Pi, i = 1, . . . , n, (8)

P1, . . . , Pn|κ, σ, P iid∼ NGG(κ, σ, P ),

P |κ0, σ0 ∼ NGG(κ0, σ0, P0).

The law of (P1, . . . , Pn), as given by the last two lines of (8), is called the hierar-
chical NGG (HNGG) process. For ease of notation, we will refer to the mixture model
(8) as t-HNGG. Theoretical and clustering properties of hierarchical normalized com-
pletely random measures have been investigated first by Camerlenghi et al. (2019),
and a detailed study of the clustering induced by these measures in the context of
mixture models has been conducted in Argiento et al. (2019). An attractive feature
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of this construction is that it induces a two-layered hierarchical clustering structure
that allows components of different observed data vectors to be clustered together.
This two-layered structure consists of an l-clustering ρi within each group i, and a
clustering η that merges elements of ρ1, . . . , ρn. In order to define η more precisely,
let θ = (θ�

1 , . . . ,θ
�
n )

� be the matrix where the row θi is the vector of all divisors of
the i-th observation, and let ψ = (ψ1, . . . , ψM ) be the vector of unique values found
in the matrix θ. Let ρ = (ρ1, . . . , ρn) indicate the l-clustering partitions in each data
vector, and θ∗ = (θ∗

1 , . . . ,θ
∗
n) the corresponding multidimensional array of parameter

values. We define a clustering of the indices of the multidimensional array θ∗ by letting
η = {D1, . . . , DM} where Dm = {(i, h) : θ∗ih = ψm, h = 1, . . . ,Ki, i = 1, . . . , n}, with
m = 1, . . . ,M . We also let d = (d1, . . . , dM ), with dm = #Dm. Then, the law of the
matrix θ of divisors, given in the last three lines of (8), can be characterized in terms
of ρ, η and ψ as:

L(ρ, η, dψ) = L(η|ρ)
n∏

i=1

L(ρi)
M∏

m=1

P0(dψm)

= eppf(d;κ0, σ0)

n∏
i=1

eppf(ei;κ, σ)

M∏
m=1

P0(dψm). (9)

Full details on the derivation of formula (9) can be found in Argiento et al. (2019). We
also note that the partially exchangeable partition probability function of Camerlenghi
et al. (2019) can be obtained from (9) by marginalizing with respect to (η,ψ).

We call the natural clustering induced by θ the partition of indices I = {I1, . . . , IM}
such that (i, j) ∈ Im iff θij = ψm. Since the sets of indices Im, for m = 1, . . . ,M , can be
recovered from (ρ, η), formula (9) characterizes the law of the natural clustering. The
relationship between I and (ρ, η) is clarified in formulas:

I(ρi,η)
m :=

Ki⋃
h=1

{(i, j) : j ∈ Cih, (i, h) ∈ Dm}, m = 1, . . . ,M, (10)

Im := I(ρ,η)
m =

n⋃
i=1

I(ρi,η)
m , m = 1, . . . ,M.

Formula (9) can be described in terms of a Chinese restaurant franchise process. In our
context, each observation represents a different restaurant in the franchise, each serving
p customers, one for each component of the data vector. Customers entering the i-th
restaurant are allocated to the tables according to eppf(ei;κ, σ), independently from
the other restaurants in the franchise, and generate the partition ρi = (Ci1, . . . , CiKi),
for i = 1, . . . , n. In this metaphor, the elements of ρi represent the tables of the i-
th restaurant. Conditionally on T =

∑n
i=1 Ki, the tables of the franchise are grouped

according to the law described by eppf(d;κ0, σ0), thus obtaining a partition of tables.
Hence, the elements of η can be interpreted as clusters of tables. In addition, all tables
in the same cluster Dm share the same dish ψm, for m = 1, . . . ,M . Moreover, ψ =
(ψ1, . . . , ψM ) is and i.i.d. sample from P0. Under this metaphor, eih, for h = 1, . . . ,Ki
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and i = 1, . . . , n, represents the number of customers seated at the h-th table in the i-th
restaurant, while dm, for m = 1, . . . ,M , is the number of tables where the m-th dish is
served across the franchise. Finally, in this metaphor, the natural clustering induced by
the corresponding θ is formed of clusters of customers that share the same dish across
the franchise, and not only in the same restaurant.

3.2 Predictive Structure of the hierarchical NGG

In this paper, we make use of a marginal MCMC algorithm for simulating the nonpara-
metric quantities involved in model (8). This algorithm is based on integrating out the
infinite-dimensional parameters P1, . . . , Pn, P and on the characterization of the gener-
alized Chinese restaurant franchise process via formula (9). To drastically reduce the
computational complexity, it is convenient to consider the predictive structure induced
by the hierarchical NGG process by using a standard augmentation trick (see James
et al., 2009; Lijoi and Prünster, 2010). More specifically, we introduce n + 1 auxiliary
random variables U = (U1, . . . , Un, U0), referring to the n clustering structures in each
data vector, and to the one existing across the whole dataset, respectively. For the NGG
process, each partition ρi has the following law, jointly with Ui:

eppf(ei, ui;κ, σ) =
up−1
i

Γ(p)
e−

κ
σ ((ui+1)σ−1)

Ki∏
h=1

κ

(ui + 1)eih−σ

Γ(eih − σ)

Γ(1− σ)
, (11)

where Ki is the number of clusters and ei = (ei1, . . . , eiKi) is the vector of cluster sizes
in ρi. The joint law of (η, U0) has an analogous expression.

Suppose now to have a new variable in the i-th group, whose index is p + 1. We
will use an abuse on notation by indicating with (p + 1) ∈ Cih, for h = 1, . . . ,Ki, the
event that the new variable is allocated to the h-th cluster in the i-th group, and with
(p + 1) ∈ CiKi+1 the event that the new variable is assigned to a new cluster. It can
be shown that the allocation probabilities of the new variable are the following, for
h = 1, . . . ,Ki:

P
(to)
ih = P((p+ 1) ∈ Cih|ρi, Ui) ∝

eppf(ei1, . . . , eih + 1, . . . , eiKi ;κ, σ, ui)

eppf(ei1, . . . , eiKi ;κ, σ, ui)
= eih − σ,

P
(tn)
i = P((p+ 1) ∈ CiKi+1|ρi, Ui) ∝

eppf(ei1, . . . , eiKi , 1;κ, σ, ui)

eppf(ei1, . . . , eiKi ;κ, σ, ui)
= κ(ui + 1)σ, (12)

corresponding to the allocation probabilities of a new customer entering the i-th restau-
rant, and sitting at an existing or at a new table in the generalized Chinese restaurant
metaphor. In case a new cluster arises, the partition η needs to be updated. The allo-
cation probabilities of the new element T + 1 are, for m = 1, . . . ,M :

P (do)
m = P((T + 1) ∈ Dm|η, U0) ∝

eppf(d1, . . . , dm + 1, . . . , dM ;κ0, σ0, u0)

eppf(d1, . . . , dM ;κ0, σ0, u0)
= dm − σ0,

P (dn) = P((T + 1) ∈ DM+1|η, U0) ∝
eppf(d1, . . . , dM , 1;κ0, σ0, u0)

eppf(d1, . . . , dM ;κ0, σ0, u0)
= κ0(u0 + 1)σ0 ,

(13)



1280 Hierarchical NormCRMs for Robust Graphical Modeling

corresponding to the allocation probabilities that a newly generated table will join a
new or an existing cluster of tables. Additional details on how to derive (12) and (13)
can be found in the Supplementary Materials (Cremaschi et al., 2019).

To complete the generalized Chinese restaurant franchise process metaphor, not
only does a new customer have to select a table, but also a dish from the franchise
menu. Suppose the new customer enters the i-th restaurant, and let θip+1 be the label
of the selected dish. The table is picked according to the predictive rules (12) of the
i-th restaurant. The customer can choose between joining an existing table with label
h = 1, . . . ,Ki, or occupying the (Ki+1)-th new one. The first choice leads to sharing the
dish on the h-th table in the i-th restaurant, i.e. θi(p+1) = θ∗ih. On the other hand, if a new
table is chosen, the customer can select a dish from the menu of dishes according to (13).
This menu contains dishes that are already served in other tables across the franchise,
as well as infinitely many new ones, since the centering measure P0 is diffuse. Following
Argiento et al. (2019), the full-conditional allocation probability, for i = 1, . . . , n is

P((p+ 1) ∈ Cih, (i, p+ 1) ∈ I(ρi,η)
m |ρ, η,U)

= P((i, p+ 1) ∈ I(ρi,η)
m |(p+ 1) ∈ Cih,ρ, η,U)P((p+ 1) ∈ Cih|ρ, η,U)

∝

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P
(to)
ih h = 1, . . . ,Ki, m = mh,

P
(do)
m P

(tn)
i h = Ki + 1, m = 1, . . . ,M

P (dn)P
(tn)
i h = Ki + 1, m = M + 1,

0 otherwise,

(14)

where mh is such that (i, h) ∈ Dmh
, and the sets I(ρi,η)

m , for m = 1, . . . ,M , are defined
in (10). These equations are the main blocks to compute the full-conditional alloca-
tion probabilities needed for posterior sampling, as presented in the next section. Such
probabilities can be calculated in closed form using equation (9). However, in the next
section we make use of auxiliary variables as these simplify the sampling algorithm. The
conditional predictive probabilities hereby specified characterize the prior clustering in-
duced by our nonparametric modeling. We refer to Argiento et al. (2019) for results
on the distribution of relevant quantities, such as the prior distribution of the number
of different dishes or the dependence induced by our model across observations (e.g.
correlation, coskewness).

3.3 MCMC Algorithm

In this section, we describe the MCMC algorithm for posterior inference from model
(8), embedded within the graphical modeling part described in (2). The state space of
the Gibbs sampler is given by (μ,Ω, G,ρ, η,ψ). We describe the parameter updates
by splitting them into two blocks: the graphical model block, which comprises the full
conditionals of (μ,Ω, G), and the generalized Chinese restaurant franchise block, which
includes those for (ρ, η,ψ). For simplicity, we will remove the indexing of the Gibbs
sampler iteration.

• Graphical model updates: In the following, we will consider the law of (μ,Ω, G)
conditionally upon the variables (ρ, η,ψ).
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– For the update of (Ω, G), we resort to the birth-death algorithm of Moham-
madi and Wit (2015) available in the R package BDgraph, and suitable for
non-decomposable graphs. The algorithm proceeds by first adding/removing
an edge of the graph, and then updating the precision matrix Ω using the
algorithm presented in Lenkoski (2013). These moves have probabilities

P((i, j) ∈ E|μ,Ω, G,Y ,θ) ∝ βb
ij(μ,Ω, G,Y ,θ), (i, j) /∈ E,

P((i, j) /∈ E|μ,Ω, G,Y ,θ) ∝ βd
ij(μ,Ω, G,Y ,θ), (i, j) ∈ E,

with βb
ij and βd

ij the birth and death rates of edge (i, j), respectively, com-
puted in such a way that the stationary distribution of the Markov process
is the joint full-conditional of (Ω, G), given (Y ,ρ, η,ψ) (see Theorem 3.1 in
Mohammadi and Wit, 2015). This algorithm is particularly efficient since the
Markov process specification ensures that the birth/death moves are always
accepted, contrarily to the reversible jump algorithm of Giudici and Green
(1999), also implemented in the package BDgraph.

– Updating μ: This full-conditional is conjugate. A-priori μ ∼ Np(μ0, Ip/σ
2
μ),

hence:

μ|G,Ω,θ,Y ∼ Np(mμ,Sμ),

Sμ = Ip/σ
2
μ +

n∑
i=1

(
diag(

√
θi) Ω diag(

√
θi)

)
,

mμ = Sμ

[
μ0/σ

2
μ +

n∑
i=1

(
diag(

√
θi) Ω diag(

√
θi)

)
Y �
i

]
.

• Generalized Chinese restaurant franchise process updates:We refer to the
notation of Sections 3.1 and 3.2. Conditionally to the vector of auxiliary variables
U and the graphical model parameters (μ,Ω, G), the joint law of (8) is:

L(Y1, . . . ,Yn|ρ, η,θ,U ,μ,Ω, G)L(ρ1, . . . , ρn|U1, . . . , Un)L(η|U0)

M∏
m=1

P0(dψm)

=

n∏
i=1

f(yi|μ,Ω,θi)

n∏
i=1

eppf(ei;κ, σ, P0, ui)eppf(d;κ0, σ0, P0, u0)

M∏
m=1

P0(dψm),

with f representing the multivariate Gaussian density introduced in model (8).
It is important to point out that, under model (8), the observations yij are now
components of the vector yi and are no longer conditionally independent. Thus,
it is useful to introduce the following conditional likelihood for a subset of indices
t ⊂ {1, . . . , p}:

f(yit|yi\t,μ,Ω,θi) = N
(
yit

∣∣∣μc,
[
diag(

√
θi) Ω diag(

√
θi)

]
tt

)
,

μc = μt −Ω−1
tt Ωt\t(yi\t − μ\t)

√
θi\t, (15)
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with \t = {1, . . . , p} ∩ t, and t indicating the complementary set of t. This allows
us to write the following updates:

– Update of U and ψ: using the expression given in (11) of eppf(·, u0;κ0,
σ0, P0) and eppf(·, ui;κ, σ, P0), and the centering measure P0, we have:

p(Ui|ρi, κ, σ) ∝ up−1
i e−

κ
σ ((ui+1)σ−1)

×
Ki∏
h=1

(
κ

(ui + 1)eih−σ

Γ(eih − σ)

Γ(1− σ)

)
, i = 1, . . . , n,

p(U0|η, κ0, σ0, T ) ∝ uT−1
0 e−

κ0
σ0

((u0+1)σ0−1)

×
M∏

m=1

(
κ0

(u0 + 1)dm−σ0

Γ(dm − σ0)

Γ(1− σ0)

)
,

p(ψm|Y ,ρ, η) ∝
n∏

i=1

f(y
iI(ρi,η)

m
|y

i\I(ρi,η)
m

,μ,Ω, ψm)P0(dψm),

m = 1, . . . ,M.

(16)

These quantities are often known up to a normalizing constant, making nec-
essary to implement a series of Metropolis-Hastings (MH) steps. Specifically,
we use an adaptive MH scheme for the random variables U , following the
guidelines of Griffin and Stephens (2013). The sampling of the unique val-
ues ψ is achieved by performing M independent standard MH steps. This
approach is necessary since the full-conditional distribution of ψ presents
an intractable normalizing constant, and does not allow the use of a direct
sampler (Finegold and Drton, 2011).

– Update of (ρ, η): We report now the full-conditional distributions for the
clustering variables (ρ, η). The updating takes advantage of the augmented
predictive representation given in Section 3.2, inspired by (Favaro and Teh,
2013) and by the popular Algorithm 8 of (Neal, 2000). Indeed, due to the
non-conjugate setting of our model, we augment the sample space to include

a set of Nc auxiliary variables ψc = (ψc
1, . . . , ψ

c
Nc

)
iid∼ P0. Let the superscript

(−ij) denote the conditioning on the random variables modified after the
removal of the j-th observation of the i-th restaurant, for j = 1, . . . , p and
i = 1, . . . , n. Then, conditionally upon Y and (ρ−ij , η−ij), and resorting to
(14), the probability of assigning the j-th customer to the h-th table of the
i-th restaurant, where the m-th dish is served, is:

P(j ∈ C−ij
ih , θij = ψm|Y ,μ,Ω, G,ρ−ij , η−ij ,θ−ij ,ψc,U) (17)

∝

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P
(to)
ih f(yij |yi\j ,μ,Ω, θ∗ih), h = 1, . . . ,K−ij

i

P
(tn)
i P

(do)
m f(yij |yi\j ,μ,Ω, ψm), h = K−ij

i + 1,m = 1, . . . ,M−ij

P
(tn)
i P (dn)f(yij |yi\j ,μ,Ω, ψc

nc
)/Nc,

h = K−ij
i + 1,m = M−ij + 1, nc = 1, . . . , Nc,
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where K−ij
i +1 and M−ij +1 are the new table and dish labels, respectively.

The updating process continues by re-allocating Cih to a cluster of tables. To
this end, we have to assign Cih to a Dm, for h = 1, . . . ,Ki and m = 1, . . . ,M .
More formally, let the superscript (−ih) indicate the conditioning on the
variables after the removal of all the observations in Cih. Conditionally on Y
and (ρ−ih, η−ih), and using again (14), the probability of assigning the h-th
table of the i-th restaurant to the m-th cluster is:

P((i, h) ∈ D−ih
m , θ∗ih = ψm|Y ,ρ−ih, η−ih,ψ−ih,ψc,U) (18)

∝
{

P
(do)
m f(yiCih

|yi\Cih
,μ,Ω, ψm), m = 1, . . . ,M−ih,

P (dn)f(yiCih
|yi\Cih

,μ,Ω, ψc
nc
)/Nc, m = M−ih + 1, nc = 1, . . . , Nc.

where M−ih + 1 indicates the new dish labels.

Given the output from the MCMC chain, one can estimate the graph structure by
considering the median graph (Barbieri et al., 2004) as the graph represented by those
edges (i, j) ∈ E for which the posterior edge inclusion probability P((i, j) ∈ E|Y ) is
greater than 0.5. Additionally, we can estimate the precision matrix of the sampling
model (4) by considering the contribution of the divisors θ, as

Ωθ =
1

n

n∑
i=1

diag(
√
θi) Ω diag(

√
θi).

We obtain an analogous estimate Ω̂θ by averaging over the MCMC samples.

One important feature of the nonparametric prior distributions imposed in models
(7) and (8) is the ability to cluster the data via the unique values of the divisors θ. In
the applications below, we illustrate the properties of the random partitions imposed on
θ by reporting the posterior mean of the number of clusters in each data vector for the
independent model (7), and the posterior distribution of the number of clusters among
all the data vectors for the hierarchical model (8). Both quantities are computed by
using the saved iterations of the posterior chains of the random partitions ρ and η.

4 Applications

4.1 Simulation Study

In this section we illustrate the performance of the proposed method via simulation stud-
ies. In particular, we employ two simulated scenarios inspired by the work of Finegold
and Drton (2014), for ease of comparison. Analogously, an edge (i, j) ∈ E is considered
“positive” if P((i, j) ∈ E|Y ) > ε, for a range of values of ε ∈ (0, 1). We compare results
across different models in terms of the receiver operating characteristic (ROC) curves,
by calculating true and false positive rates for each of 50 replicated datasets and then
computing the ROC curves by averaging over the 50 replicates.
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AR(1) graph, n = p = 25

In this simulation setting, n = 25 data vectors are simulated from model (4) with an
AR(1) graph structure on G, induced by a tri-diagonal precision matrix Ω where the
off-diagonal non-zero elements are set to -1, and the diagonal ones are set to 3 apart from
the two extremes that are set to 2. The mean vector μ is simulated as p independent
standard normal random variables. The divisors θ are set to recover different distribu-
tion structures, namely the multivariate Gaussian (θij = 1 for i = 1, . . . , n, j = 1, . . . , p),

the classical multivariate t-Student (θi1 = · · · = θip
iid∼ gamma(ν/2, ν/2), i = 1, . . . , n),

and the alternative multivariate t-Student (θ11, . . . , θpp
iid∼ gamma(ν/2, ν/2)). Where

required, ν = 3.

Here, we investigate performance of four different models: an independent Dirich-
let model (t-DP) obtained from (7) with κ ∼ gamma(1, 1) and σ = 0 (E(M) =
n4.31, sd(M) =

√
n1.56); an independent t-NGG model obtained from (7) with κ ∼

gamma(1, 1) and by setting σ = 0.1 (E(M) = n4.40, sd(M) =
√
n1.70); a t-HDP model

in the form of equation (8) with κ, κ0 ∼ gamma(1, 1) and σ = σ0 = 0 (E(M) = 4.50,
sd(M) = 1.56); and a t-HNGG model obtained from (8) with κ, κ0 ∼ gamma(1, 1) and
by setting (σ, σ0) = (0.5, 0.1) (E(M) = 7.67, sd(M) = 2.41). Alternatively, Beta hyper-
priors can be imposed on σ, σ0 (see our second simulation setting below and Argiento
et al. (2019) for a full sensitivity analysis on the parameters (κ, κ0, σ, σ0)).

Furthermore, in all models, we set the prior distribution for G to be uniform with
edge probability d = 0.05. We also set b = p and D = Ip for the prior distribution of Ω,
and ν = 3. For each replicated dataset, we ran an MCMC chain with 50,000 iterations,
of which the first 40,000 are discarded as burn-in period, and 5,000 are saved from the
remaining ones, after thinning, for estimation purposes.

In order to elucidate the properties of the clustering structure of the divisors induced
by our model, in Figure 1 we show the posterior distributions of the number of clusters
for each of the four fitted models, on one of the replicated datasets for each of the three
different scenarios. As expected, both the t-HDP and the t-HNGG model induce a lower
posterior mean number of clusters (in the natural clustering sense), when compared to
the number of clusters in each data vector induced by the independent t-DP and t-NGG
models. This is possible thanks to the ability of the hierarchical models to exploit the
sharing of information across data vectors. This effect is particularly clear when looking
at the Gaussian scenario, where the proposed model is able to effectively cluster the data
into one cluster with high posterior probability. On the other hand, in the alternative
multivariate t case it is clear how the tuning of the hyperparameters plays a crucial role
in the resulting partition structure. The classical t case shows that neither hierarchical
model accurately captures the original number of clusters, equal to 25. However, the
t-HNGG model outperforms the t-HDP model, allowing for higher posterior probability
on partitions characterized by a larger number of clusters.

Figure 2 shows the comparison of the ROC curves for the four different models,
computed by averaging over the 50 replicates, for each of the three simulation settings.
We can observe an agreement in the results for the Gaussian case, while the proposed
model performs better in the other scenarios, due to the presence of non-unitary divisors
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Figure 1: Simulation study, AR(1) graph: Posterior number of clusters, comparing the
four models under study (independent t-DP, independent t-NGG, t-HDP, and t-HNGG),
for data generated from a Gaussian distribution (first column), a Classical t distribution
(second column) and an Alternative t distribution (third column). Posterior means for
each data vector are reported for the independent t-DP and t-NGG models (first and
second rows, respectively), while posterior distributions are shown for the t-HDP and
the t-HNGG models (third and fourth rows).
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Figure 2: Simulation study, AR(1) graph: ROC curves comparing the independent t-DP
and t-NGG models with the t-HDP and the t-HNGG models, for data generated from
a Gaussian distribution, a Classical t distribution and an Alternative t distribution.

that can be captured by the flexible nonparametric structure. The t-HDP and t-HNGG

models show comparable performance. Furthermore, in Table 1 we report the L1, L2,
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Gaussian
t-DP t-NGG t-HDP t-HNGG

L1 15.5948 15.3678 3.3862 3.4717
L2 26.4608 26.2770 6.8677 6.8875
Max 9.2539 9.1041 1.1490 1.2120

Classical t
t-DP t-NGG t-HDP t-HNGG

L1 12.7382 13.0816 4.3448 4.3848
L2 16.6510 17.2454 9.0376 8.7959
Max 6.1404 6.3945 1.5965 1.6277

Alternative t
t-DP t-NGG t-HDP t-HNGG

L1 8.5563 9.2981 5.3283 5.2390
L2 11.3243 12.0485 9.0608 8.8924
Max 4.7448 5.3204 2.8309 2.7630

Table 1: Simulation study, AR(1) graph: Average distances between Ω̂θ and Ωθ.

and maximum modulus distances between the estimated and the simulated precision
matrices, averaged over the 50 replicates, for each of the three simulated scenarios. For
two matrices A,B ∈ R

p×p, these measures are defined as:

dL1(A,B) = max
1≤j≤p

p∑
i=1

|aij − bij |,

dL2(A,B) =

√√√√ p∑
i=1

p∑
j=1

(aij − bij)2, (19)

dmax(A,B) = max
ij

|aij − bij |.

The proposed model clearly outperforms the independent ones in all simulated scenarios.
Once again, the two hierarchical models yield comparable results. Additional details on
this analysis are reported in the Supplementary Materials, where the posterior estimates
of the precision and covariance matrices are compared for the different models and
simulation scenarios.

Contaminated data, n = 100 and p = 30

Next, we illustrate the behavior of our model on a more complex simulated data struc-
ture. In particular, we simulate n = 100 p-dimensional random vectors, with p = 30. In
this set of simulations, the graph structure G is produced by splitting the p-dimensional
graph into three random graphs of size 10 each, while the elements of the related pre-
cision matrix Ω are set to 3 on the diagonal (2 at the extremes), and to -1 for the
off-diagonal non-zero elements. Then, the values are multiplied by a constant factor,
yielding to a minimum eigenvalue of Ω bigger than 0.5. The divisor matrix θ is pro-
duced by working on its vectorized version, vec(θ). We sample nr, nc ∼ Poisson(10), and
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Figure 3: Simulation study, contaminated data: ROC curves, t-NGG vs t-HNGG models.

associate to nrnc randomly selected elements of vec(θ) a divisor ψm ∼ Unif[0.01, 0.2].

We repeat this process without replacement to produce 4 divisors, and set all the other

elements of vec(θ) to 1. For this example, we fit the t-NGG and t-HNGG models with

hyperpriors σ, σ0 ∼ Beta(2, 18), where the prior expectation of the Beta distribution is

equal to 0.1. The rest of the setting is unchanged from the previous simulation study.

Figure 3 shows the comparison of the ROC curves for our t-HNGG model vs the

independent counterpart, the t-NGG model. Curves were computed by averaging over

50 replicated datasets. We observe a clear improvement in the t-HNGG model fitting.

Figure 4 reports a summary of the posterior number of clusters as well as posterior dis-

tributions of σ and σ0, obtained under the two models. In particular, in the independent

model we show the posterior mean of the number of clusters in each data vector, while

the posterior distribution of the number of clusters M is reported for model (8). As ex-

pected, the number of clusters in each data vector obtained under the t-NGG is higher

than in the t-HNGG case, due to the lack of sharing of information. Furthermore, the

posterior mode of the number of clusters in the hierarchical model is very close to the

number of unique divisors used to simulate the data (i.e., 5 different divisors including

1). We also notice that the posterior distributions of σ and σ0 show a clear departure

from the Dirichlet process case (achieved when σ = σ0 = 0), supporting the choice of

the use of the NGG process as a building block for our model.

Finally, Table 2 reports the L1, L2, and maximum modulus distances between es-

timated and true precision matrices, averaged over the 50 replicates, and calculated

using formulas (19). We also add comparisons with methodologies available in the liter-

ature, i.e., the Graphical-Lasso (Meinshausen and Bühlmann, 2006) and the Bayesian

Graphical-Lasso (Wang, 2012). The proposed model outperforms both the standard

methods and the independent t-NGG model.
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Figure 4: Simulation study, contaminated data: t-NGG vs t-HNGG models. (a) Posterior
mean of the number of clusters in each data vector (t-NGG); (b,c) posterior distribution
of σ and σ0 (t-NGG); (d) posterior distribution of the number of clusters M (t-HNGG);
(e,f) posterior distribution of σ and σ0 (t-HNGG).

G-Lasso Bayes G-Lasso t-NGG t-HNGG
L1 6.9213 6.9089 6.6516 5.6287
L2 17.2031 18.3216 16.2151 8.6058
Max 3.2770 3.4513 3.1293 1.6143

Table 2: Simulation study, contaminated data: Average distances between Ω̂θ and Ωθ.

4.2 Case Study on Radiomics Features

Radiomics is the study of numerical features extracted from radiographic image data,
which can be used to quantitatively summarize tumor phenotypes (Lambin et al., 2012;
Gillies et al., 2016). Cellular diagnostic techniques such as biopsies are not only inva-
sive, but they also do not allow for a thorough or complete investigation of the entire
tumor environment, while manual review of images by radiologists is expensive, time-
consuming, and not always consistent across raters. Quantitative imaging features mined
with radiomics techniques can be used to get a more comprehensive picture of the entire
lesion environment without having to take multiple biopsies or depend on qualitative
visual assessments. It has been hypothesized that trends in radiomic features are re-
flective of complementary tumor characteristics at the molecular, cellular, and genetic
levels (Aerts et al., 2014).

Although the development of novel radiomic features is an active area of research
(Shoemaker et al., 2018), in this work, we focus on the so-called first and second order
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features, as these are the most commonly used in practice (Gillies et al., 2016). First
order features consider the collection of intensity values across all voxels in the image,
without regard for their spatial orientation, and may be referred to as histogram-based
or non-spatial. Examples of first order features include volume, intensity, mean, me-
dian, entropy, kurtosis. Second order features account for voxel position in addition to
intensity, and are also called spatial features. Examples of second order features in-
clude eccentricity, solidity, and texture features. These features are often computed on
multiple combinations of angle, distance, and number of grey levels, leading to a large
set of features that can be used in model building and data analysis. However, there
are challenges in the use of radiomics data for statistical modeling. Firstly, features
often exhibit departures from normality due to the heterogeneity of the tumor images
across patients. Secondly, they are often highly correlated. Such dependence is partially
structural in nature, as the features are all calculated on the same voxel data. To date,
most efforts at predictive modeling begin with filtering of the features by selecting a
single representative for each cluster of highly correlated features (Gillies et al., 2016)
or applying rank-based filtering methods across all features (Parmar et al., 2015) or
within each class of features (Aerts et al., 2014). The screened features are then used
as input to machine learning algorithms for prediction or classification such as random
forests, support vector machines, or regularized regression. There is a push in the field,
however, away from “black box” modeling. For example, there is an interest in estab-
lishing the genetic basis of the features (known as “radiogenomics”, see Gevaert et al.,
2014) and, more generally, in enhancing the interpretability of the features, models, and
results obtained (Morin et al., 2018). Investigation of the relationships between features
supports the search for links between radiomic features, genotypes, phenotypes, and
clinical outcomes in more complex statistical models (Stingo et al., 2013) aimed at not
only using imaging features for prediction, but understanding their interdependence and
the genomic and clinical factors that shape them.

In this case study, we focus on glioblastoma data collected as part of The Cancer
Imaging Atlas (TCIA), which provides imaging data on the same set of subjects whose
clinical and genomic data are available through The Cancer Genome Atlas (TCGA).
Specifically, we obtained radiomic features extracted from magnetic resonance imaging
(MRI) images by Bakas et al. (2017), which made a standard set of features publicly
available with the goal of providing reproducible and accessible data. This data set in-
cludes more than 700 radiomic features for 102 subjects diagnosed with glioblastoma
(GBM). The features provided include intensity, volumetric, morphologic, histogram-
based, and textural features, as well as spatial information and parameters extracted
from a glioma growth model (Hogea et al., 2008). Each subject has scans in the MRI
modalities of T1-weighted pre-contrast (T1), T1-weighted post-contrast (T1-Gd), T2,
and T2-Fluid-Attenuated Inversion Recovery (FLAIR). The MRI images were seg-
mented into the following regions: the enhancing part of the tumor core (ET), the
non-enhancing part of the tumor core (NET), and the peritumoral edema (ED), and
these segmentations were manually checked and approved by a neurologist.

To obtain a usable feature set for the proposed robust graphical model, we first
applied a log transformation to improve symmetry and reduce the impact of outlying
large values in the untransformed data. To account for negative values and to handle
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Figure 5: Case study on radiomics data: Trace plots of the parameters for the numbers
of edges and the number of clusters for the t-HNGG model.

the presence of zeros, the features with negative values were shifted up by the minimum
value, and 1 was added to each observation for all features before the log transformation
was applied. We then assessed the pairwise correlation between all the log-transformed
features. If a pair had absolute correlation greater than 0.8, we removed the feature
with a higher mean absolute correlation to all other features. In order to focus on
features with potential clinical importance, we obtained survival information from the
TCGA database, and filtered the features to include only those with p-value ≤ 0.05 in
a univariate Cox proportion hazard model for overall survival. This resulted in a set of
26 features for downstream analysis. The features that remain are fairly representative
of the different types of features provided in Bakas et al. (2017), as well as from the
different regions of the brain and MRI modalities. See Supplementary Materials for
detailed information on these features.

Analysis

The t-HNGG model was applied to the screened features. As in the first simulation
study, we set κ, κ0 ∼ gamma(1, 1) and (σ, σ0) = (0.5, 0.1), yielding E(M) = 8.83 and
sd(M) = 2.66. We ran an MCMC chain with 30,000 iterations, with 20,000 burn-in
iterations and thinned by 2. The edge inclusion was determined by thresholding the
posterior probability of inclusion (PPI) at 0.5, as in the median model of Barbieri et al.
(2004). Following Peterson et al. (2015), we computed the Bayesian false discovery
rate (FDR) for the selected model; the resulting value of 0.053 suggests that our edge
selection procedure is reasonable.

To assess convergence, we applied the Geweke diagnostic criteria (Geweke et al.,
1991) on four parameters: κ, κ0, the number of clusters, and the number of edges. The
test gave non-significant p-values for each of the parameters, indicating that the chains
converged. The trace plots for the number of clusters and the number of edges are given
in Figure 5. Summaries of the posterior means of the number of clusters in each data
vector, the number of edges, and the number of clusters are given in Figure 6.

For comparison, we applied the graphical lasso (GLasso) and the Bayesian graphical
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Figure 6: Case study on radiomics data: (a) Posterior mean of the number of clusters
in each data vector; (b) Posterior distribution of the number of edges; (c) Posterior
distribution of the number of clusters.

lasso (BGLasso) methods. The regularization parameter for the GLasso was chosen as
0.45 by minimizing the Bayesian information criterion (BIC), and the gamma prior for
the regularization parameter of the BGLasso was set such that the prior mean was
also 0.45, with shape = 4.5 and scale = 1/10. The BGLasso was run for 13,000 total
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Figure 7: Case study on radiomics data: The resulting graph from the t-HNGG model
is depicted in plots (a)-(c). In each plot, colors are used to indicate class membership
of the graph nodes, according to different characteristics of the features, i.e, (a) feature
type, (b) feature region, and (c) imaging modality.

iterations, with a burn in of 3,000. The sampled precision matrices for this method are
not sparse, so a threshold of 0.1 on the absolute value of the entries in the posterior
mean of the precision matrix was chosen to create the adjacency matrix.

Results

The graph inferred by the proposed t-HNGG method is presented in Figure 7, with
three different color schemes to indicate class membership of the nodes by feature type,
feature region, and imaging modality. In this illustration, we see that features from the
same type and modality are more likely to be identified as connected, while there are
fewer links dictated by region: this could imply that it is more critical to have features
divided over separate regions of the tumor than it is to have a large number of features
or to have scans in multiple modalities, as the former is more likely to give independent
information from the different features.

Regarding the comparison to other methods, GLasso and BGLasso produced very
similar graphs, as is to be expected, and these had fewer edges overall than the graph
inferred via the t-HNGG model, although there were a couple of connections selected
under the lasso methods that were not identified in the t-HNGG model. Table 3 reports
edge similarities between the three methods. In all three graphs, edges are captured that
we expect to see, such as adjacent bins in various histograms, e.g., there is a connection
between bin 1 and bin 2 of the histogram for the T2 modality of the NET region.
The busyness features over three different modalities are connected in all three models.
However, the two GLasso models only select couplets and triplets, and none of these
are particularly surprising, linking together similar features that could be considered
adjacent in a qualitative sense. As one would expect, reducing the PPI threshold in the
t-HNGG model increases the number of selected edges, while increasing this threshold
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GL BGL t-HNGG
GL 7 7 5

BGL 8 6
t-HNGG 19

Table 3: Case study on radiomics data: Number of edges in each of the graphs inferred
by GLasso, BGLasso and the t-HNGG model, and number of shared edges between
pairs of graphs.

Figure 8: Case study on radiomics data: A histogram of the data for the 9th feature,
solidity of the NET region.

reduces the number of selections. We found, however, that the overlapping edges between

the t-HNGG and the graphs inferred with GLasso and BGLasso remained consistent

across the range of PPI thresholds between 0.2 and 0.9.

An interesting edge captured by the t-HNGG model that is not captured by the other

models is one between a histogram feature and a busyness texture feature. Histogram

features display only the first-order information about the pixels and are not often used

to infer any information about the adjacency or texture of the images. However, this

particular histogram feature is of the first bin of the histogram, so this could suggest

that heavier tailed pixel distributions are harbingers of busyness. The end bin of the

histogram was also found to be a significant feature for glioma classification by Cho

and Park (2017). Further, there are no edges in the graphs inferred by the LASSO-type

models that connect the solidity feature to any other feature, unlike in the t-HNGG

graph. Failure to recover edges might be attributed to the non-normal distribution

shown by this feature, as it can be seen in Figure 8, showing once again the power of

the t-HNGG model to handle outliers. Edges and dependencies, and lack thereof, can be

used to inform more complex models for classification and characterization, to inform

radiologists and clinicians as they begin to utilize radiomics, and to enhance the general

interpretation as statisticians move away from the “black box models” often used on

these complicated feature sets.
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5 Conclusion

In this paper, we have proposed a class of robust Bayesian graphical models based on
a nonparametric hierarchical prior construction that allows for flexible deviations from
Gaussianity in the distribution of the data. The proposed model is an extension of the
t-Dirichlet model presented in Finegold and Drton (2014), where departure from Gaus-
sianity is accounted for by including suitable latent variables (divisors) in the sampling
model, to allow for skewness. In our proposed construction, the law of the divisors is
described by a hierarchical normalised completely random measure. In particular, in
this paper we have focused on a hierarchical NGG process, yielding to what we have
called a t-HNGG model. The advantage of this choice is twofold: on one side, by ex-
tending the characterization to the NGG process, we induce a more flexible clustering
structure when compared to the Dirichlet process case; on the other side, by allowing for
an additional level of hierarchy in the nonparametric prior setting, we achieve sharing
of information across the data sample. For posterior inference, we have implemented
a suitable MCMC algorithm, which is built upon the generalized Chinese restaurant
franchise metaphor to exploit dependency among the components of each data vector
(i.e,. customers seated in the same restaurant).

We have illustrated performances of our proposed methodology on simulated data
and on a case study on numerical features extracted from radiographic image data
which can be used to quantitatively summarize tumor phenotypes, and that are known
to show non-Gaussian characteristics. On simulated data, we have shown good recovery
of the main features of the data, such as the graph structure and the precision ma-
trix. Additionally, a comparison with existing methodologies such as the GLasso and
the Bayesian GLasso has shown how these methods are outperformed by our proposed
model in the presence of non-Gaussian data. On the real data, our model has resulted in
a less sparse graph than those inferred by GLasso and Bayesian GLasso. Furthermore,
the inferred relationships highlighted by our estimated graph have revealed interesting
interpretation in terms of important characteristics of the data. These relationships and
dependencies, and lack thereof, can provide valuable information for follow-up classifi-
cations and characterization of radiomics data.
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applications presented in the paper. Details on the features analysed in the radiomics
case study are reported.
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