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Abstract
The successful development and implementation of precision immuno-oncology
therapies requires a deeper understanding of the immune architecture at a
patient level. T-cell receptor (TCR) repertoire sequencing is a relatively new tech-
nology that enables monitoring of T-cells, a subset of immune cells that play a
central role in modulating immune response. These immunologic relationships
are complex and are governed by various distributional aspects of an individual
patient’s tumor profile.We propose BayesianQUANTIle regression for hierarchi-
cal COvariates (QUANTICO) that allows simultaneous modeling of hierarchical
relationships between multilevel covariates, conducts explicit variable selection,
estimates quantile and patient-specific coefficient effects, to induce individ-
ualized inference. We show QUANTICO outperforms existing approaches in
multiple simulation scenarios. We demonstrate the utility of QUANTICO to
investigate the effect of TCR variables on immune response in a cohort of lung
cancer patients. At population level, our analyses reveal the mechanistic role of
T-cell proportion on the immune cell abundance,with tumormutation burden as
an important factor modulating this relationship. At a patient level, we find sev-
eral outlier patients based on their quantile-specific coefficient functions, who
have higher mutational rates and different smoking history.
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1 INTRODUCTION

Immunotherapy is a class of cancer treatments that
fosters the patient’s own immune system to fight cancer
(Waldman et al., 2020). Although immunotherapies
represent a major breakthrough in cancer treatment,
offering immense clinical benefit to some patients with
a lower toxicity burden than chemotherapy, resistance
to immunotherapy remains a major challenge (Walsh
& Soo, 2020). Tumors use various strategies to protect
themselves from antitumor immunity which might vary
across patients. Antitumor immune responses might
also be mediated by several different mechanisms,
driven by patient-specific immune architecture. Cancer
immunotherapy therefore needs to be personalized to
recognize patient-specific rate-limiting steps and employ
strategies for overcoming these hurdles (Kakimi et al.,
2017).
Identifying patient-specific influences on immune

response requires integrating measures of immune activ-
ity and characterizing their dependence on upstream
factors. Here, we consider a setting where the response
variable 𝑌 is a continuous measure of immune activation,
such as the abundance of CD8+ T-cells, which play a
key role in directly killing cancer cells. The abundance
of these cells is driven by “Level 1” covariates 𝑇1, … , 𝑇𝑝,
which represent measures of upstream immune activity.
Here we take these Level 1 covariates to be features
derived from T-cell receptor (TCR) sequencing, which
capture activity of the adaptive immune system. The
TCR repertoire depends, in turn on “Level 2” influences
further upstream, such as antigens that the T-cells have
been exposed to. This includes tumor-specific antigens,
which are abnormal proteins produced by tumor cells
due to DNA mutations in the cell (see Figure 1A). We
consider mutational variables𝑀1,… ,𝑀𝑔 as (hierarchical)
Level 2 covariates in our model. Our goal is to develop
a hierarchical modeling approach providing insights
into the mechanistic relationships among these variables
wherein the measures of immune activity may depend on
the upstream factors in a complex nonlinear fashion.
We now briefly review prior work addressing the chal-

lenge of flexible regression modeling, which lays the
foundation for the proposed approach. In order to esti-
mate the subject-specific effect of variables on the outcome
variable, Hastie and Tibshirani (1993) proposed the vary-
ing coefficientmodel (VCM). Since then, several variations
of the VCM have been proposed (Fan & Zhang, 1999; Park
et al., 2013), including approaches that incorporate shrink-
age in estimation (Wang & Xia, 2009). However, existing
VCM methods do not enable explicit multilevel variable
selection, which is crucial in settings such as ours where

there are a large number of explanatory variables within
a hierarchy. Although VCMs allow more flexible coeffi-
cients than traditional regression models, they are still
focused on estimation of themean of the response variable.
If one is interested in obtaining a comprehensive picture
of the effect of the predictors on the response variable,
mean regression might be insufficient. For example, if the
dependent variable is multimodal or skewed, estimating
the mean effect might be misleading. In such scenarios,
median or more generally, quantile regression may be
more appropriate (Koenkar & Bassett, 1978). Specifically, if
the interest lies specifically at higher or lower quantiles of
the response variable, quantile regression is more suitable.
Over the last couple of decades,methodological develop-

ments in quantile regression have been proposed in both
the classical and Bayesian frameworks (Das & Ghosal,
2018; Kottas & Gelfand, 2001; Reich, 2012; Yu & Moyeed,
2001). Several articles emerged in the literature integrat-
ing quantile regression with VCMs (Honda, 2004; Kim,
2007; Tang &Wang, 2005). In Bayesian settings, the litera-
ture on VCMs is relatively sparse (Biller & Fahrmeir, 2001),
and these proposals do not address quantile regression.
Recently, Ni et al. (2018) proposed a VCM incorporating
variable selection in the Bayesian framework, which was
applied to characterize the relationship of cancer patient
outcomes to proteomics and genomics data. Although
there are approaches for Bayesian variable selection in
multilevel models that assume linear covariate effects
(Koslovsky et al., 2020; Stingo et al., 2013), to the best
of our knowledge, no prior work has considered variable
selection in VCM for quantile regression.
In order to understand the subject-specific effect of hier-

archically structured covariates on the outcome variable
we propose Bayesian QUANTIle regression for hierar-
chical COvariates (QUANTICO), where the regression
coefficients are allowed to differ across patients for any
given quantile level of the outcome variable. Among the
hierarchically structured (multilevel) covariates, we con-
sider the Level 1 covariates have a direct effect on the
response variable, modulated by Level 2 covariates. Since
we expect the covariate effects to be heterogeneous across
patients, we want to perform individualized inference as
well as allowing variable selection for both Level 1 and
Level 2 covariates. As we also expect the effects to be dif-
ferent at different parts of the distribution of the response
variable, we model across the quantiles, rather than only
considering fixed moments (e.g., mean). This provides a
richer, broader, and more flexible exploration of the rela-
tionship structure.We show an illustration of the proposed
model in Figure 1B with 𝑛 subjects, 𝑝 Level 1 and 𝑔 Level
2 covariates. As shown in the figure, the selection of Level
1 and 2 covariates is allowed to vary across quantiles. Due
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DAS et al. 3

F IGURE 1 (A) Illustration of how mutation within tumor cells and T-cell receptor (TCR) repertoire impact immune cells. (B)
Illustration of the proposed model for a scenario with 𝑛 patients, 𝑔mutation variables𝑀1,… ,𝑀𝑔, and 𝑝 TCR variables 𝑇1, … , 𝑇𝑝 . The
response variable is denoted 𝑌1, … , 𝑌𝑛. Different colored lines describe the estimated dependency structure at different quantile levels
denoted by (𝜏1, 𝜏2, … 𝜏𝐿). (C) Directed acyclic graph (DAG) of the QUANTICO model. Parameters are shown in circles and the observed data
are shown in boxes

to the presence of two levels of covariates and due to the
fact that the effect of Level 2 covariates is induced on the
output variable via its effect on Level 1 covariates, we call
it a hierarchical model.
The rest of the paper is organized as follows: Sec-

tion 2 describes the QUANTICO modeling framework,
with a discussion of the priors in Section 3. We then
describe the computational algorithm for performing pos-
terior inference (Section 4), and provide a simulation study
comparing the performance of the proposed method with
existing alternatives (Section 5). In Section 6, we apply
QUANTICO to characterize the relationship of the CD8
immunemarker with TCR andmutation variables for lung
cancer patients. We conclude with a brief discussion and
possible extensions of our methodology in Section 7.

2 QUANTICOMODEL

In Section 2.1, we introduce quantile regression in a VCM
setting with two levels of covariates. In Section 2.2, we
describe variable selection procedures on Level 1 and Level
2 covariates. Section 2.3 summarizes the likelihood con-
structions.

2.1 Varying sparsity quantile regression
model

Suppose there are 𝑛 subjects whose response variables
(immune marker values) are denoted by 𝑌 = (𝑌1, … , 𝑌𝑛)

and 𝑝 Level 1 covariates (TCR variables) 𝐓 = (𝑇1, … , 𝑇𝑝).
For the 𝑖th subject, the set of Level 1 covariates are denoted
as 𝐓𝑖 = (𝑇𝑖1, … , 𝑇𝑖𝑝) for 𝑖 = 1, … , 𝑛. We assume a linear
relationship between the response variable𝑌 and the Level
1 covariates 𝐓. Now, for the 𝑗th Level 1 covariate 𝑇𝑗 , con-
sider a set of 𝑞𝑗 Level 2 covariates (mutation variables)
𝐌𝑗 = (𝑀𝑗1, … ,𝑀𝑗𝑞𝑗 ) for 𝑗 = 1,… , 𝑝. A Level 2 covariate
induces its effect on the response variable 𝑌 through its
effect on the 𝑗th Level 1 covariate, that is,𝑇𝑗 for 𝑗 = 1,… , 𝑝.
Note that the same Level 2 covariate may influence multi-
ple Level 1 covariates, and that the number 𝑞𝑗 of Level 2
covariates can be different for each Level 1 covariate. How-
ever, in the particular case study considered in this paper,
the same set of Level 2 covariates (mutation variables) are
considered for all Level 1 covariates (TCR variables). For
the 𝑖th subject, the set of Level 2 covariates is denoted
by 𝐌𝑖𝑗 = (𝑀𝑖𝑗1, … ,𝑀𝑖𝑗𝑞𝑗 ) for 𝑖 = 1, … , 𝑛, 𝑗 = 1,… , 𝑝. The
total number of possible effects for the𝑀 variables which
can be identified as a part of the coefficient of the 𝑇
variables is given by

∑𝑝

𝑗=1 𝑞𝑗 .
Instead of estimating the effect of 𝑇 and𝑀 on the mean

of the response variable, our interest lies in estimating
their relationship for different quantile levels. To obtain
the quantile-specific estimates, we assume the effect of
the covariates on 𝑌 to be dependent on the quantile level
𝜏(0 < 𝜏 < 1). Let

𝑄𝑌(𝜏|𝑇,𝑀) = inf{𝑞 ∶ 𝑃(𝑌 ≤ 𝑞|𝐓 = 𝑇,𝐌 = 𝑀) ≥ 𝜏}, (1)
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4 DAS et al.

denote the 𝜏th conditional quantile (0 < 𝜏 < 1) of the
response variable 𝑌 at 𝐓 = 𝑇,𝐌 = 𝑀. The relation
between the response and the covariates at the 𝜏th quantile
is given by

𝑄𝑌𝑖 (𝜏|𝑇,𝑀) = 𝛽0(𝜏,𝐌𝑖0) +

𝑝∑
𝑗=1

𝑇𝑖𝑗𝛽𝑗(𝜏,𝐌𝑖𝑗), (2)

where𝐌𝑖0 denotes the values of all distinct Level 2 covari-
ates for the 𝑖th subject, and𝐌𝑖𝑗 denotes the values of the
Level 2 covariates corresponding to the 𝑗th Level 1 covari-
ate for 𝑖th subject. This equation shows the dependence
structure of the 𝜏th quantile of the dependent variable 𝑌
for the 𝑖th patient on the corresponding Level 1 (𝑇) and
Level 2 (𝑀) covariates. Note that for each Level 1 covari-
ate 𝑇𝑗 we have 𝑞𝑗 many distinct 𝑀 variables, but since
two different Level 1 covariates may share the same 𝑀
variables, the

∑𝑝

𝑗=1 𝑞𝑗 many 𝑀 variables may not be dis-
tinct. Also note that both the intercept and slope terms are
patient-specific (indexed by 𝑖). In order to incorporate the
effect of the𝑀 variables on the dependent variable, at any
given quantile level 𝜏, all the slope terms (of 𝑇) are semi-
parametric functions of the 𝑀 variables and likewise the
intercept is a semiparametric function of the distinct 𝑀
variables. The explicit structure of 𝛽𝑗(𝜏,𝐌𝑖𝑗) is discussed
in Section 2.2.

2.2 Varying-sparsity coefficient
modeling and selection

For any given quantile level 𝜏, we consider 𝛽𝑗(𝜏,𝐌𝑖𝑗) as
a smooth function of 𝐌𝑖𝑗 . The main motivation for tak-
ing 𝛽𝑗(𝜏,𝐌𝑖𝑗) as a smooth function of 𝐌𝑖𝑗 is so that the
coefficients of any Level 1 covariate (𝑇𝑗) for two differ-
ent subjects are similar if the values of the corresponding
Level 2 covariates (𝐌⋅𝑗) are similar as well. Since for any
Level 1 covariate, “neighboring” patients (with respect to
the𝑀 variables) are expected to have a similar slope coef-
ficient, this assumption enables borrowing of strength,
increasing our power to estimate the subject-specific slope
coefficients. For modeling the slope and intercept terms,
we use spline functions due to their flexible construction,
interpretation, and the ease of incorporating penalization.
At any given quantile 𝜏 (0 < 𝜏 < 1), the slope and

the intercept terms are estimated as the sum of spline
functions given by

𝛽𝑗(𝜏,𝐌𝑖𝑗) =

𝑞𝑗∑
𝑘=1

𝑓
(𝜏)
𝑗𝑘
(𝑀𝑖𝑗𝑘), 𝑗 = 0,…𝑝, (3)

where 𝛽0(𝜏,𝐌𝑖0) denotes the (global) intercept term, and
𝛽𝑗(𝜏,𝐌𝑖𝑗) for 𝑗 ≥ 1 denotes the slope term. The spline
components 𝑓(𝜏)

𝑗𝑘
(𝑀𝑖𝑗𝑘) = 𝐒𝐢𝐣𝐤𝜶

𝜏
𝑗𝑘

where 𝐒𝐢𝐣𝐤 denotes the
cubic B-spline bases for 𝑀𝑖𝑗𝑘 and 𝜶𝜏

𝑗𝑘
denotes the cor-

responding spline coefficient. Note that we consider the
intercept term to be a function of all Level 2 covariates.
The number of knots for the B-spline bases is taken to be
sufficiently large to capture the nonlinear features. We do
not perform knot selection; rather equally spaced quan-
tile knots on each of the Level 2 covariates are considered.
Smoothing is induced via regularization and overfitting is
controlled through a roughness penalty on the spline coef-
ficients, details of which are provided in Section A of the
Supporting Information.
In Equation (3), 𝛽𝑗(𝜏, ⋅) is modeled as a sum of a set of

smooth spline functions. As discussed in Section 3, we con-
struct a prior on the spline coefficients, so that, for any
given 𝑇 variable, the linear and nonlinear effects corre-
sponding to all associated 𝑀 variables can be identified.
Under these assumptions, the estimated coefficients of the
𝑇 variables would be zero if both the linear and nonlin-
ear effects of all associated𝑀 variables are zero. However,
for a larger number of𝑀 variables, it is unlikely that both
the linear and nonlinear effects of all 𝑀 variables corre-
sponding to any 𝑇 variable are zero. If the number of Level
1 covariates (𝑇 variables) is also large, it becomes crucial
to perform variable selection on them to enforce sparsity
and interpretability.
In order to incorporate sparsity on the Level 1 covariates,

one naïve approach could be to use discrete mixture priors
such as spike-and-slab (George & McCulloch, 1993). But,
since we consider the selection of the 𝑇 covariates to be
patient-specific, to apply spike-and-slab prior, we would
need to assign a latent indicator for each coefficient for
every patient. This approach would therefore substantially
increase the number of parameters in the model. In addi-
tion, as discussed below, the spike-and-slab prior is not
well-suited for functional regression coefficients. Instead,
we rely on a Bayesian hard-thresholding approach where
we truncate the coefficients with smaller absolute val-
ues to zeros so that only the important Level 1 variables
are selected. For truncation, we take the Bayesian hard-
thresholding function ℎ(𝑧, 𝑡) = 𝑧𝐼(|𝑧| > 𝑡) to threshold the
slope coefficients of the 𝑇 variables. We modify the values
of the slope coefficients given in Equation (3) as

𝛽𝑗(𝜏,𝐌𝑖𝑗) = ℎ

( 𝑞𝑗∑
𝑘=1

𝑓
(𝜏)
𝑗𝑘
(𝑀𝑖𝑗𝑘), 𝜆𝑗

)
,

where 𝜆𝑗 is a “minimum effect size” for the effect of 𝑇𝑗 to
be considered as nonzero.Our use of the hard-thresholding
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DAS et al. 5

prior instead of the more commonly adopted Bayesian
spike-and-slab prior is due to the functional nature of
the regression coefficients 𝛽𝑗(⋅). The hard-thresholding
prior allows selection at any given input whereas spike-
and-slab is not able to handle an infinite-dimensional
object. Another advantage of using the Bayesian hard-
thresholding is that this “minimum effect size” can be set
at any reasonable value by the user based on intuition or
prior experience, or estimated by assigning a prior (as we
discuss in the next section).Note that nohard-thresholding
is performed (or needed) on the intercept term as ourmain
interest is to perform variable selection among Level 1
covariates only.

2.3 Likelihood construction

We now describe the likelihood construction the QUAN-
TICO model, assimilating the above constructs, for any
fixed quantile level of interest 𝜏. We shorten the notation
𝛽0(𝜏,𝐌𝑖0) and 𝛽𝑗(𝜏,𝐌𝑖𝑗) in Equation (2) to 𝛽(𝑖)0 (𝜏) and
𝛽
(𝑖)
𝑗
(𝜏), respectively, for 𝑖 = 1, … , 𝑛, and 𝑗 = 1,… , 𝑝. Fol-

lowing the principle of linear quantile regression (Koenkar
& Bassett, 1978), 𝛽(𝑖)0 (𝜏) and 𝛽

(𝑖)
𝑗
(𝜏) can be estimated by

minimizing the loss function

𝑉(𝜏) =

𝑛∑
𝑖=1

𝜓𝜏

(
𝑦𝑖 −

𝑝∑
𝑗=0

𝛽
(𝑖)
𝑗
(𝜏)𝑇𝑖𝑗

)
,

where 𝑇𝑖0 = 1 and 𝜓𝜏(𝑡) is the check function given by
𝜓𝜏(𝑡) = 𝜏𝑡, if 𝑡 ≥ 0, or 𝜓𝜏(𝑡) = −(1 − 𝜏)𝑡, if 𝑡 < 0. Now
consider the model

𝑦𝑖 =

𝑝∑
𝑗=0

𝛽
(𝑖)
𝑗
(𝜏)𝑇𝑖𝑗 + 𝑢𝑖, 𝑖 = 1, … , 𝑛,

where 𝑢𝑖 follows the i.i.d. asymmetric Laplace distribu-
tion with density 𝑓(𝑢|𝜏) = 𝜏(1 − 𝜏) exp[−𝜓𝜏(𝑢)]. Hence,
the joint density of 𝑦1, … , 𝑦𝑛 is given by

𝑓(𝑦1, … , 𝑦𝑛|𝜏) = 𝜏𝑛(1 − 𝜏)𝑛 exp
[
−

𝑛∑
𝑖=1

𝜓𝜏

(
𝑦𝑖 −

𝑝∑
𝑗=0

𝛽
(𝑖)
𝑗 (𝜏)𝑇𝑖𝑗

)]
.

FollowingYu andMoyeed (2001), for any given 𝜏, minimiz-
ing 𝑉(𝜏) with respect to 𝛽(𝑖)

𝑗
(𝜏)’s for 𝑗 = 1,… , 𝑝 is equiva-

lent to maximizing 𝑓(𝑢1, … , 𝑢𝑛|𝜏). Hence, to estimate the
𝜏th quantile, the likelihood is given by

𝐿𝜏({𝛽
(𝑖)
0 , … , 𝛽

(𝑖)
𝑝 }

𝑛
𝑖=1|𝑌, 𝑇,𝑀) = 𝜏𝑛(1 − 𝜏)𝑛 exp

[
−

𝑛∑
𝑖=1

𝜓𝜏

(
𝑦𝑖 −

𝑝∑
𝑗=0

𝛽
(𝑖)
𝑗 (𝜏)𝑇𝑖𝑗

)]
.

3 PRIOR FORMULATIONS

Note that the intercept and the slope terms (𝛽(𝑖)0 (𝜏) and
𝛽
(𝑖)
𝑗
(𝜏), respectively) are functions of the spline coefficients

𝜶𝜏
𝑗𝑘
. In this section, we describe the prior on the spline

coefficients 𝜶𝜏
𝑗𝑘
, the prior used to induce selection of Level

2 covariates, and the prior assigned to the thresholding
parameter 𝜆𝑗 to select Level 1 covariates.

Prior on spline coefficients

We propose the use of a penalized spline in order to
have a flexible but smooth fit. Specifically, we choose a
large number of knots placed at equally spaced quan-
tiles of the covariates so that the local features can be
captured, and penalize the roughness of 𝑓𝜏

𝑗𝑘
(⋅) through

an improper Gaussian random walk prior on 𝜶𝜏
𝑗𝑘

given
by 𝜶𝜏

𝑗𝑘
∼ 𝑁(𝟎, 𝑠𝐊−). The penalty matrix 𝐊 is constructed

from the second-order differences of adjacent spline coef-
ficients, which essentially penalizes the second derivatives
of 𝑓𝜏

𝑗𝑘
(⋅). Larger value of 𝑠 leads to a smoother fit, while

smaller value of 𝑠 leads to an irregular fit (Ni et al., 2015).
Note that Equation (3) is not identifiable since adding some
quantity to any term of the summation and deducting the
same quantity from any other term would yield the same
summation value. In addition, 𝐊 is singular and therefore
no penalty is imposed on the linear and constant trend of
𝑓𝜏
𝑗𝑘
(⋅) (i.e., the null space of 𝑲). In order to alleviate these

two issues, we consider a similar approach as in Scheipl
et al. (2012) and transform the spline bases into orthonor-
mal bases. Let 𝐒𝑗𝑘 = (𝐒1𝑗𝑘, … , 𝐒𝑛𝑗𝑘). For a given quantile 𝜏,
consider the spectral decomposition of the covariance of
𝐒𝑗𝑘𝛂

(𝜏)
𝑗𝑘

cov(𝐒𝑗𝑘𝜶
(𝜏)

𝑗𝑘
) = 𝑠𝐒𝑗𝑘𝐊

−𝐒𝑇
𝑗𝑘
=
[
𝐔𝑗𝑘 ∗

][𝐃𝑗𝑘 𝟎

𝟎 𝟎

][
𝐔𝑗𝑘 ∗

]𝑇
,

(4)
where 𝐔𝑗𝑘 is the orthonormal matrix of the eigenvectors
corresponding to the positive eigenvalues in the diagonal

matrix 𝐃𝑗𝑘. Let 𝐒∗𝑗𝑘 = 𝐔𝑗𝑘𝐃
1

2

𝑗𝑘
. Now if we assume an inde-

pendent proper prior 𝜶∗𝜏
𝑗𝑘
∼ 𝑁(𝟎, 𝜎2𝐈), then the nonlinear

part of 𝑓𝑗𝑘(⋅) can be parameterized by 𝐒∗𝑗𝑘𝜶
∗𝜏
𝑗𝑘

which has
a proper distribution proportional to the distribution of
the original improper prior 𝐒𝑗𝑘𝜶𝜏𝑗𝑘. Suppose we denote the
effect size of the 𝑗th covariate for the 𝑖th subject before
applying the hard-thresholding by 𝛽∗

𝑗
(𝜏,𝐌𝑖𝑗). Thus the full

reparameterization of 𝛽∗
𝑗
(𝜏,𝐌𝑖𝑗) is now given by

𝛽∗𝑗 (𝜏,𝐌𝑖𝑗) =

𝑞𝑗∑
𝑘=1

𝑓(𝜏)
𝑗𝑘
(𝑀𝑖𝑗𝑘) =

𝑞𝑗∑
𝑘=1

𝐒∗
𝑗𝑘
𝜶∗𝜏
𝑗𝑘
+

𝑞𝑗∑
𝑘=1

𝑀𝑖𝑗𝑘𝛼
0𝜏
𝑗𝑘
+ 𝛼𝜏𝑗 , (5)
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6 DAS et al.

where 𝛼𝜏
𝑗
is the global constant term absorbing all constant

terms from splines. This parameterization adds the flexibil-
ity to separately shrink and estimate the linear, nonlinear,
and constant effects of the Level 2 (𝑀) variables on the
coefficients of the Level 1 (𝑇) variables. In order to make
the proposed method computationally more efficient, we
only consider the first several eigenvectors which explain
at least 99.5% of the variation, a similar idea as in prin-
cipal component analysis. In order to induce sparsity on
the linear, nonlinear, and the constant effects, we consider
a parameter-expanded normal mixture of inverse gamma
(peNMIG) prior on each 𝜶∗𝜏

𝑗𝑘
, 𝛼0𝜏
𝑗𝑘
, and 𝛼𝜏

𝑗
separately. We

opt for the peNMIG prior since it is known to provide a
more efficient Markov chain Monte Carlo (MCMC) algo-
rithm compared to traditional spike-and-slab priors given
the multivariate nature of the spline coefficients (Scheipl
et al., 2012). peNMIGmultiplicatively expands𝜶∗𝜏

𝑗𝑘
as𝜶∗𝜏

𝑗𝑘
=

𝜂𝑗𝑘𝝃𝑗𝑘, where 𝜂𝑗𝑘 is a scalar parameter and 𝝃𝑗𝑘 is a vec-
tor of the same length as 𝜶∗𝜏

𝑗𝑘
. Each of 𝛼0𝜏

𝑗𝑘
and 𝛼𝜏

𝑗
is also

expanded in a similar fashion. A brief discussion on the
choice of such a prior is provided in Section A of the
Supporting Information.

Priors for selection of Level 2 covariates

Since the Level 2 coefficients are at population level, we
can induce explicit selection using a spike-and-slab prior
on 𝜂𝑗𝑘,

𝜂𝑗𝑘 ∼ 𝛾𝑗𝑘𝑁(0, 𝑡𝑗𝑘) + (1 − 𝛾𝑗𝑘)𝑁(0, 𝑣0𝑡𝑗𝑘), (6)

where 𝛾𝑗𝑘 ∼ 𝐵𝑒𝑟(𝜌) and 𝑣0 is a fixed very small quantity
close to zero. The selection of 𝜂𝑗𝑘 as a nonzero effect is
indicated by the binary variable 𝛾𝑗𝑘, and thus 𝛾𝑗𝑘 indicates
the selection of 𝜶∗𝜏

𝑗𝑘
vector due to the multiplicative con-

struction. In terms of interpretation, the binary variable
𝛾𝑗𝑘 = 1 indicates that𝑀𝑖𝑗𝑘 has nonzero nonlinear effect on
𝑇𝑖𝑗 . Similarly, in the expansion of 𝛼0𝜏𝑗𝑘 and 𝛼

𝜏
𝑗
, 𝛾𝑗𝑘 = 1 indi-

cates the presence of linear and constant effects of𝑀𝑖𝑗𝑘 on
𝑇𝑖𝑗 , respectively. Thus, based on the estimated values of 𝛾𝑗𝑘
in the expansion of 𝜶∗𝜏

𝑗𝑘
and 𝛼0𝜏

𝑗𝑘
, we can identify the pres-

ence of nonlinear and linear effects of Level 2 covariates,
respectively. In essence, this construction allows the flexi-
bility of considering only linear or only nonlinear or joint
effects simultaneously. We choose conjugate hyperpriors
for 𝑡𝑗𝑘 and 𝜌, 𝑡𝑗𝑘 ∼ 𝐼𝐺(𝑎𝑡, 𝑏𝑡) and 𝜌 ∼ 𝐵𝑒𝑡𝑎(𝑎𝜌, 𝑏𝜌). As the
number of Level 2 covariates increases, this Beta–Bernoulli
prior automatically corrects for multiplicity by making the
posterior distribution of 𝜌 concentrated at small values
near 0 (Scott & Berger, 2010). We assign a mixture nor-
mal prior on each element of the vector 𝝃𝑗𝑘 = (𝜉

(𝑖)
𝑗𝑘
), 𝜉(𝑖)

𝑗𝑘
∼

1

2
𝑁(1, 1) +

1

2
𝑁(−1, 1). The structure of this assumed prior

discourages small effects. In a similar fashion, peNMIG
priors are assumed for 𝛼0𝜏

𝑗𝑘
and 𝛼𝜏

𝑗
as well.

Prior on hard-thresholding for selection of
Level 1 covariates

As mentioned before, to select the Level 1 covariates, we
adopt a hard-thresholding approachwherewe truncate the
nonzero coefficient of the 𝑗th Level 1 covariate with abso-
lute value less than 𝜆𝑗 to 0. Since sparsity is induced while
estimating the linear, nonlinear, and constant effects of the
Level 2 covariates on the Level 1 covariates, it is possible
that 𝛽𝑗(⋅) = 0 even before hard-thresholding (when 𝜶∗𝜏

𝑗𝑘
,

𝛼0𝜏
𝑗𝑘
, and𝛼𝜏

𝑗
are zero for all 𝑘 = 1,… , 𝑞𝑗). In that case, 𝜆𝑗 can

take any value without affecting the resulting estimates.
To resolve this identifiability issue, we take 𝜆𝑗 = 𝜆 for 𝑗 =
1,… , 𝑝. In the presence of at least one nonzero 𝛽𝑗(⋅), 𝜆
is now well-defined. We put a gamma prior on 𝜆, 𝜆 ∼
𝐺𝑎𝑚𝑚𝑎(𝑎𝜆, 𝑏𝜆). The values of the shape and scale param-
eters (𝑎𝜆, 𝑏𝜆) can be taken so that the mean of the gamma
distribution (i.e., 𝑎𝜆𝑏𝜆) is equal to the desired cutoff (based
on intuition or prior experience). A brief discussion onhow
to choose the parameters of the gamma prior is provided
in Supporting Information (Section A). Note that a more
conventional variable selection prior, the spike-and-slab, is
often used for finite-dimensional parametric models. We
choose to use the random hard-thresholding because it
is more suitable for infinite-dimensional functional selec-
tion, as discussed in Section 2.2. A schematic illustration
of the proposed model and its key parameters is given in
Figure 1C.

4 MCMC AND POSTERIOR
INFERENCE

The posterior distributions of themodel parameters are not
analytically tractable. Therefore, anMCMC sampling algo-
rithm is required to generate samples from the posterior
distribution.We use aGibbs sampling scheme for updating
parameters using their full conditional distributions (𝜏𝑗𝑘,
𝛾𝑗𝑘, 𝜌) andMetropolis sampling scheme for the parameters
without closed-form conditional distributions (𝜂𝑗𝑘, 𝝃𝑗𝑘, 𝜆).
Details on the full conditional distributions are provided in
Section B of the Supporting Information.

Inferential summaries

When using this sampling algorithm, the quantile level of
interest is fixed at the desired level. In order to estimate
multiple quantiles simultaneously, the algorithm can
be run in parallel for faster computation. The selection
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DAS et al. 7

of Level 1 and Level 2 covariates can be performed in
several ways based on the marginal posterior probabil-
ity of inclusion. For the selection of Level 1 covariates,
we consider the cutoff of the posterior probability of
inclusion to be 0.5. A similar approach of thresholding
the posterior inclusion probabilities can be taken for
the selection of Level 2 covariates. In the presence of a
higher number of Level 2 covariates, a false discovery
rate (FDR) controlling approach can also be considered
(Baladandayuthapani et al., 2010); see Section C of the
Supporting Information.
The proposed model allows the identification of both

linear and nonlinear effect components of𝐌𝑗 within the
effect size of𝑇𝑗 for all subjects. From the posterior samples,
the posterior probabilities of both linear and nonlinear
effect of Level 2 covariates within the effect size of Level
1 covariate can be calculated explicitly. Due to the induc-
tion of sparsity on the effect-size components of Level
2 covariates, the effect size of each Level 2 covariate can be
categorized as one of four possible cases: linear, nonlinear,
both, or none.
Based on the posterior mean estimate of the effect sizes

of the Level 1 covariates over a grid of quantiles, patient-
specific posterior credible intervals over the quantiles can
be obtained using QUANTICO. To calculate the posterior
95% credible interval of the quantile function for the 𝑖th
patient, we calculate the posterior mean of 𝑄𝑦(𝜏𝑙|𝐓𝑖⋅,𝐌𝑖⋅)

over the quantile grid 𝜏𝑙 = 0.1𝑙 for 𝑙 = 1, … , 9. Then, for
quantile level 𝜏𝑙, we calculate the 95th percentile of the
values |𝑄(𝑧)𝑦 (𝜏𝑙|𝐓𝑖⋅,𝐌𝑖⋅) − 𝑄𝑦(𝜏𝑙|𝐓𝑖⋅,𝐌𝑖⋅)| from the poste-
rior sample, where 𝑄(𝑧)𝑦 (𝜏𝑙|𝐓𝑖⋅,𝐌𝑖⋅) denotes the value of
𝑄𝑦(𝜏𝑙|𝐓𝑖⋅,𝐌𝑖⋅) obtained in the 𝑧th posterior sample. Thus,
we derive the width of the posterior 95% credible interval
at all 𝜏𝑙’s. Furthermore, by taking a dense grid of quan-
tiles over [0,1], patient-specific uniform posterior credible
intervals can be calculated. A detailed description on the
calculation of posterior pointwise and uniform credible
intervals is provided in Supporting Information Section D.

5 SIMULATION STUDIES

In this section, we evaluate the variable selection per-
formance of QUANTICO across both Level 1 and Level
2 covariates and illustrate the subject-specific estimation
at different quantile levels using simulation studies. The
performance of QUANTICO is compared with varying
coefficient quantile regression model (VCQRM) and vari-
able selection in quantile regression using the lasso penalty
(LASSO-QR) (Wu&Liu, 2009) as well as its Bayesian alter-
natives. All of thesemethods are variants of quantile-based
VCMs andwe provide explicit details of eachmethod in the
Section C of the Supporting Information.

5.1 Variable selection performance

To compare the variable selection performance across both
Level 1 (𝑇) and Level 2 (𝑀) covariates, we calculate the
true positive rate (TPR), false positive rate (FPR), and area
under receiver operating characteristic (ROC) curve (AUC)
separately for the 𝑇 and 𝑀 variables. A detailed descrip-
tion of the simulation design and computation details
of the metrics is provided in Supporting Information
Section C.

Simulation structure

To compare the performance ofQUANTICO,VCQRM, and
LASSO-QR, we consider two scenarios with sample sizes
of 𝑛 = 100 and 𝑛 = 200. In order to understand how the
selection of the 𝑇 variables is carried out in the presence of
a higher number of covariates, we consider the cases 𝑝 =
5, 10 for sample size scenario 𝑛 = 100 and the cases 𝑝 =
5, 10, 20 for the sample size scenario 𝑛 = 200. For the cases
where 𝑝 > 5, the true model remains as given by Equa-
tion (1) of the Supporting Information. So, the additional 𝑇
covariates considered in𝑝 > 5 scenarios have no true effect
on 𝑌. The simulation is repeated 25 times, and each time
new data are generated from the quantile function given in
Equation (1) of the Supporting Information. Themean and
the standard deviation of the TPR, FPR, and AUC for the 𝑇
and𝑀 variables are computed separately at 𝜏 = 0.1, 0.5, 0.9
for all themethods. In addition, for a fewhigh-dimensional
scenarios the performance of QUANTICO is evaluated in
Section F of the Supporting Information. We observe that
QUANTICOmaintains a high TPR and AUC for larger val-
ues of 𝑝 and 𝑞𝑗 as well, along with low FPR rates. We
also evaluate the performance of QUANTICO compared
to two other existing quantile regression methods, imple-
mented in the R packages rqPen (Sherwood & Maidman,
2019) and Brq (Alhamzawi & Ali, 2020) which is also pro-
vided in Section F of the Supporting Information. It is
observed that QUANTICO outperforms rqPen and Brq, in
general.

Comparative performance evaluation

The comparative performance of the three methods is
reported in Table 1. In general, QUANTICO and VCQRM
perform better than LASSO-QR. QUANTICO results in
better selection of the 𝑇 (Level 1) variables, and a large
improvement in terms of FPR and AUC over VCQRM. In
VCQRM, we do not incorporate any thresholding of the
slope terms. Although it is possible to have a zero slope or
intercept term without thresholding if all estimated linear,
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DAS et al. 9

F IGURE 2 Plots from the simulation study for (𝑛 = 200, 𝑝 = 6) scenario using QUANTICO: (A) Posterior probability of selection of 𝑇
variables, where the true quantile function depends on 𝑇1, 𝑇2 for all quantile levels 𝜏 ∈ [0, 1] and on 𝑇3 for quantiles 𝜏 > 0.5. 𝑇4, 𝑇5 are noise
variables. (B) Probability of selection of second-level covariates for 𝑇1, the true coefficient of 𝑃1 only involves 𝐺1. (C) Probability of selection of
second-level covariates for 𝑇2, The true coefficient of 𝑃2 only involves 𝐺2. (D–F) True and estimated quantile functions corresponding to three
randomly selected simulated subjects, 95% credible bounds are also shown

nonlinear, and constant effects of all Level 2 covariates
are zero, in the simulation results, the FPR of Level 1
covariates came out to be 1. We do not observe any strong
pattern of differences in the comparative performance
of QUANTICO and VCQRM in terms of TPR, FPR, and
AUC for 𝑀 (Level 2) variables, since they follow same
mechanism for selection of 𝑀 variables. In terms of
performance, in Table 1, we report that QUANTICO yields
very low TPR as well as FPR for Level 2 covariates for

sample size scenario 𝑛 = 100 despite a high AUC, which
implies that QUANTICO is very conservative in its esti-
mation. In QUANTICO, the selection of Level 2 covariates
is performed using an FDR-based approach with cutoff
𝛼 = 0.2. The performance of QUANTICO improves as 𝑛
increases (as noted in Table 1).
We further report the selection and estimation per-

formance of QUANTICO evaluated at quantile levels
𝜏 = 0.1, 0.2, … , 0.9. Figure 2A illustrates the selection of
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10 DAS et al.

𝑇 variables. QUANTICO selected the correct 𝑇 variables
across all quantiles. Specifically, it selected variable 𝑇3 for
the quantiles greater than 0.5 as it is in the true model. In
Figure 2B,C, the corresponding true 𝐺 variables have the
highest posterior probability of selection for 𝑇1 and 𝑇2,
respectively. In Figure 2D–F, the true and estimated quan-
tile functions are plotted for three randomly selected sub-
jects along with the corresponding estimated 95% credible
bounds.
We also compute the uniform posterior 95% credible

intervals of the quantile functions. To improve coverage
of the uniform credible intervals, we increase the width
using an inflation factor. Although for point estimates,
the observed coverage might come close to the percent-
age of the computed credible interval, for functions, in
practice, it is a common phenomenon that the observed
coverage may be less than the actual percentage of the
credible interval. This undercoverage of the uniform pos-
terior credible band of smooth functions is a well-known
property and has been addressed in several articles (Cox,
1993; Das & Ghosal, 2017; Knapik et al., 2011; Szabo et al.,
2015). In order to improve coverage, either undersmooth-
ing or inflation of the obtained credible interval is required
(Yoo & Ghosal, 2016). To improve coverage of the pos-
terior uniform credible intervals, we increase the width
using an inflation factor. As mentioned in Remark 5.4 and
Theorem 5.3 in Yoo and Ghosal (2016), the inflation fac-
tor of the uniform credible interval should be taken such
that it slowly increases to infinity as a function of sample
size. Through experimentation, we observe that the infla-
tion factor 𝑓(𝑛) = 1.5

√
log(𝑛) (which has a similar form

to that considered in Das and Ghosal (2017) in the context
of uniform credible bound over quantiles) works well in
simulation under various settings for the sample size and
number of Level 1 covariates. A detailed discussion regard-
ing the computation of the uniform posterior 95% credible
intervals of the quantile functions along with an extensive
study on the computational time is provided in Supporting
Information Section D.

6 CASE STUDY ON IMMUNE
ARCHITECTURE OF NON-SMALL-CELL
LUNG CANCER (NSCLC)

6.1 Scientific problem and data
description

Lung cancer is the secondmost common cancer and is one
of the leading causes of cancer death. Though early stage
patients can be treated with surgery, late stage lung can-
cer requires the use of systemic therapies (Ettinger et al.,
2017). In recent years, immunotherapies have emerged as

a successful treatment in a subset of late stage lung can-
cers, largely through their ability to boost the activity of
T-cells, the subset of immune cells that target infected or
malignant cells based on the detection of specific antigens.
However, a large proportion of lung cancer patients still do
not respond to immunotherapy (Doroshow et al., 2019).
The nature of the antigens specifically recognized by T-

cells has been the object of intense focus, and recent work
has suggested that somatic mutations harbored by the
tumor can be presented to T-cells as neoantigens (Lee et al.,
2018). Analysis of specific somatic mutations and over-
all tumor mutational burden (TMB) has shown a positive
association with response to immunotherapy in patients
with NSCLC. This supports the role of these mutations
in aiding T-cell responses by increasing tumor immuno-
genicity. Recent technologies have emerged to sequence
the TCR to gain insight into T-cell responses, and studies
have confirmed that TCR sequencing can be used to moni-
tor immune response in various types of cancer (Page et al.,
2016). In order to develop patient-specific immunother-
apeutic treatment strategies for NSCLC, it is of critical
importance to understand the interplay between somatic
mutations, TCR variables, and the immune microenviron-
ment, illustrated schematically in Figure 1A.
We consider a cohort of 215 NSCLC patients recruited

at UT MD Anderson Cancer Center. The tumors of these
subjects were analyzed to obtain immune profiling, TCR
sequencing, and mutational status of immune-related
genes. We focus here on understanding the impact of
mutation and TCR variables on the CD8 marker, which
is the outcome variable in our analysis and is discussed
in more detail below. In order to assess the effect of
the explanatory variables on the outcome variable across
different patients, we would like to estimate the patient-
specific effect at different quantiles of the response.
As our Level 1 covariates, we take standard summary

measures of TCR sequencing data, including T-cell clon-
ality, T-cell entropy, T-cell productive proportion of cells,
and T-cell richness. T-cell clonality is a measure of het-
erogeneity among T-cells and has been linked to patient
outcomes (Reuben et al., 2017). T-cell entropy is Shannon’s
entropy, and highly diverse samples have comparatively
higher entropy. The T-cell productive proportion of cells
denotes the proportion of the tumor that consists of T-cells.
TCR richness is another measure of TCR heterogeneity,
defined as the number of different unique sequences in
the sample.
As our Level 2 covariates, we consider mutation counts

for the top six most frequently mutated genes across the
cohort, namely, CSMD3, MUC16, RYR2, TP53, TTN, and
USH2A, alongwith total TMB,which is the total number of
mutations observed per sample. As themutation counts for
individual genes have sparse values (i.e., zeros for a large
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DAS et al. 11

F IGURE 3 (A) Posterior probability of selection of TCR variables based on average of individual posterior probability of the same for
each of the 87 patients. T-cell productive proportion is the only selected variable for quantiles 𝜏 = 0.1, 0.2, … , 0.8. No TCR variables are selected
at 𝜏 = 0.9. (B) Posterior probability of mutation variables having nonzero effect on the coefficient of the T-cell productive proportion variable.
Tumor Mutation Burden (TMB) is shown to have highest nonzero effect among all mutation variables, specially at higher quantile effects.
(C) Hierarchical clustering of the patient-specific estimated coefficients of T-cell productive proportion of cells at quantile levels
𝜏 = 0.1, 0.2, … , 0.8 for 87 consideredNSCLC patients. Three clinical variables, that is, smoking status, recurrence, and vital status are also shown

proportion of patients), we only consider the linear and
constant effects for those six variables. For TMB, linear,
nonlinear, and constant effects are allowed.
As our response variable, we focus onCD8 abundance as

a key measure of immune activity. CD8 is a protein found
on the surface of cytotoxic T-cells. CD8+ T-cells have the
ability to mount a response against pathogens and defend
against tumors by killing transformed tumor cells (Berg
& Forman, 2006), and are therefore a vital part of cancer
immunity. In precision oncology, understanding the
patient-specific effect of T-cell architecture onCD8+T-cell
abundance is therefore crucial.
Out of the cohort of 215 NSCLC patients, we focus on

the 87 patients for which all three data types (immune,
TCR, and mutational profiling) are available. Since the set
of TCR variables considered have differing magnitudes, it
is crucial to transform them to a similar range of values

to make any comparison of their effect sizes meaningful.
The same applies for the mutation variables. Therefore,
before applying QUANTICO, we transform the TCR vari-
ables and the CD8 immunemarkers to unit intervals using
log-normal cumulative distribution function (cdf) trans-
formation (see Supporting Information Section G). The
mutation variables are transformed into the unit interval
using a linear transformation.

6.2 Results

Population level findings

Using the proposed method, the coefficients of the TCR
variables are estimated for each patient at nine quantile
levels 𝜏 = 0.1, 0.2, … , 0.9. We use the same values of the
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12 DAS et al.

F IGURE 4 (A) Boxplot of the coefficient of productive proportion of T-cell for all the patients at quantile levels 𝜏 = (0.1, 0.2, … , 0.9). The
outlier patients are identified from the boxplot. (B–D) Barplot of the mutation counts of the genes MUC16, TP53, and tumor mutation burden
(TMB) of the outlier patients and its mean value for all patients

hyperparameters as in the simulation study except the
total number of iterations and burn-in, which are taken
to be 50,000 and 10,000, respectively. The average poste-
rior probability of selection of all TCR variables is plotted
in Figure 3A. The T-cell productive proportion variable
has an average posterior probability greater than 0.5 at all
quantile levels except at 𝜏 = 0.9, and T-cell entropy has
an average posterior probability marginally higher than
0.5 at 𝜏 = 0.2. In general, the average posterior probabil-
ity of the TCR variables having a nonzero effect on the
CD8+ immune cell abundance decreases at higher quan-
tile levels. This implies that for patients with a lower
abundance of CD8+ cells, the number of CD8+ cells has a
stronger dependence on the TCR variable measures. How-
ever, in patients with a higher density of CD8+ cells, this
dependence is less prominent.
To summarize our Level 2 findings, we assessed the

effect of the mutation variables on the coefficient of the T-
cell productive proportion, which was identified to be the
most important among the TCR variables (Figure 3B). The
nonzero effects of the mutation variables in the coefficient
of the T-cell productive proportion are not strong for lower
quantile levels, while TMB is shown to have a marginally

higher posterior probability of having a nonzero effect at
higher quantiles. Thus, at higher quantiles, a large pro-
portion of the effect of the T-cell productive proportion
on CD8+ immune cells is due to TMB. This is consistent
with previous studies that have shown a positive correla-
tion between TMB and CD8+ in melanoma (Reuben et al.,
2017), where immunotherapy using checkpoint inhibitors
have shown to be successful. Hence, our findings suggest
that TMB could be used for predicting the response to
anti-PD-1/PD-L1 therapies in NSCLC.

Patient-level findings

Our results also provide insights into patient-specific
immune profiles offering the potential to guide the devel-
opment of precision immuno-oncology treatment strate-
gies based on patient-specific information such as patient
smoking history andmutational profiles. As an illustration
of this, in Figure 3C, we show the estimated coefficients of
the T-cell productive proportions for each subject across
quantiles in the rows of a heatmap, along with patient-
level covariates. In this figure, we rely on hierarchical
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DAS et al. 13

clustering over the estimated coefficients at quantile levels
𝜏 = 0.1, … , 0.8 to group patients with similar coefficients.
Focusing on the last few rows of the heatmap, it is appar-
ent that patientswith overall lower values of the coefficient
of the T-cell productive proportion have higher recur-
rence rates of NSCLC. Layering this analysis with clinical
covariates reveals that the effect size of T-cell productive
proportion is in general lower for nonsmokers compared
to recent and former smokers (Figure S3). Reuben et al.
(2020) found higher T-cell clonality in current and former
smokers compared to never smokers.
In Figure 4A, we show a boxplot of the coefficients of the

T-cell productive proportion for all patients, and we detect
outlier patients (patient numbers 4, 45, 51, 56, and 76) at
quantile level 0.1 and an overlapping set of outliers (patient
numbers 40, 45, 56, and 76) at quantile level 0.3. Since this
coefficient is modeled as a function of the mutation vari-
ables, we further compare the number of mutations for
these six distinct patients (Figures 4B–D). In general, these
outlier patients have a higher number of mutations com-
pared to the average value in the patient cohort; specifically
for TMB, TP53, and MUC16 genes.

7 CONCLUSIONS AND FUTURE
WORK

In this paper, we propose QUANTICO with multilevel
covariates where, at any specific quantile level, selection
over the direct (Level 1) covariates is performed for each
subject. A novel feature of the proposed model is the
development of a quantile-specific varying sparsity coef-
ficient estimation approach which allows us to explicitly
delineate how at different quantiles, the response vari-
able depends on different covariates for each subject. The
proposed method also enables selection of the indirect
(Level 2) covariates, and can be used for obtaining patient-
specific posterior credible bands over the quantile levels.
The proposed method is used to analyze how the CD8

immune marker depends on TCR and mutation variables
at different quantiles. We find that T-cell productive pro-
portion is themost important TCR variable, and influences
CD8 immune cells for most quantile levels. Out of all
mutation variables considered, total TMB is found to be
most important. Based on the structure of the relation-
ship between the TCR and immune variable, we identify
outlier patients, who turn out to have a higher number
of mutations across several critical genes of known clin-
ical relevance in cancer. This information is potentially
useful to devise effective immunologic therapies for such
patients(s) based on their unique immune architectures.
There are several potential refinements that could

be made to our modeling framework. We can extend

our approach to simultaneous quantile regression,
where instead of estimating the model parameters at
specific quantiles, the entire quantile function and
associated parameters are estimated simultaneously
(Das & Ghosal, 2018; Yang & Tokdar, 2017). In terms of
theoretical excursions, one could investigate for such
hierarchical VCQRMs, building on some of the theoretical
results proposed for Bayesian quantile regression by
ourselves and others (Das & Ghosal, 2017; Yang & Tokdar,
2017) regarding posterior consistency, rates of conver-
gence and posterior contraction. Given the nontrivial
nature of these explorations, we leave them as future
work.
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