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Abstract
Motivation: Although the human microbiome plays a key role in health and disease, the biological mechanisms underlying the interaction 
between the microbiome and its host are incompletely understood. Integration with other molecular profiling data offers an opportunity 
to characterize the role of the microbiome and elucidate therapeutic targets. However, this remains challenging to the high dimensionality, 
compositionality, and rare features found in microbiome profiling data. These challenges necessitate the use of methods that can achieve 
structured sparsity in learning cross-platform association patterns.
Results: We propose Tree-Aggregated factor RegressiOn (TARO) for the integration of microbiome and metabolomic data. We leverage 
information on the taxonomic tree structure to flexibly aggregate rare features. We demonstrate through simulation studies that TARO 
accurately recovers a low-rank coefficient matrix and identifies relevant features. We applied TARO to microbiome and metabolomic profiles 
gathered from subjects being screened for colorectal cancer to understand how gut microrganisms shape intestinal metabolite abundances.
Availability and implementation: The R package TARO implementing the proposed methods is available online at https://github.com/amishra-stats/ 
taro-package.

1 Introduction
The human microbiome consists of a diverse community of 
microorganisms, including bacteria, fungi, and viruses, that 
populate various sites in the body. The microbiome plays a 
key role in many normal biological processes in the host in
cluding digestion and immune regulation, while dysbiosis, or 
disruption of healthy microbiome composition, has been 
linked to disease risk across a range of conditions, including 
heart disease, diabetes, and cancer (Hou et al. 2022). 
Although mechanisms of host-microbiome interaction remain 
incompletely understood, one avenue for the influence of the 
microbiome on host disease processes is through the produc
tion of metabolites (Cullin et al. 2021). Characterizing the in
fluence of the microbiome on the metabolome requires 
integrative analysis of these high-throughput data types. 
However, this task is challenging for several reasons: both 
microbiome and metabolite data are high dimensional, with 
thousands of features measured in each sample; microbiome 
data are compositional, which means that each sample has a 
fixed sum constraint; and microbiome data are zero-inflated, 

which means that a feature observed in one sample is often 
not observed in other samples, resulting in rare features with 
a large number of observed zero values.

Various methods have been proposed for cross-platform 
integration of microbiome and metabolomics data including 
correlation and network inference approaches. A naïve 
method popular in practice is to test for pairwise associations 
between individual features using Pearson’s or Spearman’s 
correlation; however, this approach creates a high multiple 
testing burden. Classical multivariate methods, such as ca
nonical correlation analysis (CCA) and co-inertia analysis 
(CIA), are attractive alternatives but require that the number 
of samples n is larger than the number of variables. Given the 
high dimensionality of datasets in the high-throughput era, 
sparse versions of CCA and CIA have been developed to re
solve this limitation (Witten and Tibshirani 2009, Min et al. 
2019). Network inference methods based on the graphical 
modeling framework have also been proposed as an ap
proach for the integration of microbiome data with high- 
dimensional covariates (Yang et al. 2017, Osborne et al. 
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2022); an advantage of these methods is that they aim to cap
ture direct associations by focusing on conditional, rather 
than marginal, correlations. However, none of these methods 
directly handle the challenge of rare features.

Here, we frame the challenge of integrating microbiome 
and metabolite data as a factor regression model, with the 
microbiome profiles as the predictor and metabolite profiles 
as the response. We propose Tree-Aggregated factor 
RegressiOn (TARO), building on the reduced-rank regression 
framework to enable the discovery of interpretable latent fac
tors with flexible aggregation of rare features. Our proposed 
approach leverages information on the taxonomic tree to en
able aggregation of features in a data-adaptive manner, col
lapsing rare features into aggregated features that are less 
zero-inflated. Our proposed method offers a comprehensive 
solution to the challenges of high dimensionality, composi
tionality, and rare features. In Section 2, we provide a de
scription of the proposed model and estimation procedure. In 
Section 3, we compare the performance of TARO to alterna
tive methods through simulation studies and apply TARO to 
integrate microbiome and metabolomics data from a real- 
world study on colorectal cancer (Yachida et al. 2019). 
Finally, we conclude with a discussion in Section 4.

2 Materials and methods
2.1 TARO model
Our proposed method builds on the multivariate regression 
framework to relate the microbiome and metabolomic profil
ing data. We assume that the observed microbiome data con
sists of abundances for p features across n samples. The 
features may correspond to taxonomic units quantified 
through marker gene sequencing, such as amplicon sequence 
variants (ASVs) or operational taxonomic units, or more gener
ally to any functional or taxonomic read-outs. We denote the 
microbial abundance table as W ¼ ½wij�n × p ¼ ½w1; . . . ;wn�

T. 
Importantly, due to the methods employed for the generation 
and processing of the genomic sequences, the observed data are 
compositional; this means that the observed counts can only be 
interpreted on a relative scale (Gloor et al. 2017). Regression 
models with microbiome features as the predictor typically rely 
on data transformations to address this challenge (Aitchison 
and Bacon-Shone 1984). Here, we first apply total sum scaling 
(TSS), which entails dividing each count wij by the total num
ber of counts for its sample 

P
j wij. Recent work has shown 

that TSS scaling, although quite simple, tends to perform better 
in practice than other normalization methods (Mallick et al. 
2021). This results in a relative abundance matrix ~W ¼

½~wij�n × p ¼ ½ ~w1; . . . ; ~wn�
T such that 

P
j ~wij ¼ 1 for i ¼ 1; . . . ;n. 

We then apply a log transform to obtain the matrix X ¼
½xij�n × p where xij ¼ logð~wijÞ. To avoid numerical issues with 
exact zeros, we add a pseudocount of 1 to the count matrix W 
prior to scaling. Importantly, the resulting p features are not in
dependent, as there are only p–1 degrees of freedom due to the 
original sum constraint.

We, now, consider the formulation of the regression model 
relating the microbial profiling data X to the metabolite abun
dances. We let Y ¼ ½yik�n × q ¼ ½y1; . . . ; yn�

T
2 Rn × q represent 

the metabolite abundances; since metabolomic data are often 
highly skewed, the yik may be taken as the log-transformed 
concentration values. The metabolite abundances can be mod
eled as a function of a set of covariates Zn × m and the micro
biome profiles Xn × p via the multivariate regression: 

Y ¼ ZbþXCþE; (1) 

where bm × q represents the matrix of effects of the clinical 
covariates on the metabolites, Cp × q is the matrix of effects of 
the microbiome features on the metabolites, and En × q ¼

½eik�n × q is the error matrix. We include an intercept in the 
model by setting the first column of Z to be 1n. The remaining 
columns correspond to clinical variables we wish to include as 
adjusters in the model and are not subject to selection. We, 
therefore, do not impose any regularization on b.

The novelty of the TARO method lies in how we estimate 
the coefficient matrix C to handle the compositionality of the 
microbiome profiles, aggregate rare features, and achieve spar
sity. Due to the fixed sum constraint within each sample, the p 
microbiome predictor variables are not independent; this means 
that an additional constraint is needed to ensure identifiability 
of the coefficient matrix C. Following Lin et al. (2014), we in
corporate a zero-sum constraint on each row of C: 

Xp

j¼1

cjk ¼ 0 for k ¼ 1; . . . ;q;

which can be written in matrix form as 1T
p C ¼ 0q.

Next, we consider how to aggregate rare features; this is a 
critical challenge in microbiome data analysis since the ob
served fine-resolution microbiome features typically include 
features that are nonzero in only a few samples. Many exist
ing approaches for microbiome regression collapse the ob
served features to a higher taxonomic rank, typically the 
genus level (Lin et al. 2014, Liu et al. 2022). For example, 
the counts for ASV1 and ASV2 could be summed to obtain 
the abundance for their parent genus in the taxonomic tree 
T . This can be carried out to obtain abundances for any 
internal node in the tree. Suppose we obtain a new aggre
gated feature for the ith subject xi;a ¼ xi;1þ xi;2þ � � � xi;pa , 
where pa denotes the number of leaf nodes descending 
from the parent node a. As noted in Yan and Bien (2021), 
xi;aβ ¼ ðxi;1 þ xi;2þ � � � xi;paÞβ ¼ xi;1β þ xi;2β þ � � � xi;pa β. 
Effectively, this means that learning a model where some fea
tures have exactly equal coefficients β corresponds to aggre
gating the original features into less zero-inflated groupings. 
Here, we build on the work of Yan and Bien (2021) and Bien 
et al. (2021) to allow flexible estimation of the microbiome 
coefficients, to allow grouping of rare features when the data 
supports their having equivalent effects on the outcome. 
Using the TARO method, we learn the optimal level of aggre
gation from the data. However, in practice, we expect that 
aggregation will mostly occur over lower levels of the tree (i. 
e. collapsing to the genus or family level), both because there 
are more rare features at finer levels of resolution and because 
higher taxonomic ranks such as phylum, class, or order may 
be too heterogeneous for the data to support a shared coeffi
cient value.

Following Yan and Bien (2021), we denote the nodes of 
the taxonomic tree T using an index set u 2 f1; . . . ; jT j− 1g, 
excluding the root node, and let Ap × ðjT j− 1Þ ¼ ½aju� indicate 
the ancestry of each observed feature, where the entry aju ¼ 1 
if microbiome feature j belongs to the set of leaves descending 
from node u or, for leaf nodes, if j¼ u. We set aju ¼ 0 other
wise. To enable flexible feature aggregation, we rewrite the 
coefficient matrix C as follows: 
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C ¼ A × C;

where CðjT j− 1Þ× q. This reparameterization results aggregated 
features as ~X ¼ XA 2 Rn × ðjT j− 1Þ. We can then expand the 
model (1) as: 

Y ¼ ZbþXCþE; s:t: C ¼ A × C and 1T
p C ¼ 0q

Y ¼ Zbþ ~XCþE; s:t: 1T
p A × C ¼ 0q

(2) 

Since CðjT j− 1Þ× q is high dimensional, it is critical to lever
age assumptions on its structure to reduce the number of 
parameters to be estimated. To do so, we build on the frame
work of reduced-rank regression (Izenman 1975, Chen and 
Huang 2012). The key idea of reduced-rank regression is to 
impose a constraint on the rank, or number of linearly inde
pendent rows or columns, of C, such that 
r ¼ rankðCÞ<minððjT j− 1Þ; qÞ. Following recent advances in 
factor regression modeling (Mishra et al. 2017), we express C 

as a low-rank and sparse coefficient matrix using the compo
nents from the singular value decomposition (SVD): 

C ¼ UDVT s:t: UTU ¼ I;VTV ¼ I; (3) 

where the left singular vectors are given by U ¼ ½u1; . . . ;ur�, 
the right singular vectors are given by V ¼ ½v1; . . . ; vr� and the 
singular values are given by diagðDÞ ¼ ½d1; . . . ; dr�. A sche
matic overview of the TARO model is shown in Fig. 1.

2.2 Sequential estimation of TARO
We now describe our efficient computational procedure for 
obtaining estimates of the model parameters. With the rank r 
of the coefficient matrix C specified, the model parameters 
can be estimated by solving the optimization problem: 

argminb;U;D;VkY − Zbþ ~XCk
2
2þ ρλ1

ðUÞþ ρλ2
ðVÞ;

s:t: 1T
p AΓ ¼ 0q;C ¼ UDVT;UTU ¼ I;VTV ¼ I;

(4) 

where ρλ1
ð�Þ and ρλ2

ð�Þ are sparsity inducing penalties with 
tuning parameters λ1 and λ2, respectively. In high-dimensional 
settings, sparse estimates of the singular vectors facilitate better 
model interpretation. With the rank of C unknown and an or
thogonality constraint on the singular vectors fU;Vg, joint es
timation of the parameters is a notoriously intractable 
problem (Chen 2011, Mishra et al. 2017, 2021). However, 
when orthogonality constraints are dropped, the singular vec
tors become unidentifiable. As a result, the sparsity pattern in 
the singular vectors is not unique, which hinders model inter
pretation. Following the work of Mishra et al. (2017), we 
overcome the challenge by using a sequential approach to esti
mate the model parameters. Under this approach, we express 
C as the sum of r unit-rank matrices: 

C ¼
Xr

i¼1

Ci ¼
Xr

i¼1

diuivT
i ;

where fdi;ui; vig are SVD components. The estimation proce
dure then estimates the SVD components fdi;ui; vig of C in 
sequential order.

Step 1
Extract the first components: With the aim to estimate 
fd1; u1; v1; bg, we solve the optimization problem: 

b̂; d̂1; û1; v̂1 � argminb;d1;u1;v1
kY − Zbþ ~XC1k

2
2þ ρλð

~C1◦C1Þ;

s:t: C1¼ d1u1vT
1 ;1

T
p Au1 ¼ 0; ku1k ¼ 1; kv1k ¼ 1;

where ρλð
~C1◦C1Þ is a weighted adaptive elastic-net penalty 

(Mishra et al. 2017) with weights ~C1 ¼ ½~γij
1�p × q inducing 

Figure 1. Overview of the TARO model. The taxonomic tree relating the microbiome features (upper left panel) can be encoded as an adjacency matrix A 

(upper right panel). In the matrix A, entry aju ¼ 1 if feature j belongs to the set of leaves descending from node u or, for leaf nodes, if j¼u. The TARO 
factor model (lower panel) relates the metabolite abundances Y to the covariates Z and aggregated microbiome features ~X ¼ XA, which have a low-rank 
coefficient matrix C.
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sparsity of both the left and right singular vectors fu1; v1g. 
Details on the construction of the weights ~C1 and the formu
lation of the weighted penalty are given in Supplementary 
Section S1.

Step k
Extract the kth components: With the aim to estimate 
fdk;uk; vk; bg, we solve the optimization problem: 

b̂; d̂k; ûk; v̂k � argminb;dk;uk;vk
kYk − Zbþ ~XCkk

2
2þ ρλð

~Ck◦CkÞ;

s:t: Ck¼ dkukvT
k ;1

T
p Auk ¼ 0; kukk ¼ 1; kvkk ¼ 1;

UT
1:k − 1uk ¼ 0;VT

1:k − 1vk ¼ 0;
(5) 

where Yk ¼ Y − ~X
Pk − 1

i¼1
d̂iûiv̂T

i is the deflated response matrix 

and ~Ck is the weight matrix for constructing the sparsity in
ducing penalty. Motivated by the constraints in the optimiza
tion problem (Equation 4), the additional constraints 
UT

1:k − 1uk ¼ 0;VT
1:k − 1vk ¼ 0 are required for imposing or

thogonality on the estimate of the singular vectors. Such con
straints are necessary in the optimization (Equation 4) for the 
estimates to be identifiable. However, in the sequential ap
proach one can safely drop the additional constraints and still 
have an estimate of the singular vectors with a unique spar
sity pattern. Hence, to extract the kth SVD components, we 
solve the optimization problem: 

b̂; d̂k; ûk; v̂k � argminb;dk;uk;vk
kYk − Zbþ ~XCkk

2
2þ ρλð

~Ck◦CkÞ;

s:t: Ck¼ dkukvT
k ;1

T
p Auk ¼ 0; kukk ¼ 1; kvkk ¼ 1:

We write the general form of the optimization problem in 
any kth step of the sequential procedure as: 

b̂; d̂; û; v̂ � argminb;d;u;vkYk − Zbþ ~XCk
2
2þ ρλð

~Ck◦CÞ;

s:t: C ¼ duvT;1T
p Au ¼ 0; kuk ¼ 1; kvk ¼ 1;

(6) 

where Yk ¼ Y − ~X
Pk − 1

i¼1
d̂iûiv̂T

i is the deflated response matrix. 

We conveniently represent the unit-rank estimation problem 
for TARO as URE � TAROðd; u; v;b; ~X;Z;Yk;A; ~CkÞ. We 
summarize the sequential procedure for parameter estimation 
in Algorithm 1, with additional details, including a descrip
tion of tuning parameter selection, provided in 
Supplementary Section S2.

In applying TARO, users are only required to specify the 
maximum rank of the coefficient matrix Γ. Utilizing a sequen
tial approach, the computational procedure stops automati
cally at the kth step upon the detection of an estimated 
singular value d̂k ¼ 0. This approach allows for a systematic 
determination of the number of latent factors while minimiz
ing computational complexity and ensuring efficiency.

TARO assumes that the errors are uncorrelated and nor
mally distributed; violations of these assumptions will de
grade model performance (see Supplementary Section 
S3.1.2). Deletion diagnostics, which measure the influence of 
each data point by considering models fitted with versus 
without the observation, offer a potentially useful approach 
to characterizing the robustness of the fitted TARO model 

(Rajaratnam et al. 2019). Model diagnostics for reduced- 
rank regression, including leverage scores, offer another pos
sible approach for identifying influential points (Chen 2016).

2.3 Interpretation of the fitted model
The TARO procedure identifies a set of r latent factors. 
Although these factors are learned from patterns of statistical 
covariation, they can be interpreted as representing biological 
processes with interplay between the microbiome and metab
olome. A natural approach to interpreting the latent factors 
is to identify the microbiome features and metabolites that 
participate in each factor. Since TARO imposes sparsity on 
the loadings vectors, for the ith factor, this can be achieved 
by identifying the nonzero elements of ui and vi. Since ui is a 
vector of length jT j− 1, it includes weights for both the leaf 
and the internal nodes in the tree, corresponding to the ob
served and aggregated features. It is possible that a leaf node 
may be selected along with one of its ancestors in the tree; in 
this case, the ancestor node coefficient can be interpreted as 
the common effect of related organisms, and the leaf node co
efficient represents the unique offset for a specific strain or 
species. To understand the metabolic patterns represented by 
each latent factor, coefficients for the selected metabolite fea
tures from vi can be used as inputs to metabolite set enrich
ment analysis, which provides a ranking of metabolic 
pathways that may be represented (Xia and Wishart 2010). 
Finally, the scores for each sample on the latent factors may 
be correlated with clinical covariates to provide context on 
the clinical relevance of the factors.

3 Results
3.1 Simulation study
To assess the performance of TARO in comparison to alter
native approaches, we carried out a series of simulation stud
ies. The generation of synthetic microbiome profiles is a 
challenging task due to the complex data structure of micro
biome compositional profiles obtained from specimens. To 
simulate realistic microbial abundances, we relied on 
SparseDOSSA2 (Ma et al. 2021), which utilizes a real data 
template as a target for the marginal feature distributions. As 
our template, we relied on the stool profiles from the ex
panded Human Microbiome Project (Lloyd-Price et al. 

Algorithm 1. Tree-Aggregated factor RegressiOn (TARO)

1: Initialization: set k¼1 and set a desired rank r ≥ 1.
2: repeat

3:   (1) Set the adaptive weights as ~Ck ¼ ~d k ; ~uk ; ~vk .
4:   (2) Compute the current residual matrix Yk as in (5).
5:   (3) Perform the URE � TAROðd;u; v; b; ~X;Z;Yk ;A; ~CkÞ

analysis via (6) (including the tuning process), and obtain   
b̂; d̂ k ; ûk ; v̂k .

6:   if d̂ k ¼ 0 then

7:    Set d̂ h ¼ 0 for any k ≤ h ≤ r; k  r þ1.
8:   else

9:    k  kþ 1.
10:   end if

11: until k ¼ r þ1:
12: return Ĉk ; b̂ and ðd̂ k ; ûk ; v̂kÞ for all k ¼ 1; . . . ; r with d̂ k 6¼ 0.
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2017). We then scaled and log-transformed the resulting 
counts W to obtain our X matrix. We generated a coefficient 
matrix Γ with true rank r¼3 based on the unit-rank compo
nents fdi;ui; vig for 1 ≤ i ≤ r. Here, di are the scalars that 
make up the diagonal of D, while ui and vi are vectors that 
will be stacked to obtain U and V, which each have rank r. 
We therefore refer to these vectors as unit-rank components. 
We set d1 ¼ 4; d2 ¼ 3, and d3 ¼ 2, and simulated sparse and 
nearly orthogonal U ¼ ½u1;u2;u3� and V ¼ ½v1; v2; v3� matri
ces. The final coefficient matrix is generated as Γ ¼ UDVT:

We utilized a taxonomic tree T obtained from the real data, 
provided in the TARO R package. We constructed four dif
ferent settings; in each setting, the true signal is sparse, with 
only 5% of features affecting the multivariate outcome, but 
the set of important features differs in its properties. 
Specifically, we simulate the unit-rank components of the co
efficient matrix such that the following feature sets are rele
vant: (a) features with higher variation, (b) rare features, 
(c) fine-resolution features (leaf nodes), and (d) aggregated 
features (internal nodes). Details on the rules used to define 
these feature sets can be found in Supplementary Table S1. 
Under our simulation design, features with higher variation 
will explain a greater proportion of variation in the outcome; 
from a biological perspective, high variation features may re
flect shared environmental exposures or core metabolic pro
cesses. Rare features, which may arise from unique exposures 
or potential pathogens, are more difficult to identify statisti
cally. Fine resolution features reflect differences in function 
across strains, while aggregated features reflect groups of re
lated features with common function.

We set the sample size n to 300. The number of microbial 
genera p varied in the range from 200 to 225 depending on 
the construction of C. Finally, we generated the response ma
trix Y using the true model (1) with error term E simulated at 
a signal-to-noise ratio (SNR) of 0.5, following the definition 
of the SNR in Mishra et al. (2017). We also consider a more 
challenging set-up where the response matrix Y is generated 
from the unobserved true abundances, while the observed 
abundances are provided as input to TARO (Supplementary 
Section S3.1.3).

To provide insight into the relative performance of TARO, 
we consider several alternative procedures: 

TRAC: tree-aggregation of compositional data (Yan and 
Bien 2021), which is designed for a single outcome.
CRRR: linear-constrained reduced-rank regression, a sim
plified version of TARO without feature selection.
SeCURE: sequential co-sparse factor regression (Mishra 
et al. 2017), which is not designed for the micro
biome setting.

For an overview of the method properties, see Table 1. 
Comparing TARO with the marginal approach of TRAC 
emphasizes the relevance of joint modeling of the multivari
ate outcome, while the comparison to CRRR highlights the 
significance of the sparsity-inducing penalty when compared 
with TARO. Finally, the comparison to SeCURE showcases 
the importance of imposing linear constraints due to 
compositionality.

We compare the model results in terms of error in estimat
ing the coefficients ErðCÞ ¼ |Ĉ − C|, prediction error 
ErðXCÞ ¼ |XĈ − XC|, and feature selection. Performance in 
feature selection is based on comparing the sparsity pattern 

of fûk; v̂kg to fuk; vkg in terms of the false positive rate (FPR) 
and false negative rate (FNR).

Across 50 replicates of setting (a), where features with 
higher variation are associated with the multivariate out
comes, TARO achieves consistently lower estimation and 
prediction error than alternative methods (Fig. 2). TARO 
also achieves a reasonable balance between the FNR and FPR 
for feature selection (Table 2). Results from other simulation 
settings are provided in Supplementary Fig. S1.

Compared to existing approaches for modeling the multi
variate outcome with compositional covariates as predictors, 
TARO demonstrates superior performance in estimation er
ror, prediction error, and sparsity recovery. In high- 
dimensional settings where the underlying association can be 
expressed in terms of a low-rank and sparse coefficient ma
trix, the superior performance of TARO to CRRR and 
TRAC shows the usefulness of joint modeling of multivariate 
outcomes and the sparsity-inducing penalty.

3.2 Analysis of colorectal cancer data using TARO
There is increasing evidence that the human gut microbiome 
influences diseases including colorectal cancer and inflamma
tory bowel disease through the production of metabolites 
(Lee-Sarwar et al. 2020). To provide insight into microbial- 
metabolite relationships in the gut ecosystem, we applied 
TARO to analyze metagenomic and metabolomic profiling 
data collected from participants undergoing colonoscopy as 
part of a large-scale study in colorectal cancer (Yachida et al. 
2019). A processed version of this data is provided through 
the curated gut microbiome-metabolome data resource 
https://github.com/borenstein-lab/microbiome-metabolome- 
curated-data/ (Muller et al. 2022). The processed data in
clude observations for n¼347 participants on q¼ 249 
metabolites and p¼ 1456 microbial genera. We defined the 
adjacency matrix A using the taxonomic tree relating the ob
served genus-level features.

To provide new insight into this complex dataset, we ap
plied TARO to characterize the interplay between micro
biome profiles and metabolites. As a contrast to TARO, 
which performs a joint analysis to identify latent factors, we 
applied sparse principal component analysis (PCA) (Erichson 
et al. 2020) separately on the X and Y matrices. Our goal 
was to find sets of microbiome features and metabolites that 

Table 1. Summary of models compared, including TARO (tree- 
aggregated factor regression), TRAC (tree-aggregation of compositional 
data), CRRR (linear-constrained reduced-rank regression), and SeCURE 
(sequential co-sparse factor regression).
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work together to impact phenotypes of interest. We com
puted the top eight principal components from independent 
PCA and aligned the components based on their correlation 
(Fig. 3A). However, the resulting cloud of points suggests 
that the independently inferred latent components may be 
capturing distinct activity within each modality, rather than 
shared processes.

Using TARO, we were able to identify association patterns 
represented by a low-rank and sparse estimate of the coeffi
cient matrix. Each unit-rank component within the coeffi
cient matrix provides valuable information regarding the 
subset of metabolites (via the sparse estimate of the loading 
matrix V) that directly correspond to a subset of microbiome 
features (via the sparse estimate of U). Upon multiplication 
of the TARO model with the loading matrix V, it becomes 
evident that the latent factor XAU showcases a linear rela
tionship with the response factors YV, where the slope is de
termined by the diagonal elements of matrix D. The latent 
factors identified by TARO capture microbiome-metabolite 
relationships more efficiently than those from independent 
PCA, as each latent factor represents a set of microbiome and 
metabolite features working in concert (Fig. 3B).

Each of the eight latent factors identified by TARO repre
sents distinct sets of microbes and metabolites working to
gether to perform specific tasks in the gut. To identify the 
latent factors with the greatest clinical relevance, we fit a lo
gistic regression model with the scores on the latent factors as 
predictors and sample classification (colorectal cancer versus 
normal tissue) as the response. We adjusted for age, sex, and 
BMI in the model. Three latent factors (X2, X5, and X7) 
were significant (P< .05) in the logistic regression model 
(Supplementary Fig. S6). TARO selects a sparse set of metab
olites (Fig. 3C) and microbiome features (Fig. 3D) that con
tribute to these clinically relevant latent factors. TARO 

identifies both both genus-level and also aggregated features 
as important (Fig. 3D).

We next sought to characterize possible biological pro
cesses represented by these latent factors. Based on metabo
lite set enrichment analysis (Supplementary Fig. S7), we 
identified propanoate metabolism as a key metabolic path
way represented by X2. Propionate is an abundant short- 
chain fatty acid in the gut, and altered propionate metabolism 
has been linked to cancer progression and aggressiveness 
(Gomes et al. 2022). The family Bifidobacteriaceae, which 
includes the genus Bifidobacterium, was identified as an ag
gregated feature that contributes to X2 (Fig. 3D). Although 
Bifidobacteriaceae do not directly produce propionate, they 
contribute to propionate and butyrate production through 
cross-feeding in the gut (Scott et al. 2014). Enrichment analy
sis revealed that X5 captures functions related to energy me
tabolism including the citric acid cycle and beta oxidation of 
very long chain fatty acids. The genus UBA1762 was identi
fied as a microbial feature contributing to X5; UBA1762 
belongs to the family Ruminococcaceae, which has been pre
viously identified as a taxonomic feature positively associated 
with response to cancer immunotherapy (Gopalakrishnan 
et al. 2018). Finally, pyrimidine metabolism, which has been 
closely linked with cancer progression (Wang et al. 2021), 
was identified as a key pathway in X7. Interestingly, several 
cancer drugs, including the chemotherapeutic agent fluoro
pyrimidine, act to disrupt pyrimidine metabolism 
(Spanogiannopoulos et al. 2022). The family WCHB1.69, 
which belongs to the order Bacteroidales, is identified as an 
important microbial feature for X7; Bacteroidales play an im
portant role in shaping response to immmunotherapy 
(V�etizou et al. 2015).

In summary, TARO enables us to identify a small number 
of latent factors that are relevant to colorectal cancer status 
and the specific microbiome and metabolite features repre
sented in each factor. TARO enables the formulation of test
able hypotheses regarding the interplay between the 
microbiome and metabolome. The TARO results highlight 
potential avenues of intervention that can be further explored 
through pre-clinical studies in mice.

4 Conclusion
TARO provides an effective tool for the integration of micro
biome and metabolite datasets. Through a specially designed 
penalization approach, TARO is able to identify specific 

Figure 2. Boxplots of the coefficient estimation error ErðCÞ ¼ kĈ − Ck and prediction error ErðXCÞ ¼ kXĈ − XCk across 50 replicates of simulation 
setting (a), where higher variation features are relevant to the outcome.

Table 2. Performance comparison in terms of coefficient estimation error 
ErðCÞ, prediction error ErðXCÞ, and the false positive rate (FPR) and false 
negative rate (FNR) for feature selection across 50 replicates of 
simulation setting (a).

Model Er(C) Er(XC) FNR FPR

TARO 1.3 240 0.180 0.068
TRAC 9.1 650 0.031 0.670
CRRR 410.0 1800 0.000 1.00
SeCURE 5.2 1400 0.890 0.010

The performance metrics for TARO are in bold.
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features from each modality that contribute to a small set of 
latent factors. Importantly, TARO respects unique aspects 
of microbiome data including its compositionality and the 
tree-structured relationships among features. We illustrate 
the superior performance of TARO in simulation settings and 
discuss its application to a colorectal cancer dataset.

More broadly, TARO may be applied for the integration 
of microbiome profiles with high-dimensional data types 
other than metabolomics. For example, Y could instead rep
resent microbial functional proteins (metaproteomics) or 
host-associated factors such as immune cell abundances. An 
interesting possible extension of TARO would be to ac
knowledge structure among the Y variables, such as pathway 
membership or network relations, in addition to structure on 
the X.

Supplementary data
Supplementary data are available at Bioinformatics online.
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