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Abstract
Alzheimer’s disease is the most common neurodegenerative disease. The aim of

this study is to infer structural changes in brain connectivity resulting from dis-

ease progression using cortical thickness measurements from a cohort of participants

who were either healthy control, or with mild cognitive impairment, or Alzheimer’s

disease patients. For this purpose, we develop a novel approach for inference of

multiple networks with related edge values across groups. Specifically, we infer a

Gaussian graphical model for each group within a joint framework, where we rely on

Bayesian hierarchical priors to link the precision matrix entries across groups. Our

proposal differs from existing approaches in that it flexibly learns which groups have

the most similar edge values, and accounts for the strength of connection (rather than

only edge presence or absence) when sharing information across groups. Our results

identify key alterations in structural connectivity that may reflect disruptions to the

healthy brain, such as decreased connectivity within the occipital lobe with increasing

disease severity. We also illustrate the proposed method through simulations, where

we demonstrate its performance in structure learning and precision matrix estimation

with respect to alternative approaches.
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1 INTRODUCTION

Dementia is a leading cause of death, disability, and health

expenditure in the elderly, with Alzheimer’s disease (AD)

accounting for the majority of cases. Much research in AD

aims at understanding how the disease mechanisms affect the

brain, in an effort to aid in the diagnosis and treatment of those

with AD. Here we are interested in exploring the changes in

structural connectivity for different brain regions through the

progression of the disease.

Traditional approaches to structural neuroimaging stud-

ies have focused on investigating cortical thickness, vol-

ume, and the rate of tissue loss as specific neurodegenerative

biomarkers that relate to changes in the aging brain. More

recently, attention has been given to the estimation of net-

works that capture the connectivity between cortical regions

of interest and to the changes in connectivity that result from

the progression of the neurological disease. It is widely known

that correlated regions of interest are more likely to be part

of a network and that networks are related to specific cog-

nitive functions (Alexander-Bloch et al., 2013). During the

progression of neurodegenerative disease, a person has a vary-

ing amount of cortical tissue loss, depending on their disease

stage. As such, “connections” assessed throughout the disease

trajectory represent coordinated changes in brain tissue, which

are reflected in cortical thickness measures.

Statistical methods for network inference are a powerful

tool to gain insight into the complex interactions that govern
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brain connectivity networks. When all samples are collected

under similar conditions or reflect a single type of disease,

methods such as the graphical lasso (Friedman et al., 2008)

or Bayesian graphical approaches (Wang, 2012; Wang and Li,

2012) can be applied to infer a sparse graph and thereby learn

the underlying network. These have been successfully used for

the estimation of structural brain connectivity networks.

In studies where samples are obtained for different

groups or subtypes of a disease, like the Australian Imag-

ing, Biomarkers and Lifestyle (AIBL) study of ageing

described below, separate estimation for each subgroup

reduces statistical power by ignoring potential similarities

across groups, while applying standard graphical model infer-

ence approaches to the pooled data across conditions leads to

spurious findings. Recently, estimation methods for multiple

graphical models have been proposed in the statistical litera-

ture, including penalization-based approaches that encourage

either common edge selection or precision matrix similarity

(Guo et al., 2011; Cai et al., 2015). In particular, Danaher et al.
(2014) developed convex penalization schemes designed to

encourage similar edge values (the fused graphical lasso) or

shared structure (the group graphical lasso). More recent pro-

posals encourage network similarity in a more tailored man-

ner, assuming that the networks for each sample group are

related within a tree structure (Oates and Mukherjee, 2014;

Pierson et al., 2015), or, more generally, within an undi-

rected weighted graph (Ma and Michailidis, 2016; Saegusa

and Shojaie, 2016). These methods assume that the relation-

ships across groups are either known a priori or learned via

hierarchical clustering. More flexible approaches that employ

a Bayesian framework to simultaneously learn the networks

for each group and the extent to which these networks are sim-

ilar have been proposed in Peterson et al. (2015) and Shaddox

et al. (2018). More specifically, Peterson et al. (2015) pro-

posed representing the inclusion of edges using latent binary

indicators, and the sharing of edges across groups was encour-

aged via a Markov random field prior linking the indicators.

Shaddox et al. (2018) improved upon Peterson et al.’s (2015)

study by replacing the𝐺-Wishart prior on the precision matrix

within each group with a mixture prior that is more amenable

to efficient sampling. However, Shaddox et al. (2018) still

addresses only the inclusion or exclusion of edges, without

consideration of edge strength or direction.

For the analyses of this paper, we propose a Bayesian

Gaussian graphical modeling approach that retains the advan-

tages of the approaches by Peterson et al. (2015) and

Shaddox et al. (2018) in flexibly learning cross-group similar-

ities within a joint framework, but that accounts for the simi-

larity of edge values across groups, rather than only the binary

presence or absence of those edges. Our framework allows us

to not only learn the precision matrices within each group, but

also to characterize the extent of shared edge values across

the groups. Empirically, we demonstrate that this key feature

results in a more accurate inference of the precision matri-

ces. Unlike related approaches in the frequentist framework

(Pierson et al., 2015; Saegusa and Shojaie, 2016), which

require a separate, ad hoc step to learn the cross-group rela-

tionships, we can simultaneously learn both the within-group

and cross-group relationships. Furthermore, even though

penalization approaches are more scalable, they provide only

point estimates of large networks, which are often unstable

given limited sample sizes. Within our Bayesian approach, we

can better quantify uncertainty in the estimates.

When applied to the data from the AIBL study, our method

demonstrates that the majority of structural connections are

preserved across all groups, but participants with AD have

structural connectivity that is most unique compared to the

other groups. In comparison to separate Bayesian estimation

methods, the proposed method is able to identify a larger

number of connections, reflecting the benefit of borrowing

strength across groups. The fused graphical lasso, on the other

hand, selects very dense graphs, which likely include a larger

proportion of false positives edges, as also suggested by sim-

ulation studies in our current work and in previous investi-

gations (Peterson et al., 2015; Shaddox et al., 2018). This

issue was noted by Danaher et al. (2014), who recommended

an approximation of the Akaike information criterion (AIC),

which we apply here, as the best objective method for param-

eter selection, but acknowledged that cross-validation, AIC,

and Bayesian information criterion (BIC) tend to favor models

that are too large; the tendency to select overly dense graphs

was also observed for standard graphical lasso (Liu et al.,
2010).

1.1 The AIBL study

Here, we focus on cortical thickness measurements from par-

ticipants in the AIBL cohort who were either healthy con-

trol (HC), mild cognitive impairment (MCI) or had AD. As

a marker for neurodegeneration, cortical thickness is used to

assess the atrophy of the cortical gray matter (GM) using MR

images, and has been proposed as a more stable parameter

for AD diagnosis than volume/density measures, because it

is a more direct measure of GM atrophy (Singh et al., 2006).

Investigation into GM atrophy allows the approximate mea-

surement of neuronal loss, which is one of the underlying hall-

marks of neurodegenerative diseases. Analyses using cortical

thickness have been shown to successfully separate AD from

MCI and HC (Querbes et al., 2009). Our aim is to examine

how the progression of AD affects the structural networks of

the brain.

The rest of the paper is organized as follows: In Section 2,

we describe the proposed Bayesian joint graphical modeling

approach and the posterior inference. We return to the case

study in Section 3 and apply our method to estimate structural
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connectivity networks in subjects from cognitively normal to

AD. In Section 4, we perform a simulation study and compare

performance with alternative approaches. We conclude with

a discussion in Section 5.

2 PROPOSED MODEL

Let 𝐾 represent the number of sample groups (eg, HC, MCI,

and AD) and let 𝐗𝑘 be the 𝑛𝑘 × 𝑝 data matrix (eg, cortical

thickness on 𝑝 brain regions) for the 𝑘th group, with 𝑘 =
1,… , 𝐾 . We assume that the observed values within each

group arise from a multivariate normal distribution, where

each row of 𝐗𝑘 corresponds to an independent observation

following the distribution  (𝝁𝑘,𝚺𝑘). As we are interested in

the covariance structure, rather than the means, we assume

that the data are centered by group, so that 𝝁𝑘 = 𝟎𝑘 for 𝑘 =
1,… , 𝐾 . The group-specific covariance matrix𝚺𝑘 has inverse

𝚺−1
𝑘

= 𝛀𝑘 ≡ (𝜔𝑘,𝑖𝑗). The multivariate normal distribution has

the special property that 𝜔𝑖𝑗 = 0 if and only if variables 𝑖 and

𝑗 are conditionally independent given the remaining variables

(Dempster, 1972). Nonzero entries in the precision matrix 𝛀𝑘

therefore correspond to edges in the group-specific condi-

tional dependence graph 𝐺𝑘, which can be represented as a

symmetric binary matrix with elements 𝑔𝑘,𝑖𝑗 = 1 if edge (𝑖, 𝑗)
is included in graph 𝑘, and equal to zero otherwise.

In the Bayesian framework, inference of a graphical model

is performed by tackling two interrelated sub-problems:

selecting the model and learning the model parameters. Model

selection is driven by identifying the graph structures 𝐺𝑘,

while the precision matrices 𝛀𝑘 are the key model param-

eters. Unlike many of the existing Bayesian approaches for

multiple undirected graphical models, which are based on

prior distributions that link groups through the graph struc-

tures 𝐺𝑘, in this paper we propose a novel prior that links

the groups through the parameters 𝛀𝑘, accounting for edge

strength rather than only edge presence or absence. The spec-

ification of such a prior requires some care as all precision

matrices are constrained to be positive semidefinite.

2.1 Prior formulation

Our goal is to construct a prior on the precision matrices

𝛀1 … ,𝛀𝐾 that enables inference of a graphical model for

each group, encourages similar edge values when appro-

priate, and allows for computationally tractable posterior

inference. There have been a number of prior distributions

proposed for the precision matrix 𝛀 in a Gaussian graph-

ical model. Early approaches required restrictive assump-

tions on the graph structure (in particular, decomposibility)

to allow tractable sampling (Dawid and Lauritzen, 1993;

Giudici and Green, 1999). Later methods included shrinkage

priors (Wang, 2012), which offered computational scalability

but not graph selection, and conjugate priors with no restric-

tion on the graph structure (Wang and Li, 2012), which, due

to limited computational scalability, could only be applied in

the moderate 𝑝 setting with less than 100 variables in a single

network.

Here, we build on the stochastic search structure learning

model of Wang (2015), which assumes a normal mixture prior

on the off-diagonal entries of the precision matrix, enabling

graph selection with no restrictions on the graph structure

within a computationally efficient sampling framework. To

achieve this, we define a joint prior distribution on the pre-

cision matrices 𝛀1,… ,𝛀𝐾 that encourages similarity across

groups in terms of the off-diagonal elements of the precision

matrices. Specifically, we consider the continuous shrinkage

prior (Wang, 2012, 2015) for 𝐾 networks defined as

𝑝(𝛀1 … ,𝛀𝐾 |{𝚯𝑖𝑗 ∶ 𝑖 < 𝑗}) ∝
∏
𝑖<𝑗

𝐾

(
𝝎
′
𝑖𝑗
|𝟎,𝚯𝑖𝑗

)

×
∏
𝑖

∏
𝑘

Exp(𝜔𝑘,𝑖𝑖|𝜆∕2)𝟏𝛀1…,𝛀𝐾∈𝑀+ , (1)

where𝝎𝑖𝑗 = (𝜔1,𝑖𝑗 ,… , 𝜔𝐾,𝑖𝑗) is the vector of precision matrix

entries corresponding to edge (𝑖, 𝑗) across the𝐾 groups, 𝜆 > 0
is a fixed hyperparameter, and 𝑀+ denotes the space of 𝑝 × 𝑝

positive definite symmetric matrices. The first term in the

joint prior specifies a multivariate normal prior with covari-

ance matrix 𝚯𝑖𝑗 on the vector of precision matrix entries 𝝎𝑖𝑗

corresponding to edge (𝑖, 𝑗) across groups. To define a prior

on 𝚯𝑖𝑗 , we work with the decomposition 𝚯𝑖𝑗 = diag(𝝂𝑖𝑗) ⋅𝚽 ⋅
diag(𝝂𝑖𝑗), where 𝝂𝑖𝑗 is a 𝐾 × 1 vector of standard deviations

specific to edge (𝑖, 𝑗), and 𝚽 is a 𝐾 ×𝐾 matrix shared across

all (𝑖, 𝑗) pairs with 1s along the diagonal. To ensure that 𝚯𝑖𝑗 is

positive definite, the only requirements are that the standard

deviations 𝜈𝑘,𝑖𝑗 must be positive and 𝚽 must be a valid cor-

relation matrix. Given these constraints, we can then define a

mixture prior on the edge-specific elements of 𝝂𝑖𝑗 that enables

the selection of edges in each graph, and a prior on the off-

diagonal entries of 𝚽 that allows us to model the relatedness

of edge values across the sample groups. Following Wang

(2015), the standard deviations 𝜈𝑘,𝑖𝑗 are set to either a large

or small value depending on whether edge (𝑖, 𝑗) is included

in graph 𝑘, that is, 𝜈𝑘,𝑖𝑗 = 𝑣1 if 𝑔𝑘,𝑖𝑗 = 1, and 𝜈𝑘,𝑖𝑗 = 𝑣0 oth-

erwise. The hyperparameters 𝑣1 > 0 and 𝑣0 > 0 are fixed to

large and small values, respectively. Small values of 𝑣0 will

shrink the value of 𝜔𝑘,𝑖𝑗 for edges that are not included in the

graph toward 0. This prior indirectly encourages the selection

of similar graphs in related networks. Specifically, a small

value of 𝜔𝑘,𝑖𝑗 will encourage small values of 𝜔𝑙,𝑖𝑗 for any

other group 𝑙 and in turn the exclusion of edge (𝑖, 𝑗) in both

groups 𝑘 and 𝑙. Similarly, a large value of 𝜔𝑘,𝑖𝑗 will encourage

large values of 𝜔𝑙,𝑖𝑗 and the inclusion of edge (𝑖, 𝑗) in groups 𝑘

and 𝑙. Networks 𝑘 and 𝑙 are considered related if the posterior
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distribution of the (𝑘, 𝑙) element of 𝚽 is concentrated on rel-

atively larger values.

For the prior on the graphs 𝐺1, …, 𝐺𝐾 , we assume an inde-

pendent Bernoulli distribution

𝑝(𝐺1,… , 𝐺𝐾 ) ∝
𝐾∏
𝑘=1

∏
𝑖<𝑗

{
𝜋𝑔𝑘,𝑖𝑗 (1 − 𝜋)1−𝑔𝑘,𝑖𝑗

}
. (2)

This prior is analytically defined only up to a normalizing con-

stant. As discussed in Wang (2015), the unknown normalizing

constant of prior (1) and prior (2) are proportional and cancel

out in the joint prior on (𝛀𝑘, 𝐺𝑘). Consequently, the parameter

𝜋 is not exactly the prior probability of edge inclusion; how-

ever, as shown by Wang (2015) the effect of these unknown

normalizing constants on the posterior inference is extremely

mild, and the parameter 𝜋 can be easily calibrated to achieve

a prespecified level of sparsity.

Recall that 𝚽 is a correlation matrix, and must therefore

have all diagonal entries fixed to 1 and be positive definite. To

specify the prior on 𝚽, we rely on the joint uniform prior:

𝑝(𝚽) ∝ 1 ⋅ 𝟏𝚽∈𝐾 , (3)

where 𝐾 denotes the space of valid 𝐾 ×𝐾 correlation

matrices, that is, positive definite symmetric matrices 𝚽 such

that 𝜙𝑗𝑘 = 1 for all 𝑗 = 𝑘 and |𝜙𝑗𝑘| < 1 for all 𝑗 ≠ 𝑘. When

𝚽 = 𝐈, the precision matrices for each group are indepen-

dent, and the proposed model reduces to that of Wang (2015)

applied separately to each sample group.

Alternative priors could be defined on the precision matri-

ces 𝛀1,… ,𝛀𝐾 that ensure the support to be constrained to

the space of symmetric positive semidefinite matrices 𝑀+.

However, our proposed prior has the key advantage of com-

putational tractability. In the next section, we show how we

can define a sampler that is automatically restricted to the

targeted support 𝑀+. In our model, cross-group similarity

is defined by 𝚽, which links the elements of the precision

matrices, whereas previous approaches (Peterson et al., 2015;

Shaddox et al., 2018) encouraged similarity through a joint

prior on the adjacency matrices 𝐺1,… , 𝐺𝐾 .

2.2 MCMC algorithm for posterior inference

We rely on Markov chain Monte Carlo (MCMC) to generate a

sample from the joint posterior. At a high level, the sampling

steps are as follows (see also Supplementary Material):

• Step 1: For each sample group 𝑘 = 1,… , 𝐾 , we first update

the precision matrix 𝛀𝑘 using a block Gibbs sampler with

closed-form conditional distributions for each column, as

in Wang (2015), and then update 𝐺𝑘 by drawing each edge

from an independent Bernoulli.

• Step 2: We sample the entire correlation matrix 𝚽 at once

using a Metropolis-within-Gibbs step following the param-

eter expansion method of Liu and Daniels (2006).

After discarding the results from the burn-in period, we

take the median model (Barbieri and Berger, 2004) as the pos-

terior selected value for the graph 𝐺𝑘 for each group. Specifi-

cally, we select edges 𝑔𝑘,𝑖𝑗 with marginal posterior probability

of inclusion ≥ 0.5, as in Wang (2015). To obtain a posterior

estimate of the precision matrix consistent with the selected

graph, we resample 𝛀𝑘 conditional on the posterior estimate

of 𝚽 and the selected value of 𝐺𝑘.

3 STRUCTURAL CONNECTIVITY
PATTERNS IN THE AIBL COHORT

3.1 Subjects and MRI data processing

We have disease stage information and measurements of corti-

cal thickness across 100 regions of interest in the brain from a

total of 584 subjects. Here we focus on imaging data and cog-

nitive assessments from the last follow-up time point avail-

able. The subjects were divided into four groups: high per-

forming HC (hpHC, n = 143), HC (n = 145), MCI (n = 148),

and AD (n = 148). To obtain this classification, subjects were

first evaluated by a clinician for current diagnosis and catego-

rized as HC, MCI, or AD. HC subjects were further divided

into hpHC and HC using eight different cognitive compos-

ite scores representing different cognitive domains. Magnetic

resonance imaging (MRI) was performed on each subject,

and the resulting images were parcellated into 100 regions

of interest (ROIs). Mean cortical thickness was computed in

each ROI, and used in subsequent analysis. This gave us data

on 𝑝 = 100 brain regions for the 𝐾 = 4 groups of subjects.

Within each group, data were centered. Additional details on

the cognitive scoring and MRI data processing, along with a

list of ROIs grouped by lobe of the brain, are provided in the

Supplementary Material.

3.2 Application of the proposed method

The application of our model requires the specification of a

few hyperparameters. Here we provide details on the specifi-

cation we used to obtain the results reported below and refer

readers to the sensitivity analysis found in the Supplementary

Material for more insights on parameter selection. In particu-

lar, priors (1) and (2) require the choice of the hyperparame-

ters 𝜈0, 𝜈1, and 𝜋. These were set to 𝜈0 = 0.01, 𝜈1 = 15, and

𝜋 = 2
(100−1) . The parameters 𝜈0 and 𝜈1 were chosen so that

the network structure results were sparse, while the selec-

tion of 𝜋 was based on the default setting recommended in
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Wang (2015). As a guideline, increasing 𝜈0 while holding the

ratio between 𝜈0 and 𝜈1 fixed will result in sparser graphs,

as shown in the sensitivity analysis, which agrees with the

sensitivity analysis provided in Wang (2015). Increasing the

ratio between 𝜈0 and 𝜈1 while holding 𝜈0 fixed will likewise

increase the sparsity of the inferred graphs.

The results we report below were obtained by running two

MCMC chains with 20 000 iterations, after a burn-in of 5000

iterations. Posterior probabilities of inclusion (PPI) for each

edge were compared for the two chains to check for con-

vergence. A correlation of 0.997 was found between these

two posterior samples. We also used the Gelman and Rubin’s

convergence diagnostic (Gelman and Rubin, 1992) to check

for signs of nonconvergence of the individual parameters of

the estimated Φ matrix and the estimated precision matrices.

Those statistics were all below 1.1, clearly indicating that the

MCMC chains were run for a sufficient number of iterations.

The results reported here were obtained by pooling together

the outputs from the two chains to give a total of 20 000

MCMC samples.

3.3 Results

Figure 1 shows histograms of the PPIs for each group and scat-

ter plots of the PPIs across pairs of groups. Off-diagonal plots

show scatter plots of the PPIs, on the upper triangle plots, and

percentage of PPIs falling in each quadrant, in the lower tri-

angle plots, for pairs of groups. In the scatter plots, the points

in the upper right quadrants indicate edges that belong to the

median model in both groups (shared edges), whereas points

in the lower right and upper left quadrants indicate edges

that were selected in one group but not the other (differen-

tial edges). The points in the lower left quadrant correspond

to edges selected in neither group. These plots illustrate that

the edge selection is fairly sparse overall, with a high con-

centration of PPIs close to 0 in the histograms, and that there

are a number of edges that are strongly supported as shared

across groups, as shown by the dense cluster of points in the

upper right corner of the off-diagonal plots. Finally, we can

see that many of the PPI values are the same across groups, as

shown in the linear trend in the upper triangle plots. Although

we generally do not observe a strong trend in terms of net-

work differences across groups, we note that AD differentiates

itself from the other groups most, because of the PPI values

that vary (are relatively more dispersed from the linear trend)

between AD and the other groups. Additionally, heatmaps of

the PPIs within each group are shown in Figure 2. This fig-

ure appears in color in the electronic version of this article,

and any mention of color refers to that version. In these plots,

the ROIs are groups within brain lobes, specifically, frontal,

temporal, parietal, occipital, and limbic cortex. These proba-

bilities, which can only be obtained via a Bayesian approach,

represent the confidence we have in the presence of each edge,

and provide a useful summary of the uncertainty regarding

edge selection. As expected, larger PPIs values are observed

within lobes versus across lobes for all disease stages.

To allow an in-depth view of the estimated networks, sub-

networks corresponding to the individual lobes are shown in

Figure 3, where the edges shown are those selected in the

median model; the estimated graphs 𝐺𝑘 for each group across

all lobes are plotted in Supplementary Figure S2. In these cir-

cular plots, the left side represents the left brain hemisphere,

and the right side represents the right brain hemisphere. In all

plots, blue lines indicate edges shared by all four groups, red

lines indicate edges unique to an individual group, and black

lines those shared by two or more groups. This figure appears

in color in the electronic version of this article, and any men-

tion of color refers to that version. The strongest pattern visi-

ble in the graphs are the horizontal blue lines connecting the

corresponding regions in the right and left hemispheres of the

brain. The pattern of strong correlations between contralat-

eral homologous regions of the cortex in structural imaging

has been previously observed, for example by Mechelli et al.
(2005).

Our findings are quantified in Table 1, which summa-

rizes the numbers of edges included per group and shared

across groups in the networks for all ROIs of Supplementary

Figure S2 and the lobe-specific networks of Figure 3. Within

each subtable, the diagonal values represent the numbers of

edges present in each group, and the off-diagonal values are

the numbers of shared edges between pairs of groups. Finally,

the numbers of edges that are unique to a specific group is

reported as values in parentheses along the diagonals. From

this, we see that the healthy control groups have slightly more

edges than the cognitively impaired groups. We can also see

that there is a decrease in connections in the occipital lobe

as AD progresses. Additional ROI-specific patterns can be

found in Table S2 in Supplementary Material, which shows

total number of edges for each ROI pair in each group.

Our method also produces estimated values of the elements

of the 𝚽 matrix, which capture similarity in the precision

matrix entries between the different subject groups. Notably,

as they are based on the joint posterior distribution, these val-

ues account for uncertainty in the estimation of the group-

specific precision matrices.

⎛⎜⎜⎜⎜⎜⎜⎝

hpHC HC MCI AD

hpHC 1.000
HC 0.929 1.000

MCI 0.942 0.885 1.000
AD 0.865 0.940 0.883 1.000

⎞⎟⎟⎟⎟⎟⎟⎠
These values, which reflect the similarity in edge strength

across groups, provide a complementary look at the patterns
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F I G U R E 1 Case study results discussed in Section 3.3. PPIs across the four groups of subjects. Plots on the diagonal show histograms of the

PPIs for the individual groups. We introduced a break in the y-axis to allow better visualization of the small PPIs. Off-diagonal plots show scatter

plots of the PPIs, on the upper triangle plots, and percentage of PPIs falling in each quadrant, in the lower triangle plots, for pairs of groups

of structural connectivity. In particular, values of 𝚽 show that

hpHC and AD are the least similar. They also show that HC

and AD are related, which is supplemented by Table 1 that

shows that HC and AD have a large number of shared edges.

The similarity of HC and AD may be caused by the way hpHC

and HC were separated, as HC may have a higher propen-

sity to develop AD. Our results also support similarity of the

hpHC and MCI groups. Although these findings suggest there

may be an underlying classification other than AD that influ-

ences the structural connectivity, the values we observe are
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F I G U R E 2 Case study results discussed in Section 3.3. Plot of the PPIs across the 4 groups of subjects. In each plot, ROIs are grouped within

individual brain lobes. This figure appears in color in the electronic version of this article, and any mention of color refers to that version

generally large, supporting high degree of network similarity

across groups.

We conclude our analysis by summarizing the network

structure of the estimated graphs via some graph metrics com-

monly used in neuroimaging (Yao et al., 2010). Specifically,

we calculated the clustering coefficient 𝛾 , the absolute path

length 𝜆, and the small world coefficient 𝜎 = 𝛾∕𝜆. See Yao

et al. (2010), and references within, for a formal definition.

From a quantitative perspective, if both 𝜆 ≈ 1 and 𝛾 > 1, and

consequently 𝜎 > 1, a network is said to exhibit small-world

characteristics, which means in a qualitative sense that any

node can be reached from any other node in a small num-

ber of steps. Disconnected nodes were removed when cal-

culating the characteristic path length. Based on the esti-

mated values of 𝜆 and 𝛾 , we obtain small world coefficients

𝜎 of 1.717, 1.635, 1.627, and 1.475 for hpHC, HC, MCI,

and AD, respectively. We observe that 𝜎 is greater than 1 for

all the groups, but steadily decreases during the progression

of AD. Small-world characteristics in the brain network of

AD have also observed by other authors (He et al., 2008).

Our conclusions on the differences in structural connectiv-

ity across groups are descriptive in nature, as our findings
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F I G U R E 3 Case study results discussed in Section 3.3. Subnetworks corresponding to the frontal, temporal, parietal, occipital, and limbic

lobes (from top to bottom), for the four groups of subjects, where the edges shown are those selected in the median model. The left side of each

circular array represents the left brain hemisphere, and the right side represents the right brain hemisphere. Blue lines indicate edges shared by all

four groups, red lines indicate edges unique to an individual group, and black lines those shared by two or more groups. This figure appears in color

in the electronic version of this article, and any mention of color refers to that version
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T A B L E 1 Case study results discussed in Section 3.3 Note. Number of edges included per group and shared across groups in the networks for

all ROIs of Supplementary Figure S2 and the lobe-specific networks of Figure 3. Diagonal values represent the number of edges selected in each

group, with values in parentheses representing the number of edges that are unique to that group. Off-diagonal values indicate the numbers of shared

edges between pairs of groups

All ROIs hpHC HC MCI AD Frontal hpHC HC MCI AD

hpHC 231 (1) hpHC 89 (1)

HC 223 231 (3) HC 86 91 (2)

MCI 222 217 223 (1) MCI 87 85 87 (0)

AD 219 222 214 227 (3) AD 86 89 85 89 (0)

Temporal hpHC HC MCI AD Parietal hpHC HC MCI AD

hpHC 25 (0) hpHC 19 (0)

HC 25 25 (0) HC 19 19 (0)

MCI 25 25 25 (0) MCI 19 19 19 (0)

AD 25 25 25 25 (0) AD 19 19 19 19 (0)

Occipital hpHC HC MCI AD Limbic hpHC HC MCI AD

hpHC 30 (0) hpHC 12 (0)

HC 29 29 (0) HC 12 13 (0)

MCI 27 26 27 (0) MCI 11 11 11 (0)

AD 26 26 25 27 (1) AD 11 12 11 13 (1)

generally support a high degree of overlap in the structural

connectivity networks.

3.4 Results from alternative approaches

For additional perspective, we compare our results to those

of the fused graphical lasso (Danaher et al., 2014), separate

graph estimation in the Bayesian framework (Wang, 2015),

and the joint estimation approach of Shaddox et al. (2018). For

the fused graphical lasso, 𝜆1 and 𝜆2 were selected by perform-

ing a grid search to find the combination of values minimizing

the AIC, as recommended in Danaher et al. (2014). Separate

Bayesian inference was applied with the same settings for 𝜈0,

𝜈1, 𝜆, 𝜋 as in the linked method. Shaddox et al. (2018) was

applied with 𝜈0 = 0.50, 𝜈1 = 15, 𝜆 = 1, 𝑎 = 1, 𝑏 = 4, 𝛼 = 2,

𝛽 = 5, and 𝑤 = 0.5.

For each of the brain regions, Table 2 shows the number of

total edges for each method on the diagonal, and the number of

common edges on the off-diagonal. Although the ground truth

is not known, these results suggest that the proposed linked

precision matrix method generally improves power over sep-

arate estimation: a large majority of the edges selected using

separate estimation are also discovered under the proposed

method, while separate estimation results in a slight increase

in the number of edges across stages. We see a similarly large

overlap of selected edges with the joint Bayesian estimation,

although the joint Bayesian method leads to models that are

more dense, due, in part, to the larger number of parameters of

that model that control the sparsity. The fused graphical lasso

tends to select models which are even denser. This is because

the AIC is not optimal for variable selection, tending to result

in models that are not sufficiently sparse.

3.5 SIMULATION STUDY

We present here a simulation study to compare performance

across methods in learning graphs with related structure. The

simulation is designed to mimic the real data application in

terms of the number of variables, number of subjects per

group, and graph structures.

We consider a setting with 𝐾 = 3 groups, 𝑝 = 100 vari-

ables, and 𝑛 = 150 observations per group, where the underly-

ing graph and precision matrix for each group are constructed

as follows. 𝐺1, the graph for the first group, consists of five

communities, each with 20 variables. Within each commu-

nity, the nodes are connected via a scale-free network. There

are no connections across communities in 𝐺1. The precision

matrix entries in𝛀1 for edges are sampled independently from

the uniform distribution on [−0.6,−0.4] ∪ [0.4, 0.6], whereas

entries for missing edges are set to 0. To obtain 𝐺2, five edges

are removed from 𝐺1 and five new edges added at random, so

that now there are some cross-community connections. The

entries in 𝛀2 for the new edges are generated in a similar

fashion as for 𝛀1, whereas the entries for the edges removed

are set to zero. To ensure positive definiteness, 𝛀1 and 𝛀2
are each adjusted following the approach in Danaher et al.
(2014). To obtain 𝐺3, 20 edges are removed from the graph

for group 2, and the corresponding 20 entries in 𝛀2 are set

to zero to obtain 𝛀3. These steps result in graphs 𝐺1 and 𝐺2
that share 180 of 185 edges (97.3%), graphs 𝐺2 and 𝐺3 that
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share 165 of 185 edges (89.2%), and graphs 𝐺1 and 𝐺3 that

share 162 of the 185 edges in 𝐺1 (87.6%). The correlations

between the off-diagonal elements of the precision matrices

are 0.98 between 𝛀1 and 𝛀2, 0.94 between 𝛀2 and 𝛀3, and

0.93 between 𝛀1 and 𝛀3. To simulate the data, we generate 𝑛

samples per group from the multivariate normal  (0,𝛀−1
𝑘
),

for 𝑘 = 1, 2, 3. Below we report results obtained over 25 sim-

ulated data sets.

3.5.1 Performance comparison

We compare the following methods: fused graphical lasso

(Danaher et al., 2014), group graphical lasso (Danaher et al.,
2014), Bayesian inference applied separately for each group

(Wang, 2015), Bayesian joint inference relating edge prob-

abilities (Shaddox et al., 2018), and the proposed Bayesian

joint inference method linking the precision matrix entries.

For the lasso methods, the within-group penalty 𝜆1 and cross-

group penalty 𝜆2 were selected using a grid search to iden-

tify the combination that minimize the AIC. Both separate

Bayesian inference and the proposed linked precision matrix

approach were applied using the parameter setting 𝜈0 = 0.01,

𝜈1 = 0.1, 𝜆 = 1, and 𝜋 = 2∕(𝑝 − 1). Shaddox et al. (2018)

was applied using 𝜈0 = 0.05, 𝜈1 = 0.5, 𝜆 = 1, 𝑎 = 1, 𝑏 = 16,

𝛼 = 2, 𝛽 = 5, and 𝑤 = 0.5, where the parameters were cho-

sen to achieve a similar number of selected edges as obtained

under the proposed linked precision matrix approach.

All Bayesian methods were run with 10 000 iterations as

burn-in and 20 000 iterations for posterior inference. For the

Bayesian methods, we take the posterior selected graph as the

median model, and compute the posterior estimate of the pre-

cision matrices 𝛀𝑘 as the MCMC average when the precision

matrices are resampled conditional on the graphs and the pos-

terior estimate of 𝚽 from the initial run (for our method), or

conditional on the graph using separate mixture priors (for

separate and joint estimation approaches).

The performance across methods in terms of edge selection

and differential edge selection is compared on the basis of true

positive rate (TPR), false positive rate (FPR), Matthews corre-

lation coefficient (MCC), and area under the curve (AUC). A

detailed description of how these performance metrics were

computed is provided in the Supplementary Material. The

performance results for graph and precision matrix learn-

ing are given in Table 3. In general, the Bayesian methods

tend to favor sparser graphs, and achieve quite low FPRs.

The lasso methods tend to select somewhat denser graphs,

and have correspondingly higher TPRs and FPRs. The pro-

posed linked precision matrix method achieves the best over-

all performance, as demonstrated by its high MCC value.

The AUC, which is computed across a range of model sizes,

shows that the lasso methods and the proposed linked pre-

cision matrix approach have very good accuracy. For the

lasso methods, the AUC was computed for multiple values of

the cross-group penalty parameter while varying the within-

group penalty, and the best was included here. Thus, the

reported AUCs for these methods are likely to err on the opti-

mistic side. Finally, the Frobenius loss is minimized under the

proposed method.

Based on the results in Table 3, the proposed method is

conservative in the identification of differential edges, as indi-

cated by its fairly low sensitivity and very high specificity. The

proposed method achieves both the highest MCC and AUC

across methods compared. The high FPR of the lasso meth-

ods in selecting differential edges is partly due to the fact that

they select a larger number of false positive edges overall,

and may also reflect that they use a single penalty param-

eter to control cross-group similarity, which is not optimal

when some groups have more similar dependence structure

than others.

Finally, the proposed linked precision matrix approach pro-

vides a posterior summary of cross-group similarity. Specif-

ically, the posterior estimated value of 𝚽 under the proposed

linked precision matrix method is

⎛⎜⎜⎜⎝
1.0 0.65 0.63

1.0 0.64
1.0

⎞⎟⎟⎟⎠
.

Although the entries are fairly similar across groups, we can

see that groups 1 and 2, which are the most similar to each

other, have a higher value in the 𝚽 matrix.

Additional simulated scenarios with varying degrees of

shared structure and edge values are included in the Supple-

mentary Material. Results demonstrate that although the pro-

posed method has the largest performance advantage when

edge values across groups are in fact similar, it is robust to

deviations from this setting, and performs similarly to sepa-

rate Bayesian inference when there is no more overlap across

groups than by random chance.

3.6 DISCUSSION

We have introduced a novel method for the joint analysis of

multiple brain networks. The proposed approach allows flex-

ible modeling of the cross-group relationships, resulting in

relative measures of precision matrix similarity that fall in

the (0,1) interval. With respect to other methods for joint

estimation, the proposed method not only shares information

about the presence or absence of edges between groups, but

also about the strength of those connections. Building on the

sampling framework of Wang (2015) has allowed the pro-

posed method to scale up to around 100-150 variables; the

posterior sampling for a data set comprised 𝑝 = 100 ROIs

and 𝐾 = 4 groups took approximately 55 minutes for 1000
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T A B L E 3 Performance summary across 25 simulated data sets Note. Comparison of true positive rate (TPR), false positive rate (FPR),

Matthews correlation coefficient (MCC) and area under the ROC curve (AUC) for structure learning, and Frobenius loss (FL) for precision matrix

estimation. The standard error of the mean is given in parentheses. The methods compared are the fused and group graphical lasso of Danaher et al.
(2014), separate Bayesian graph estimation with mixture priors of Wang (2015), the joint Bayesian estimation with mixture priors of Shaddox et al.
(2018), and the proposed linked precision matrix approach

All Edges Differential Edges
TPR FPR MCC AUC Fr Loss # edges TPR FPR MCC AUC

Fused graphical lasso 0.80 0.07 0.48 0.97 0.065 461 0.74 0.14 0.11 0.24

(0.01) (0.003) (0.01) (0.001) (0.001) (15.1) (0.01) (0.001) (0.003) (0.01)

Group graphical lasso 0.73 0.08 0.40 0.96 0.077 508 0.68 0.14 0.10 0.13

(0.01) (0.003) (0.005) (0.001) (0.001) (16.3) (0.02) (0.004) (0.003) (0.004)

Separate estimation with 0.17 0.0002 0.40 0.89 0.099 31 0.16 0.01 0.10 0.84

mixture priors (0.002) (3.0×10−5) (0.003) (0.001) (0.001) (0.5) (0.01) (2.0×10−4) (0.01) (0.01)

Joint estimation with 0.57 0.03 0.47 0.89 0.327 236 0.53 0.06 0.12 0.84

mixture priors (0.004) (3.0×10−4) (0.003) (0.002) (0.003) (1.6) (0.02) (0.001) (0.004) (0.01)

Linked precision 0.43 0.0002 0.64 0.95 0.057 77 0.22 0.003 0.23 0.87
matrix approach (0.01) (2.6×10−5) (0.004) (0.001) (7.4×10−4) (1.1) (0.01) (9.9×10−5) (0.019) (0.01)

For MCC, AUC, and FL, the result reflecting the best performance among the methods compared is marked in bold.

MCMC iterations in MATLAB on a laptop with a single

Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz and 16GB

RAM. The proposed method was proven to be suitable for the

analysis of multiple brain networks based on ROI measure-

ments; in case interest is in larger networks, such as networks

of voxels, more scalable approaches focused on point estima-

tion, such as lasso or EM algorithms (Danaher et al., 2014; Li

and McCormick, 2019), should be used.

We have applied our method to the analysis of structural

data from the AIBL study on AD, with the purpose of explor-

ing the changes in structural connectivity for different brain

regions through the progression of the disease. Our method

has demonstrated that the majority of structural connections

are preserved across all groups. Some of our findings are con-

sistent with the literature on structural connectivity networks

in Alzheimer patients: networks are fairly sparse and a number

of edges are shared across groups.

In theory, structural connectivity networks in Alzheimer’s

patients do not change dramatically with disease progression.

Our findings confirm this theory, and support our assumption

that all networks are similar to some extent, that is, all ele-

ments of the 𝚽 matrix are nonzero. However, from a statisti-

cal modeling perspective, it might be of interest to replace the

prior given in Equation (3) with a prior that assumes sparsity

of the cross-group relationships. Such an extension is nontriv-

ial due to the combination of constraints that 𝚽 must both be

a positive-definite matrix and have all diagonal entries fixed

to 1.
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SUPPORTING INFORMATION
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tions 3– 5 are available with this paper at the Biometrics web-

site on Wiley Online Library, along with Matlab scripts, R

code and example data designed to resemble that of our real

data application, also available online at https://github.com/

cbpeterson/Linked_precision_matrices.
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