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ABSTRACT: The genetic basis of multiple phenotypes such as gene expression, metabolite levels, or imaging features is
often investigated by testing a large collection of hypotheses, probing the existence of association between each of the traits
and hundreds of thousands of genotyped variants. Appropriate multiplicity adjustment is crucial to guarantee replicability of
findings, and the false discovery rate (FDR) is frequently adopted as a measure of global error. In the interest of interpretability,
results are often summarized so that reporting focuses on variants discovered to be associated to some phenotypes. We show
that applying FDR-controlling procedures on the entire collection of hypotheses fails to control the rate of false discovery
of associated variants as well as the expected value of the average proportion of false discovery of phenotypes influenced by
such variants. We propose a simple hierarchical testing procedure that allows control of both these error rates and provides
a more reliable basis for the identification of variants with functional effects. We demonstrate the utility of this approach
through simulation studies comparing various error rates and measures of power for genetic association studies of multiple
traits. Finally, we apply the proposed method to identify genetic variants that impact flowering phenotypes in Arabidopsis
thaliana, expanding the set of discoveries.
Genet Epidemiol 00:1–12, 2015. Published 2015 Wiley Periodicals, Inc.∗
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Introduction

Biotechnological progress has enabled the routine measure-
ment of thousands of phenotypes that were beyond the reach
of precise quantification just a couple of decades ago. To-
gether with the reduced costs of genotyping and sequencing,
this motivates research into the genetic basis of an un-
precedented number of traits. Examples include expression
quantitative trait loci (eQTL) studies that investigate the role
of genetic variation on the expression of tens of thousands
of genes [Brem et al., 2002; Cheung et al., 2005; Schadt et al.,
2003]; genome-wide metabolomics studies that consider ge-
netic influences on the levels of hundreds of metabolites [Illig
et al., 2010; Keurentjes et al., 2006]; and proteomics studies
investigating genetic regulation of protein abundances [Foss
et al., 2007; Wu et al., 2013]. At a more macroscopic level, neu-
roimaging genetics aims to identify DNA variants influencing
brain structures, described in thousands of voxels [Stein et al.,
2010]. Looking at even higher level phenotypes, a number
of large cohorts with rich phenotypic information have been
or are being genotyped and will be used to map multiple
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traits. Notable examples are the Kaiser Permanente Research
Program on Genes, Environment, and Health (RPGEH)
[http://www.dor.kaiser.org/external/DORExternal/rpgeh/]
that has already genotyped 100,000 subjects with com-
plete medical records, and the Million Veteran Pro-
gram [http://www.research.va.gov/MVP/] that is aiming
to genotype a million veterans with available health
records.

Investigating the genetic basis of thousands of traits simul-
taneously offers exciting possibilities, including the hope that
a comprehensive and multifaceted description of the health
status of a subject can provide a strong foundation for un-
derstanding relevant genetic underpinnings. Capitalizing on
these possibilities requires appropriate statistical approaches
to address the challenges posed by these novel data sets. Here,
we focus on one such problem: namely, the development of
multiple-testing procedures to identify discoveries while con-
trolling an appropriate measure of error. Two choices need to
be made upfront: (1) what notion of error to control; and (2)
what is to be considered a discovery. We discuss these at the
beginning of our study. In what follows, the terms “trait” and
“phenotype” are used interchangeably; similarly, and with a
slight abuse, “SNP” (single nucleotide polymorphism) and
“variant” are considered synonymous.

C© 2015 The Authors. ∗Genetic Epidemiology published by Wiley Periodicals, Inc.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution
in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.



The genetics community has been acutely aware of the ne-
cessity of accounting for the “look across the genome” effect.
Even before genome-wide linkage (or association) studies
were a possibility, sequential test procedures [Morton, 1955]
and Bayesian arguments [Elston and Lange, 1975] led to the
adoption of very stringent significance cutoffs. Once large
marker panels became available and multiple testing became
a reality, efforts focused on controlling the probability of
making at least one erroneous finding, a criteria known as
the familywise error rate (FWER) [Feingold et al., 1993; Lan-
der and Kruglyak, 1995]. This is well suited to investigate the
genetic basis of a single disease assumed to be substantially
influenced by one or two loci, especially when following up
a hit implies years of work. The nature of present-day multi-
trait investigations, however, is substantially different: when
one explores the genetic basis of tens of thousands of traits, as
in eQTL studies, insisting on not making even one mistake is
overly severe. Indeed, on the heels of the experience in analysis
of gene expression data [Efron et al., 2001; Reiner et al., 2003],
in eQTL and other -omics investigations, another more lib-
eral criteria has emerged as the dominant paradigm: the false
discovery rate (FDR) [Benjamini and Hochberg, 1995]. The
FDR is defined as the expected proportion of findings that are
erroneous, meaning that they correspond to situations where
the null hypothesis is actually true. The present work adopts
the point of view that such a criteria better reflects the goals
of multiphenotype studies where one expects to make a siz-
able number of discoveries, and it is acceptable to have a few
false leads as long as these represent a small proportion of the
findings [Benjamini and Yekutieli, 2005; Schadt et al., 2003].

In order to control FDR one needs to define a discovery.
What constitutes an interesting finding? The identification of
a variant that influences a specific phenotype? The determi-
nation that there is a genetic component to the variability of a
trait? The discovery that one DNA variant is not neutral? All
of the above? In which order of importance? To resolve these
questions it is useful to look at the typical multiphenotype
genome-wide association study (GWAS): this consists in test-
ing the hypothesis Hit of no association between variant i and
trait t for all values of i and t. This rather simplistic approach
is often preferred for its limited computational cost, its ro-
bustness to missing data, and—most importantly—the ease
with which results on different phenotypes and SNPs can be
compared across different studies. The collection of tested hy-
potheses {Hit i = 1, . . . , M; t = 1, . . . , P } can be considered
as a single group, but it is also quite natural to identify sub-
groups of hypotheses that address one specific scientific ques-
tion, technically referred to as families. Note that—following
the convention in multiple comparison literature—we here
use the term “family” to indicate a collection of hypothe-
ses rather than a group of related individuals; pedigrees do
not play a role in the discussion. One can consider the fam-
ilies Pt = {Hit i = 1, . . . , M} of all hypotheses related to the
phenotype t, addressing the existence of a genetic basis for
the tth trait. Alternatively, one can focus on the families
Fi = {Hit, t = 1, . . . , P } of all hypotheses involving SNP i,
investigating the phenotypic effect of each genetic variant i.
To these families we can associate global null hypotheses:

Hi• = ∩P
t=1Hit signifies that variant i does not affect any trait,

while H•t = ∩M
i=1Hit states that trait t is not influenced by any

variant. Identifying a relevant family structure is important
both because families are the appropriate universe for multi-
plicity adjustment and because they define discoveries. Ulti-
mately this choice is study specific, but here we make one both
in the interest of concreteness and to underscore a viewpoint
that is often relevant. In most multiphenotype GWAS, scien-
tists have solid reason to believe that the traits under inves-
tigation have a genetic underpinning, so rejecting H•t would
not represent an interesting discovery. In contrast, we expect
most genetic variants to have no effect on any trait, so identi-
fying those that are “functional” can arguably be considered
the most important discovery of multiphenotype investiga-
tions. Consider, for example, eQTL studies: the discovery of
SNPs that influence the expression of some genes is important
as they are considered potential candidates for association
with a variety of other medically relevant traits. Indeed, the
reported results from multiphenotype GWAS tend to be or-
ganized in terms of associated variants. In what follows, then,
we consider the hypotheses {Hit i = 1, . . . , M; t = 1, . . . , P }
as organized in M families Fi defined by variants, and we
identify the rejection of Hi• as an important discovery. We
note that the grouping of hypotheses into families is not re-
lated to the dependence structure among the tests for these
hypotheses. Rather, the information captured by hypotheses
in the same family needs to be somewhat “exchangeable”: for
example, rejecting any of the hypotheses Hit within the family
Fi has the same implication with respect to the hypothesis
Hi•. Once a decision has been made that the hypotheses
under consideration can be grouped in different families, it
becomes relevant and meaningful to talk about a variety of
global error measures, as we are about to describe.

Material and Methods

Global Error Measures for Structured Hypotheses

We start by considering one simple example where we as-
sume that we know the true status of the hypotheses and we
can measure the realized false discovery proportion (FDP).

Table 1 presents a total of 40 hypotheses, relative to
eight phenotypes and five variants, which define families Fi ,

Table 1. Example of Structured Hypotheses

F1 F2 F3 F4 F5

�

H 11 H12

�

H 13 H14 H15

H21 H22

�

H 23 H24 H25
�

H 31 H32

�

H33 H34 H35

H41

�

H42

�

H 43 H44 H45

H51 H52

�

H 53 H54 H55
�

H 61 H62

�

H 63 H64 H65

H71 H72 H73 H74 H75

H 81 H82 H83 H84 H85

Bold hypotheses are false null, and starred hypotheses correspond to rejections.
The 40 Hypotheses H11, . . . , H85 are Grouped into Families F1, . . . ,F5.
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Table 2. Relevant Error Rates and Measures of Power

Abbreviation Description Definition

gFDR Global FDR E (V/ max{R, 1})
FDRi FDR within family i E (Vi/ max{Ri, 1})
aFDR Average of within-family FDRs 1

M

∑M
i=1 E (Vi/ max{Ri, 1})

sFDR Expected value of the average of
within family FDPs across
selected families

E
[

1
max{|S(P)|,1} ×

∑
i∈S(P)(Vi/ max{Ri, 1})

]

vFDR FDR for the discovery of variants
(families)

E (Vv/ max{Rv , 1})

gFWER Global familywise error rate E (I [V > 0])
vFWER FWER for the discovery of

variants (families)
E (I [Vv > 0])

gPower Global power Proportion of false null Hit

rejected
vPower Power to detect variants associated

to at least one phenotype
Proportion of false null Hi•

rejected

i = 1, . . . , 5. We use bold to indicate hypotheses that are false
null (where signal/association is present) and asterisks to in-
dicate hypotheses that are rejected. A variant is discovered
if the corresponding family contains at least one rejected
hypothesis. In Table 1 there are a total of 10 individual hy-
potheses rejected and two of these are true nulls: the global
FDP equal to 2/10. Families F1, F2, and F3 are discovered,
but all the hypotheses in F2 are true nulls: the proportion
of false family discoveries is 1/3. The average FDP across all
families is 0.23̄ = (0 + 1 + 1/6 + 0 + 0)/5; but if we focus only
on families that have been discovered, the average FDP across
selected families is 0.38̄ = (0 + 1 + 1/6)/3.

With this example in mind, we can define a variety of error
rates. Let P indicate the collection of P -values associated with
all the individual hypotheses tested. Let S(P) be a selection
procedure (which can depend on the observed P -values) that
identifies interesting variants. Let R be the total number of
rejections and V the total number of erroneous rejections
across all hypotheses. Similarly, Vi and Ri count the false dis-
coveries and total discoveries in family i. We say that variant i
is discovered if the corresponding global null Hi• is rejected.
We indicate with Rv and Vv , respectively, the total number
of rejections and the total number of false discoveries among
the M variant hypotheses Hi•s, each probing the role of a
different variant i. In Table 2, we rely on these symbols to
define the error rates of interest.

Given these alternatives, what error rate is relevant and
important to control? The global FDR (gFDR) is a natural first
choice as this is the error rate we would control if we had not
identified a family structure among our hypotheses. Despite
the appeal of its simplicity, there are caveats to be considered
when targeting gFDR. As shown eloquently in Efron [2008],
pooling hypotheses from multiple families that have different
proportions of true nulls and controlling gFDR can result in
rather suboptimal behavior: for families that contain none or
very few false nulls, FDRi will not be controlled at the desired
level, while families with many false nulls will encounter a loss
in power. If one targets FDRi for each family separately, these
difficulties are overcome but at the price of a large number of
false discoveries: while average of within-family FDR (aFDR)
would be controlled, gFDR and sFDR would not. In addition,

if we consider Hi• rejected as long as one of Hit, t = 1, . . . , P
is, it is important to note that neither of the two strategies
above controls vFDR or sFDR.

To illustrate these characteristics, we run a simulation with
300,000 hypotheses corresponding to P =100 phenotypes
and M=3,000 variants. Families are defined by variants and
contain only true null hypotheses, with the exception of
60 variants each associated to 25 phenotypes. P -values corre-
sponding to the true null hypotheses are generated indepen-
dently from a uniform distribution on the [0, 1] interval. Test
statistics for the false null hypotheses are generated indepen-
dently from theN (2, σ2) distribution, and the corresponding
P -values are computed as the two-tailed P -values under the
N (0, σ2) distribution. Because larger values of the standard
deviationσ make these two distributions more difficult to dis-
tinguish, we can interpret σ as the noise level. Figure 1 shows
a set of global error measures as the noise level increases.
We also provide two measures of power: gPower represents
global power, and vPower represents power to detect variants
associated to at least one phenotype. We compare three
approaches for the analysis of the data sets: (a) the Benjamini-
Hochberg (BH) method [Benjamini and Hochberg, 1995]
applied to the pooled collection of all P -values with target
level q = 0.05 for gFDR (“pooled BH”); (b) BH applied to
each family separately with target level q = 0.05 for each
FDRi (“per family BH”); and (c) a hierarchical strategy we
will discuss in the following section and include here for
reference (“hierarchical BH”). Figure 1 illustrates how both
(a) “pooled BH” and (b) “per family BH” control their target
error rate (gFDR and aFDR, respectively), but not vFDR or
sFDR. When (a) BH is applied to the entire collection of hy-
potheses, the false rejections are uniformly distributed across
the true null hypotheses; in a context where many variants
affect no phenotypes, this results in false variant discoveries.
Furthermore, once we restrict attention to the families with at
least one rejection, many have a within-family FDP close to 1:
we do not have control of the error we make when declaring
association between phenotypes and the selected SNPs.

If we apply BH in a per family manner (b), the aFDR is
controlled: many families lead to no discoveries, resulting in
a FDP equal to 0, which lowers the average FDR. However,
the families associated with discovered variants tend to have
very large FDP: neither sFDR or gFDR is controlled. From a
certain point of view, applying BH to each family separately
can be considered as ignoring the multiplicity due to
different variants, so it is not surprising that vFDR and gFDR
are quite high with this approach. In summary, (b) does not
appear to be a viable strategy whenever M is large. We now
introduce procedure (c) that overcomes this impasse.

Hierarchical Testing Procedure

Benjamini and Bogomolov [2014] describe how to control
sFDR when families are selected according to a rather broad
set of criteria. Here, we build upon their work and suggest
selecting families so as to control the vFDR: this allows us
to provide both guarantees on the discovered variants and
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Figure 1. Global error achieved by different multiple comparisons controlling strategies as noise level increases. M = 3,000; P = 100; 60 variants
are associated to 25 phenotypes and the rest have no association. The lines indicate the average and the shaded areas the standard error over
250 iterations.

Figure 2. Hierarchical structure of hypotheses.

on the identification of the phenotypes they influence. To
avoid unnecessary complexity, we assume that each family
contains the same number of hypotheses, although this is
not necessary.

We aim to control FDR on the collection of M global null
hypotheses Hi• = ∩P

t=1Hit {Hi• i = 1, . . . , M} at level q1. Once
a set of interesting families {Fi, i ∈ S} has been identified by
controlling the vFDR, we aim to control the sFDR, that is the
average FDR on the selected families, at level q2. See Figure 2
for an illustration of the relevant hierarchical structure.

Testing is carried out on the basis of the P -values p it ob-
tained for each of the individual hypotheses Hit. The P -values
for the intersection hypotheses Hi• are defined as the Simes’s

P -values [Simes, 1986] for the respective families:

p i• = min
t=1,...P

Pp i(t)

t
(1)

where p i(t) represents the tth ordered element of the vector
{p it, t = 1, . . . , P } . The hierarchical procedure is as follows:

Testing Procedure 1.

Stage 0 Use Simes’s method to obtain P -values p i•s for the
intersection hypotheses Hi•s.

Stage 1 Apply BH to the collection of P -values {p i•, j =

1, . . . , M} with an FDR target level q1. Let S(P)
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indicate the set of i corresponding to rejected hy-
potheses Hi•.

Stage 2 Proceed to test the individual hypotheses Hit only
in families Fi with i ∈ S(P). Within such families,
apply BH with target level q2 × |S(P)|

M , the appropri-
ate adjustment for the selection bias introduced in
Stage 1.

Testing Procedure 1 guarantees vFDR control when the
Simes’s P -values are valid P -values for the intersection
hypotheses and when BH applied to {p i•, i = 1, . . . , M}
controls FDR. It also guarantees control of sFDR when BH
applied to each family Fi controls FDR within the family and
the P -values in each family are independent of the P -values
in any other family, or when the pooled set of P -values
satisfies a certain positive dependence property (see later
for more details regarding the control of vFDR and sFDR of
Testing Procedure 1 under dependence). Figure 1 illustrates
how the hierarchical procedure controls vFDR and sFDR
in the setting of the simulation described in the previous
section. In the remainder of this paper, we will explore in
some detail when conditions for Testing Procedure 1 to
control its target error rate are satisfied and how applicable
they are to the tests we encounter in GWAS with multiple
phenotypes. First, however, some remarks are useful.

� In Stage 0, we suggested using Simes’s P -value for three
reasons: it can be easily constructed from the single hy-
pothesis P -values; it is robust to most common types
of dependence between the test statistics in the family
[Sarkar, 1998; Hochberg, 2006]; and, finally, its combi-
nation with BH leads to consistent results between stages,
as will be discussed in more detail later. However, other
choices are possible and might be more effective in spe-
cific situations. For example, when the tests across pheno-
types can be considered independent, it might be advan-
tageous to combine P -values using Fisher’s rule [Fisher,
1932]: this might lead to the identification of SNPs that
have a very modest effect on multiple phenotypes, so that
their influence can only be gathered by combining these
effects. If appropriate distributional assumptions are sat-
isfied, another choice might be the higher criticism statis-
tic [Donoho and Jin, 2004]. Finally, one might obtain a
P -value p j • for the intersection hypothesis by means other
than the combination of the P -values for individual hy-
potheses. For example, one can use a reverse regression
approach as in O’Reilly et al. [2012], in which a regression
is fit for each genetic variant treating the full set of pheno-
types as the predictors and the SNP genotype as an ordinal
response.

� Stage 1 focuses on the discovery of interesting fami-
lies, which correspond to genetic variants associated with
variability in phenotypes: a multiplicity adjustment that
controls the desired error rate on {Hi•, i = 1, . . . , M} needs
to be in place. For FDR control we rely on BH, which has
been shown to perform well under the types of dependence
across markers present in the GWAS setting [Schadt et al.,
2003]. The more conservative Benjamini-Yekutieli proce-

dure [Benjamini and Yekutieli, 2001], with its theoretical
guarantees, is also possible. Some might prefer to control
FWER at this level via a Bonferroni procedure: this would
be in keeping with the criteria routinely adopted in GWASs.
In the simulations that follow, we explore the properties of
this approach as well.

� Stage 2 identifies phenotypes associated with interesting
SNPs. It rests on the results in Benjamini and Bogomolov
[2014]: to control the average error rate across the selected
families at level q2, one has to perform a multiplicity adjust-
ment within each family at a more stringent level q2 × |S(P)|

M
to account for the selection effect. Again, this result is more
general than implied in Testing Procedure 1. For exam-
ple, one might want to control the average FWER across
selected families: this would be possible by using Bonfer-
roni at the appropriate level. It is useful to observe the
interplay of selection penalty and Bonferroni correction. If
only one family is selected, the threshold for significance
is q2

MP , the same that would result from applying Bonfer-
roni to the entire collection of hypotheses. If all families
are selected, the threshold for significance is simply q2

P ,

and there is no price for multiplicity across families. When
more than one family is selected, the threshold is between
these two. In general, it can be shown that controlling
the average FWER across selected families is more liberal
than controlling global FWER. It is not possible to make
such a general statement with respect to FDR, but it re-
mains true that the hierarchical procedure has the poten-
tial of increasing power by reducing the multiple compar-
isons burden via relevant selection of which hypotheses to
test.

� Testing Procedure 1 controls sFDR in Stage 2 by controlling
FDR within each selected family at a more stringent level.
One interesting aspect of this approach is that BH is applied
to each selected family separately: this allows for adaptivity
to the family-specific proportion of true nulls, overcoming
one of the limitations of BH applied to the entire collection
of hypotheses.

� Stages 1 and 2 are governed by two separate testing proce-
dures. Generally speaking, this could imply that the set of
discoveries in the two steps are not in perfect correspon-
dence: one could reject the intersection null hypothesis
corresponding to a variant, but not reject any of the single
hypotheses on the association between that variant and the
individual phenotypes. The setup of Testing Procedure 1—
where P -values for the intersection hypotheses are obtained
with Simes’s rule and Stages 1 and 2 use BH—assures that
this is not the case whenever q1 ≤ q2: as long as the global
null corresponding to one variant is rejected, this variant
is declared to be associated with at least one phenotype.

Results

Simulations with Independent Tests

To illustrate the operating characteristics of the hierar-
chical procedure, we rely first on simulations with all tests
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Figure 3. Error rates and power for four multiple-testing strategies. M = 3,000, P = 100 and test statistics are independent. In (A) 60 variants are
associated with 25 traits each and in (B) 1,500 variants are associated with five phenotypes each. The solid lines show the average, the shaded
areas represent the standard error over 250 iterations, and the dotted horizontal lines mark the level 0.05.

independent. Exploration of typical GWAS dependence will
be discussed in the next section. Figure 3 summarizes the re-
sults of two scenarios: M=3,000, P =100 and in (A) 60 variants
are associated with 25 phenotypes (as in Fig. 1), while in (B)
1,500 variants are associated with five phenotypes. P -values
were generated as for Figure 1. Four strategies are compared:
(a) gFDR control with BH (“pooled BH”); (b) Bonfer-

roni targeting gFWER (“pooled Bonferroni”); (c) Testing
Procedure 1 (“hierarchical BH”); (d) hierarchical testing
targeting vFWER, via Bonferroni applied on the Simes’s
P -values, and sFDR (“hierarchical Bonferroni”). The target
for all error rates is 0.05.

All procedures control their respective targeted error rates,
and the two hierarchical procedures also control gFDR. The
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Figure 4. Error rates and power for four multiple-testing strategies. M = 100,000, P = 100, and 1,000 variants are associated with 25 traits and
500 variants are associated with one trait each. The lines show the average, the shaded areas represent the standard error over 250 iterations,
and the dotted horizontal lines mark level 0.05.

power of the hierarchical procedure that controls vFDR is
comparable to that of applying BH to the entire collection
of hypotheses, and the power of the procedure that targets
vFWER is comparable to or better than that of Bonferroni
on the entire collection. The hierarchical procedures show an
advantage when the families with non-null hypotheses are a
small subset of the total families. In such cases, BH applied
to the pooled collection of P -values fails to control vFDR
and sFDR. This is precisely the situation we expect to hold in
GWAS: only a small proportion of SNPs are associated to any
phenotype. The substantial increase in power of “hierarchical
Bonferroni” over “pooled Bonferroni” in (A) is due to the
adaptivity of BH to the proportion of false null hypotheses
in the families: when an SNP is selected, which has effects
on multiple phenotypes, it becomes easier to detect these
associations.

Given that the relative advantages of the procedures we
are considering depend on the number of families and the
number of true null hypotheses they contain, we run a
simulation with dimensions that should resemble that of
a GWAS involving multiple traits: 100,000 SNPs and 100
phenotypes. In Figure 4 most of the families contain only
true null hypotheses, except for 1,000 variants that are
associated with 25 phenotypes and 500 variants that are

associated with one phenotype each. This last type of family
is included both to account for phenotype-specific effects
and to evaluate the possible loss of power in detecting these
variants for the hierarchical strategy: in addition to the global
power (gPower), we report power to detect variants (vPower)
and power to detect variants that affect only one phenotype
(SingletonPower). As expected, simply applying BH to
the entire collection of hypotheses results in a substantial
increase of the vFDR and sFDR, with no substantial power
advantage. Indeed, the overall power is better for the
hierarchical strategy, even if this encounters a loss of power
to detect SNPs that are associated with only one phenotype.
Although these simulations were based on independent test
statistics, we obtained similar results when the test statistics
within each family were correlated, as is the case when
there is dependence among phenotypes. Specifically, when
the test statistics within each family were sampled from a
multivariate normal distribution with a covariance matrix
inducing spatial correlation, the measured error rates and
relative performance of the different error control strategies
were consistent with those shown in Figure 3. For more
details on this simulation, see http://web.stanford.edu/�cbp/
Peterson_multi_trait_supplement.pdf. In the next section,
we explore the effects of more complex dependence including

Genetic Epidemiology, Vol. 00, No. 00, 1–12, 2015 7



correlation across the predictor variables on the hierarchical
procedure.

GWAS Dependence Structure

The markers typed in GWAS are typically chosen to span
the entire genome at a high density. SNPs in the same neigh-
borhood are not independent, but in linkage disequilibrium.
This redundancy assures that the typed markers can effec-
tively act as proxies for untyped variants and is one of the
sources of dependency relevant for our study.

To understand other departures from independence, it is
useful to look at the relationship between phenotypes and
genotypes and the methods with which these are analyzed.
In its simplest form, the data-generating model considered
by geneticists to link each phenotype t to genotypes is yit =

x′
iβ + εi, where εi are uncorrelated and i indicates subjects.

The coefficient vector β is thought to be sparse (i.e., with a
small proportion of nonzero elements) or effectively sparse
in the sense that a small portion of the coefficients have
appreciable size. When considering multiple phenotypes and
n subjects, this translates into

Y = XB + E, (2)

where Yn×P , Xn×M , BM×P , and En×P are matrices containing
phenotypes, genotypes, coefficients, and error terms, respec-
tively. Although most of the rows of B are full of zeros, some
rows are expected to contain more than one nonzero element,
corresponding to genomic locations that influence multiple
phenotype (pleiotropy): the resulting phenotypes are not in-
dependent, even when the elements of the error matrix are
iid.

GWAS data are generally analyzed using a collection of
univariate regressions linking each phenotype t to one genetic
variant i:

Ŷ[,t] = α̂ + x[,i]β̂it + Ê[,t], (3)

and the hypothesis Hit translates into H : βit = 0, tested with
the standard t-statistics. Clearly, the discrepancy between
even the theoretical model (2) and the regression (3) used
for analysis leads to a number of consequences. For exam-
ple, as the error terms Ê[i,t] cannot be expected to be un-
correlated across individuals, linear mixed models are often
used in single phenotype analysis [Kang et al., 2010]. More-
over, the combination of spatial dependence existing across
SNPs and the univariate testing approach (3) induces spatial
structure among both the test statistics and the hypotheses.
Consider the case of a complete null where the phenotypes
under study have no genetic underpinning. If by random
chance one variant appears to have some explanatory power
for one phenotype, the P -values of neighboring SNPs will
also tend to have lower values—this is dependence among
the test statistics. Consider now a data-generating model (2)
where variant i has a coefficient different from zero while
its neighbors do not. With respect to model (2) Hit is false
and the Hlt for neighboring SNPs l are true. However, once
we decide to look at the data through the lenses of (3), the

hypotheses Hlt are redefined to mean the lack of any associa-
tion between SNP l and phenotype t and—as long as SNP l can
act as a reasonable proxy for one of the causal variants—Hlt

is false. We expect clusters of null hypotheses corresponding
to neighboring SNPs to be false or true together. Indeed, in
GWAS studies it is common to find a number of nearby vari-
ants significantly associated with the trait: this is interpreted
as evidence for the presence of one or more causal variants in
the specific genomic region. Looking at multiple phenotypes
that might share genetic determinants adds another layer to
this phenomenon.

On the one hand, dependence between test statistics can
be problematic for multiplicity adjustment strategies. The
Bonferroni approach controls FWER even if tests are depen-
dent; the BH procedure, instead, is guaranteed to control
FDR under independence or positive regression dependence
on a subset (PRDS) [Benjamini and Yekutieli, 2001], even if it
has been empirically observed to provide FDR control under
broader conditions. When the BH procedure controls FDR
under the dependence of the P -values within each family and
the P -values in each family are independent of the P -values
in any other family, the Testing Procedure 1 controls vFDR
and sFDR. Provided that certain overall positive dependence
properties hold, these error rates remain controlled when the
P -values across the families are not independent. In partic-
ular, when the pooled set of P -values is PRDS, sFDR is con-
trolled (see Theorem 3 in Benjamini and Bogomolov [2014];
note that this is the same condition needed for pooled BH
to control gFDR). In addition, it can be concluded from the
simulation results of Benjamini and Heller [2008] that when
{p it, i = 1, . . . , M} are PRDS for each t ∈ {1, . . . , P }, and
when {p it, t = 1, . . . , P } are PRDS for each i ∈ {1, . . . , M},
vFDR is controlled.

On the other hand, the fact that tested hypotheses Hit are
defined with respect to (3) rather than the data generative
model (2) makes it challenging to evaluate the error made by
a multiple-testing procedure: if we use (2) as ground truth,
we expect many false rejections that really do not correspond
to a mistake with reference to (3). In order to avoid this prob-
lem, we consider all the hypotheses relative to variants that
are within 1 Mb and have correlation of magnitude at least
0.2 to a causal variant in the generative model as correctly
rejected.

For the simulations below, we use genotype data obtained
from 1966 Northern Finland Birth Cohort (NFBC) Sabatti
et al. [2009]. We exclude copy number variants and mark-
ers with P -values for Hardy-Weinberg equilibrium below
1×10–5, with minor allele frequency (MAF) less than 0.01,
or with call rate less than 95%. This screening results in M =

334,103 SNPs on n = 5, 402 subjects. We code SNPs by minor
allele count and impute missing genotypes by average variant
allele count. We simulate P = 100 traits. In each iteration, we
select 130 SNPs at random and use them to generate phe-
notypes, as follows: the first 10 SNPs affect 50 phenotypes,
the next 10 affect 25, the next 10 affect 10, and the final 100
each affect five phenotypes, always chosen at random. In this
set up, each trait reflects the contribution of 13.5 SNPs on
average. The more than 300,000 SNPs remaining have no
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Figure 5. Error rates and power for four multiple-testing strategies applied to simulated data starting from real genotypes. The lines show the
average, the shaded areas report the standard error over 100 iterations, and the dotted horizontal lines mark the 0.05 level.

functional role. To generate the simulated traits, we follow
the linear model in equation (2), where Bit is 1 in presence of
an association between variant i and trait t and 0 otherwise.
In summary, the test statistics generated as part of this sim-
ulation will exhibit dependence due to two sources: spatial
correlation between neighboring SNPs and shared genetic
background among phenotypes.

Due to the large number of hypotheses under consider-
ation, we rely on MatrixEQTL [Shabalin, 2012] to allow
efficient computation of the P -values of association. This
software, originally designed for the analysis of eQTL data,
utilizes large matrix operations to increase computational
speed and has the option to reduce the required memory by
saving only P -values beneath a given threshold. As long as
this threshold is above the P -value cutoff for selection un-
der all error control methods, this shortcut does not affect
the results. In applying MatrixEQTL, we use a threshold of
5×10–4 for saving output and include the first five principal
components of the genotype data as covariates to adjust for
the effects of population structure.

Under varying levels of noise σ, we compare four adjust-
ment strategies studied before. When analyzing the results,
we consider a discovery a true positive if it lies within 1 Mb

and has correlation at least 0.2 to the truly causal SNP. The
results, given in Figure 5, show that even with this allowance,
there are still settings where some of the methods under con-
sideration fail to control their target error rates. In particular,
pooled Bonferroni fails to control gFWER and hierarchical
Bonferroni fails to control vFWER for settings with higher
levels of power. In addition, gFDR is somewhat above 0.05
for pooled BH and vFDR exceeds 0.05 for hierarchical BH
in the setting with highest power. Rather than a failure of
the multiple comparisons procedure, this is to be attributed
to the confusion induced by the use of model (3) to analyze
data generated with model (2); when we rerun the analysis
using phenotypes adjusted for the effects of variables omit-
ted by the univariate model, these errors appear appropriately
controlled. FWER is more sensitive to these misspecification
errors simply because one single mistake is enough to raise
the realized FWE to 1; in contrast, as long as these mistakes
are accompanied by a number of true discoveries, the realized
FDP will only be marginally inflated. Focusing on the perfor-
mance of hierarchical methods compared, we again conclude
that they appear to control their targeted error rates when-
ever the corresponding pooled approach controls gFDR or
gFWER.
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Figure 6. Families with differential results from pooled BH and hierarchical BH for the case study. Discoveries under both methods are marked
with •, discoveries made only under pooled BH are marked with “−”, and discoveries made only under hierarchical BH are marked with “+.”

Case Study: Flowering in Arabidopsis thaliana

We use Testing Procedure 1 to reanalyze data on the
genetic basis of flowering phenotypes in A. thaliana
[Atwell et al., 2010] online at https://cynin.gmi.oeaw.ac.at/
home/resources/atpolydb/genomic-polymorphism-data-in-
arabidopsis-thaliana. Although the original study includes
109 different traits, we focus on 23 phenotypes related
to flowering including days to flowering under different
conditions, plant diameter at flowering, number of leaves at
flowering, etc.; the results in Atwell et al. [2010] indicate that
a shared genetic basis is likely for at least some of these traits.
Genotypes are available for 199 inbred lines at 216,130 SNPs.

To obtain P -values of association, we follow the steps
described in Atwell et al. [2010]: exclude SNPs with a MAF
≤ 0.1, transform certain phenotypes to the log scale, and fit
the variance components model implemented in Kang et al.
[2008], which allows us to account for population structure.
The original analysis underscored the difficulties of identify-
ing true positives only on the basis of statistical considerations
and did not attempt formal multiplicity adjustment. Al-
though these challenges clearly still stand, here we compare
the results of applying BH across the full set of P -values tar-
geting gFDR at level 0.05, with those of Testing Procedure 1
targeting vFDR and sFDR, each at level 0.05. This means that
for the hierarchical procedure, we have M = 216, 130 families
corresponding to SNPs, each consisting of 23 hypotheses.

Hierarchical BH identifies 131 variants versus the 139
of pooled BH, reflecting a tighter standard for variant
discovery. At the same time, hierarchical BH increases global
power over pooled BH, resulting in a total of 174 discoveries
versus 161: an increase of 8%. The variants that pooled BH
discovers in excess of hierarchical BH are declared associated
to one phenotype only. There are 7% fewer such SNPs
according to the hierarchical procedure. Figure 6 presents

variants with different results under the two methods: eight
SNPs discovered by pooled BH as associated with only one
phenotype are not selected by hierarchical BH, while several
SNPs discovered under pooled BH are associated to a larger
number of phenotypes by hierarchical BH. For example, the
SNP in column 1 of Figure 6 corresponds to a particular
location in the short vegetative phase (SVP) gene, that is
known to be involved in flowering and associated to two
additional phenotypes under the hierarchical method.

Discussion

Contemporary genomic investigations result in testing very
large number of hypotheses, making it vital to adopt appro-
priate strategies for multiplicity adjustment: the risk of lack
of reproducibility of results is too high to be overlooked.
When the collection of tested hypotheses has some struc-
ture, discoveries often occur at multiple levels and reports
typically do not focus on the rejection of hypotheses at the
finest scales. In the hope of increasing both power and in-
terpretability, scientists often attempt to outline an overall
picture with statements that are supported by groups of hy-
potheses. We considered one example of such situations: in
GWASs concerning a large number of phenotypes the pri-
mary object of inference is often the identification of variants
that are associated to any trait.

The simulations presented make clear that in these settings
it is necessary to identify what is to be considered a discovery
and to perform a multiplicity adjustment that allows one to
control measures of global error defined on the discoveries
of interest. By adapting the work in Benjamini and Bogo-
molov [2014], we outline one such strategy and explore its
performance and relative advantages in the context of GWAS
studies involving multiple phenotypes.
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Our hierarchical strategy aims at (a) identifying SNPs that
affect some phenotypes (while controlling errors at this level)
and (b) detecting which phenotypes are influenced by such
SNPs (controlling the average error measure across selected
SNPs). Aim (a) focuses on the discovery of SNPs with any
functional effects, while aim (b) focuses on the association
of these SNPs to the specific phenotypes they influence. Fol-
lowing the terminology defined in Table 2, the measures of
global error controlled in stages (a) and (b) are vFDR and
sFDR, respectively. We consider two error measures: FDR and
FWER. We show that while our strategy achieves these goals,
applying FDR controlling rules (as BH) on the entire collec-
tion of hypotheses (“pooled BH”) does not control the FDR
of the discoveries in (a) and (b): whenever the reporting of
results emphasizes these, other multiplicity adjustments need
to be in place. On the other hand, the “hierarchical BH” pro-
cedure is not guaranteed to control the global FDR (gFDR)
in general, but it effectively appears to do so in the situations
we simulated. Applying Bonferroni to the pooled collection
of hypotheses does control FWER for the discoveries in (a)
and sFDR for the discoveries in (b), but it is excessively con-
servative if these are the target error rates. Conversely, the
“hierarchical Bonferroni” strategy does not control global
FWER.

To complete this summary of results, we shall make a few
remarks. First, while the application to GWAS studies has
motivated us and guided the exposition of material as well
as some specific implementation choices, it is important to
note that Testing Procedure 1 is applicable to much broader
settings. It simply rests on the possibility of organizing the
entire collection of tested hypotheses in groups of separate
families, each probing a meaningful scientific question.

Second, it is worth noting that the hierarchical strategy
represents one example of valid selective inference. More and
more, as the modalities of data collection become increasingly
comprehensive rather than targeted, scientists tend to “look
at the data first and ask questions later.” In other words, initial
exploratory analyses are used to identify possible meaningful
patterns and formulate precise hypotheses for formal statis-
tical testing. When this is the case, however, the traditional
rules for determining significance are inappropriate and pro-
cedures that account for the selection effects are called for.
The work of Benjamini and Bogomolov [2014] that we adapt
here is an important step in this direction.

Moving on to the specific implications for multiphenotype
GWAS, the results of our simulations using actual genotypes
contribute to the debate on whether to choose FDR or FWER
as targeted error rate. The combination of correlation be-
tween SNPs and misspecification of the linear model that is
routinely used in GWAS applications can result in the rejec-
tion of hypotheses of no association between an SNP and a
phenotype even when the SNP has no causal effect and is
reasonably far from any causal variants. In procedures that
target FDR control, these “false” rejections are accompanied
by a number of correct ones and their effect on the error rate
is modest. Conversely, the presence of even one such wrong
rejection equates the realized FWE to one: this makes it very
hard to control FWER in situations other than global null.

Because of the disparities in targeted error rates, it is dif-
ficult to contrast the power of the hierarchical and pooled
strategies as this comparison is most meaningful across pro-
cedures that guarantee the same error level. However, it is of
practical relevance to contrast the number and characteristics
of true findings that a researcher can expect when adopting
the pooled and the hierarchical procedure targeting the re-
spective error rates at the 0.05 level. Both the BH strategies
appear to control global FDR and our simulations indicate
that overall power is quite similar: the pooled approach dis-
covers more SNPs that truly affect a single phenotype and the
hierarchical approach discovers more SNPs that affect mul-
tiple phenotypes. The same trend is evident in the real-data
analysis. Note that the FDR among SNPs that are declared as-
sociated with one phenotype by the pooled BH strategy can
be very high. Both Bonferroni strategies control the FWER of
SNP discoveries and the expected value of the average FDP for
SNP-phenotype associations across selected SNPs: the hier-
archical approach (which does not control global FWER) has
greater power, once again thanks to the increased discovery
of SNPs associated to multiple phenotypes.

Although we have not discussed this so far, it will not have
escaped the attentive reader that the hierarchical procedure
we propose can be applied in meta-analyses of GWAS studies
of the same trait. In this setting, one typically has indepen-
dence across studies and multiple powerful choices of P-value
for the global nulls are available in Stage 0. The contribution
of the hierarchical procedure in this context is in Stage 2,
where studies with significant association are identified.

A remark is in order with reference to the application of
the proposed approach to multiphenotype GWAS studies.
Although we found that our method is robust to correlation
among phenotypes given independent predictors, we
have not fully explored the results of dependence across
phenotypes due to environmental components in a realistic
GWAS setting. Consider eQTL studies where the traits are
measurements of expression levels of multiple genes: it has
been repeatedly observed that experimental batch effects can
result in strong dependence between traits. If such correlation
between phenotypes is present, it would be crucial to account
for it in the method of analysis used to define P -values.
In absence of this, it is quite possible that some of the
environmental effects might be accidentally correlated with
the genotype value of some of the SNPs in the study resulting
in a number of false positives that would be exacerbated
by the hierarchical approaches. Indeed, the procedures we
outlined here are valid as long as the P -values used as input
are accurate; obtaining such P -values is clearly of paramount
importance. There have been several recent proposals
that rely on the linear mixed model framework to handle
correlation across phenotypes in the context of GWAS with
population structure [Joo et al., 2015; Korte et al., 2012;
Zhou et al., 2014]; these could provide a useful alternative
to P -values obtained via standard linear regression models
when correlation across traits is strong. Alternatively, the
issue of dependence among phenotypes could be addressed
by constructing independent traits using a technique such
as principal component analysis (PCA). In fact, there are
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many possible methods that could be used; an advantage of
the proposed hierarchical testing procedure is that it is quite
flexible and can be applied given association P -values from
whichever approach is preferred for a particular context.

Finally, we want to point out that, while our focus has been
the problem of multiple comparison in mutitrait GWAS stud-
ies that start with obtaining P -values for the hypotheses of
association between each SNP and each phenotype, there are
other approaches to this problem. Specifically, one can ex-
plicitly model the dependence between phenotypes and use
statistical approaches that identify loci underlying these mul-
tivariate traits. The linkage literature has some interesting
examples [Williams et al., 1999], and steps along these di-
rections have been also documented in association studies
[Flutre et al., 2013; O’Reilly et al., 2012]. One caveat to keep
in mind is that in some cases explicit multivariate models
can be very computationally intensive and become imprac-
tical when the number of phenotypes is quite large. When,
however, a more powerful test for the hypotheses Hi• can be
obtained with these approaches, we recommend using them
in Stage 0 of our procedure.

Software

The hierarchical error control methods described in
this paper have been implemented as a part of the
TreeQTL R package [Peterson, 2015], available online at
http://bioinformatics.org/treeqtl.
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