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Bayesian Inference of Multiple Gaussian
Graphical Models

Christine PETERSON, Francesco C. STINGO, and Marina VANNUCCI

In this article, we propose a Bayesian approach to inference on multiple Gaussian graphical models. Specifically, we address the problem
of inferring multiple undirected networks in situations where some of the networks may be unrelated, while others share common features.
We link the estimation of the graph structures via a Markov random field (MRF) prior, which encourages common edges. We learn which
sample groups have a shared graph structure by placing a spike-and-slab prior on the parameters that measure network relatedness. This
approach allows us to share information between sample groups, when appropriate, as well as to obtain a measure of relative network
similarity across groups. Our modeling framework incorporates relevant prior knowledge through an edge-specific informative prior and
can encourage similarity to an established network. Through simulations, we demonstrate the utility of our method in summarizing relative
network similarity and compare its performance against related methods. We find improved accuracy of network estimation, particularly
when the sample sizes within each subgroup are moderate. We also illustrate the application of our model to infer protein networks for
various cancer subtypes and under different experimental conditions.

KEY WORDS: G-Wishart prior; Markov random field; Protein network.

1. INTRODUCTION

Graphical models, which describe the conditional depen-
dence relationships among random variables, have been widely
applied in genomics and proteomics to infer various types of
networks, including co-expression, gene regulatory, and pro-
tein interaction networks (Dobra et al. 2004; Friedman 2004;
Mukherjee and Speed 2008; Stingo et al. 2010; Telesca et al.
2012). Here, we address the problem of inferring multiple undi-
rected networks in situations where some networks may be un-
related, while others may have a similar structure. This problem
relates to applications where we observe data collected under
various conditions. In such situations, using the pooled data
as the basis for inference of a single network may lead to the
identification of spurious relationships, while performing infer-
ence separately for each group effectively reduces the sample
size. Instead, we propose a joint inference method that infers a
separate graphical model for each group but allows for shared
structures, when supported by the data. Our approach not only
allows estimation of a graphical model for each sample group,
but also provides insights on how strongly the graph structures
for any two sample groups are related.

Some approaches for inferring graphical models for two or
more sample groups have been proposed in recent years. Guo
et al. (2011) extended the graphical lasso to multiple undirected
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graphs by expressing the elements of the precision matrix for
each group as a product of common and group-specific factors.
In their optimization criterion, they incorporated an �1 penalty
on the common factors, to create a sparse-shared structure, and
a second �1 penalty on the group-specific factors, to allow edges
included in the shared structure to be set to zero for specific
groups. Danaher, Wang, and Witten (2014) proposed a more
general framework that uses convex penalties and explored in
detail the properties of two specific penalty structures: the fused
graphical lasso, which encourages both shared structure and
shared edge values, and the group graphical lasso, which results
in shared graph structures but not shared edge values. As for
Bayesian approaches, Yajima et al. (2012) proposed a Bayesian
method to estimate Gaussian-directed graphs for related sam-
ples. Focusing mainly on the case of two sample groups, the
authors treated one group as the baseline and expressed the
strength of association between two variables in the differential
group as the sum of the strength in the baseline group plus a
differential parameter.

In this article, we formulate an alternative Bayesian approach
to the problem of multiple network inference. We link estima-
tion of the graph structures via a Markov random field (MRF)
prior, which encourages common structures. This prior favors
the inclusion of an edge in the graph for a particular group
if the same edge is included in the graphs of related sample
groups. Unlike the approaches mentioned above, we do not as-
sume that all subgroups are related. Instead, we learn which
sample groups have a shared graph structure by placing a spike-
and-slab prior on parameters that measure network relatedness.
The posterior probabilities of inclusion for these parameters
summarize the networks’ similarity. This formulation allows
us to share information between sample groups only when ap-
propriate. Our framework also allows for the incorporation of
relevant prior knowledge through an edge-specific informative
prior. This approach enables borrowing of strength across related
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sample groups and can encourage similarity to an established
network. Through simulations, we demonstrate the utility of our
method in summarizing relative network similarity and compare
its performance against related methods. We find improved ac-
curacy of network estimation, particularly when the sample sizes
within each subgroup are moderate. We also illustrate the appli-
cation of our model to infer protein networks for various cancer
subtypes and under different experimental conditions. In such
applications, a measure of network similarity helps determine if
treatments that are successful for one subtype are likely to be ef-
fective in another, while the differential edges between networks
highlight potential targets for treatments specific to each group.

The rest of the article is organized as follows. Section 2 pro-
vides background on graphical models and on Bayesian methods
for estimation. Section 3 presents the model and the construction
of the priors. Section 4 addresses posterior inference, including
the Markov chain Monte Carlo (MCMC) method. Section 5
includes the simulations and Section 6 demonstrates the appli-
cation of our method on two case studies on protein networks.
Section 7 concludes the article.

2. BACKGROUND

2.1 Graphical Models

Graphical models use a graph G to represent conditional
dependence relationships among random variables. A graph
G = (V,E) specifies a set of vertices V = {1, 2, . . . , p} and a
set of edges E ⊂ V × V . In a directed graph, edges are denoted
by ordered pairs (i, j ) ∈ E. In an undirected graph, (i, j ) ∈ E

if and only if (j, i) ∈ E. For an overview of graphical models
in statistics, see Lauritzen (1996). We focus here on undirected
graphical models, also known as MRFs. In this class of models,
each vertex in the graph G corresponds to a random variable.
The absence of an edge between two vertices means that the two
corresponding variables are conditionally independent given the
remaining variables, while an edge is included whenever the two
variables are conditionally dependent.

In Gaussian graphical models (GGMs), also known as co-
variance selection models (Dempster 1972), the conditional in-
dependence relationships correspond to constraints on the pre-
cision matrix � = �−1 of the multivariate normal distribution

xi ∼ N (μ,�−1), i = 1, . . . , n, (2.1)

with xi ∈ Rp the vector of observed data for subject i, μ ∈ Rp

the mean vector, and � ∈ Rp × Rp a positive definite symmet-
ric matrix. The multivariate normal is parameterized here in
terms of the precision matrix � rather than the covariance ma-
trix � since there is a correspondence between the conditional
dependence graph G and the structure of �. Specifically, the
precision matrix � is constrained to the cone of symmetric pos-
itive definite matrices with off-diagonal entry ωij equal to zero
if there is no edge in G between vertex i and vertex j.

Many of the estimation techniques for GGMs rely on the
assumption of sparsity in the precision matrix, which is a re-
alistic assumption for many real-world applications including
inference of biological networks. Regularization methods are a
natural approach to inference of a sparse precision matrix. The
most popular of these is the graphical lasso (Meinshausen and

Bühlmann 2006; Yuan and Lin 2007; Friedman, Hastie, and
Tibshirani 2008), which uses an �1 penalty on the off-diagonal
entries of the precision matrix to achieve sparsity in estima-
tion of the graph structure. Among Bayesian approaches, the
Bayesian graphical lasso, proposed as the Bayesian analog to
the graphical lasso, places double exponential priors on the off-
diagonal entries of the precision matrix (Wang 2012; Peterson
et al. 2013). Estimation of a sparse graph structure using the
Bayesian graphical lasso is not straightforward, however, since
the precision matrices sampled from the posterior distribution
do not contain exact zeros.

2.2 G-Wishart Prior Framework

Bayesian approaches to graphical models that enforce exact
zeros in the precision matrix have been proposed by Rover-
ato (2002), Jones et al. (2005), and Dobra, Lenkoski, and Ro-
driguez (2011). In Bayesian analysis of multivariate normal
data, the standard conjugate prior for the precision matrix � is
the Wishart distribution. Equivalently, one can specify that the
covariance matrix � = �−1 follows the Inverse-Wishart dis-
tribution. Early work (Dawid and Lauritzen 1993; Giudici and
Green 1999) focused on restrictions of the Inverse-Wishart to
decomposable graphs, which have the special property that all
prime components are complete. The assumption of decompos-
ability greatly simplifies computation, but is artificially restric-
tive for the inference of real-world networks. To address this
limitation, Roverato (2002) proposed the G-Wishart prior as
the conjugate prior for arbitrary graphs. The G-Wishart is the
Wishart distribution restricted to the space of precision matrices
with zeros specified by a graph G that may be either decom-
posable or nondecomposable. The G-Wishart density WG(b,D)
can be written as

p(�|G, b,D) = IG(b,D)−1|�|(b−2)/2 exp

{
−1

2
tr(�D)

}
,

� ∈ PG,

where b > 2 is the degrees of freedom parameter, D is a p × p

positive definite symmetric matrix, IG is the normalizing con-
stant, and PG is the set of all p × p positive definite symmetric
matrices with ωij = 0 if and only if (i, j ) /∈ E. Although this
formulation is more flexible for modeling, it introduces com-
putational difficulties because both the prior and the posterior
normalizing constants are intractable. Jones et al. (2005) and
Lenkoski and Dobra (2011) simplified the problem by integrat-
ing out the precision matrix. Dobra, Lenkoski, and Rodriguez
(2011) proposed a reversible jump algorithm to sample over
the joint space of graphs and precision matrices, which does
not scale well to large graphs. Wang and Li (2012) proposed a
sampler that does not require proposal tuning and circumvents
computation of the prior normalizing constant through the use
of the exchange algorithm, improving both the accuracy and
efficiency of computation.

3. PROPOSED MODEL

Our goal is to infer a graph structure and obtain an estimate
of the precision matrix describing the relationships among vari-
ables within each of K possibly related sample groups. These
networks are complex systems and may be difficult to infer
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using separate estimation procedures when the sample size for
any of the subgroups is small. Our approach addresses this issue
by allowing the incorporation of relevant prior knowledge and
the sharing of information across subgroups, when appropri-
ate. In addition, our method allows comparison of the relative
network similarity across the groups, providing a pairwise as-
sessment of graph relatedness.

3.1 Likelihood

We let Xk represent the nk × p matrix of observed data for
sample group k, where k = 1, 2, . . . , K . We assume that the
same p random variables are measured across all groups, but
allow the sample sizes nk to differ. Assuming that the samples
are independent and identically distributed within each group,
the likelihood of the data for subject i in group k can be written
as

xk,i ∼ N (
μk,�

−1
k

)
, i = 1, . . . , nk, (3.1)

where μk ∈ Rp is the mean vector for the kth group, and the
precision matrix for the kth group �k is a symmetric posi-
tive definite matrix constrained by a graph Gk specific to that
group. The graph Gk for sample group k can be represented as a
symmetric binary matrix where the off-diagonal entry gk,ij in-
dicates the inclusion of edge (i, j ) in Gk . The inclusion of edge
(i, j ) in graphs 1, . . . , K is represented by the binary vector
gij = (g1,ij , . . . , gK,ij )T .

3.2 Markov Random Field Prior Linking Graphs

We define an MRF prior on the graph structures, which en-
courages the selection of the same edges in related graphs. This
prior does not require the assumption of Gaussianity, and it is
sufficiently general that it could be applied to models using any
type of undirected graph.

MRF priors have previously been used to model the rela-
tionships among covariates in the context of Bayesian variable
selection (Li and Zhang 2010; Stingo and Vannucci 2011). Our
MRF prior follows a similar structure, but replaces indicators of
variable inclusion with indicators of edge inclusion. The proba-
bility of the binary vector of edge inclusion indicators gij , where
1 ≤ i < j ≤ p, is given by

p(gij |νij ,�) = C(νij ,�)−1 exp
(
νij 1T gij + gT

ij�gij

)
, (3.2)

where 1 is the unit vector of dimension K, νij is a parameter
specific to each set of edges gij , and � is a K × K symmetric
matrix representing the pairwise relatedness of the graphs for
each sample group. The diagonal entries of � are set to zero, and
the off-diagonal entries that are nonzero represent connections
between related networks. To help visualize the model formu-
lation, Figure 1 shows a supergraph � for three sample groups.

The normalizing constant in Equation (3.2) is defined as

C(νij ,�) =
∑

gij ∈{0,1}K
exp

(
νij 1T gij + gT

ij�gij

)
. (3.3)

From Equation (3.2), we can see that the prior probability that
edge (i, j ) is absent from all K graphs simultaneously is

p(gij = 0|νij ,�) = 1

C(νij ,�)
.

Figure 1. Illustration of the model for three sample groups. The
parameters θ12, θ13, and θ23 reflect the pairwise similarity between the
graphs G1, G2, and G3.

Although the normalizing constant involves an exponential
number of terms in K, for most settings of interest the number
of sample groups K is reasonably small and the computation is
straightforward. For example, if K = 2 there are 2K = 4 possi-
ble values that gij can take and Equation (3.2) then simplifies to

p(gij |νij , θ12) = exp(νij (g1,ij + g2,ij ) + 2θ12g1,ij g2,ij )

exp(2νij + 2θ12) + 2 exp(νij ) + 1
. (3.4)

The joint prior on the graphs (G1,G2, . . . ,GK ) is the product
of the densities for each edge:

p(G1, . . . ,GK |ν,�) =
∏
i<j

p(gij |νij ,�), (3.5)

where ν = {νij |1 ≤ i < j ≤ p}. Under this prior, the condi-
tional probability of the inclusion of edge (i, j ) in Gk , given the
inclusion of edge (i, j ) in the remaining graphs, is

p(gk,ij |{gm,ij }m�=k, νij ,�)

= exp(gk,ij (νij + 2
∑

m�=k θkmgm,ij ))

1 + exp(νij + 2
∑

m�=k θkmgm,ij )
. (3.6)

Parameters � and ν influence the prior probability of selec-
tion for edges in the graphs G1, . . . ,GK . In the variable se-
lection setting, Scott and Berger (2010) found that a fixed prior
probability of variable inclusion offers no correction for multiple
testing. Although we are selecting edges rather than variables, a
similar idea holds here. We therefore impose prior distributions
on ν and � to reduce the false selection of edges. This approach
is also more informative since we obtain posterior estimates of
these parameters that reflect information learned from the data.

3.3 Selection Prior on Network Similarity

As previously discussed, the matrix � represents a super-
graph with nonzero off-diagonal entries θkm indicating that the
networks for sample group k and sample group m are related. The
magnitude of the parameter θkm measures the pairwise similar-
ity between graphs Gk and Gm. A complete supergraph reflects
that all the inferred networks are related. For other cases, some
of the networks will be related while others may be different
enough to be considered independent. We learn the structure of
this supergraph from the data. Our approach has the flexibility
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to share information between groups when appropriate, but not
enforce similarity when the networks are truly different.

We place a spike-and-slab prior on the off-diagonal entries
θkm. See George and McCulloch (1997) for a discussion of the
properties of this prior. Here, we want the “slab” portion of the
mixture to be defined on a positive domain since θkm takes on
positive values for related networks. Given this restriction on
the domain, we want to choose a density that allows good dis-
crimination between zero and nonzero values of θkm. Johnson
and Rossell (2010, 2012) demonstrated improved model selec-
tion performance when the alternative prior is nonlocal in the
sense that the density function for the alternative is identically
zero for null values of the parameter. Since the probability den-
sity function Gamma(x|α, β) with α > 1 is equal to zero at the
point x = 0 and is nonzero on the domain x > 0, an appro-
priate choice for the “slab” portion of the mixture prior is the
Gamma(x|α, β) density with α > 1.

We formalize our prior by using a latent indicator variable
γkm to represent the event that graphs k and m are related. The
mixture prior on θkm can then be written in terms of the latent
indicator as

p(θkm|γkm) = (1 − γkm) · δ0 + γkm · βα


(α)
θα−1
km e−βθkm , (3.7)

where 
(·) represents the Gamma function and α and β are fixed
hyperparameters. As there are no constraints on the structure
of � (such as positive definiteness), the θkm’s are variation
independent and the joint prior on the off-diagonal entries of �

is the product of the marginal densities:

p(�|γ ) =
∏
k<m

p(θkm|γkm). (3.8)

We place independent Bernoulli priors on the latent indicators

p(γkm|w) = wγkm (1 − w)(1−γkm), (3.9)

where w is a fixed hyperparameter in [0, 1]. We denote the joint
prior as

p(γ ) =
∏
k<m

p(γkm|w). (3.10)

3.4 Edge-Specific Informative Prior

The parameter ν from the prior on the graphs given in Equa-
tion (3.5) can be used both to encourage sparsity of the graphs
G1, . . . ,GK and to incorporate prior knowledge on particular
connections. Equation (3.2) shows that negative values of νij

reduce the prior probability of the inclusion of edge (i, j ) in all
graphs Gk . A prior that favors smaller values for ν therefore
reflects a preference for model sparsity, an attractive feature in
many applications since it reduces the number of parameters to
be estimated and produces more interpretable results.

Since larger values of νij make edge (i, j ) more likely to
be selected in each graph k regardless of whether it has been
selected in other graphs, prior network information can be in-
corporated into the model through an informative prior on νij .
Given a known reference network G0, we define a prior that
encourages higher selection probabilities for edges included in
G0. When θkm is 0 for all m �= k or no edges gm,ij are selected
for nonzero θkm, then the probability of inclusion of edge (i, j )

in Gk can be written as

p(gk,ij |νij ) = eνij

1 + eνij
= qij . (3.11)

We impose a prior on qij that reflects the belief that graphs Gk

that are similar to the reference network G0 = (V,E0) are more
likely than graphs that have many different edges,

qij =
{

Beta(1 + c, 1) if (i, j ) ∈ E0

Beta(1, 1 + c) if (i, j ) /∈ E0,
(3.12)

where c > 0. This determines a prior on νij since νij =
logit(qij ). After applying a univariate transformation of vari-
ables to the Beta(a, b) prior on qij , the prior on νij can be
written as

p(νij ) = 1

B(a, b)
· eaνij

(1 + eνij )a+b
, (3.13)

where B(·) represents the beta function.
In cases where no prior knowledge on the graph struc-

ture is available, a prior that favors lower values, such as
qij ∼ Beta(1, 4) for all edges (i, j ), can be chosen to encourage
overall sparsity. To account for the prior belief that most edges
are missing in all graphs while the few edges that are present
in any one graph tend to be present in all other graphs, a prior
favoring even smaller values of νij could be coupled with a prior
favoring larger values for θkm.

3.5 Completing the Model

The prior on the mean vector μk in model (3.1) is the conju-
gate prior

μk|�k ∼ N (μ0, (λ0�k)−1), (3.14)

where λ0 > 0, for k = 1, 2, . . . , K . For the prior on the precision
matrix �k , we choose the G-Wishart distribution WG(b, D),

�k|Gk, b, D ∼ WG(b, D), (3.15)

for k = 1, 2, . . . , K . This prior restricts �k to the cone of sym-
metric positive definite matrices with ωk,ij equal to zero for
any edge (i, j ) /∈ Gk , where Gk may be either decomposable
or nondecomposable. In applications, we use the noninforma-
tive setting b = 3 and D = Ip. Higher values of the degrees of
freedom parameter b reflect a larger weight given to the prior,
so a prior setting with b > 3 and D = c · Ip for c > 1 could be
chosen to further enforce sparsity of the precision matrix.

4. POSTERIOR INFERENCE

Let � denote the set of all parameters and X denote the
observed data for all sample groups. We can write the joint
posterior as

p(�|X) ∝
K∏

k=1

[p(Xk|μk,�k) · p(μk|�k) · p(�k|Gk)]

·
∏
i<j

[p(gij |νij ,�) · p(νij )] · p(�|γ ) · p(γ ). (4.1)

Since this distribution is analytically intractable, we construct an
MCMC sampler to obtain a posterior sample of the parameters
of interest.
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4.1 MCMC Sampling Scheme

At the top level, our MCMC scheme is a block Gibbs sampler
in which we sample the network-specific parameters �k and Gk

from their posterior full conditionals. As described in Section
2, a joint search over the space of graphs and precision matrices
poses computational challenges. To sample the graph and pre-
cision matrix for each group, we adapt the method of Wang and
Li (2012), which does not require proposal tuning and circum-
vents the computation of the prior normalizing constant. We
then sample the graph similarity and selection parameters �

and γ from their conditional posterior distributions by using a
Metropolis–Hastings approach that incorporates both between-
model and within-model moves, similar in spirit to the sampler
proposed in Gottardo and Raftery (2008). This step is equivalent
to a reversible jump. Finally, we sample the sparsity parameters
ν from their posterior conditional distribution using a standard
Metropolis–Hastings step.

Our MCMC algorithm, which is described in detail in Ap-
pendix A, can be summarized as follows. At iteration t:

• Update the graph G
(t)
k and precision matrix �

(t)
k for each

group k = 1, . . . , K .
• Update the parameters for network relatedness θ

(t)
km and γ

(t)
km

for 1 ≤ k < m ≤ K .
• Update the edge-specific parameters ν

(t)
ij for 1 ≤ i < j ≤

p.

4.2 Posterior Inference and Model Selection

One approach for selecting the graph structure for each group
is to use the maximum a posteriori (MAP) estimate, which
represents the mode of the posterior distribution of possible
graphs for each sample group. This approach, however, is not
generally feasible since the space of possible graphs is quite
large and any particular graph may be encountered only a few
times in the course of the MCMC sampling. A more practical
solution is to select the edges marginally. Although networks
cannot be reconstructed just by looking at the marginal edge
inclusion probabilities, this approach provides an effective way
to communicate the uncertainty over all possible connections in
the network.

To carry out edge selection, we estimate the posterior
marginal probability of edge inclusion for each edge gk,ij as
the proportion of MCMC iterations after the burn-in in which
edge (i, j ) was included in graph Gk . For each sample group,
we then select the set of edges that appear with marginal poste-
rior probability of inclusion (PPI) > 0.5. Although this rule was
proposed by Barbieri and Berger (2004) in the context of pre-
diction rather than structure discovery, we found that it resulted
in a reasonable expected false discovery rate (FDR). Following
Newton et al. (2004), we let ξk,ij represent 1—the marginal PPI
for edge (i, j ) in graph k. Then the expected FDR for some
bound κ is

FDR =
∑

k

∑
i<j (ξk,ij )1[ξk,ij ≤ κ]∑

k

∑
i<j 1[ξk,ij ≤ κ]

, (4.2)

where 1 is the indicator function. In the current work, we found
that κ = 0.5 resulted in a reasonable posterior-expected FDR,
so we retain this fixed threshold. An alternative approach is to

select κ so that the posterior-expected FDR is below a desired
level, often 0.05. Since the FDR is a monotone function of κ ,
this selection process is straightforward. We also compute the
receiver operating characteristic (ROC) curve and the corre-
sponding area under the curve (AUC) to examine the selection
performance of the model under varying PPI thresholds.

Since comparison of edges across graphs is an important
focus of our model, we also consider the problem of learning
differential edges. We consider an edge to be differential if the
true value of |gk,ij − gm,ij | is 1, which reflects that edge (i, j )
is included in either Gk or Gm but not both. We compute the
posterior probability of difference P (|gk,ij − gm,ij | = 1

∣∣X) as
the proportion of MCMC iterations after the burn-in in which
edge (i, j ) was included in graph Gk or graph Gm but not both.
In addition to the inference focusing on individual edges and
their differences, the PPI of the indicator γkm provides a broad
measure of the similarity of graphs k and m, which reflects the
utility of borrowing of strength between the groups.

The posterior estimates of νij provide another interesting
summary as they reflect the preference for edge (i, j ) in a given
graph based on both the prior distribution for νij and the sam-
pled values for gk,ij for k = 1, . . . , K . As discussed in the prior
construction given in Section 3.4, the parameter qij , defined in
Equation (3.11) as the inverse logit of νij , may be reasonably
interpreted as a lower bound on the marginal probability of edge
(i, j ) in a given graph, since the MRF prior linking graphs can
only increase edge probability. The utility of posterior estimates
of qij in illustrating the uncertainty around inclusion of edge
(i, j ) is demonstrated in Section 5.1.

5. SIMULATIONS

We include two simulation studies that highlight key features
of our model. In the first simulation, we illustrate our approach to
inference of graphical models across sample groups and demon-
strate estimation of all parameters of interest. In the second
simulation, we show that our method outperforms competing
methods in learning graphs with related structure.

5.1 Simulation Study to Assess Parameter Inference

In this simulation, we illustrate posterior inference using sim-
ulated datasets with both related and unrelated graph struc-
tures. We construct four precision matrices �1, �2, �3, and
�4 corresponding to graphs G1, G2, G3, and G4 with dif-
ferent degrees of shared structure. We include p = 20 nodes,
so there are p · (p − 1)/2 = 190 possible edges. The preci-
sion matrix �1 is set to the p × p symmetric matrix with en-
tries ωi,i = 1 for i = 1, . . . , 20, entries ωi,i+1 = ωi+1,i = 0.5
for i = 1, . . . , 19, and ωi,i+2 = ωi+2,i = 0.4 for i = 1, . . . , 18.
This represents an AR(2) model. To construct �2, we remove
five edges at random by setting the corresponding nonzero en-
tries in �1 to 0, and add five edges at random by replacing
zeros in �1 with values sampled from the uniform distribution
on {[−0.6,−0.4] ∪ [0.4, 0.6]}. To construct �3, we remove 10
edges in both �1 and �2, and add 10 new edges present in nei-
ther �1 nor �2 in the same manner. To construct �4, we remove
the remaining 22 original edges shared by �1, �2, and �3 and
add 22 edges that are present in none of the first three graphs.
The resulting graph G4 has no edges in common with G1. To
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Figure 2. Simulation of Section 5.1. True graph structures for each simulated group.

ensure that the perturbed precision matrices are positive defi-
nite, we use an approach similar to that of Danaher, Wang, and
Witten (2014) in which we divide each off-diagonal element by
the sum of the off-diagonal elements in its row, and then aver-
age the matrix with its transpose. This procedure results in �2,
�3, and �4 that are symmetric and positive definite, but include
entries of smaller magnitude than �1, and therefore somewhat
weaker signal.

The graph structures for the four groups are shown in Figure 2.
All four graphs have the same degree of sparsity, with 37/190 =
19.47% of possible edges included, but different numbers of
overlapping edges. The proportion of edges shared pairwise
between graphs is

Proportion of edges shared =

⎛
⎜⎝

0.86 0.59 0.00

0.73 0.14

0.41

⎞
⎟⎠.

We generate random normal data using �1, . . . ,�4 as the true
precision matrices by drawing a random sample Xk of size
n = 100 from the distribution N (0,�−1

k ) for k = 1, . . . , 4. In
the prior specification, we use a Gamma(α, β) density with
α = 2 and β = 5 for the slab portion of the mixture prior defined
in Equation (3.7). As discussed in Section 3.3, the choice of
α > 1 results in a nonlocal prior. We would not only like the
density to be zero at θkm = 0 to allow better discrimination

between zero and nonzero values, but would also like to avoid
assigning weight to large values of θkm. As discussed in Li
and Zhang (2010), MRF priors exhibit a phase transition in
which larger values of parameter rewarding similarity lead to
a sharp increase in the size of the selected model. For this
reason, β = 5, which results in a prior with mean 0.4 such
that P (θkm ≤ 1) = 0.96, is a reasonable choice. To reflect a
strong prior belief that the networks are related, we set the
hyperparameter w = 0.9 in the Bernoulli prior on the latent
indicator of network relatedness γkm given in Equation (3.9).
We fix the parameters a and b in the prior on νij defined in
Equation (3.13) to a = 1 and b = 4 for all pairs (i, j ). This
choice of a and b leads to a prior probability of edge inclusion
of 20%, which is close to the true sparsity level.

To obtain a sample from the posterior distribution, we ran
the MCMC sampler described in Section 4 with 10,000 itera-
tions as burn-in and 20,000 iterations as the basis of inference.
Figure 3 shows the traces of the number of edges included in
the graphs G1, . . . ,G4. These plots show good mixing around a
stable model size. Trace plots for the remaining parameters (not
shown) also showed good mixing and no strong trends.

The marginal PPI for the edge gk,ij can be estimated as the
percentage of MCMC samples after the burn-in period where
edge (i, j ) was included in graph k. The heat maps for the
marginal PPIs of edge inclusion in each of the four simulated
graphs are shown in Figure 4. The patterns of high-probability
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Figure 3. Simulation of Section 5.1. Trace plots of the number of edges included in each graph, thinned to every fifth iteration for display
purposes.
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Figure 4. Simulation of Section 5.1. Heat maps of the posterior probabilities of edge inclusion (PPIs) for the four simulated graphs.
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Figure 5. Simulation of Section 5.1. ROC curves for varying thresholds on the posterior probability of edge inclusion for each of the simulated
groups. The corresponding AUCs are 1.00 for group 1, 0.996 for group 2, 0.96 for group 3, and 0.94 for group 4.

entries in these heat maps clearly reflect the true graph structures
depicted in Figure 2. To assess the accuracy of graph structure
estimation, we computed the true positive rate (TPR) and false
positive rate (FPR) of edge selection using a threshold of 0.5 on
the PPIs. The TPR is 1.00 for group 1, 0.78 for group 2, 0.68 for
group 3, and 0.57 for group 4. The FPR is 0.00 for group 1, 0.01
for group 2, 0.01 for group 3, and 0.01 for group 4. The TPR is
highest in group 1 because the magnitudes of the nonzero entries
in �1 are greater than those of the other precision matrices due
to the way these matrices were generated. The overall expected
FDR for edge selection is 0.051. The TPR of differential edge
selection is 0.73 and the FPR is 0.04. The expected FDR for
differential edge selection is 0.13.

The ROC curves showing the performance of edge selection
for each group under varying thresholds for the marginal PPI
are shown in Figure 5. The AUC was a perfect 1.00 for group
1, 0.996 for group 2, 0.96 for group 3, and 0.94 for group 4.
The overall high AUC values demonstrate that the marginal
posterior probabilities of edge inclusion provide an accurate
basis for graph structure learning. The lower AUC for group 4
reflects the fact that G4 has the least shared network structure
and does not benefit as much from the prior linking the graph

estimation across the groups. The AUC for differential edge
detection is 0.94. This result demonstrates that although our
model favors shared structure across graphs, it is reasonably
robust to the presence of negative association.

To assess estimation of the precision matrices �1, . . . ,�4, we
computed the 95% posterior credible intervals (CIs) for each
entry based on the quantiles of the MCMC samples. Overall,
96.7% of the CIs for the elements ωk,ij where i ≤ j and k =
1, . . . , 4 contained the true values.

To illustrate posterior inference of the parameter νij in Equa-
tion (3.5), in Figure 6 we provide empirical posterior distri-
butions of qij , the inverse logit of νij defined in Equation
(3.11), for edges included in different numbers of the true graphs
G1, . . . ,G4. Each curve represents the pooled sampled values
of qij for all edges (i, j ) included in the same number of graphs.
Since there are no common edges between G1 and G4, any edge
is included in at most three graphs. As discussed in Section 3.4,
the values of qij are a lower bound on the marginal probability
of edge inclusion. From this plot, we can see that the inclusion
of an edge in a larger number of the simulated graphs results in
a posterior density for qij shifted further away from 0, as one
would expect. The means of the sampled values for qij for edges
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Figure 6. Simulation of Section 5.1. Empirical posterior densities
of edge-specific parameters qij for edges included in 0, 1, 2, or 3 of the
simulated graphs.

included in 0, 1, 2, or 3 simulated graphs are 0.11, 0.18, 0.25,
and 0.35, respectively.

We can also obtain a Rao-Blackwellized estimate of the
marginal probability of the inclusion of edge (i, j ) in a graph
k by computing the probabilities p(gij |νij ,�) defined in Equa-
tion (3.2) given the sampled values of νij and �. This results
in marginal edge inclusion probabilities for edges included in
0, 1, 2, or 3 simulated graphs of 0.13, 0.22, 0.31, and 0.44. By
comparing these estimates to the values for qij given above, we
can see the impact of the prior encouraging shared structure in
increasing the marginal edge probabilities. A more direct esti-
mate of the number of groups in which in edge (i, j ) is present
is the MCMC average of

∑
k gk,ij . For edges included in ei-

ther 0, 1, 2, or 3 simulated graphs, the corresponding posterior
estimates of

∑
k gk,ij are 0.08, 0.77, 1.52, and 2.49. Together

these summaries illustrate how varying marginal probabilities
of edge inclusion translate into different numbers of selected
edges across graphs.

The marginal PPIs for the elements of � can be estimated
as the percentages of MCMC samples with γkm = 1, or equiv-
alently with θkm > 0, for 1 ≤ k < m ≤ K . These estimates are

PPI(�) =

⎛
⎜⎝

1.00 0.88 0.27

0.84 0.28

0.53

⎞
⎟⎠, (5.1)

and reflect the degree of shared structure, providing a relative
measure of graph similarity across sample groups. In addition,
these probabilities show that common edges are more strongly
encouraged when the underlying graphs have more shared struc-
ture, since in iterations where θkm = 0 common edges between
graphs k and m are not rewarded. The marginal posterior mean
of θkm conditional on inclusion, estimated as the MCMC aver-
age for iterations where γkm = 1, is consistent with the inclusion
probabilities in that entries with smaller PPIs also have lower es-
timated values when selected. The posterior conditional means
are

Mean(θkm|γkm = 1) =

⎛
⎜⎝

0.32 0.28 0.09

0.20 0.11

0.16

⎞
⎟⎠. (5.2)

Table 1. Simulation of Section 5.1. Average true positive rate (TPR),
false positive rate (FPR), and area under curve (AUC) with associated

standard error (SE) across 25 simulated datasets

TPR (SE) FPR (SE) AUC (SE)

Group 1 1.00 (0.01) 0.002 (0.003) 1.00 (0.002)
Group 2 0.61 (0.08) 0.007 (0.006) 0.98 (0.01)
Group 3 0.73 (0.05) 0.007 (0.008) 0.98 (0.01)
Group 4 0.63 (0.06) 0.006 (0.005) 0.94 (0.02)
Differential 0.71 (0.03) 0.039 (0.006) 0.94 (0.01)

To assess uncertainty about our estimation results, we per-
formed inference for 25 simulated datasets, each of size n =
100, generated using the same procedure as above. The average
PPIs and their standard errors (SEs) are

Mean(PPI(�)) =

⎛
⎜⎝

0.97 0.92 0.30

0.80 0.35

0.60

⎞
⎟⎠,

SE(PPI(�)) =

⎛
⎜⎝

0.03 0.05 0.02

0.06 0.03

0.05

⎞
⎟⎠.

The small SEs demonstrate that the results are stable for datasets
with moderate sample sizes. The performance of the method in
terms of graph structure learning was consistent across the sim-
ulated datasets as well. Table 1 gives the average TPR, FPR,
and AUC for edge selection within each group and for differen-
tial edge selection, along with the associated SE. The average
expected FDR for edge selection was 0.07, with SE 0.01. The
expected FDR for differential edge detection was 0.14, with SE
0.01.

5.2 Simulation Study for Performance Comparison

In this simulation, we compare the performance of our method
against competing methods in learning-related graph structures
given sample sizes that are fairly small relative to the possible
number of edges in the graph.

We begin with the precision matrix �1 as in Section 5.1, then
follow the same procedure to obtain �2. To construct �3, we
remove five edges in both �1 and �2, and add five new edges
present in neither �1 nor �2 in the same manner. Finally, the
nonzero values in �2 and �3 are adjusted to ensure positive
definiteness. In the resulting graphs, the proportion of shared
edges between G1 and G2 and between G2 and G3 is 86.5%,
and the proportion of shared edges between G1 and G3 is 73.0%.

We generate random normal data using �1, �2, and �3 as the
true precision matrices by creating a random sample Xk of size
n from the distribution N (0,�−1

k ), for k = 1, 2, 3. We report
results on 25 simulated datasets for sample sizes n = 50 and
n = 100.

For each dataset, we estimate the graph structures within each
group using four methods. First, we apply the fused graphical
lasso and joint graphical lasso, available in the R package JGL
(Danaher 2012). To select the penalty parameters λ1 and λ2,
we follow the procedure recommended in Danaher, Wang, and
Witten (2014) to search over a grid of possible values and find the
combination that minimizes the Akaike information criterion.
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Table 2. Simulation of Section 5.2. Results for graph structure learning, with a comparison of true positive rate (TPR), false positive rate (FPR),
and area under the curve (AUC) with standard errors (SEs) over 25 simulated datasets

n = 50 n = 100

TPR (SE) FPR (SE) AUC (SE) TPR (SE) FPR (SE) AUC (SE)

Fused graphical lasso 0.93 (0.03) 0.52 (0.10) 0.91 (0.01) 0.99 (0.01) 0.56 (0.10) 0.93 (0.01)
Group graphical lasso 0.93 (0.03) 0.55 (0.07) 0.88 (0.02) 0.99 (0.01) 0.63 (0.05) 0.91 (0.01)
Separate estimation with 0.52 (0.03) 0.010 (0.006) 0.91 (0.01) 0.68 (0.03) 0.004 (0.002) 0.97 (0.01)

G-Wishart priors
Joint estimation with 0.58 (0.04) 0.008 (0.004) 0.97 (0.01) 0.78 (0.05) 0.003 (0.002) 0.99 (0.003)

G-Wishart priors

Next, we obtain separate estimation with G-Wishart priors using
the sampler from Wang and Li (2012) with prior probability of
inclusion 0.2. Finally, we apply our proposed joint estimation
using G-Wishart priors with the same parameter settings as in the
simulation given in Section 5.1. For both Bayesian methods, we
used 10,000 iterations of burn-in followed by 20,000 iterations
as the basis for posterior inference. For posterior inference, we
select edges with marginal PPI > 0.5.

Results on structure learning are given in Table 2. The accu-
racy of graph structure learning is given in terms of the TPR,
FPR, and the AUC. The AUC estimates for the joint graphical
lasso methods were obtained by varying the sparsity parameter
for a fixed similarity parameter. The results reported here are
the maximum obtained for the sequence of similarity param-
eter values tested. The corresponding ROC curves are shown
in Figure 7. These curves demonstrate that the proposed joint
Bayesian approach outperforms the competing methods in terms
of graph structure learning across models with varying levels of
sparsity.

Results show that the fused and group graphical lassos are
very good at identifying true edges, but tend to have a high
FPR. The Bayesian methods, on the other hand, have very good
specificity, but tend to have lower sensitivity. Our joint esti-
mation improves this sensitivity over separate estimation, and
achieves the best overall performance as measured by the AUC
for both n settings.
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Figure 7. Simulation of Section 5.2. ROC curves for graph structure
learning for sample size n = 50.

Results on differential edge selection are given in Table 3. For
the fused and group graphical lasso, a pair of edges is considered
to be differential if the edge is included in the estimated adja-
cency matrix for one group but not the other. In terms of TPR
and FPR, the fused and group graphical lasso methods perform
very similarly since we focus on differences in inclusion rather
than in the magnitude of the entries in the precision matrix.
The Bayesian methods have better performance of differential
edge detection than the graphical lasso methods, achieving both
a higher TPR and lower FPR. Relative to separate estimation
with G-Wishart priors, the proposed joint estimation method
has somewhat lower TPR and FPR. This difference reflects the
fact that the joint method encourages shared structure, so the
posterior estimates of differential edges are more sparse.

It is not possible to compute the AUC of differential edge
detection for the fused and group graphical lasso methods since
even when there is no penalty placed on the difference across
groups, the estimated adjacency matrices share a substantial
number of entries. Therefore, we cannot obtain a full ROC
curve for these methods. The ROC curves for the Bayesian
methods are given in Figure 8. Since the proposed joint estima-
tion method is designed to take advantage of shared structure,
detection of differential edges is not its primary focus. Never-
theless, it still shows slightly better overall performance than
separate estimation.
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Figure 8. Simulation of Section 5.2. ROC curves for differential
edge detection for sample size n = 50.
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Table 3. Simulation of Section 5.2. Results for differential edge detection, with a comparison of true positive rate (TPR), false positive rate
(FPR), and area under the curve (AUC) with standard errors (SEs) over 25 simulated datasets

n = 50 n = 100

TPR (SE) FPR (SE) AUC (SE) TPR (SE) FPR (SE) AUC (SE)

Fused graphical lasso 0.46 (0.11) 0.43 (0.03) n/a 0.44 (0.13) 0.41 (0.02) n/a
Group graphical lasso 0.45 (0.11) 0.43 (0.04) n/a 0.45 (0.13) 0.41 (0.02) n/a
Separate estimation with 0.59 (0.07) 0.11 (0.01) 0.85 (0.02) 0.80 (0.06) 0.09 (0.01) 0.93 (0.02)

G-Wishart priors
Joint estimation with 0.56 (0.08) 0.09 (0.01) 0.88 (0.02) 0.78 (0.08) 0.06 (0.01) 0.95 (0.02)

G-Wishart priors

5.3 Sensitivity

In assessing the prior sensitivity of the model, we observe
that the choice of a and b in Equation (3.13), which affects the
prior probability of edge inclusion, has an impact on the pos-
terior probabilities of both edge inclusion and graph similarity.
Specifically, setting a and b so that the prior probability of edge
inclusion is high results in higher posterior probabilities of edge
inclusion and lower probabilities of graph similarity. This effect
is logical because the MRF prior increases the probability of an
edge if that edge is included in related graphs, which has little
added benefit when the probability for that edge is already high.
As a general guideline, a choice of a and b that results in a prior
probability of edge inclusion smaller than the expected level of
sparsity is recommended. Further details on the sensitivity of
the results to the choice of a and b are given in Appendix B.

Smaller values of the prior probability of graph relatedness
w defined in Equation (3.9) result in smaller posterior proba-
bilities for inclusion of the elements of �. For example, in the
simulation setting of Section 5.1, using a probability of w = 0.5
leads to the following posterior probabilities of inclusion for the
elements of �:

PPI(�) =

⎛
⎜⎝

1.00 0.57 0.15

0.48 0.15

0.22

⎞
⎟⎠. (5.3)

These values are smaller than those given in Equation (5.1),
which were obtained using w = 0.9, but the relative ordering is
consistent.

6. CASE STUDIES

We illustrate the application of our method to inference of
real-world biological networks across related sample groups.
In both case studies presented below, we apply the proposed
joint estimation method using the same parameter settings as
the simulations in Section 5. The MCMC sampler was run for
10,000 iterations of burn-in followed by 20,000 iterations used
as the basis for inference. For posterior inference, we select
edges with marginal PPI > 0.5.

6.1 Protein Networks for Subtypes of Acute
Myeloid Leukemia

Key steps in cancer progression include dysregulation of the
cell cycle and evasion of apoptosis, which are changes in cellular
behavior that reflect alterations to the network of protein rela-
tionships in the cell. Here, we are interested in understanding

the similarity of protein networks in various subtypes of acute
myeloid leukemia (AML). By comparing the networks for these
groups, we can gain insight into the differences in protein sig-
naling that may affect whether treatments for one subtype will
be effective in another.

The dataset analyzed here, which includes protein levels for
213 newly diagnosed AML patients, is provided as a supplement
to Kornblau et al. (2009) and is available for download from
the MD Anderson Department of Bioinformatics and Com-
putational Biology at http://bioinformatics.mdanderson.org/
Supplements/Kornblau-AML-RPPA/aml-rppa.xls. The mea-
surements of the protein expression levels were obtained us-
ing reverse phase protein arrays (RPPAs), a high-throughput
technique for protein quantification (Tibes et al. 2006). Previ-
ous work on inference of protein networks from RPPA data
includes Telesca et al. (2012) and Yajima et al. (2012).

The subjects are classified by subtype according to the
French–American–British (FAB) classification system. The
subtypes, which are based on criteria including cytogenetics
and cellular morphology, have varying prognosis. It is therefore
reasonable to expect that the protein interactions in the sub-
types differ. We focus here on 18 proteins that are known to
be involved in apoptosis and cell cycle regulation according to
the KEGG database (Kanehisa et al. 2012). We infer a network
among these proteins in each of the four AML subtypes for
which a reasonable sample size is available: M0 (17 subjects),
M1 (34 subjects), M2 (68 subjects), and M4 (59 subjects). Our
prior construction, which allows sharing of information across
groups, is potentially beneficial in this setting since all groups
have small to moderate sample sizes.

The resulting graphs from the proposed joint estimation
method are shown in Figure 9, with edges shared across all
subgroups in red and differential edges dashed.

The edge counts for each of the four graphs and the number
of overlapping edges between each pair of graphs are given
below, along with the posterior probabilities of inclusion for the
elements of �:

Shared edge count =

⎛
⎜⎜⎜⎝

17 11 14 12

21 14 11

26 13

22

⎞
⎟⎟⎟⎠,

PPI(�) =

⎛
⎜⎝

0.81 0.83 0.87

0.91 0.85

0.90

⎞
⎟⎠.
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Figure 9. Case study of Section 6.1. Inferred protein networks for the AML subtypes M0, M1, M2, and M4, with edges shared across all
subgroups represented by red continuous lines.

The estimated graphs have a fair amount of overlapping struc-
ture, with nine edges common to all four groups. This highlights
the fact that our joint estimation procedure is able to account for
the presence of shared structure.

6.2 Protein-Signaling Networks Under Various
Perturbations

The data for this case study, provided as a supplement to Sachs
et al. (2005), include the levels of 11 phosphorylated proteins
and phospholipids quantified using flow cytometry under nine
different experimental conditions. The sample sizes for each
condition are large (in the range 700–1000) since each obser-
vation corresponds to a single cell. Sachs et al. (2005) used the
nine perturbation conditions to infer a single directed acyclic
graph (DAG). Subsequently, Friedman, Hastie, and Tibshirani
(2008) used the pooled data across all perturbations to infer a
single undirected graph.

We use our method to infer an undirected graph for each of the
nine conditions allowing for the possibility of shared structure.
We would like to note that as the number of groups increases,
the prior probability that a given edge will be shared across
all groups declines. If there is a preference for shared structure

across all groups, for increasing numbers of groups the prior
probability of shared structure could be increased by setting the
parameter w from Equation (3.9) closer to 1. Since the prior
formulation and posterior summaries used here are primarily
focused on pairwise comparison, we retain the previous param-
eter settings for consistency. The resulting graph structures are
shown in Figure 10, with edges shared across all subgroups in
red and differential edges dashed.

The number of edges included in each graph and the number
of edges shared between each pair of graphs are

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8 7 7 8 5 8 8 8 8

9 7 8 6 8 7 9 9

8 8 5 8 7 8 8

9 5 9 8 9 9

6 5 5 6 6

10 8 9 9

8 8 8

10 10

10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Figure 10. Case study of Section 6.2. Inferred protein signaling networks, with edges shared across all subgroups in red and differential edges
dashed.

The posterior probabilities of inclusion for the elements of �

are

PPI(�)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.82 0.83 0.87 0.73 0.86 0.87 0.86 0.87

0.82 0.84 0.80 0.85 0.80 0.91 0.91

0.86 0.74 0.85 0.80 0.85 0.85

0.72 0.90 0.86 0.89 0.89

0.71 0.74 0.77 0.78

0.85 0.88 0.88

0.85 0.85

0.94

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

These probabilities reflect that group 5 is the most different from
the other groups. In Figure 10, we see that it has the sparsest net-
work, a difference that is ignored when inference is performed
on the pooled data. Although some inferred connections (such
as Mek–Raf and Jnk–P38) are also selected in Friedman, Hastie,
and Tibshirani (2008), treating the data as a single group does

not account for the heterogeneity across the groups and therefore
results in inference of a different graph structure.

7. DISCUSSION

In this work, we have developed a novel modeling approach
to inference of multiple graphs and illustrated its important fea-
tures. The proposed model uses an MRF prior to encourage
shared edges between related groups and a selection prior on
the parameters that describe the similarity of the networks. This
approach allows us to share information between sample groups,
when appropriate, as well as to obtain a measure of relative net-
work similarity across groups. A key difference of our approach
from previous work on inference of multiple graphs is that we
do not assume the networks for all subgroups are related, but
rather infer the relationships among them from the data.

Through simulations, we have shown that the posterior prob-
abilities of network similarity provide a reasonable summary of
network relatedness across sample groups. We have also demon-
strated that our joint estimation approach increases sensitivity
and enables the selection of edges that would have been missed
with separate estimation procedures. Finally, we have illustrated
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the utility of our method in inference of protein networks across
various subtypes of AML and in estimation of signaling net-
works under different experimental interventions.

The results reported in this article rely on the median model
for selection. As noted in Section 4.2, an alternative approach
for fixing the selection threshold on the posterior probabilities
would be to select this threshold so that the posterior-expected
FDR is controlled to a desired level, typically 0.05. Applying this
alternative criterion to the simulation of Section 5.1 has minimal
impact on the results for edge selection since the posterior-
expected FDR of edge selection is already close to 0.05. For
differential edge detection, however, controlling the posterior-
expected FDR to 0.05 results in a much higher threshold on
the posterior probabilities of difference and a correspondingly
lower TPR and FPR. The reason for this is that our model favors
shared edges, so the posterior probabilities of edges that are not
selected in related networks are not always very close to zero,
and consequently few posterior probabilities of difference are
relatively large.

The approach developed here links the dependence struc-
tures within each group, but does not enforce similarity of the
nonzero elements of the precision matrices. This modeling de-
cision, which reflects our interest in network inference, was
also influenced by the mathematical and computational difficul-
ties entailed in the development of priors that not only enforce
common zeros but also shrink nonzero elements toward a com-
mon mean. In the context of covariance estimation, Hoff (2009)
proposed encouraging similarity of covariance matrices across
groups through a hierarchical model relating their eigenvectors.
This approach, however, does not enforce sparsity of the co-
variance or precision matrices. An extension to inference of
GGMs is not straightforward, but would be of interest for future
research.

The G-Wishart prior framework used in this article enforces
exact zeros in the precision matrix corresponding to missing
edges in the graph G. Off-diagonal entries, however, may still
be arbitrarily small. Although it would be interesting to pursue
a nonlocal prior on the precision matrices to encourage better
differentiation between zero and nonzero entries, a challenge
in developing such an approach is that the entries in the pre-
cision matrix are dependent due to the constraint of positive
definiteness.

To integrate group-specific prior information, the model
could be extended to include a parameter νk,ij for each group
k = 1, . . . , K . This would give additional flexibility to allow
groups to have different degrees of sparsity or favor particular
edges only in certain groups. In the current model formulation
where the parameter νij is shared across groups, its posterior
is shaped by the observed data for each group, as illustrated in
the simulation results given in Section 5.1. This implies that
information can still be shared across graphs even when � = 0.

Our approach provides a flexible modeling framework that
can be extended to new sampling approaches or other types
of data. In particular, the proposed model can be integrated
with any type of G-Wishart sampler. Although the Wang and Li
(2012) algorithm works well in practice, it has potential draw-
backs. Specifically, the proposed double Metropolis–Hastings
approach relies on an approximation to the posterior and requires
that moves in the graph space are constrained to edge-away

neighbors. The recently proposed direct sampler of Lenkoski
(2013), which resolves these limitations, could be considered
as an alternative. In addition, although we have focused on nor-
mally distributed data, the approach can be extended to other
types of graphical models, such as Ising or log-linear models.

APPENDIX A: DETAILS OF MCMC SAMPLING

A.1 Updating of �k and Gk

For simplicity, we assume that the data for each group are column
centered. The likelihood for each group is then

Xk ∼ N (0, �−1
k ) k = 1, . . . , K. (A.1)

Since the G-Wishart distribution is conjugate to the likelihood, the
posterior full conditional of �k is the G-Wishart density

�k|Xk, Gk ∼ WG(nk + b, Sk + D), (A.2)

where Sk = XT
k Xk .

Sampling from the G-Wishart distribution requires MCMC methods
even when the graph G is known. In this case, we want to learn the graph
structure as well, so we need to search over the joint posterior space
of graphs G1, . . . , GK and precision matrices �1, . . . , �K conditional
on the remaining parameters. To accomplish this, we use a sampling
scheme based on Algorithm 2 from sec. 5.2 of Wang and Li (2012).
We prefer this approach over other recent proposals since it avoids
computation of prior normalizing constants and does not require tuning
of proposals.

The only modification required to use the algorithm from Wang
and Li (2012) to sample from the conditional distribution p(�k, Gk|ν,

�, {Gm}m �=k) is to use the conditional probability p(Gk|ν,�, {Gm}m �=k)
for each graph rather than the unconditional p(Gk). Following their
notation, when proposing a new graph G′

k that differs from the current
graph Gk in that edge (i, j ) is included in Gk but not in G′

k , given the
MRF prior on the graph structure we have

p(G′
k|νij , �, {Gm}m �=k)

p(Gk|νij , �, {Gm}m �=k)
= exp

⎧⎨
⎩−

⎛
⎝νij + 2

∑
m �=k

θkmgm,ij

⎞
⎠

⎫⎬
⎭ . (A.3)

At each MCMC iteration, we apply this move successively to each
(i, j ) for i < j .

A.2 Updating of θkm and γkm

We sample θkm and γkm from their joint posterior full conditional
distribution. The terms in the joint prior on the graphs G1, . . . , GK that
include θkm are

p(G1, . . . , GK |ν, �) =
∏
i<j

C(νij , �)−1 exp
(
νij 1T gij + gT

ij�gij

)
∝

∏
i<j

C(νij , �)−1 exp(2θkmgk,ij gm,ij ),

considering only the terms that include θkm. Given the prior on θkm from
Equation (3.7) and the prior on γkm from Equation (3.9), the posterior
full conditional of θkm and γkm can be written as

p(θkm, γkm|·) ∝
⎛
⎝∏

i<j

C(νij , �)−1 exp(2γkmgk,ij gm,ij )

⎞
⎠

·
(

(1 − γkm) · δ0 + γkm · βα


(α)
θα−1
km e−βθkm

)
· (wγkm (1 − w)(1−γkm)). (A.4)
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Figure 11. Simulation of Appendix B.1. Sensitivity of the average edge PPIs (left) and average PPIs for the elements of � (right) to the
parameters a and b in the prior qij ∼ Beta(a, b).

Since the normalizing constant for this mixture is not analytically
tractable, we use Metropolis–Hastings steps to sample θkm and γkm from
their joint posterior full conditional distribution for each pair (k,m)
where 1 ≤ k < m ≤ K . Our construction is based on the MCMC ap-
proach described in Gottardo and Raftery (2008) for sampling from
mixtures of mutually singular distributions. At each iteration we per-
form two steps: a between-model and a within-model move. As dis-
cussed in Gottardo and Raftery (2008), this type of sampler is ef-
fectively equivalent to reversible jump Markov chain Monte Carlo
(RJMCMC).

For the between-model move, if in the current state γkm = 1, we
propose γ ∗

km = 0 and θ∗
km = 0. If in the current state γkm = 0, we pro-

pose γ ∗
km = 1 and sample θ∗

km from the proposal density q(θ∗
km) =

Gamma(θ∗
km|α∗, β∗). When moving from γkm = 1 to γ ∗

km = 0, the
Metropolis–Hastings ratio is

r = p(θ∗
km, γ ∗

km|·) · q(θkm)

p(θkm, γkm|·)
= 
(α)


(α∗)
· (β∗)α

∗

βα
· (

θkm

)α∗−α · e(β−β∗)θkm

·
∏
i<j

C(νij , �) · exp(−2θkmgk,ij gm,ij )

C(νij , �
∗)

· 1 − w

w
, (A.5)

where �∗ represents the matrix � with entry θkm = θ∗
km. When moving

from γkm = 0 to γ ∗
km = 1, the Metropolis–Hastings ratio is

r = p(θ∗
km, γ ∗

km|·)
p(θkm, γkm|·) · q(θ∗

km)

= 
(α∗)


(α)
· βα

(β∗)α∗ · (
θ∗
km

)α−α∗ · e(β∗−β)θ∗
km

·
∏
i<j

C(νij , �) · exp(2θ∗
kmgk,ij gm,ij )

C(νij , �
∗)

· w

1 − w
. (A.6)

We then perform a within-model move whenever the value of γkm

sampled from the between-model move is 1. For this step, we propose
a new value of θkm using the same proposal density as before. The
Metropolis–Hastings ratio for this step is

r = p(θ∗
km, γ ∗

km|·) · q(θkm)

p(θkm, γkm|·) · q(θ∗
km)

=
(

θ∗
km

θkm

)α−α∗

· e(β∗−β)(θ∗
km

−θkm)

·
∏
i<j

C(νij , �) · exp(2(θ∗
km − θkm)gk,ij gm,ij )

C(νij , �
∗)

(A.7)

A.3 Updating of νij

To find the posterior full conditional distribution of νij , we consider
the terms in the joint prior on the graphs G1, . . . , GK that include νij :

p(G1, . . . , GK |ν, �) =
∏
i<j

C(νij , �)−1 exp(νij 1T gij + gT
ij�gij )

∝ C(νij , �)−1 exp(νij 1T gij ),

considering only the terms that include νij . Given the prior from Equa-
tion (3.13), the posterior full conditional of νij given the data and all
remaining parameters is proportional to

p(νij |·) ∝ exp(aνij )

(1 + eνij )a+b
· C(νij , �)−1 exp(νij 1T gij )

= exp(νij (a + 1T gij ))

C(νij , �) · (1 + eνij )a+b
. (A.8)

For each pair (i, j ) where 1 ≤ i < j ≤ p, we propose a value q∗

from the density Beta(2, 4), then set ν∗ = logit(q∗). The proposal den-
sity can be written in terms of ν∗ as

q(ν∗) = 1

B(a∗, b∗)
· ea∗ν∗

(1 + eν∗ )a∗+b∗ . (A.9)

For the simulation given in Section 5.1, this proposal resulted in an
average acceptance rate of 38.8%, which is a reasonable proportion.
Although the use of a fixed proposal may result in low acceptance
rates in some situations, the efficiency of this step is not a pressing
concern since we require many iterations to search the graph space, so
we can obtain a reasonable sample of νij even if the mixing is slow.
The Metropolis–Hastings ratio is

r = p(ν∗|·)
p(νij |·)

q(νij )

q(ν∗)

= exp
(
(ν∗−νij ) · (a−a∗+1T gij )

) · C(νij , �) · (1 + eνij )a+b−a∗−b∗

C(ν∗, �) · (1 + eν∗ )a+b−a∗−b∗ .

(A.10)

APPENDIX B: DETAILS OF SENSITIVITY ANALYSIS

Here, we provide more details of the sensitivity analysis summarized
in Section 5.3.

B.1 Sensitivity to Prior Parameters a and b

The parameters a and b are the shape and scale parameters of the Beta
prior on the parameter qij defined in Equation (3.11). The parameter
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qij can be interpreted as a lower bound on the prior probability of
inclusion for edge (i, j ), which may be increased by the effect of the
prior encouraging shared structure across groups.

To assess the impact of the choice of a and b on posterior inference,
we applied the proposed joint estimation method at a range of (a, b)
settings to a single fixed dataset generated following the setup of the
simulation given in Section 5.1. The results given in Section 5.1 were
obtained using the setting a = 1 and b = 4, which reflects a Beta prior
on qij with mean 0.2. To examine the effect of varying a and b, we
performed inference for six additional settings chosen so that mean of
the Beta prior ranged from 0.05 to 0.35 while the variance of the Beta
prior remained fixed. The effect on the average edge PPIs and on the
average PPI for the entries of � is summarized in Figure 11.

The average edge PPIs showed a steady increase from just over 0.17
for prior means in the range 0.05–0.10 to around 0.19 for prior mean
0.35. The direction of the effect is logical, and the overall difference
in levels is not strong. The average PPIs for the elements of � are
relatively stable for prior means up 0.25, just above the true sparsity
level of 0.20. Beyond this point, they decline sharply, demonstrating
that shared structure is no longer rewarded when the prior on qij results
in a prior probability of edge inclusion much greater than the true level
before factoring in the impact of the sharing of information across
graphs.

[Received May 2013. Revised February 2014.]
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