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Joint Bayesian variable and graph
selection for regression models with
network-structured predictors
Christine B. Peterson,a*† Francesco C. Stingob and
Marina Vannuccic

In this work, we develop a Bayesian approach to perform selection of predictors that are linked within a net-
work. We achieve this by combining a sparse regression model relating the predictors to a response variable
with a graphical model describing conditional dependencies among the predictors. The proposed method is well-
suited for genomic applications because it allows the identification of pathways of functionally related genes or
proteins that impact an outcome of interest. In contrast to previous approaches for network-guided variable selec-
tion, we infer the network among predictors using a Gaussian graphical model and do not assume that network
information is available a priori. We demonstrate that our method outperforms existing methods in identifying
network-structured predictors in simulation settings and illustrate our proposed model with an application to
inference of proteins relevant to glioblastoma survival. Copyright © 2015 John Wiley & Sons, Ltd.
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1. Introduction

In this work, we address the problem of identifying predictors that are both relevant to a response variable
of interest and functionally related to one another. In the context of genomic studies, the mechanism for
an effect on an outcome such as a quantitative phenotype or disease risk is typically a coordinated change
within a pathway, and the impact of a single gene may not be strong. In this setting, our proposed infer-
ence method can highlight pathways or regulatory networks that impact the response. To uncover these
relationships, we develop a Bayesian modeling approach that favors selection of variables that are not
only relevant to the outcome of interest but also linked within a conditional dependence network. Unlike
previous approaches that incorporate network information into variable selection, we do not assume that
the graph relating the predictors is known. Instead, we develop a joint model to learn both the set of
relevant predictors and estimate a graphical model describing their interdependence.

There is increasing evidence from genome-wide association studies that complex traits are governed
by a large number of genomic variants with small effects, making them difficult to detect in the absence
of very large sample sizes [1–3]. Importantly, however, genes do not act in isolation: Instead, they affect
phenotypes indirectly through complex molecular networks. One of the primary motivations for incorpo-
rating network information into regression modeling is that coordinated weak effects are often grouped
into pathways [4], so accounting for the relationships among the predictors has the potential to increase
power to detect true associations. Although there are many databases that provide information on bio-
chemical relationships under normal conditions, the available reference networks may be incomplete or
inappropriate for the experimental condition or set of subjects under study. Rather than assuming that a
relevant prior network is available, it is therefore of interest to infer one directly from the data at hand.
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Learning networks from high-throughput data relies on the assumption that genes, proteins, or metabo-
lites that have similar patterns of abundance are likely to have an underlying biological relationship.
Although the inferred connections are based on correlations rather than direct experimental observa-
tion, approaches for network reconstruction based on these assumptions have been shown to be accurate
in learning regulatory or functional pathways [5]. In particular, co-expression networks derived from
microarray data have been shown to correspond quite well to known functional organization across all
categories of genes [6], and it has been demonstrated that correlation-based methods perform well in
recovering protein signaling networks from flow cytometry data [7].

A number of recent papers use a known network describing the relationships among predictors to
inform variable selection. Li and Li [8, 9] propose a regularized regression approach, combining a lasso
penalty to encourage sparsity with a penalty based on the graph Laplacian to encourage smoothness of the
coefficients with respect to a graph. Pan et al. [10] develop a single penalty using the weighted L𝛾 norm of
the coefficients of neighboring nodes that more strongly encourages grouped variable selection. Huang
et al. [11] combine a minimax concave penalty with a quadratic Laplacian penalty to achieve consis-
tency in variable selection. Most recently, Kim et al. [12] propose a penalty structure that encourages the
selection of neighboring nodes but avoids the assumption that their coefficients should be similar.

In the Bayesian framework, Li and Zhang [13] and Stingo and Vannucci [14] incorporate a graph struc-
ture in the Markov random field (MRF) prior on indicators of variable selection, encouraging the joint
selection of predictors with known relationships. Stingo et al. [15] and Peng et al. [16] propose selec-
tion of both known pathways and genes within them, using previously established pathway membership
information and the network structure within each pathway to guide the selection. Hill et al. [17] develop
an empirical Bayes approach that incorporates existing pathway information through priors that reflect a
preference for the selection of variables from within a certain number of pathways or with a certain aver-
age pairwise distance within a pathway. Zhou and Zheng [18] develop a Bayesian analog to the penalized
regression approaches using the graph Laplacian, with an extension to allow uncertainty over the sign of
edges in the graph.

In contrast to the aforementioned approaches that use a graph relating the variables as an input to a
variable selection procedure, we are interested in both identifying the relevant variables and learning the
network among them. Previous attempts at this problem include Dobra [19], which proposes estimating a
network among relevant predictors by first performing a stochastic search in the regression setting to iden-
tify sets of predictors with high posterior probability, then applying a Bayesian model averaging approach
to estimate a dependency network given these results. Liu et al. [20] propose a Bayesian regularization
method that uses an extended version of the graph Laplacian as the precision matrix for a multivariate
normal prior on the coefficients. They infer relationships among these coefficients by thresholding their
estimated correlations. Our proposed method differs from these approaches in that our network is based
on a Gaussian graphical model among the predictors, which provides a sparse and interpretable repre-
sentation of the conditional dependencies found in the data. This is very different from a network among
the coefficients, which provides information on which predictors have a similar effect on the response but
not on relationships among the predictors themselves. Because we rely on a Gaussian graphical model
to infer the network among predictors, the predictors should be reasonably normal. This assumption is
quite common and is appropriate for many biological data types: In particular, RNA, protein, and metabo-
lite levels are typically normalized as a part of the standard data processing pipeline. Our model also
accommodates the inclusion of non-normal fixed covariates such as age and gender.

Our modeling approach allows inference of both the relevant variables and the network structure link-
ing them. Importantly, our method does not require that a network structure among the predictors is known
a priori. Instead, we simultaneously infer a sparse network among the predictors and perform variable
selection using this network as guidance by incorporating it into a prior favoring selection of connected
variables. The proposed approach not only offers good performance in terms of selection and prediction
but also provides insight into the relationships among important variables and allows the identification
of related predictors that jointly impact the response. In addition, because we take a Bayesian approach
to the problem of joint variable and graphical model selection, we are able to fully account for uncer-
tainty over both the selection of variables and of the graph. This is particularly important in the context
of graphical model selection because in most applications, uncertainty over the graph structure is large.
In contrast, stagewise estimation with graph selection as the first step following by variable selection
taking the inferred graph as fixed fails to account for this uncertainty. We find that in selecting proteins
relevant to glioblastoma survival, the proposed joint method not only improves prediction accuracy but
also identifies several interacting proteins that are missed using standard Bayesian variable selection.
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The remainder of the paper is organized as follows. In Section 2, we first provide background on
variable selection and graphical models then specify the details of the proposed model. In Section 3, we
discuss posterior inference including the Markov chain Monte Carlo (MCMC) sampling approach and
selection of the variables and edges. In Section 4, we assess the performance of the proposed method
via simulation studies. In Section 5, we apply the proposed method to identify a set of network-related
proteins that impact glioblastoma survival. Finally, we conclude with a discussion in Section 6.

2. Methods

2.1. Variable selection and graphical models

The goal of variable selection is to identify the subset of predictors that are truly relevant to a given
outcome. Selecting a sparse model can help reduce noise in estimation and produce more interpretable
results, particularly when the true underlying model is sparse. This is often the case when dealing with
high-throughput biological data such as gene or protein expression, where typically only a small number
of markers out of many thousands assayed are believed to be associated with a disease outcome. Tradi-
tional methods for variable selection include forward, backward, and stepwise selection. More recently,
penalized methods based on the lasso [21], which places an L1 penalty on the regression coefficients to
achieve sparsity, have become popular. In the Bayesian framework, stochastic search variable selection
[22] is a widely used variable selection approach for linear regression. In this method, latent indicators
are used to represent variable inclusion, and the prior on the coefficient for a given variable is a mixture
density with a ‘spike’ at 0 if the variable is not included and a diffuse ‘slab’ if the variable is included.

When dealing with related variables, we may be interested in inferring the dependencies among them.
An undirected graph, or MRF, is represented by G = (V ,E) where V is a set of vertices and E is a set
of edges such that the edge (i, j) ∈ E if and only if (j, i) ∈ E. Undirected graphical models, which use
a graph structure to represent conditional dependencies among variables, have the property that there is
no edge between the vertices representing two variables if and only if the variables are independent after
conditioning on all other variables in the data set. In the context of multivariate normal data, graphical
models are known as Gaussian graphical models or covariance selection models [23]. In this setting, the
graph structure G implies constraints on the precision matrix 𝛀 and the inverse of the covariance matrix
𝚺. Specifically, the entry 𝜔ij = 0 if and only if the edge (i, j) is missing from the graph G, meaning
that variables i and j are conditionally independent. Because graphical model estimation corresponds
to estimation of a sparse version of 𝛀, regularization methods are a natural approach. In particular, the
graphical lasso [24–26], which imposes an L1 penalty on the sum of the absolute values of the entries of
𝛀, is a popular method for achieving the desired sparsity in estimation of 𝛀.

In the Bayesian framework, the G-Wishart [27, 28] is the conjugate prior for 𝛀 constrained by an
arbitrary graph G. Even when the graph structure is known, sampling from this distribution poses com-
putational difficulties because both the prior and posterior normalizing constants are intractable. Recent
proposals addressing the challenge of G-Wishart sampling include Dobra et al. [29], Wang and Li [30],
and Lenkoski [31]. Despite improvements in efficiency, the scalability of these methods is still limited.
The Bayesian graphical lasso [32], proposed as the Bayesian analog of the frequentist graphical lasso,
uses shrinkage priors to allow more efficient model fitting. However, it does not model the graph structure
directly and therefore only allows graph inference through some form of thresholding on the posterior
precision matrix . In previous work, we have utilized both type of priors, taking advantage of the Bayesian
graphical lasso to integrate relevant prior information when inferring metabolic networks [33] and the
G-Wishart when inferring multiple graphical models across related sample groups [34]. Here, we adopt
the recent approach of Wang [35] that avoids some of the computational issues of G-Wishart sampling
(in particular, the need to approximate the normalizing constant) but still allows inference directly on
the graph structure through a priori that combines a continuous spike-and-slab prior on entries of the
precision matrix with binary latent indicators of edge inclusion. This approach allows scaling to several
hundred variables, while previous methods based on G-Wishart sampling were limited to a few dozen.

2.2. Proposed joint model

Let yi represent the observed response variable and Xi represent the observed vector of p predictors for
the ith subject, where i = 1,… , n. The Xi correspond to a potentially large set of related predictors, such
as gene or protein abundances, of which we are interested in both identifying an explanatory subset and
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understanding their interrelation. In our modeling approach, we consider both the response Yn×1 and the
predictors 𝐗n×p to be random variables, so our likelihood is the joint distribution f (Y ,𝐗). Because we
assume Y to be a function of 𝐗, we can factor the joint distribution into the conditional distribution of Y
given 𝐗 and the marginal distribution of 𝐗

f (Y ,𝐗) = f (Y|𝐗) ⋅ f (𝐗). (1)

We then define f (Y|𝐗) as a linear regression model and f (𝐗) as a multivariate normal distribution. In
the model for Y|𝐗, we include a set of m additional covariates Zi that are not subject to selection. These
may correspond to clinical variables such as age or gender. We write the conditional distribution of y
given X as

yi = 𝛼0 + Zi𝜶 + Xi𝜷 + 𝜀i, 𝜀i ∼ N(0, 𝜏2), (2)

where 𝛼0 is the intercept term, 𝜶m×1 and 𝜷p×1 represent the respective effects of Z and X, the 𝜀i are iid
errors, and 𝜏2 is the error variance. Although the y in equation (2) represents a continuous outcome, the
model can be extended in a straightforward manner to allow binary, multinomial, or survival responses,
as discussed in Section 2.7 and in the Supporting Information. The distribution of the predictors X, which
are assumed to be centered, is

Xi ∼ Np(𝟎,𝛀), (3)

where 𝛀 = 𝚺−1 is the precision matrix of the multivariate normal distribution.

2.3. Prior on coefficients 𝛽𝛽𝛽

We consider the jth variable to be included in the model if its coefficient 𝛽j ≠ 0. The problem of variable
selection therefore corresponds to the problem of inferring which 𝛽s are nonzero. We follow the stochastic
search variable selection approach [22] in formulating a prior on the coefficients 𝛽1,… , 𝛽p that allows
sparse inference. To summarize the inclusion of predictors in the model, we introduce a vector of latent
indicator variables 𝜸. The prior for 𝛽j conditional on 𝛾j is a mixture of a normal density and a Dirac delta
function 𝛿0, which can be written as

𝛽j|𝛾j, 𝜏
2 ∼ 𝛾j ⋅N(0, h𝛽𝜏2) + (1 − 𝛾j) ⋅ 𝛿0(𝛽j), j = 1,… , p, (4)

where h𝛽 > 0 is a fixed hyperparameter. Following the recommendation in Sha et al. [36] and Stingo
et al. [15], h𝛽 should be set to a value within the range of the variability of 𝐗. This type of mixture prior
is known as a spike-and-slab prior.

2.4. Graph selection prior on ΩΩΩ and G

The goal of the graph selection prior is to allow inference of a network among the predictors 𝐗. We take
advantage of recent improvements in the scalability of Bayesian graphical model inference, as mentioned
in Section 2.1, to infer a network among all predictors, avoiding the need for a separate variable screening
step. Here, we follow the proposal of Wang [35] in using a hierarchical prior that relies on latent binary
indicators for edge inclusion. Specifically, let gij ∈ {0, 1} represent the presence of edge (i, j) in the
graph G, where i < j. The prior distribution on the precision matrix 𝛀 from equation (3) combines an
exponential prior on the diagonal entries with a mixture of normals on the off-diagonal entries of to allow
the entries for selected edges to have a larger variance than that of non-selected edges:

p(𝛀|G, 𝜈0, 𝜈1, 𝜆) = {C(G, 𝜈0, 𝜈1, 𝜆)}−1
∏
i<j

N
(
𝜔ij|0, 𝜈2

gij

)∏
i

Exp
(
𝜔ii|𝜆2) I{𝛀∈M+}, (5)

where {C(G, 𝜈0, 𝜈1, 𝜆)} is the normalizing constant, 𝜈0 > 0 is small, 𝜈1 > 0 is large, 𝜆 > 0, and I{𝛀∈M+}
is an indicator function that restricts the prior to the space of symmetric-positive definite matrices. By
choosing 𝜈0 to be small, we ensure that 𝜔ij will be close to 0 for non-selected edges. For selected edges,
a large value of 𝜈1 allows 𝜔ij to have more substantial magnitude. In the second level of the hierarchy,
we place a prior on the edge inclusion indicators gij:

p(G|𝜈0, 𝜈1, 𝜆, 𝜋) = {C(𝜈0, 𝜈1, 𝜆, 𝜋)}−1C(G, 𝜈0, 𝜈1, 𝜆)
∏
i<j

{
𝜋gij(1 − 𝜋)1−gij

}
, (6)

1020

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 1017–1031



C. B. PETERSON, F. C. STINGO AND M. VANNUCCI

where C(𝜈0, 𝜈1, 𝜆, 𝜋) is a normalizing constant and 𝜋 reflects the prior probability of edge inclusion. The
parameters 𝜈0, 𝜈1, 𝜆, and 𝜋 are all taken to be fixed. Guidance on the selection of these parameters is
provided in Wang [35], which reports that values of 𝜈0 ⩾ 0.01 and 𝜈1 ⩽ 10 result in good convergence
and mixing for standardized data. Wang [35] recommends the choice of 𝜆 = 1 but finds that the results
are relatively insensitive to this choice and suggests that 2∕(p− 1) is a sensible setting for 𝜋. In addition,
Wang [35] provides performance measurements under a variety of parameter combinations. Because
these hyperparameters have an impact under our model not only on the selection of edges but also indi-
rectly on the selection of variables, we provide sensitivity analysis for 𝜋 in the Supporting Information.
We find that the number of selected variables is not strongly sensitive to this choice.

2.5. Prior linking variable selection indicators 𝛾𝛾𝛾 to selection of the graph G

The standard prior in the Bayesian literature for the variable selection indicators 𝜸 is an independent
Bernoulli

𝜋(𝜸) =
p∏

i=1

𝜆𝛾i(1 − 𝜆)(1−𝛾i),

where 𝜆 is the prior probability of variable inclusion. Instead of an independent prior, we propose a prior
that allows us to tie the selection of variables to the presence of edges relating them in the graph. To
accomplish this, we rely on an MRF prior favoring the inclusion of variables that are linked to other
variables in the network. MRF priors have been utilized in the variable selection context by Li and Zhang
[13] and Stingo and Vannucci [14]. However, unlike these authors, who assume that the structure of the
network among predictors is known, we incorporate inference of the network structure. We express the
prior for 𝜸 conditional on G as

p(𝜸|G) ∝ exp(a𝟏′𝜸 + b𝜸′G𝜸), (7)

where a and b are scalar hyperparameters and G is an adjacency matrix representation of the graph.
In this formulation, the parameter a affects the probability of variable inclusion, with smaller values
corresponding to sparser models. The parameter b determines how strongly the probability of inclusion
for a variable is affected by the inclusion of its neighbors in the graph. As noted in Li and Zhang [13],
increasing values of b may lead to a phase transition in which the number of included variables rises
sharply. For guidance on choosing a value of b that corresponds to a sparse model, see Section 3.1 of Li
and Zhang [13].

To summarize, our prior linking variable and edge selection reflect a preference for the inclusion of
connected predictors in the model by incorporating an MRF on the variable selection indicators that
utilizes the estimated network among predictors. The proposed model is therefore appropriate for data
sets where the predictors that affect the outcome of interest are in fact connected through a network. As
discussed in Section 1, this is the case for a broad range of biological settings where there is an interest
in associating gene, protein, or metabolite levels to complex traits or disease risk.

2.6. Conjugate priors for error variance 𝜏2, intercept 𝛼0, and coefficients of fixed covariates 𝛼𝛼𝛼

For the prior on the error variance 𝜏2 in equation (2), we use the standard conjugate prior

𝜏2 ∼ IG(a0, b0), (8)

where IG is the inverse-gamma density and a0 > 0 and b0 > 0 are fixed hyperparameters. For the prior
on the intercept 𝛼0, we use the standard conjugate prior

𝛼0 ∼ N
(
0, h0𝜏

2
)
, (9)

where h0 is a fixed hyperparameter. For the prior on the coefficient vector 𝜶 in equation (2), which
represents the effects of additional covariates that are not subject to selection, we use the standard
conjugate prior

𝜶|𝜏2 ∼ Nm

(
0, h𝛼𝜏

2Im

)
, (10)
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where 0 is the prior mean, Im represents the m × m identity matrix, and h𝛼 > 0 is a fixed hyperparameter
. As in the choice of h𝛽 , we follow Sha et al. [36] and Stingo et al. [15] in recommending that h𝜶 should
be set within the range of the variability of 𝐙 and h0 should be fixed to a large value so that the prior on
the intercept is vague.

2.7. Extension to survival response

To accommodate survival outcomes, we use an accelerated failure time (AFT) model as in Sha, Tadesse,
and Vannucci [37]. Let ti represent the time to event for subject and i and ci represent the censoring time.
We observe times t∗i = min(ti, ci) as well as censoring indicators 𝛿i = I{ti ⩽ ci}. We then estimate
augmented failure times yi where {

yi = log(t∗i ) if 𝛿i = 1
yi > log(t∗i ) if 𝛿i = 0.

(11)

We assume that the latent variables follow the linear model given in equation (2) and retain the prior
specification as given for the standard linear model.

3. Posterior inference

The joint posterior distribution for the set of all parameters 𝚼 = {𝜶, 𝜷, 𝜏2, 𝜸,𝛀,G} is proportional to the
product of the likelihood and the prior distributions

p(𝚼|Y ,𝐗) ∝ p(Y|𝜶, 𝜷, 𝜏2) ⋅p(𝐗|𝛀) ⋅p(𝜷|𝜸, 𝜏2) ⋅p(𝛀|G) ⋅p(G) ⋅p(𝜸|G) ⋅p(𝜏2) ⋅p
(
𝛼0|𝜏2

)
⋅p(𝜶|𝜏2). (12)

Because this joint distribution is not tractable, MCMC simulations are required to obtain a posterior
sample of the parameters. However, this sampling may be difficult because the joint posterior space is
quite complex and includes many dependent parameters. In particular, updates to the variable selection
indicators 𝜸 require dimension changes for 𝜷. By integrating out some parameters and focusing on the
remaining set, we can both simplify the sampler and reduce the number of iterations needed to obtain
a satisfactory posterior sample of the parameters of interest. Specifically, for both the linear and AFT
models, we integrate out the parameters 𝛼0, 𝜶, 𝜷, and 𝜏2 to obtain a multivariate t-distribution for Y with
degrees of freedom 2a0, mean 𝟎, and scale b0

a0
(In + h0𝟏n𝟏′n + h𝛼𝐙𝐙′ + h𝛽𝐗𝜸𝐗′

𝜸
). The joint posterior for the

simplified model is then

p(𝛀,G, 𝜸|Y ,𝐗) ∝ p(Y|𝜸) ⋅ p(𝐗|𝛀) ⋅ p(𝛀|G) ⋅ p(G) ⋅ p(𝜸|G). (13)

3.1. Markov chain Monte Carlo sampling

In the MCMC sampling scheme, we include steps to update the variable selection indicators 𝜸 conditional
on the current graph, to update the graph G and precision matrix 𝛀, and to sample the latent variables if
we are in the probit or AFT setting. A brief outline of the sampling scheme is given in the succeeding
texts. At the top level, the sampler follows a Metropolis–Hastings within Gibbs approach. For a full
description, see the Supporting Information.

(1) Update variable selection indicators 𝜸. At each iteration, we propose either adding or removing
a variable. We then accept or reject the proposed move using a Metropolis–Hastings approach,
conditional on the currently selected graph.

(2) Update the graph G and precision matrix 𝛀. In this step, we sample new values for the graph G
and precision matrix 𝛀 using the block Gibbs sampler proposed in Wang [35].

(3) Update the latent variables Y for the probit or AFT models. For the probit model, this entails
sampling the latent variables from a truncated multivariate normal distribution conditional on the
current set of included variables. For the AFT model, we sample the augmented failure times from
a truncated multivariate t-distribution.

Beginning from an arbitrary set of initial values, we iterate until we have obtained a representative sam-
ple from the posterior distribution. Samples from the burn-in period, which are affected by the initial
conditions, are discarded, and the remaining samples are used as the basis for inference.
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3.2. Variable selection and prediction

Because the search space of possible sets of variables is quite large, any particular model may only be
encountered a limited number of times during the MCMC sampling. For this reason, we focus on the
marginal posterior probabilities of inclusion (PPIs) to perform variable selection rather than the maximum
a posteriori model, which is the single model with highest posterior probability. The PPI for a variable
is the proportion of MCMC iterations after the burn-in where it is included. In order to make the final
model selection, a threshold is typically imposed on the PPIs. Here, we use the median model, which
corresponds to a threshold of 0.5. Barbieri and Berger [38] demonstrate that the median model is the
optimal predictive model in the context of linear regression when the predictor matrix 𝐗 satisfies the
condition that 𝐗′𝐗 is diagonal, outperforming the single model with the highest posterior probability.

To perform prediction, we follow an approach similar to that given in section 8 of [39]. Specifically,
given a future set of covariates 𝐙f and 𝐗f , we predict Ŷ as the MCMC average

Ŷ = �̂�0 + 𝐙f �̂� + 1
T

T∑
t=1

𝐗f �̂�
(t)
, (14)

where T is the total number of MCMC iterations. The intercept �̂�0 and coefficient vectors �̂� and �̂�
(t)

are
estimated as

�̂�0 =
(
n + h−1

0

)−1 𝟏′nY

�̂� =
(
𝐙′𝐙 + h−1

𝛼
𝐈m

)−1 𝐙′Y

�̂�
(t) =

(
𝐗′

𝜸(t)
𝐗𝜸(t) + h−1

𝛽
Ip

𝜸(t)

)−1
𝐗′

𝜸(t)
Y ,

(15)

where 𝜸(t) is the vector of variable selection indicators from the tth MCMC iteration.

3.3. Graph selection

As the number of possible graphs is even larger than the number of possible combinations of variables,
we adopt a similar approach for graph selection as for variable selection. Namely, rather than selecting
the most frequently encountered graph, we select the edges marginally by including all edges with PPI
greater than 0.5. This estimate is a common approach for graph selection and has been shown to perform
well in practice [34, 35].

4. Simulation study

4.1. Performance comparison

In this simulation, we compare our proposed method with other variable selection methods in a regression
setting with network-related predictors. We simulate the data following the setting given in Li and Li [8],
but with reduced scale to allow computational tractability. In this scenario, the predictors correspond to
clusters of genes consisting of a transcription factor and the genes it regulates. A subset of these regulatory
pathways contribute to the outcome variable. Li and Li [8] include four variants on this model that allow
effects of differing direction and magnitude. Specifically, in Model 1, genes within the same cluster have
effects with the same sign. In Model 2, genes within the same cluster may have effects with opposite
signs. Models 3 and 4 follow the same sign pattern, but the effects have smaller magnitude.

In the simulation given here, we include 40 transcription factors, each of which regulates five genes.
This corresponds to a graph with a total of 200 edges where nodes are grouped into 40 modules. The first
four groups of transcription factors and the genes they regulate have nonzero coefficients following the
same pattern as in Li and Li [8]. The complete coefficient vectors for each model are given in Table I.
Across all models, the number of true predictors is ptrue = 24 out of a total of p = 240. The expression
levels 𝐗 are generated from a multivariate normal with mean 𝟎 and covariance 𝚺, where 𝚺 is defined
so that the variance of the expression level for each transcription factor is 1 and the correlation of the
expression level of a transcription factor to the expression level of each gene it regulates is 0.7. The error
variance 𝜎2

e is set to (
∑

j 𝛽
2
j )∕4. The response variable y is generated from the linear model y = X𝛽 + 𝜀

where 𝜀 ∼ N(0, 𝜎2
e ). The resulting signal-to-noise ratio for Models 1, 2, 3, and 4 are 12.5, 4.7, 7.0, and

4.5, respectively. For both the training and test data, 𝐗 and Y were centered.
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Table I. Coefficient values for each of the four simulation models
described in Section 4.1.

Model 𝜷

1
(

5, 5√
10
,

5√
10
,

5√
10
,

5√
10
,

5√
10
,−5, −5√

10
,

−5√
10
,

−5√
10
,

−5√
10
,

−5√
10
,

3, 3√
10
,

3√
10
,

3√
10
,

3√
10
,

3√
10
,−3, −3√

10
,

−3√
10
,

−3√
10
,

−3√
10
,

−3√
10
, 0,… 0

)
2

(
5, −5√

10
,

−5√
10
,

5√
10
,

5√
10
,

5√
10
,−5, 5√

10
,

5√
10
,

−5√
10
,

−5√
10
,

−5√
10
,

3, −3√
10
,

−3√
10
,

3√
10
,

3√
10
,

3√
10
,−3, 3√

10
,

3√
10
,

−3√
10
,

−3√
10
,

−3√
10
, 0,… 0

)
3

(
5, 5

10
,

5

10
,

5

10
,

5

10
,

5

10
,−5, −5

10
,
−5

10
,
−5

10
,
−5

10
,
−5

10
,

3, 3

10
,

3

10
,

3

10
,

3

10
,

3

10
,−3, −3

10
,
−3

10
,
−3

10
,
−3

10
,
−3

10
, 0,… 0

)
4

(
5, −5

10
,
−5

10
,

5

10
,

5

10
,

5

10
,−5, 5

10
,

5

10
,
−5

10
,
−5

10
,
−5

10
,

3, −3

10
,
−3

10
,

3

10
,

3

10
,

3

10
,−3, 3

10
,

3

10
,
−3

10
,
−3

10
,
−3

10
, 0,… 0

)

For each of the four models, 100 training samples were used for parameter estimation, and 100
test samples were used to evaluate prediction. Variable selection and prediction were performed using
the lasso [21], elastic net [40], network-constrained regularization [8], stochastic search variable selec-
tion [22], and the proposed joint graph and variable selection method. The first three models were fit
using the MATLAB software Glmnet available from http://web.stanford.edu/ ∼hastie/glmnet_matlab/.
The penalty parameters were chosen via grid search to minimize 10-fold cross-validation error on the
training data.

For both Bayesian methods, the parameter h𝛽 , which determines the prior variance of the nonzero 𝛽s
in equation (4), was set to the variance of the nonzero 𝛽s divided by 𝜎2

e . Because the data were centered,
the intercept term 𝛼0 was assumed to be 0. As discussed by Smith [41], this is equivalent to a non-
informative prior with h0 → ∞ in equation (9). The shape and scale parameters of the inverse gamma
prior on 𝜏2 given in equation (8) were set to a0 = 2 and b0 = 𝜎2

e . This choice of hyperparameters leads
to a prior mean for the error variance of 𝜎2

e , corresponding to a value of 25.5 in Models 1 and 2 and a
value of 17.9 in Models 3 and 4. The effect of varying b0, which corresponds to varying the mean of
the inverse gamma prior, is examined in the sensitivity analysis provided in the Supporting Information.
For the stochastic search Bayesian variable selection, the prior probability of edge inclusion was set to
the true value of ptrue∕p = 0.1. For the joint variable and graph selection model, we need to specify the
parameters for the graph selection prior given in equations (5) and (6). Following the recommendations
in Wang [35], we set 𝜈0 = 0.1, 𝜈1 = 10, 𝜆 = 1, and 𝜋 = 2∕(p − 1). We must also specify parameters for
the MRF prior given in equation (7). We set the hyperparameter a, which controls the overall sparsity of
variable selection, to −2.75, and the hyperparameter b, which affects the prior probability of inclusion
for connected variables, to 0.5. When b = 0 or the graph G contains no edges, the setting for a results
in a prior probability of variable inclusion around 0.06. The nonzero value of b combined with a non-
empty graph will act to increase this. An analysis of the sensitivity of the variable selection to a and b is
reported in the Supporting Information.

In running the MCMC for the Bayesian methods, the initial value for the vector of variable selection
indicators 𝜸 was chosen to be 0. For the joint graph and variable selection method, the initial value for 𝛀
was set to Ip. For both methods, we allowed 5000 iterations of burn-in, which were discarded, followed
by 5000 iterations used as the basis for inference. Variable and edge selection were based on the criterion
that the posterior probability of inclusion was greater than 0.5.

The five methods were compared on the basis of sensitivity (the true positive rate of variable selection),
specificity (1 – the false positive rate of variable selection), the Matthews correlation coefficient (MCC)
(a combined measure of the overall variable selection accuracy), the area under the ROC curve (AUC),
and mean-squared prediction error (PMSE). Because the number of true positives and true negatives is
very different, sensitivity and specificity provide an imperfect view of variable selection accuracy. For
this reason, we include the MCC, a single-balanced metric-summarizing classification performance that
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accounts for the differing numbers of true positives versus true negatives. To assess the performance of
variable selection across a range of model sizes, we also provide the AUC. Let TP represent the number
of true positives (correctly identified variables), TN the number of true negatives (correctly rejected vari-
ables), FP the number of false positives (noise variables selected), and FN the number of false negatives
(incorrectly rejected variables). We can then define the sensitivity, specificity, and MCC as

Sensitivity = TP
TP + FN

Specificity = TN
TN + FP

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

.

Estimation of the AUC requires computing sensitivity and specificity for varying levels of sparsity. For
the regularization methods, the AUC was obtained by varying the L1 penalty parameter. For the elastic net
and network-constrained regularization approaches, which require selection of a second penalty param-
eter, this parameter was chosen by performing 10-fold cross-validation at each level of the L1 penalty
parameter. The AUC for the Bayesian methods was obtained by varying the selection threshold for the
posterior probabilities of variable inclusion. Finally, PMSE is defined as

PMSE = 1
n

n∑
i=1

(
Ŷi − Ytest,i

)2
,

Table II. Results of the simulation study for each of the four models described in Section 4.1 in terms of
sensitivity, specificity, MCC, AUC, and PMSE, given as an average across 50 simulations with standard
errors in parentheses. The methods compared are the lasso, elastic net (Enet), network-constrained regu-
larization (Li Li), stochastic search Bayesian variable selection (BVS), and the proposed joint graph and
variable selection method (Joint).

Model 1 Model 2 Model 3 Model 4

Sensitivity

Lasso 0.798 (0.012) 0.544 (0.012) 0.510 (0.010) 0.423 (0.013)
Enet 0.857 (0.013) 0.594 (0.012) 0.573 (0.014) 0.464 (0.014)
Li Li 0.850 (0.014) 0.565 (0.011) 0.555 (0.017) 0.462 (0.017)
BVS 0.367 (0.012) 0.286 (0.009) 0.222 (0.007) 0.205 (0.005)
Joint 0.433 (0.014) 0.320 (0.010) 0.241 (0.006) 0.230 (0.007)

Specificity

Lasso 0.928 (0.004) 0.916 (0.007) 0.929 (0.006) 0.931 (0.006)
Enet 0.911 (0.005) 0.879 (0.009) 0.911 (0.006) 0.918 (0.006)
Li Li 0.825 (0.023) 0.877 (0.013) 0.886 (0.016) 0.898 (0.014)
BVS 0.998 (0.001) 0.993 (0.001) 0.997 (0.001) 0.996 (4.8e-4)
Joint 0.999 (3.6e-4) 0.996 (0.001) 0.998 (4.4e-4) 0.997 (0.001)

MCC

Lasso 0.627 (0.012) 0.430 (0.014) 0.435 (0.014) 0.370 (0.018)
Enet 0.628 (0.013) 0.397 (0.013) 0.439 (0.014) 0.370 (0.016)
Li Li 0.522 (0.020) 0.388 (0.016) 0.401 (0.015) 0.344 (0.017)
BVS 0.565 (0.012) 0.457 (0.011) 0.425 (0.008) 0.391 (0.007)
Joint 0.624 (0.011) 0.513 (0.010) 0.450 (0.008) 0.429 (0.008)

AUC

Lasso 0.883 (0.007) 0.751 (0.008) 0.738 (0.008) 0.682 (0.008)
Enet 0.922 (0.006) 0.780 (0.005) 0.777 (0.008) 0.722 (0.009)
Li Li 0.920 (0.007) 0.768 (0.006) 0.772 (0.009) 0.710 (0.008)
BVS 0.889 (0.006) 0.795 (0.007) 0.778 (0.006) 0.731 (0.009)
Joint 0.923 (0.005) 0.852 (0.007) 0.848 (0.006) 0.810 (0.007)

PMSE

Lasso 40.6 (0.93) 46.6 (1.17) 24.0 (0.56) 25.4 (0.64)
Enet 40.3 (0.95) 46.9 (1.23) 24.5 (0.57) 25.8 (0.67)
Li Li 42.9 (1.16) 47.6 (1.29) 25.0 (0.77) 26.3 (0.81)
BVS 41.7 (0.83) 44.7 (1.22) 22.3 (0.49) 23.7 (0.56)
Joint 39.0 (0.80) 41.5 (1.06) 21.8 (0.44) 22.8 (0.54)

MCC, Matthews correlation coefficient; AUC, area under the ROC curve; PMSE, mean-squared error of prediction.
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where n is the number of observations in the test data, Ŷ is the predicted value of Y for the test data, and
Ytest is the true value of Y in the test data set. The resulting values are given in Table II.

Based on this summary, we see that although the regularization methods (Lasso, Enet, and Li Li)
tend to have good sensitivity, the proposed joint Bayesian method has much better specificity. The poor
specificity of the regularization methods makes sense in the light of previous work demonstrating that
selection of the regularization parameter using cross-validation is optimal with respect to prediction but
tends to result in the inclusion of too many noise predictors [24]. We therefore experimented with using
a fixed penalty parameter of 1.4 for the lasso, which was chosen to achieve specificity more similar to
that of the Bayesian methods, with the caveat that such a fixed choice for the penalty parameter is only
possible in the context of a simulation study. Unsurprisingly, we found that a stronger penalty improves
specificity but degrades prediction. For example, in Model 1, fixing the penalty parameter to 1.4 improves
specificity to 0.989 but worsens the PMSE to 47.7, much higher than when using parameters chosen
using cross-validation, possibly due to overshrinkage of the coefficients when using the stronger penalty.
As compared with standard Bayesian variable selection, the joint approach improves sensitivity because
of greater ability to detect small effects acting within pathways and also offers small improvements in
specificity. To assess the tradeoff between sensitivity and specificity, we rely on both the MCC, which
provides a single measure to assess variable selection accuracy conditional on model selection, and the
AUC, which provides a summary of the tradeoff between sensitivity and specificity across a range of
model sizes. The proposed joint method is either best or very close to best on these metrics across all
models and also achieves the lowest PMSE across the methods compared.

Although our primary focus in comparison of methods is accuracy of variable selection, we found that
the accuracy of graph structure learning for the proposed joint model was quite high across all simulation
settings, with an average true positive rate for edge detection of 0.998 and average false positive rate of
3.6e-4. Because there are p ⋅ (p − 1)∕2 − 200 missing edges in the graph, this corresponds to an average
of 10.3 false-positive edge selections.

In this section, we have demonstrated that when the network structure is relevant to the set of predictors
influencing the outcome, the proposed joint model outperforms standard Bayesian variable selection
in terms of both selection and prediction accuracy. We also provide a comparison in the Supporting
Information demonstrating that when the predictors are independent, the two methods perform similarly
along these metrics, so that while there is no advantage to applying the joint model to non-network-related
predictors, it does not degrade performance.

5. Case study

In this section, we utilize the proposed method to examine the impact of protein levels on glioblas-
toma survival. Specifically, we obtained protein measurements for glioblastoma patients assayed via
reverse phase protein arrays from The Cancer Proteome Atlas [42]. These data are available online at
http://app1.bioinformatics.mdanderson.org/tcpa/_design/basic/index.html. The data set includes quan-
tifications for 187 proteins for 215 subjects. For 212 of these subjects, we were able to obtain clinical
data including age, sex, and survival times, from The Cancer Genome Atlas, available online at
http://cancergenome.nih.gov. For 159 subjects, the number of days to death was recorded, while the
remaining survival events are right censored, so the reported times correspond to days-to-last contact.
This data set is a logical setting for the application of our proposed joint graph and variable selection
method because proteins typically interact within signaling pathways, and the entire pathway, rather than
a single protein, can influence disease progression. Although there is a large amount of reference infor-
mation on protein interactions from databases such as KEGG, these data represent different (typically
healthy) conditions, which may not be relevant to the population of glioblastoma patients.

To model these data, we follow the AFT model discussed in Section 2.7, using standardized data with
age and sex as fixed covariates. In order to assess performance, we split the data into a training set of
size ntrain = 175 and test set of size ntest = 37. We chose to use an uneven split with more subjects in
the training set than the test set to allow better model selection given the complexity of the problem. We
compare two inference approaches: standard Bayesian variable selection and the proposed joint variable
and network selection method. We do not include a comparison with the regularized methods as the
Glmnet software does not implement the AFT model. In addition, we do not assume that relevant prior
network information is available, as is required for the method of Li and Li.

Both Bayesian methods require the choice of prior hyperparameters. Following the guidance in
Sections 2.3 and 2.6, we use h𝛼 = h𝛽 = 1 because the data are standardized, and h0 = 1 × 106. To
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compensate for the somewhat weaker signal versus in the simulated data, for standard Bayesian variable
selection, we use a prior probability of variable inclusion of 0.2, and for the joint method, we set the
parameter a to −1.75. This corresponds to a prior probability of variable selection of around 0.15 when
either b = 0 or we have an empty graph. We set b to 0.5 as in the simulation, which has the effect of
increasing the prior probability of variable inclusion given that the variable is connected in the graph.

As is commonly seen in real biological data, the degree of correlation among the protein measure-
ments is quite high, in contrast to the simulation setting, in which most variables were truly independent.
Because it is biologically likely that most proteins only interact with a limited number of other proteins,
we increase the prior parameters 𝜈0 and 𝜈1 versus the setting used in simulation in order to achieve a
reasonably sparse graph. This adjustment allows us to focus on the strongest connections that are best
supported by the data. Specifically, we set v0 to 0.6 and v1 to 360. Although these values are larger than
those used in the simulation study, they are still within the range recommended by Wang [35] as provid-
ing good mixing and convergence. We retain the settings 𝜆 = 1 and 𝜋 = 2∕(p− 1) used in the simulation
section.

For both variable selection approaches, we carried out MCMC simulations on the training data, per-
forming 10,000 iterations burn-in followed by 10,000 iterations as the basis for inference. We then used
these results to predict log survival times for the test data following the general idea of equations (14)
and (15), modified to use the MCMC estimate of the latent value Y and to include the fixed covariates
and intercept. The predicted survival times were evaluated on the basis of two metrics: the integrated
Brier score (IBS) [43] and the concordance index [44]. The IBS measures the gap between the true and
estimated survival curves, making scores closer to 0 the best. We compute the Brier score at time t as

BS(t) = 1
ntest

ntest∑
i=1

(
Ŝi(t)2 ⋅ I

(
t∗i ⩽ t, 𝛿i = 1

)
Ĝ
(
t∗i
) +

(1 − Ŝi(t))2 ⋅ I
(
t∗i > t

)
Ĝ(t)

)
, (16)

where t∗i is the observed (possibly censored) time for subject i, Ĝ is the Kaplan–Meier estimate of the
censoring distribution for subjects i = 1,… , ntest, and Ŝi(t) is the probability of subject i being alive at
time t based on the survivor function estimated following Sha, Tadesse, and Vannucci [37]. The IBS is
simply the integral of the Brier score from time 0 to the maximum survival time :

IBS = 1
tmax ∫

tmax

0
BS(t)dt, (17)

where tmax is the maximum survival time in the test data set. Our second metric, the concordance index
(C-index), measures the proportion of pairs of subjects with observed survival times where the predictions
are concordant with the truth in terms of which subject survived longer. Scores close to 1 are therefore
best for this metric. The C-index is computed as

C =
∑

(i,j)∈Φ I(t̂i > t̂j)|Φ| , (18)

where t̂i and t̂j are the predicted survival times for subjects i and j, Φ is the set of pairs (i, j) such that
t∗i > t∗j and 𝛿j = 1, and |Φ| is the number of such pairs. For more discussion on the evaluation of survival
models, see Hielscher et al. [45].

Using standard Bayesian variable selection, three proteins were identified as relevant to survival: Bcl-
2, paxillin, and rictor-pT1135. The p suffix denotes phosphorylation at the given site. The proportion of
selected variables is quite a bit lower than the prior probability of variable inclusion, suggesting that the
signal in the data is fairly weak. Using the joint model, six proteins were selected: beta-catenin, c-Met-
pY1235, CD20, Chk2-pT68, heregulin, and rictor-pT1135. Although the joint method had more proteins
with high posterior probability (> 0.5), the two methods had a very similar number of proteins with
posterior probability > 0.2 (18 for standard Bayesian variable selection versus 17 for the joint method),
suggesting that the prior calibration was reasonable. The proposed joint model performed better in terms
of prediction using both metrics, suggesting that the larger number of discoveries may reflect improved
power. It achieved a lower IBS of 0.12 versus 0.14 for standard Bayesian variable selection, and a greater
C-index of 0.77, in contrast to 0.74 for standard Bayesian variable selection. While this improvement
provides some validation of the proposed method, it is difficult to assess its significance. In this context,
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Figure 1. Inferred network for the glioblastoma case study given in Section 5. The graph includes 230 connections
among the 187 proteins under study. Proteins selected by the joint model only are marked in blue, proteins selected
by standard Bayesian variable selection are marked in red, and proteins selected under both are marked in purple.

Labels are provided for all selected proteins and their neighbors in the graph.

where the sample size is limited and independent training sets are not available, it is not possible to
obtain valid estimates of the prediction error. The results from the joint method also provide insight into
coordinated effects of network-related proteins. The posterior-selected graph among all proteins includes
230 edges, corresponding to an average node degree of around 2.5. Among the six selected proteins,
four were linked to each other through the line graph Chk2-pT68 – c-Met-pY1235 – CD20 – heregulin.
Figure 1, which was produced using the Rgraphviz package [46], shows the selected predictors in the
context of the full network inferred. Of the two proteins with no edges to other selected variables, rictor-
pT1135 was also chosen using standard Bayesian variable selection, indicating that it may exert a strong
influence independent of network effects. The additional proteins identified by the joint model appear to
be meaningful. CD20, for example, has previously been discovered as a prognostic factor for leukemia
and ovarian cancer [47,48]. The inferred connections seem plausible as well. For example, Chk2, which
is part of the DNA damage response pathway, is involved in the activation of transcription factors that
regulate c-Met [49], and both Chk2 and c-Met have been implicated in glioblastoma survival [50, 51].

6. Conclusion

In this work, we have developed a novel-modeling strategy to simultaneously select network-structured
variables and learn the network relating them. Our approach is fully Bayesian and therefore allows us
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to account for uncertainty over both the variable and graph selections. Through simulations, we have
demonstrated that this approach can achieve improved selection and prediction accuracy over competing
variable selection methods. We have illustrated this method with an application to identify proteins and
their interactions that impact glioblastoma survival. The proposed method is well suited to other biologi-
cal applications where genes, proteins, or metabolites exert coordinated effects within pathways and can
accommodate outcomes that are continuous, binary, multinomial, or survival.

We have found our method to provide satisfactory results in settings with around 200 to 300 pre-
selected markers. As more computationally efficient approaches for Bayesian estimation of Gaussian
graphical models are developed, these can easily be merged into our framework, enabling the analysis
of a much larger number of predictors. Although we have chosen to model protein interactions via undi-
rected networks in this paper, a similar approach can be taken when the interactions between predictors
are better represented by other types of networks such as directed networks or chain graphs. Additional
future developments will include the extension of our approach to more complex models, such as semi-
parametric regression and more flexible models for time-to-event endpoints. Finally, we would like to
consider modifications to accommodate non-normal predictors. Under the proposed model, some devia-
tion from Gaussianity is acceptable: For example, we found that the joint model performed similarly to
other methods in terms of variable selection accuracy and prediction when the predictors were drawn from
a multivariate t-distribution with scale matrix 𝚺 and five degrees of freedom. For data that are strongly
non-normal, however, alternative approaches for network inference would be of interest. In particular,
although there has been some work carried out on robust Gaussian graphical models in the frequentist
literature [52, 53], there has been little work in the Bayesian framework. The only proposed Bayesian
approach [54], while more robust to outliers than the model developed here, has significant disadvantages
in that it is much more computationally expensive and requires restrictive assumptions on the graph struc-
ture. Developing a more scalable and flexible approach for robust graphical modeling would therefore be
of interest in future work.

7. Software

The MATLAB implementations of the linear, probit, and AFT models have been made available on the
author’s website. For the simulation in Section 4, which includes 240 predictor variables, it takes about 2 h
to run 10,000 MCMC iterations in MATLAB Release 2012b. The IBS and C-index, which were used to
measure prediction performance under the AFT model in Section 5, were computed using the MATLAB
code provided as supporting information to Chekouo et al. [55].
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