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Abstract

Meta-analysis allows researchers to combine evidence from multiple studies,

making it a powerful tool for synthesizing information on the safety profiles of

new medical interventions. There is a critical need to identify subgroups at

high risk of experiencing treatment-related toxicities. However, this remains

quite challenging from a statistical perspective as there are a variety of clinical

risk factors that may be relevant for different types of adverse events, and

adverse events of interest may be rare or incompletely reported. We frame this

challenge as a variable selection problem and propose a Bayesian hierarchical

model which incorporates a horseshoe prior on the interaction terms to iden-

tify high-risk groups. Our proposed model is motivated by a meta-analysis of

adverse events in cancer immunotherapy, and our results uncover key factors

driving the risk of specific types of treatment-related adverse events.
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Highlights

What is already known?
Meta-analysis is a widely-used and powerful tool to synthesize evidence on the
safety of a medical treatment. Identification of subgroups at high risk of
treatment-related toxicities is critical to informing treatment recommenda-
tions. However, existing meta-analysis methods may not be appropriate to
address this question due to several challenges: the rarity of many adverse
events, incomplete reporting of adverse event data, and the large number of
potential risk factors for different types of adverse events.

What is new?
In this paper, we present a Bayesian hierarchical model that incorporates a
horseshoe prior on the interaction terms in a multivariable regression to iden-
tify high-risk groups. Importantly, our model framework can handle both rare
and censored events. Our simulations show that our proposed approach can
accurately identify interactions corresponding to subgroups at elevated risk in
the presence of both sparsity and censoring of the outcomes. We also apply
our method to the meta-analysis of real clinical trial data, providing new
insights on potential risk factors for toxicities of PD-1/PD-L1 inhibitors, a pop-
ular class of immunotherapy drugs used to treat cancer.
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Potential impact for RSM readers
The method proposed in this study can be applied to meta-analyses of safety
data in other disease settings in the future. To facilitate the dissemination of
the method, we have provided the code to implement the model in JAGS, a
free and easy-to-use platform for Bayesian modeling. The application of our
method to accurately identify patient subgroups at increased risk of adverse
events can potentially guide monitoring and prevention strategies to minimize
the impact of treatment-related toxicities.

1 | INTRODUCTION

For both the approval of new treatments and postmarket-
ing surveillance of existing medications, it is important to
characterize drug safety profiles, but individual random-
ized controlled trials, which are typically powered to
evaluate efficacy endpoints, are often too small to reliably
estimate risks. In this setting, meta-analysis, which is an
efficient and powerful way to pool evidence across stud-
ies, becomes a natural approach. Special attention has
recently been given to the use of meta-analysis to assess
drug safety1; in particular, the FDA has issued draft guid-
ance on meta-analyses of adverse events related to the
administration of a medication.2

Meta-analyses of clinical trials may focus on efficacy
or safety; each pose unique methodological challenges.3,4

However, combining evidence on adverse events is more
difficult than combining evidence on efficacy.5 This is
partly because adverse events of interest may be rare or
incompletely reported.6,7 In particular, clinical trials may
only report events with counts higher than a pre-
specified cutoff; in this case, the counts for infrequent
events below the threshold can be considered as left-
censored data.

To date, the relevant literature on statistical methods
for meta-analysis of adverse events has mostly focused on
the challenge of their rarity. Traditional meta-analysis
methods for binary outcomes, in particular, the fixed
effects model8 and the random effects model,9 often yield
biased estimates for rare events.10 Although both exact
and asymptotic methods have been proposed to address
this challenge,10–12 these methods are only suitable for
completely observed data. The Bayesian framework offers
an attractive alternative for meta-analysis13,14 as Bayesian
methods can naturally handle heterogeneity across stud-
ies, rare events,11 and censored outcomes.15

However, these existing methods fail to address a criti-
cal challenge in safety meta-analysis: unlike efficacy end-
points, which are limited in number, adverse events may be
classified into a large number of categories, and risk may
differ by disease status (e.g., cancer type) and intervention
(e.g., type of drug, duration, and dosing) across these

different categories. It is crucial and of overwhelming clini-
cal interest to identify high-risk subgroups for toxicity moni-
toring. Critically, this setting poses unique challenges for
statistical modeling because of the low frequency of the
observed outcome variables and the large number of poten-
tial risk factors for different types of adverse events. We
address this problem using the Bayesian meta-analysis
framework, incorporating sparsity-inducing priors to iden-
tify pairwise interactions among study-level covariates. The
statistical novelty of our approach lies in how we bring
Bayesian variable selection methods to bear on the chal-
lenge of identifying groups at high risk for specific classes of
toxicities, which requires careful consideration of the model
specification. To enable the application of our method to
future studies, we provide an easy-to-use JAGS implementa-
tion of our proposed Bayesian model.

The rest of this article is organized as follows. We begin
with a discussion of our motivating data set on the safety of
immunotherapy drugs in Section 2. In Section 3, we propose
a novel Bayesian method for meta-analysis of safety data,
which allows for the identification of high-risk subgroups
through the selection of a sparse set of interaction terms. In
Section 4, we compare the performance of the proposed
approach to alternative methods using simulated data with
missing and rare outcomes; we demonstrate that we can
achieve good selection performance and accurate risk pre-
diction in this context. In Section 5, we apply the proposed
method to our motivating data set on meta-analysis of
immunotherapy trials, identifying high-risk groups by
selecting a set of key interaction terms. Some concluding
remarks and discussion are provided in Section 6.

2 | MOTIVATING APPLICATION
TO META-ANALYSIS OF
IMMUNOTHERAPY SAFETY

Immunotherapy is a type of cancer treatment that boosts
the body's natural immune defenses to kill tumor cells.
In developing our proposed model, we are particularly
motivated by the challenge of characterizing the safety of
immunotherapy drugs; they are generally much less toxic
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than traditional cancer treatments, such as chemotherapy,
but they can occasionally trigger life-threatening inflamma-
tory and immune-related adverse events.16 Our motivating
data set is from Reference 17, who examined the incidence
of adverse events associated with PD-1 and PD-L1 inhibi-
tors, two popular classes of immunotherapy drugs, across
125 studies reported in the literature. Some of the most fre-
quent adverse events in this data set include fatigue, diar-
rhea, rash, and nausea. Life-threatening adverse events
such as pneumonitis and cardiovascular failure were rare,
but did lead to 82 treatment-related deaths across all stud-
ies. Importantly, this meta-analysis included data from stud-
ies on a variety of cancer types (including melanoma, lung
cancer, and gastrointestinal cancer) that used a variety of
drugs (including nivolumab, pembrolizumab, and atezolizu-
mab).17 estimated the incidence rates of adverse events for
different classes of drugs, cancer types, and categories of
adverse events; however, they were not able to identify risk
factors for specific types of adverse events or the potential
interactions of drug and cancer type due to the challenge of
multiplicity in considering all such combinations.

This challenge represents a form of subgroup analysis.
In the medical literature, such analyses are of interest to
identify high-risk subgroups and reveal clinically relevant
differences across patient groups, but spurious findings may
occur without appropriate adjustment because of multiple
subgroups being investigated and therefore multiple
hypotheses being tested.18–20 The importance of providing
valid conclusions from subgroup analyses in meta-analysis
has been well accepted in the literature,21 but in practice,
the multiple testing issue is seldom addressed.22 Advanced
methods to account for multiplicity in meta-analytic

subgroup analysis are still underdeveloped, especially in the
presence of high-dimensional interactions. This gap in the
literature motivates our current work.

To illustrate our motivating application, we provide a
schematic diagram in Figure 1 which depicts the problem
of identifying the potential two-way interactions among
drug, cancer type, and category of adverse event. While the
primary goal of incorporating interaction effects is to iden-
tify subgroups of patients at high risk for specific classes of
adverse events, estimating these interaction effects can also
enable more accurate risk prediction. This knowledge is
crucial for precision medicine to inform efforts for early
detection and close monitoring of symptoms and enable
proper management of adverse events.23 In the current
work, we incorporate selection of interaction terms using
sparsity-inducing priors within the framework of Bayesian
meta-analysis. We discuss our proposed model in more
detail in the following section. To make the model setup
more concrete, we provide the first few lines of the case
study data in Table 1 as an illustration. We also relate the
columns in this data set to our notation, which will be
introduced as a part of the model specification in
Section 3.1.

3 | METHODS

In this section, we describe our proposed modeling
approach for meta-analysis of safety events. A key goal of
our method is to identify subgroups of patients who are
at high risk for certain types of adverse events. We
achieve this through the selection of interaction terms

FIGURE 1 Illustrative

schema of sparse meta-analysis

of adverse events (AEs) with

interaction selection [Colour

figure can be viewed at

wileyonlinelibrary.com]
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within a Bayesian modeling framework that can handle
both rare and censored events, as described in the follow-
ing subsections.

3.1 | Model specification

We consider a meta-analysis setting in which we would
like to aggregate evidence regarding drug safety across
a set of I studies. The toxicity outcomes for the ith study,
where i¼ 1,…, I, consist of a vector of counts
Y i ¼ Yi1,…,YiJð Þ, where Yij denotes the observed number
of toxicities in the jth category. We assume that these
counts arise from the binomial distribution

Yij �Binomial Ni, pij
� �

, ð1Þ

where Ni represents the total number of subjects
included in the safety analysis for the ith study, and pij
represents the study-specific probability of the jth type of
adverse event. By directly modeling the study-level
counts, we are able to handle rare events and potential
left-censoring, as discussed below.

3.1.1 | Incorporation of covariates

The key innovation of our proposed model lies in how
we incorporate sparsity in linking the probability of an

adverse event to study-level covariates. We are interested
in determining the effects of factors such as drug, cancer
type, and adverse event category on the probability of
toxicity. To do this, we rely on a logistic regression model
linking the probability pij of an adverse event of type j in
study i to study-level factors. Importantly, these factors
may interact with each other. For example, the effect of a
drug on the incidence of an adverse event may also
depend on the type of cancer being treated. Therefore,
our proposed Bayesian meta-analysis model includes
additive effects for not only study-level covariates, but
also for the set of candidate two-way interactions, such as
cancer � drug, cancer � type of adverse event, and drug
� type of adverse event. These interaction terms are sub-
ject to selection, which enables us to identify combina-
tions that are potentially more dangerous than expected
on the basis of modeling only the main effects.

Our proposed Bayesian approach can be seen as a
random-effects model,24 as it allows us to decompose het-
erogeneity across studies into components attributed to the
covariates included in the model, such as cancer type or
study drug, and residual heterogeneity due to study-specific
differences in patient population or clinical practice across
institutions. Both the covariate and study effects are treated
as Bayesian parameters, with an appropriate choice of prior
distribution. In our hierarchical model, we additionally
place a prior on the standard deviations of these distribu-
tions. We are then able to characterize heterogeneity across
studies using the corresponding posterior distribution for
these quantities.

TABLE 1 An illustrative snippet of the case study data described in Section 2

Study N
Type of
adverse event Drug Cancer

Yype of adverse
event � cancer

Type of adverse
event � drug

Cancer
� drug Cutoff Y

1 131 1 1 1 1 1 1 6 14

1 131 2 1 1 2 2 1 6 -

1 131 3 1 1 3 3 1 6 12

1 131 4 1 1 4 4 1 6 10

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

2 154 1 2 2 2 2 4 15 -

2 154 2 2 2 4 4 4 15 -

2 154 3 2 2 6 6 4 15 -

2 154 4 2 2 8 8 4 15 22

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

i Ni j Zij,1 Zij,2 Xij,1 Xij,2 Xij,3 ci Y ij

Note: The index i represents the study, Ni denotes the sample size, j indexes the type of adverse event, Zij,k denotes the column of the design matrix Z

corresponding to the effect of covariate k on adverse event j in study i, Xij,k denotes the column of the design matrix X corresponding to the interaction effect of
interaction k on adverse event j in study i, ci denotes the study-specific censoring threshold, and Yij denotes the true number of adverse events of type j in study
i. A hyphen is used to represent counts that were subject to censoring.
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More formally, consider the logistic regression model
including pairwise interaction effects:

logit pð Þ¼ZuþXβ, ð2Þ

where p is a vector of length I� J with entries corre-
sponding to the probabilities of adverse event incidence
pij in equation (1), Z is a known I� Jð Þ�Q design matrix
for random effects, and X is a known I� Jð Þ�K design
matrix for interactions. The coefficient vector u is a
Q-vector of random marginal effects such as those for
study, therapeutic regimen, cancer type, and category of
adverse event. The coefficient vector β is a K-vector of
interaction effects.

Our goal is to both estimate u and identify a subset of
interaction terms to include in the model. In the next sec-
tion, we describe our choice of prior on the parameters u
and β that allows us to achieve this goal within a Bayes-
ian modeling framework.

3.1.2 | Prior on main effects

We choose to keep all Q random marginal (main) effects
in the model, as the study-level covariates of interest
(cancer type, drug, and class of adverse event) are all clin-
ically meaningful. To specify the prior on these marginal
effects u¼ u1,…,uQð Þ, we rely on the normal prior:

u jΣu �N μ0,Σuð Þ: ð3Þ

We follow the common choice of setting the prior mean
μ0 to be 0. The matrix Σu is a block diagonal matrix with
four main-diagonal blocks such that each block (corre-
sponding to a categorical variable) shares the same vari-

ance, σ bð Þ
u

n o2
, where b¼ 1,…, 4. The superscript b stands

for a categorical variable corresponding to that block. For

the choice of prior on the standard deviations σ bð Þ
u , we fol-

low the recommendation in Reference 25, and use a

weakly-informative prior: σ bð Þ
u �Cþ 0,Að Þ, where Cþ

denotes the half-Cauchy distribution, and A is a scale
parameter set to 25.

3.1.3 | Prior on interaction effects

As discussed above, we would like to achieve sparsity in
estimating the interaction effects. For this purpose, we
adopt conditionally independent horseshoe priors26,27 on
the interaction terms. We rely on the horseshoe prior as it
has been shown to have nice theoretical properties,28,29 and

has been widely adopted in applications such as machine
learning.30

We now discuss the formulation of this approach in
more detail, as this represents novel aspect of our meta-
analysis model. The horseshoe prior on each interaction
coefficient βk can be represented as the following scale
mixture of normals:

βk j λk, τ�N 0, λ2kτ
2

� � ð4Þ

λk �Cþ 0, 1ð Þ,

where λk is a local shrinkage parameter, and τ is an over-
all global shrinkage parameter. The global parameter τ is
responsible for shrinking all of the coefficients toward
zero, while the local parameter λk, through its heavy tails,
allows true signals to escape this shrinkage.

We now briefly review the intuition behind the horse-
shoe prior. Carvalho et al26 introduced this prior in the
simple setting where μ represents a vector of normal
means, and the observed data follow the distribution
yjμð Þ� μ, σ2Ið Þ, where I is the identity matrix. They then
assume σ2 ¼ τ2 ¼ 1, define

κk ¼ 1

1þ λ2k
ð5Þ

as the “shrinkage factor” corresponding to μk, and show
that E μkjyð Þ¼ 1�E κkjykð Þf gy. The name “horseshoe
prior” is based on the fact that the prior induced on κk
resembles a U-shape, with very little shrinkage on strong
signals (corresponding to the peak when κk is close to 0)
and almost total shrinkage on true zeros (corresponding
to the peak when κk is close to 1).

The global shrinkage parameter τ enables adaptivity to
the overall sparsity level. As τ!∞, the priors for all vari-
ables become diffuse, with little shrinkage, and as τ! 0,
all priors strongly favor values of βk close to 0. As recom-
mended in Reference 26, we assume a half-Cauchy prior

τ�Cþ 0, τ20
� �

, ð6Þ

with the fixed hyperparameter τ20 set to 1. While subse-
quent work has further explored the choice of hyperprior
on the global shrinkage parameter,31 we found that the
standard half-Cauchy density proposed in Reference 26
worked well in both our simulations and our real data
analysis. We performed a sensitivity analysis to assess the
impact of varying τ0 on posterior inference, as discussed
in the Supplementary Material, and found that our
results were not overly sensitive to the choice of τ0.
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3.1.4 | Handling of censored observations

A source of reporting bias in meta-analyses of toxicity
outcomes is that events with very low frequency (below a
pre-specified study-specific threshold) may be omitted
from the final trial report. Since these counts are missing
not at random, ignoring the missing values will result in
bias in the estimation of the incidence probabilities.
Therefore, we take censored observations into account
through the likelihood function, following the approach
proposed in Reference 15. We let δi ¼ δi1,…, δiJð Þ serve as
a vector of censoring indicators, where δij ¼ 1 if the count
for the jth toxicity outcome in the ith study is fully
observed and δij ¼ 0 if the observation is censored. Taking
advantage of the study-specific cutoff values in handling
the missing events, we consider the missing observations
as left-censored data, with the unobserved number of tox-
icities for the ith study taking a value in the range from 0
to the censoring threshold ci. We therefore rely on the
cumulative binomial distribution, denoted as
F ci;Ni, pij
� �

, to model the incidence probabilities for the
left-censored adverse events. The full likelihood for both
the fully observed data and left-censored data can then
be written:

ℒ¼
YI
i¼1

YJ
j¼1

f Y yij
� �h iδij¼1

FY cið Þ½ �δij¼0

¼
YI
i¼1

YJ
j¼1

f Y yij
� �h iδij¼1 Xci

ki¼0

f Y kið Þ
" #δij¼0

where f Y yð Þ represents the probability density function of
Y , and FY yð Þ¼ P Y ≤ y½ � represents the cumulative distri-
bution function of Y . If the censoring indicator δij ¼ 1,
then the jth toxicity outcome in the ith study was
observed. If δij ¼ 0, then the toxicity outcome was cen-
sored; the corresponding term in the likelihood reflects
the information contained in the censoring that its value
was a count less than or equal to the reporting thresh-
old ci.

3.2 | Model implementation in JAGS

To model the incidence probabilities for left-censored
adverse events, we construct the exact likelihood function
for censored observations through ancillary variables
Wij ¼ 1 following the Bernoulli distribution

Wij �Bernoulli qij
� �

: ð7Þ

The Bernoulli probability qij ¼F ci;Ni, pij
� �

¼Pcij
kij¼0

Nij

kij

� �
p
kij
ij 1�pij
� �Nij�kij

represents the study-spe-

cific probability of left censoring for the jth type of
adverse event in the ith study. As noted in Reference 32,
this formulation results in the correct likelihood and
deviance functions in JAGS for Bayesian modeling with
left-censored observations.

Given the likelihood and priors defined above, we
consider the joint posterior

p u, β, λ, σu, τjY i,W ið Þ/
YI
i¼1

p Y i,W iju, βð Þ
YQ
q¼1

p uqjσu
� �YK

k¼1

p βkjλk, τð Þp λkð Þ½ �p σuð Þp τð Þ,

where W i ¼ Wi1,…,WiJð Þ and λ¼ λ1,…, λKð Þ. Since this
posterior is not tractable, meaning that there is no closed
form for the full conditional distributions, we rely on Mar-
kov chain Monte Carlo (MCMC) to obtain a sample from
the posterior. Here we utilize Just another Gibbs Sampling
(JAGS), which enables MCMC sampling for Bayesian hier-
archical models on the basis of the model specification.33,34

The full specification for the proposed model in JAGS is pro-
vided in the Supplementary Material. The simulation and
case study results provided in Sections 4 and 5 were
obtained using this JAGS implementation.

4 | SIMULATION STUDIES

In this section, we compare the performance of our pro-
posed approach to that of existing meta-analysis methods
on simulated data and discuss sensitivity to the choice of
prior hyperparameters.

4.1 | Simulation set-up

4.1.1 | Data generation

For each simulation scenario, we generate 200 simulated
data sets, with 100 used for training and 100 used for test-
ing. Each data set includes n¼ 1000 observations, corre-
sponding to I� J ¼ 1000 potentially observed counts yij
across I ¼ 100 studies and J ¼ 10 types of adverse events.
To generate the simulation truth for Y train and Y test, we
set the total number of main effects Q to be 125, corre-
sponding to 100 studies, 10 cancer types, 10 categories of
adverse events (AEs), and 5 drugs. The total number of

6 QI ET AL.



candidate pairwise interactions K is then 200, including
50 AE � drug interactions, 100 AE � cancer interactions,
and 50 cancer � drug interactions. We generate a design
matrix (Z) for the marginal effects, and draw the corre-
sponding coefficients (a vector of length Q¼ 125) from
the normal distribution uq �N �1, 0:42ð Þ. For the interac-
tion effects, we generate another design matrix (X), and
construct the corresponding coefficient vector β by
assuming that 20 (of 200) are true (non-zero) interactions
with a value of 1 (β¼ 1) and the rest are zeros, so that the
sparsity level is 10%. Given these inputs, the true out-
come Y train for each simulated data set is generated
from a binomial distribution with the number of
patients within each study as ni ¼ 100 and the toxicity
probability set to p¼ logit�1 ZuþXβð Þ. The test set Y test

is generated from a binomial distribution using the
same parameters. We generate a separate test set to
enable comparison of predictive performance across
methods.

We consider three simulation scenarios with in-
creasing percentages of censored observations. In
Scenario 1, all adverse events are fully observed. In
Scenario 2, 40% of the observations are censored, while
in Scenario 3, 80% of the observations are censored. In
the second and third scenarios, where there is missing
data, the missingness is designed to follow the real-
world pattern, where adverse events with zero or low
incidence are censored. This represents informative
censoring, since the missing data correspond to counts
that fall beneath a specific threshold.

4.1.2 | Methods compared

We include the following methods in our performance
comparison:

• BMCD: Bayesian model for censored data, which is a
marginal model without interaction terms, as
described in Reference 17.

• sBMI: sparse Bayesian Model with Interaction selec-
tion, that is, our proposed Bayesian model for censored
data with selection of interaction terms using a horse-
shoe prior.

• glmIA: a classical generalized linear regression model
with a logit link that includes all main effects and true
interactions.

• glm: a logistic regression model with all main effects
included, but no interaction terms

• glmnet: a LASSO logistic regression model with all
main effects included, and interaction selection using
an l1 penalty.

35

Importantly, the only existing method, which allows
for the selection of interactions is glmnet: the remaining
alternatives either include no interaction terms or rely on
knowledge of the ground truth in including interactions.
We also note that due to the large number of candidate
interactions, it is not possible to fit a dense model includ-
ing all potential interaction terms.

Both Bayesian models are implemented in JAGS. In
BMCD (the Bayesian model with main effects only), we
estimate the 200 main study-level factors in the marginal
model in JAGS, and obtain the estimated marginal effects
(bu) using the MCMC results. In sBMI, we fit a model that
includes both the main study-level factors and candidate
two-way interactions and obtain the posterior samples of
both the marginal effects (bu) and the interaction terms
(bβ). For model fitting in JAGS, we discard the first 30,000
iterations as burn-in and retain 30,000 posterior samples
after the burn-in to use as the basis for posterior infer-
ence, for example, estimation of the posterior median
and 95% credible intervals. The glmIA model represents
the best possible performance for a classical generalized
linear model, as knowledge of the ground truth was used
to include only the true interactions. The final two
methods included in the comparison, glm and glmnet,
represent realistic approaches in the frequentist
framework.

On the basis of the fitted models, we obtain predic-
tions bY for the test sets as follows. For models with main
effects only, the test predictions are generated from a
binomial distribution with sample size ni and the esti-
mated incidence probability bp¼ logit�1 Zbuð Þ, while for
models with both main effects and interactions, we takebp¼ logit�1 ZbuþXbβ� �

. For the Bayesian methods, bu is
taken to be the medians of the posterior samples for the
marginal effects. For sBMI, bβ is similarly taken as the
posterior medians of the sampled values. For model
selection, we adopt the approach of Reference 36 and
consider an interaction term βk as “selected” if its mar-
ginal 95% credible interval does not contain 0.

4.1.3 | Performance metrics

We assess model performance in terms of prediction
error on the test data and accuracy in the selection of the
model coefficients. More specifically, we compare the five
methods using the following metrics:

• MSPE: mean squared prediction error, the mean
squared difference between the true value of the out-
come (Y ) from the test dataset and the fitted value (bY )
from the model.

QI ET AL. 7



MSPE¼ 1
n

Xn
i¼1

Yi� bYi

� �2

• TPR: true positive rate, sensitivity in identifying the
true nonzero interaction terms

TPR¼ TP
TPþFN

¼number of actual non�zeros correctly selected
total number of non� zeros

• FPR: false positive rate, the proportion of true zero
interactions selected

FPR¼ FP
TNþFP

¼number of actual zeros incorrectly selected
total number of zeros

• MCC: the Matthews correlation coefficient, a measure
of the overall interaction selection accuracy

MCC¼ TP�TN�FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFPð Þ TPþFNð Þ TNþFPð Þ TNþFNð Þp

In the formulas above, TP (true positive) represents the
number of actual non-zero interactions that are selected,
TN (true negative) is the number of actual zeros that are
not selected, FP (false positive) is the number of actual
zeros that are selected, and FN (false negative) is the
number of non-zeros that are not selected. We take the
MCC to be zero (rather than undefined) if any term in
the denominator is zero.

4.2 | Simulation results

We illustrate the results of our proposed method and
provide an in-depth comparison of its performance
with alternative methods. To provide insight into the
estimated interaction effects obtained using the
horseshoe prior, we visualize the sBMI modeling
results for a single simulated data set by depicting
the 95% posterior credible intervals for the full set of
candidate interaction terms in the simpler setting
with no censoring (top of Figure 2) and the most
challenging setting with 80% censoring (bottom of

Figure 2). In these figures, we show the set of
200 interaction terms along the x-axis. Under the
simulation truth, there are 20 true nonzero interac-
tion effects (plotted in green) that are equal to
1, while the remaining 180 interactions (plotted in
red) are truly 0. The vertical orange lines correspond
to the 95% posterior credible intervals. True positive
selections correspond to true signals with 95% credi-
ble intervals for the corresponding interaction coeffi-
cient (β) that do not overlap zero; false negatives arise
when the 95% credible interval covers zero. Similarly, for
actual zero interaction terms, if the 95% posterior credible
interval covers 0, this represents a true negative, while if
the 95% credible does not cover 0, that term is a false pos-
itive. As shown, the proposed selection models detect the
true interactions well (i.e., sensitivity at 0.75 and specific-
ity at 1) in the presence of no missingness (Scenario 1).
When the rate of missingness increases, the 95% credible
intervals for the interaction coefficients become wider,
but the proposed sBMI approach can still recover the
underlying truth at TPR = 0.65, with FPR = 0 in Scenario
3 on the basis of a single simulated dataset.

We provide results comparing the performance of the
five methods across 100 simulated data sets, summarized
in Table 2. In this table, we provide the mean MSPE
obtained by averaging over all iterations, along with the
standard error (SE). We also report the TPR, FPR, and
MCC for sBMI and glmnet, which are the only methods
that perform selection. glmnet � results reflect averages
over the simulated data sets where glmnet did not suffer
convergence issues. The median of the true values of Y
over 100 simulated datasets is 2.290. As shown in
Table 2, the proposed method sBMI has the best predic-
tive performance across the range of censoring scenarios
considered. When the data are fully observed, sBMI,
glmIA, and glmnet (the methods that estimate interac-
tion terms) have the best predictive accuracy, while
BMCD and glm (the Bayesian and frequentist methods
which only include the main effects) perform poorly. This
demonstrates the importance of including interaction
terms in the model. The performance of BMCD (main-
effect only) and sBMI is relatively stable when the per-
centage of missingness increases, demonstrating the ben-
efits of handling censored rare event outcomes under the
Bayesian framework. Such robustness results from the
ability to accommodate the censored outcomes in the
likelihood function. For interaction identification, sBMI
has an FPR that is very close to zero in all scenarios,
which indicates that very few zero interactions are incor-
rectly selected. Also, sBMI has the highest TPR (over 0.7)
in Scenario 1. In the case when 80% of outcomes are cen-
sored (Scenario 3), TPRs over 0.55 are still achieved with-
out suffering high FPRs in both Bayesian interaction
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selection models. In all three scenarios, sBMI achieves a
much higher MCC, with values of 0.83, 0.81 and 0.72,
respectively.

The non-Bayesian logistic regression approaches have
some key limitations that are evident in our simulation
results. Compared to the proposed model, glmIA, which
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TABLE 2 Performance comparison

described in Section 4.2
Scenario Method Median (bY) MSPE (SE) TPR FPR MCC

0% censored BMCD 2.595 11.473 (2.954) - - -

sBMI 2.280 7.314 (1.428) 0.708 6e-5 0.827

glmIA 2.210 7.849 (1.817) - - -

glm 2.410 11.717 (3.244) - - -

glmnet* 2.319 7.502 (1.529) 0.736 0.251 0.327

40% censored BMCD 2.750 11.618 (2.939) - - -

sBMI 2.495 7.418 (1.463) 0.687 6e-5 0.813

glmIA 4.175 41.799 (14.087) - - -

glm 4.485 37.423 (12.793) - - -

glmnet* 4.380 11.633 (2.336) 0.721 0.270 0.296

80% censored BMCD 3.095 12.318 (3.243) - - -

sBMI 2.365 7.766 (1.607) 0.553 6e-5 0.723

glmIA 8.180 73.471 (24.081) - - -

glm 8.545 68.971 (22.119) - - -

glmnet* 9.169 24.880 (4.916) 0.444 0.205 0.196

Note: Results are summarized by median estimated Y, average mean squared prediction error (MSPE) on
test data with standard error (SE), true positive rate (TPR), false positive rate (FPR), and Matthews

correlation coefficient (MCC) for five methods: Bayesian marginal-only model (BMCD), sparse Bayesian
model with interaction selection (sBMI), logistic regression with all true interactions (glmIA), logistic
regression without interactions (glm), and generalized linear model with lasso regularization (glmnet),
under 0%, 40%, and 80% censoring. glmnet* results reflect averages over the simulated data sets where
glmnet did not suffer convergence issues. The median of the true values of Y over 100 simulated datasets

is 2.290.
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includes all true nonzero interactions, has similar predic-
tion accuracy on the basis of the value of MSPE in
Scenario 1; however, in the presence of censoring
(Scenarios 2 and 3), its prediction accuracy worsens, since
only observed cases are included in the model. Further-
more, glmIA relies on knowledge of the truth, and there-
fore does not represent a practical modeling approach.
The penalized logistic regression approach, glmnet, faced
performance challenges in the interaction selection
because of the presence of multiple high-dimensional cat-
egorical variables in the model. In particular, some simu-
lated datasets resulted in convergence issues when fitting
the regression model with glmnet in R. Therefore, the
results from glmnet* presented in Table 2 are summa-
rized over 83 of the 100 simulated data sets that did not
result in a convergence issue. Moreover, the MCC for
interaction selection was low in all three scenarios.

Each simulation study was performed in JAGS using
R version 4.1.037 on a single core of a computing cluster.
For a simulated dataset with 125 main effects and
200 candidate interactions (including 20 true interaction
effects) and a sample size of 100 trials, the proposed
model runs in 35 min in the 40% censoring scenario and
40 min in the 80% censoring scenario, where only 200
out of n¼ I� J ¼ 1000 AE counts were observed. We also
considered how the number of candidate interactions rel-
ative to the sample size influences the accuracy of the
results. In the simulation scenario with 80% censoring,
the ratio of the number of interactions versus the total
number of observations is K

I�J ¼ 0:2, and the proposed
method achieves a TPR of 0.553. We examined the
impact on performance of varying this ratio. We found
that accuracy increases dramatically when the ratio is
lower than 0.2, while higher ratios are more challenging.
In particular, we observed that the TPR decreases to 0.4
if the ratio is increased to 0.3.

5 | RESULTS FROM THE CASE
STUDY

In this section, we utilize the proposed sparse Bayesian
interaction selection method to identify key interaction
effects in our motivating data set, the immunotherapy
meta-analysis data considered in Reference 17. We intro-
duced this data set at a high level in Section 1, and pro-
vide more detail here. The study-level safety data were
collected from a systematic review of 125 clinical studies
that reported 75 categories of adverse events for two anti-
PD-1 drugs (nivolumab and pembrolizumab) and three
anti-PD-L1 drugs (atezolizumab, avelumab, and durvalu-
mab) published from 2011 to 2018. The majority of these
studies were early-phase single-arm studies. Other than

the study-level adverse event incidence data, we have the
following study-level information: drug, type of adverse
event, cancer type, and adverse event reporting criteria.
In each study, the numbers of all-grade (G15, grades 1–5)
and grade 3 or higher (G35, grades 3–5) adverse events
were recorded; however, a mean of more than 60% of the
adverse events for each study were left-censored, as the
count for that adverse event type was lower than a pre-
specified cutoff value reported from each study. This
threshold is captured as a part of the standard data ele-
ments in clinical trial reporting and publication, and var-
ies from study to study. At ClinicalTrials.gov, the
frequency threshold has an allowed maximum of 5%.38

As an example, Study 1 in Table 1 corresponds to the
CheckMate 017 trial,39 which published the observed
counts for all treatment-related adverse events that were
reported in at least 5% of subjects. Given their sample size
of 131, this means that adverse event types with counts
≤6 were not reported. Similar thresholds were applied in
other studies, resulting in a substantial amount of cen-
sored data. Therefore, we treat the censored outcomes as
censored data, following the approach described in
Section 3. The objective is to evaluate the adverse event
incidence probability by subgroup and identify the high-
risk groups by selecting the nonzero interactions.

To perform inference, we applied the sBMI approach,
using the JAGS implementation described in Section 3.2.
We ran three parallel chains. For each MCMC chain,
after discarding the burn-in period of 30,000 iterations,
the three chains showed good mixing and successful con-
vergence to the target distribution. We eventually
obtained 10,000 posterior samples per chain by retaining
one sample of three. We pooled these across the three
chains to obtain 30,000 posterior samples as the basis for
inference. To assess the convergence of the MCMC
chains, we computed the potential scale reduction factorbR. The mean bR value across all parameters in the G35
model was 1.04, and the mean for the G15 model was
1.02. These values are close to 1, indicating good conver-
gence of the chains.40

The top panel of Figure 3 displays the posterior
medians and the corresponding 95% credible intervals of
the interaction coefficients selected by sBMI, which
correspond to 32 interaction terms from a total of 927 con-
sidered. This highlights a key advantage of the sparsity-
inducing prior formulation, which allows us to focus on a
small set of interaction terms with strongest support from
the observed data. As in the simulation study, we con-
sider an interaction term to be selected if its 95% poste-
rior credible interval (CrI) does not overlap 0. Among the
22 selected type of adverse event � cancer type interac-
tions, the vitiligo � melanoma interaction has the largest
effect (bβ¼ 2:766; 95% CrI: 1.623–4.075) on G15 adverse
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event incidence, with an estimated incidence probability
of bpG15 ¼ 0:167 (95% CrI: 0.060–0.421). It is followed by
the neutropenia � hematologic malignancy interaction
(bβ¼ 2:252; 95% CrI: 1.688–2.814), with bpG15 ¼ 0:106 (95%
CrI: 0.062–0.175), and the platelet count decreased �
hematologic malignancy interaction (bβ¼ 2:072; 95% CrI:
1.211–2.841), with bpG15 ¼ 0:091 (95% CrI: 0.040–0.178).
Among the 10 selected type of adverse event � drug
interactions, the infusion-related reaction � avelumab
interaction has the largest effect (bβ¼ 2:986; 95% CrI:
2.243–3.461) on adverse event incidence, with an esti-
mated G15 incidence probability bpG15 ¼ 0:178 (95% CrI:
0.076–0.275), followed by the amylase increased � nivo-
lumab interaction (bβ¼ 0:061; 95% CrI: 0.011–0.191). The
overall mean incidence probability of G15 adverse events
is 0.011 (95% CrI: 0.005–0.013).

For G35 adverse events, eight pairwise interactions
were selected using the sBMI approach. Among the three
selected type of adverse event � cancer type interactions,
the neutropenia � hematologic malignancy interaction
has the largest effect on adverse event incidence, with an
estimated G35 adverse event incidence probability ofbpG35 ¼ 0:009 (95% CrI: 0.004–0.021), followed by the

pneumonitis � lung cancer interaction and the colitis �
melanoma interaction. Among the five selected type of
adverse event � drug interactions, the infusion-related
reaction � avelumab interaction has the largest effect on
G35 adverse event incidence, and the estimated G35
adverse event incidence probability is bpG35 ¼ 0:012 (95%
CrI: 0.002–0.044), followed by the increased lipase �
Nivolumab interaction, the increased amylase � Nivolu-
mab interaction, the increased lipase � Avelumab inter-
action, and the increased γ-glutamyl transferase �
Durvalumab interaction. The overall mean incidence
probability of G35 adverse event is 0.0007 (95% CrI:
0.0005–0.0009), which is consistent with the rarity of
these severe adverse events.

Our approach allows us to characterize heterogeneity
across studies by breaking it down into components
attributable to adverse event type, cancer type, drug, and
residual heterogeneity due to variation across studies. We
report the posterior medians and credible intervals for
the corresponding standard deviation terms for the G15
and G35 models in Table 3. These results suggest that the
study drug was the leading source of heterogeneity in the
risk of adverse events across studies.
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The strongest main effects obtained from the sBMI
analysis are consistent with those reported in Reference
17, a meta-analysis with no selection of interactions: spe-
cifically, the top five G15 adverse events found using
sBMI are fatigue, diarrhea, nausea, pruritus, and rash,
which were reported as well in Reference 17 as the most
frequent G15 adverse events types. Another common
finding is that the top three G35 adverse events are
fatigue, increased aspartate aminotransferase, and ane-
mia. However, as we discuss below, our proposed sBMI
model enables additional insight into key interactions
that elevate risk.

The interaction that we identified between vitiligo, an
autoimmune skin disorder, and melanoma is consistent
with results reported in the literature; for example, a pro-
spective study of patients with metastatic melanoma treated
with pembrolizumab observed a cumulative incidence of
vitiligo of 25%.41 Low neutrophil counts (neutropenia) and
low platelet counts (thrombocytopenia) have both been
reported as serious, but rare, hematological immune-related
adverse events42; thus, the link to hematological malignan-
cies is logical. Avelumab has been linked to infusion-related
reactions, with a rate of 20% reported among subjects with
urothelial cancer treated in a Phase II study.43 Patients with
hematological malignancies are more likely to develop cyto-
penia with cytotoxic chemotherapy because of disease
related reduction of bone marrow reserve. The link of neu-
tropenia and thrombocytopenia with hematological malig-
nancies in our analysis is of clinical interest and suggests
that these patients are also vulnerable to immunotherapy-
induced cytopenia and calls for close monitoring for cytope-
nia. Thus, our real-data meta-analysis demonstrates that
the proposed interaction selection method yields clinically
meaningful results. Understanding the risk of various
immune-related adverse events on the basis of a subject's
cancer type and potential treatment options is key to guid-
ing improved monitoring, prevention and management of
these events,23,44 and the proposed statistical framework
can provide robust estimates to inform these decisions.

6 | DISCUSSION

In this work, we developed a sparse Bayesian interaction
selection model to simultaneously identify nonzero

interactions and high-risk groups with an elevated proba-
bility of adverse events, addressing a key challenge in the
meta-analysis of safety data. Since our focus is on meta-
analysis of safety data, our likelihood is designed to
enable the aggregation of single-arm data in clinical stud-
ies. Through simulations, we demonstrated that the pro-
posed interaction selection approach can improve
prediction accuracy and accurately select non-zero inter-
actions when the underlying truth is sparse and the over-
all adverse event incidence is rare. We illustrated the
proposed approach with a real-data meta-analysis to
identify key interaction terms among a high-dimensional
set of candidate pairwise interactions; the approach dem-
onstrated good performance, even in settings with a high
percentage of censored data. Our simulation results show
that the proposed model selection rule has a very low rate
of false positive selections; this is consistent with prior
theoretical work on the horseshoe prior that showed that
selection of effects using marginal credible intervals is
conservative, with selected effects tending to be true
discoveries.36

Our simulation results indicate that the horseshoe
prior is an effective approach to achieve sparsity in our
setting of interest. In fact, as an alternative to frequentist
hypothesis testing for subgroup analyses, a Bayesian hier-
archical model is more flexible and straightforward.45

Penalized regression approaches, such as the lasso, may
not result in sufficiently sparse model selection when
using standard approaches for penalty parameter selec-
tion, such as cross validation.46 Moreover, we found that
the frequentist models suffered from convergence issues
in our simulation studies, as 17 of 100 simulated data sets
reported a convergence issue when fitting the regression
model with glmnet in R.

In the Bayesian literature, the development of spar-
sity inducing priors remains an active area of theoreti-
cal research - in particular, extensions of the
horseshoe, including the regularized horseshoe47 and
the horseshoe+,48 have been proposed in recent years.
While the standard horseshoe allows coefficients with
true values that are far from zeros to escape from
shrinkage, the regularized horseshoe imposes shrink-
age on these parameters. This may be useful in settings
where the parameters are only weakly identified
by the likelihood. In addition, Piironen and Vehtari47

TABLE 3 A summary of heterogeneity for the G15 and G35 models. The reported values are the posterior median for the standard

deviation terms and the corresponding 95% credible intervals

Model σAE σcancer σdrug σstudy

G15 1.12 (0.79–1.64) 0.04 (0.001–11.0) 19.6 (4.42–77.8) 0.41 (0.31–0.56)

G35 1.22 (0.98–1.54) 0.23 (0.01–0.74) 8.43 (4.75–20.1) 0.74 (0.62–0.90)
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demonstrate a link between the shrinkage parameter τ
and the effective number of nonzero coefficients in the
model. In settings where there is prior knowledge on the
number of relevant variables, this can then be used to
inform the choice of τ. This approach may be of interest
for future investigation when such information is
available.

Another avenue of future interest is the inclusion of
a selection prior on the main effects in the model. In the
context of Bayesian variable selection for regression
models, Chipman49 discussed the challenge of selecting
interaction terms, and proposed the strong inheritance
principle for interaction selection, which means that the
interaction is active only if the corresponding main
effects are active. Here, we automatically satisfy this
principle by keeping all main effects in the model. An
alternative is a weak hierarchy, where an interaction can
be selected if at least one of the corresponding main
effects are included. Model formulations allowing selec-
tion of main effects interactions would be a natural
extension of our work. Selecting higher-order interactions
(e.g., three-way interactions) is also potentially of inter-
est, but would be more challenging in the current frame-
work due to parameter identifiability issues.

Importantly, the proposed Bayesian method can handle
major challenges encountered in meta-analysis of safety
data (rare events, incomplete data, and clinical heterogene-
ity across studies) and enables control of the false positive
rate in identification of the true interaction effects. In prac-
tice, sparse modeling for interaction effects can be applied
alone for meta-analytic subgroup analyses without rare or
censored events. Since our method is implemented in JAGS
and the code is provided, our proposed model will be a rela-
tively easy tool for researchers to use in future meta-ana-
lyses. We hope that future applications of this method will
provide clinically useful insights into meta-analysis of
adverse events and safety data in other disease settings, and
ultimately guide recommendations for treatment and toxic-
ity monitoring.
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