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Abstract: High-dimensional data common in genomics, proteomics, and chemometrics often contains complicated correlation
structures. Recently, partial least squares (PLS) and Sparse PLS methods have gained attention in these areas as dimension
reduction techniques in the context of supervised data analysis. We introduce a framework for Regularized PLS by solving
a relaxation of the SIMPLS optimization problem with penalties on the PLS loadings vectors. Our approach enjoys many
advantages including flexibility, general penalties, easy interpretation of results, and fast computation in high-dimensional
settings. We also outline extensions of our methods leading to novel methods for non-negative PLS and generalized PLS,
an adoption of PLS for structured data. We demonstrate the utility of our methods through simulations and a case study on
proton Nuclear Magnetic Resonance (NMR) spectroscopy data. © 2012 Wiley Periodicals, Inc. Statistical Analysis and Data Mining
6: 302–314, 2013

Keywords: sparse PLS; sparse PCA; NMR spectroscopy; generalized PCA; non-negative PLS; generalized PLS

1. INTRODUCTION

Technologies to measure high-throughput biomedical
data in proteomics, chemometrics, and genomics have led
to a proliferation of high-dimensional data that pose many
statistical challenges. As genes, proteins, and metabolites,
are biologically interconnected, the variables in these data
sets are often highly correlated. In this context, several
have recently advocated using partial least squares (PLS)
for dimension reduction of supervised data, or data with
a response or labels [1–4]. First introduced by Wold
[5] as a regression method that uses least squares on
a set of derived inputs accounting for multicolinearities,
others have since proposed alternative methods for PLS
with multiple responses [6] and for classification [7,8].
More generally, PLS can be interpreted as a dimension
reduction technique that finds projections of the data that
maximize the covariance between the data and the response.
Recently, several have proposed to encourage sparsity in
these projections, or loadings vectors, to select relevant
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features in high-dimensional data [3,4,9]. In this paper, we
seek a more general and flexible framework for regularizing
the PLS loadings that is computationally efficient for high-
dimensional data.

There are several motivations for regularizing the PLS
loadings vectors. Partial least squares is closely related
to principal components analysis (PCA); namely, the
PLS loadings can be computed by solving a generalized
eigenvalue problem [6]. Several have shown that the
PCA projection vectors are asymptotically inconsistent in
high-dimensional settings [10,11]. This is also the case
for the PLS loadings, recently shown in Refs 4 and 12.
For PCA, encouraging sparsity in the loadings has been
shown to yield consistent projections [10,13,14]. While an
analogous result has not yet been shown in the context
of PLS, one could surmise that such a result could be
attained. In fact, this is the motivation for Chun and
Keleş’s [4] recent Sparse PLS method. In addition to
consistency motivations, sparsity has many other qualities
to recommend it. The PLS loadings vectors can be used
as a data compression technique when making future
predictions; sparsity further compresses the data. As many
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variables in high-dimensional data are noisy and irrelevant,
sparsity gives a method for automatic feature selection. This
leads to results that are easier to interpret and visualize.

While sparsity in PLS is important for high-dimensional
data, there is also a need for more general and flexible
regularized methods. Consider NMR spectroscopy as a
motivating example. This high-throughput data measures
the spectrum of chemical resonances of all the latent
metabolites, or small molecules, present in a biological sam-
ple [15]. Typical experimental data consists of discretized,
functional, and non-negative spectra with variables measur-
ing in the thousands for only a small number of samples.
Additionally, variables in the spectra have complex depen-
dencies arising from correlation at adjacent chemical shifts,
metabolites resonating at more than one chemical shift, and
overlapping resonances of latent metabolites [16]. Because
of these complex dependencies, there is a long history of
using PLS to reduce the NMR spectrum for supervised
data [17,18]. Classical PLS or Sparse PLS, however, are
not optimal for this data as they do not account for the
non-negativity or functional nature of the spectra. In this
paper, we seek a more flexible approach to regularizing
PLS loadings that will permit (i) general penalties such
as to encourage sparsity, group sparsity, or smoothness,
(ii) constraints such as non-negativity, and (iii) that directly
account for known data structures such as ordered chemical
shifts for NMR spectroscopy. Our framework, based on a
penalized relaxation of the SIMPLS optimization problem
[6], also leads to a more computationally efficient numerical
algorithm.

As we have mentioned, there has been previous work on
penalizing the PLS loadings. For functional data, Goutis and
Fearn [19] and Reiss and Ogden [20] have extended PLS
to encourage smoothness by adding smoothing penalties.
Our approach is more closely related to the Sparse PLS
methods of Lê Cao et al. [3] and Chun and Keleş [4].
In the latter, a generalized eigenvalue problem related to
PLS objectives is penalized to achieve sparsity, although
they solve an approximation to this problem via the elastic
net Sparse PCA approach of Zou et al. [21]. Noting
that PLS can be interpreted as performing PCA on the
deflated cross-products matrix, Lê Cao et al. [3] replace
PCA with Sparse PCA using the approach of Shen and
Huang [22]. The core of our algorithm with an �1 penalty
is similar to this approach. We show that this algorithm
directly solves a penalized generalization of the SVD
problem that is a concave relaxation of the SIMPLS
criterion. The major novelty of our work is from this
optimization approach, developing a flexible regularization
scheme that includes general norm penalties, non-negativity
constraints, and generalizations for structured data. Our
flexible algorithms lead to interpretable results and fast
computational approaches for high-dimensional data.

The paper is organized as follows. Our framework for
regularized partial least squares (RPLS) is introduced in
Section 2. In Section 3, we introduce two novel extensions
of PLS and RPLS: non-negative PLS and generalized PLS
(GPLS) for structured data. We illustrate the comparative
strengths of our approach in Sections 4 and 5 through
simulation studies and a case study on NMR spectroscopy
data, respectively, and conclude with a discussion in
Section 6.

2. REGULARIZED PARTIAL LEAST SQUARES

In this section, we introduce our framework for regu-
larized partial least squares. While most think of PLS as
a regression technique, here we separate the steps of the
PLS approach into the dimension reduction stage where
the PLS loadings and factors are computed and a predic-
tion stage where regression or classification using the PLS
factors as predictors is performed. As our contributions lie
in our framework for regularizing the PLS loadings in the
dimension reduction stage, we predominately focus on this
aspect.

2.1. RPLS Optimization Problem

Introducing notation, we observe data (predictors), X ∈
�n×p, with p variables measured on n samples and a
response Y ∈ �n×q . We will assume that the columns
of X have been previously standardized. The possibly
multivariate response (q > 1) could be continuous as in
regression or encoded by dummy variables to indicate
classes as in Ref. 8, a consideration which we ignore while
developing our methodology. The p × q sample cross-
product matrix is denoted as M = XT Y.

Both of the two major algorithms for computing
the multivariate PLS factors, NIPALS [5] and SIMPLS
[6], can be written as solving a single-factor eigen-
value problem of the following form at each step:
maximizev vT M MT v subject to vT v = 1, where v ∈
�p are the PLS loadings. Chun and Keleş [4] extend this
problem by adding an �1-norm constraint, || v || ≤ t , to
induce sparsity and solve an approximation to this prob-
lem using the Sparse PCA method of Zou et al. [21]. Lê
Cao et al. [3] replace this optimization problem with that
of the Sparse PCA approach of Shen and Huang [22].

We take a similar algorithmic approach, but seek regu-
larized PLS factors that directly optimize a criterion related
to classical PLS. Notice that the single factor PLS problem
can be re-written as the following: maximizev,u vT M u
subject to vT v = 1 & uT u = 1, where u ∈ �q is a nui-
sance parameter. The equivalence of these problems was
pointed out by de Jong [6] and is a well understood matrix
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analysis fact. Our single-factor RPLS problem penalizes a
direct concave relaxation of this problem:

maximize
v,u

vT M u −λP (v)

subject to vT v ≤ 1 & uT u = 1. (1)

Here, we assume that P() is a convex penalty function that
is a norm or semi-norm; these assumptions are discussed
further in the subsequent section. To induce sparsity, for
example, we can take P(v) = || v ||1. Notice that we have
relaxed the equality constraint for v to an inequality
constraint. In doing so, we arrive at an optimization problem
that is simple to maximize via an alternating strategy.
Fixing u, the problem in v is concave, and fixing v
the problem is a quadratically constrained linear program
in u with a global solution. Our optimization problem
is most closely related to some recent direct biconcave
relaxations for two-way penalized matrix factorizations
[23,24] and yields similar results to regression based
sparse approaches [3,22,25]. Studying the solution to
this problem and its properties in the subsequent section
will reveal some of the advantages of this optimization
approach.

Computing the multifactor PLS solution via the two tra-
ditional multivariate approaches, SIMPLS and NIPALS,
require solving optimization problems of the same form
as the single-factor PLS problem at each step. The SIM-
PLS method is more direct and has several benefits within
our framework; thus, this is the approach we adopt. The
algorithm begins by solving the single-factor PLS problem;
subsequent factors solve the single-factor problem for a
Gram-Schmidt deflated cross-products matrix. If we let the
matrix of projection weights Rk ∈ �p×k be defined recur-
sively then, Rk = [Rk−1 XT zk / zT

k zk] where zk = X vk is
the kth sample PLS factor. The Gram–Schmidt projection
matrix Pk ∈ �p×p is given by Pk = I − Rk(RT

k Rk)
−1 Rk ,

which ensures that vT
k XT X vj = 0 for j < k. Then, the

optimization problem to find the kth SIMPLS loadings vec-
tor is the same as the single-factor problem with the cross-

products matrix, M, replaced by the deflated matrix, M̂
(k) =

Pk−1 M̂
(k−1)

[6]. Thus, our multifactor RPLS replaces M in

(1) with M̂
(k)

to obtain the kth RPLS factor. While our rank-
one optimization problem is closely related to the sparse
CCA approach of Witten et al. [23], the solutions differ in
subsequent factors due to the SIMPLS deflation scheme.

The deflation approach employed via the NIPALS algo-
rithm is not as direct. One typically defines a deflated matrix
of predictors and responses, X̃k = X(I − Vk RT

k ) and Ỹk =
Y(I − Vk RT

k ), with the matrix of projection weights defined
as above, and then solves an eigenvalue problem in this
deflated space: maximizewk

wT
k X̃

T
k ỸkỸ

T
k X̃k wk subject to

wT
k wk = 1 [5]. The PLS loadings in the original space

are then recovered by Vk = Wk(Rk Wk)
−1. While one can

incorporate regularization into the loadings, wk (as sug-
gested by Chun and Keleş [4]), this is not as desirable. If
one estimates sparse deflated loadings, w, then much of the
sparsity will be lost in the transform to obtain V. In fact,
the elements of V will be zero if and only if the correspond-
ing elements of W are zero for all values of k. Then, each
of the K PLS loadings will have the exact same sparsity
pattern, loosing the flexibility of each set of loadings hav-
ing adaptively different levels of sparsity. Given this, the
more direct deflation approach of SIMPLS is our preferred
framework.

2.2. RPLS Solution

A major motivation for our optimization framework for
RPLS is that it leads to a simple and direct solution and
algorithm. Recall that the single-factor RPLS problem, Eq.
(1), is concave in v with u fixed and is a quadratically
constrained linear program in u with v fixed. Thus, we
propose to solve this problem by alternating maximizing
with respect to v and u. Each of these maximizations has a
simple analytical solution:

PROPOSITION 1: Assume that P() is convex and
homogeneous of order one, that is P() is a norm or semi-
norm. Let u be fixed at u′ such that M u′ �= 0 or v fixed at v′
such that MT v′ �= 0. Then, the coordinate updates, u∗ and
v∗, maximizing the single-factor RPLS problem, (1), are
given by the following: Let v̂ = argminv{ 1

2 || M u′ − v ||2 −
λP (v)}. Then, v∗ = v̂/||v̂||2 if ||v̂||2 > 0 and v∗ = 0
otherwise, and u∗ = MT v′ /|| MT v′ ||2. When these factors
are updated iteratively, they monotonically increase the
objective and converge to a local optimum.

While the proof of this result is given in the appendix,
we note that this follows closely the Sparse PCA approach
of Shen and Huang [22] and the use general penalties
within PCA problems of Allen et al. [24]. Our RPLS
problem can then be solved by a multiplicative update for
u and by a simple re-scaled penalized regression problem
for v. The assumption that P() is a norm or semi-norm
encompasses many penalties types including the �1-norm
or lasso [26], the �1/�2-norm or group lasso [27], the
fused lasso [28], and �q -balls [29]. For many possible
penalty types, there exists a simple solution to the penalized
regression problem. With a lasso penalty, P(v) = || v ||1,
for example, the solution is given by soft-thresholding:
v̂ = S(M u, λ), where S(x, λ) = sign(x)(|x| − λ)+ is the
soft-thresholding operator. Our approach gives a more
general framework for incorporating regularization directly
in the PLS loadings that yield simple and computationally
attractive solutions.
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We note that the RPLS solution is guaranteed be at most
a local optimum of Eq. (1), a result that is typical of other
penalized PCA problems [21–25] and sparse PLS methods
[3,4]. For a special case, however, our problem has a global
solution:

COROLLARY 1: When q = 1, that is when Y is
univariate, then the global solution to the single-factor
penalized PLS problem (1) is given by the following: Let
v̂ = argminv{ 1

2 || M − v ||2 − λP (v)}. Then, v∗ = v̂/||v̂||2 if
||v̂||2 > 0 and v∗ = 0 otherwise.

This, then is an important advantage of our framework
over competing methods. We also briefly note that for
PLS regression, there is an interesting connection between
Krylov sequences and the PLS regression coefficients [30].
As we take the RPLS factors to be a direct projection of
the RPLS loadings, this connection to Krylov sequences is
broken, although perhaps for prediction purposes, this is
immaterial.

2.3. RPLS Algorithm

Given our RPLS optimization framework and solution,
we now put these together in the RPLS algorithm, Algo-
rithm 1. Note that this algorithm is a direct extension of the
SIMPLS algorithm [6], where the solution to our single-
factor RPLS problem, Eq. (1), replaces the typical eigen-
value problem in Step 2(b). Thus, the algorithmic structure
is analogous to that of Lê Cao et al. [3]. Since our RPLS

problem is nonconcave, there are potentially many local
solutions and thus the initializations of u and v are impor-
tant. Similar to much of the Sparse PCA literature [21,22],
we recommend initializing these factors to the global single-
factor SVD solution, Step 2(a). Second, notice that choice
of the regularization parameter, λ, is particularly important.
If λ is large enough that vk = 0, then the kth RPLS factor
would be zero and the algorithm would cease. Thus, care
is needed when selecting the regularization parameters to
ensure they remain within the relevant range. For the spe-
cial case where q = 1, computing λ

(k)
max, the value at which

v̂k = 0, is a straightforward calculation following from the
Karush–Khun–Tucker conditions. With the LASSO penalty,

for example, this gives λ
(k)
max = maxi |M̂(k)

i | [31]. For gen-
eral q, however, λmax does not have a closed form. While
one could use numerical solvers to find this value, this is
a needless computational effort. Instead, we recommend
to perform the algorithm over a range of λ values, dis-
carding any values resulting in a degenerate solution from
consideration. Finally, unlike deflation-based Sparse PCA
methods which can exhibit poor behavior for very sparse
solutions, because of orthogonalization with respect to the
data, our RPLS loadings and factors are well behaved with
large regularization parameters.

Selecting the appropriate regularization parameter, λ, is
an important practical consideration. Existing methods that
incorporate regularization in PLS have suggested using
cross-validation or other model selection methods in the
ultimate regression or classification stage of the full PLS
procedure [4,20]. While one could certainly implement

Algorithm 1 K-Factor Regularized PLS

1. Center the columns of X and Y. Let M̂
(1) = XT Y.

2. For k = 1 . . . K:

(a) Initialize uk and vk to the first left and right singular vectors of M̂
(k)

.

(b) Repeat until convergence:

i. Set uk = (M̂
(k)

)T vk

||(M̂(k)
)T vk ||2

.

ii. Set v̂k = argminv′
k

{
||M̂(k)

uk − v′
k ||22 − λkP (v′

k)
}

.

iii. Set vk = v̂k/||v̂k||2 if ||v̂k||2 > 0, and set vk = 0 and exit the algorithm otherwise.

(c) RPLS Factor: zk = X vk .

(d) RPLS projection matrix: Set R(k) = [R(k−1) XT zk / zT
k zk] and Pk = I − R(k)((R(k))T R(k))−1(R(k))T.

(e) Orthogonalization Step: M̂
(k+1) = Pk M̂

(k)
.

3. Return RPLS Factors z1 . . . zK and RPLS Loadings: v1 . . . vK .
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these approaches within our RPLS framework, we suggest
a simpler and more direct approach. We select λ within the
dimension reduction stage of RPLS, specifically in Step
2(b) of our RPLS Algorithm. Doing so, has a number of
advantages. First, this increases flexibility as it separates
selection of λ from deciding how many factors, K , to use
in the prediction stage, permitting a separate regularization
parameter, λk , to be selected for each RPLS factor. Second,
coupling selection of the regularization parameter to the
prediction stage requires fixing the supervised modeling
method before computing the RPLS factors. With our
approach, the RPLS factors can be computed and stored
to use as predictors in a variety of modeling procedures.
Finally, separating selection of λk and K in the prediction
stage is computationally advantageous as a grid search
over tuning parameters is avoided. Nesting selection of
λ within Step 2(b) is also faster as recent developments
such as warm starts and active set learning can be used
to efficiently fit the entire path of solutions for many
penalty types [31]. Practically, selecting λk within the
dimension reduction stage is analogous to selecting the

regularization parameters for Sparse PCA methods on M̂
(k)

.
Many approaches including cross-validation [22,32] and
BIC methods [24,25] have been suggested for this purpose;
in results given in this paper, we have implemented the
BIC method as described by Allen et al. 24. Selection of
the number of RPLS factors, K , will largely be dependent
on the supervised method used in the prediction stage,
although cross-validation can be used with any method.
When choosing K for PLS regression, for example, Huang
et al. [33] suggest an automatic approach via regularization.

Computationally, our algorithm is an efficient approach.
As discussed in the previous section, the particular compu-
tational requirements for computing the RPLS loadings in
Step 2(b) are penalty specific, but are minimal for a wide
class of commonly used penalties. Beyond Step 2(b), the
major computational requirement is inverting the weight
matrix, RT

k Rk , to compute the projection matrix. As this
matrix is found recursively via the Gram-Schmidt scheme,
however, employing properties of the Schur complement
can reduce the computational effort to that of matrix mul-
tiplication O(pk) [34]. Finally, notice that we take the
RPLS factors to be the direct projection of the data by
the RPLS loadings. Overall, the advantages of our RPLS
framework and algorithm include (i) computational effi-
ciency, (ii) flexible modeling, and (iii) direct estimation of
the RPLS loadings and factors.

3. EXTENSIONS

As our framework for regularizing PLS is general, there
are many possible extensions of our methodology. Many

have suggested, for example, to extend PLS and sparse PLS
specifically for discriminant analysis [8] and for generalized
linear models [7,35]. Such extensions are also possible
within our framework. In this section, we specifically focus
on two novel extensions of PLS and RPLS that will be
useful for applications to spectroscopy data. These include
generalizations for PLS and RPLS with structured data and
non-negative PLS and RPLS.

3.1. GPLS for Structured Data

Recently, Allen et al. [24] proposed a generalization of
PCA (GPCA) that is a appropriate for high-dimensional
structured data, or data in which the variables are associated
with some known distance metric. As motivation, consider
NMR spectroscopy data where variables are ordered on
the spectrum and variables at adjacent chemical shifts
are known to be highly correlated. Classical multivariate
techniques such as PCA and PLS ignore these structures;
GPCA encodes structure into a matrix factorization problem
through positive semi-definite quadratic operators such
as graph Laplacians or smoothing matrices [24,36]. If
we assume that the noise in the data follows the data
structure and these quadratic operators capture aspects of
this structure, then Allen et al. [24] showed that GPCA
can be interpreted as finding principal modes of variation
that are orthogonal to the structured noise. In the context
of NMR spectroscopy, we seek PLS factors that are
independent from the known noise correlations at adjacent
chemical shifts. Similar to GPCA then, we seek to directly
account for known structure in PLS and within our RPLS
framework.

Our development of GPLS is motivated by NMR
spectroscopy; that is, we seek a quadratic operator that
encodes the known structural relationships, the correlations
between adjacent variables. Let us define then quadratic
operator, Q ∈ �p×p : Q � 0 which we assume is fixed and
known. For spectroscopy data, for example, Q could be
taken as a diagonal tapered matrix thus accounting for the
correlations between adjacent variables. By transforming all
inner-product spaces to those induced by the Q-norm, we
can define our single-factor Generalized RPLS optimization
problem in the following manner:

maximize
v,u

vT Q M u −λP (v)

subject to vT Q v ≤ 1, & uT u = 1. (2)

By finding the RPLS factors in the Q-norm, we find
factors separate from the noise structure of the data.
For the multifactor Generalized RPLS problem, the fac-
tors and projection matrices are also changed. The kth
factor is given by zk = X Q vk , the weighting matrix,

Statistical Analysis and Data Mining DOI:10.1002/sam



Allen et al.: Regularized PLS with an Application to NMR Spectroscopy 307

Rk = [Rk−1 XT zk / zT
k zk] as before, and the projec-

tion matrix is Pk = I − RT
k (RT

k Q Rk)
−1 RT

k Q with deflated

cross-products matrix M̂
(k) = Pk−1 M̂

(k−1)
. Note that if

λ = 0 and if the inequality constraint is forced to be an
equality constraint, then we have the optimization problem
for GPLS. Notice also that instead of enforcing orthogonal-
ity of the PLS loadings with respect to the data, vT

k XT X vj ,
the GPLS problem enforces orthogonality in a projected
data space, vT

k Q XT X Q vj . If we let Q̃ be a matrix square
root of Q as defined by Allen et al. [24], then (2) is equiv-
alent to the multifactor RPLS problem for X̃ = X Q̃ and
ṽ = Q̃ v. This equivalence is shown in the proof of the
solution to Eq. (2).

As with PLS and our RPLS framework, GPLS and
Generalized RPLS can be solved by coordinate-wise
updates that converge to the global and local optimum
respectively:

PROPOSITION 2:

1. GPLS: The GPLS problem, Eq. (2) when λ = 0,
is solved by the first set of GPCA factors of M.
The global solution to the GPLS problem can
be found by iteratively updating the following
until convergence: v = M u /|| M u ||Q and u =
MT Q v /|| MT Q v ||2, where ||x||Q is defined as√

xT Q x.

2. Generalized RPLS: Under the assumptions of
Proposition 1, let
v̂ = argminv′ {|| M u − v′ ||2Q + λP (v′)}, then the
coordinate-wise updates to Eq. (2) are given by:
v∗ = v̂/||v̂||Q if ||v̂||Q > 0 and v∗ = 0 otherwise,
and with u∗ defined as above. When updated
iteratively, these converge to a local optimum
of (2).

Thus, the solution to our Generalized RPLS problem
can be solved by a generalized penalized least squares
problem. Algorithmically, solving the multi-factor GPLS
and Generalized RPLS problems follow the same struc-
ture as that of Algorithm 2.2. The solutions outlined
above replace Step 2(b), with the altered Generalized
RPLS factors and projections matrices replacing Steps 2
(c), (d), and (e). In other words, GPLS or Generalized
RPLS is performed by finding the GPCA or Regular-
ized GPCA factors of a deflated cross-products matrix,
where the deflation is performed to rotate the cross-
products matrix so that it is orthogonal to the data in the
Q-norm. Computationally, these algorithms can be per-
formed efficiently using the techniques described by
Allen et al. [24] that do not require inversion or taking
eigenvalue decompositions of Q. Thus, the GPLS and

Generalized RPLS methods are computationally feasible for
high-dimensional data sets.

We have shown the most basic extension of GPCA
technology to PLS and our RPLS framework, but there are
other possible formulations. For two-way data, projections
in the ‘sample’ space may be appropriate in addition to
projecting variables in the Q-norm. With neuroimaging
data, for example, the data matrix may be oriented as brain
locations, voxels, by time points. As the time series is
most certainly not independent, one may wish to transform
these inner product spaces using another quadratic operator,
W ∈ �n×n, changing M to XT W Y and Rk to Rk =
[Rk−1 XT W zk / zT

k W zk], analogous to Allen et al. [24].
Overall, we have outlined a novel extension of PLS and
our RPLS methodologies to work with high-dimensional
structured data.

3.2. Non-Negative PLS

Many have advocated estimating non-negative matrix
factors [37] and non-negative principal component loadings
[38] as a way to increase interpret-ability of multivariate
methods. For scientific data sets such as NMR spectroscopy
in which variables are naturally non-negative, enforcing
non-negativity of the loadings vectors can greatly improve
interpretability results and the performance of methods [36].
Here, we illustrate how to incorporate non-negative load-
ings into our RPLS framework. Consider the optimization
problem for single-factor non-negative RPLS:

maximize
v,u

vT M u −λP (v)

subject to vT v ≤ 1, uT u = 1 & v ≥ 0. (3)

Solving this optimization problem is a simple adaption
of Proposition 1; the penalized regression problem is
replaced by a penalized non-negative regression problem.
For many penalty types, these problems have a simple
solution. With the �1-norm penalty, for example, the soft-
thresholding operator in the update for v is replaced by
the positive soft-thresholding operator: v = P(M u, λ) =
(M u −λ)+ [36]. Our RPLS framework, then, gives a
simple and computationally efficient method for enforcing
non-negativity in the PLS loadings. Also, as in Ref. 36,
non-negativity and quadratic operators can be used in
combination for PLS to create flexible approaches for high-
dimensional data sets.

4. SIMULATION STUDIES

We explore the performance of our RPLS methods for
regression in a univariate and a multivariate simulation
study.
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4.1. Univariate Simulation

In this simulation setting, we compare the mean squared
prediction error and variable selection performance of
RPLS against competing methods in the univariate regres-
sion response setting with correlated predictors. Following
the approach in Section 5.3 of Chun and Keleş [4], we
include scenarios where n is greater than p and where n

is less than p with differing levels of noise. For the n > p

setting, we use n = 400 and p = 40. For the first n < p

setting, we use n = 40 and p = 80. For these cases, 75%
of the p predictors are true predictors, while the remain-
ing 25% are spurious predictors that are not used in the
generation of the response. We also include an additional
n < p setting where the underlying signal is more sparse.
In this case, we use n = 40 and p = 200 with 25% of the
p predictors as true predictors. For the low and high noise
scenarios, we use signal-to-noise ratios (SNR) of 10 and 5.

To create correlated predictors as in Ref. 4, we construct
hidden variables H1, . . . , H3, where Hi ∼ N(0, 25In). The
columns of the predictor matrix Xi are generated as the
sum of a hidden variable and independent random noise
as follows. For the cases where 75% of the p predictors
are used in the generation of the response, Xi = H1 +
εi for 1 ≤ i ≤ 3p/8, Xi = H2 + εi for 3p/8 < i ≤ 3p/4,
and Xi = H3 + εi for 3p/4 < i ≤ p, where εi ∼ N(0, In).
When 25% of the p predictors are used in the generation
of the response, Xi = H1 + εi for 1 ≤ i ≤ p/8, Xi =
H2 + εi for p/8 < i ≤ p/4, and Xi = H3 + εi for p/4 <

i ≤ p, where εi ∼ N(0, In). For all cases, the response
vector Y = 3H1 − 4H2 + f , where f ∼ N(0, 25In/SNR).
Training and test sets for all settings of n, p and SNR are
created using this approach.

For the comparison of methods, X and Y are standard-
ized, and parameter selection is carried out using 10-fold
cross validation on the training data. For the sparse par-
tial least squares (SPLS) method described by Chun and
Keleş [4], the spls R package [39] is used with η chosen
from the sequence (0.1, 0.2, . . . , 0.9) and K from 5 to 10.
Note that for our methods, we choose to select K automat-
ically via the lasso penalized PLS regression problem as in
Ref. 33. Thus for RPLS, lasso penalties were used with λ

and γ chosen from 25 equally spaced values between 10−5

and log(max(|X′Y |)) on the log scale. For the lasso and
elastic net, the glmnet R package [31] is used with the
same choices for λ.

The average mean squared prediction error (MSPE), true
positive rate (TPR), and false positive rate (FPR) across
30 simulation runs are given in Table 1. The penalized
regression methods clearly outperform traditional PLS in
terms of the mean squared prediction error, with RPLS
having the best prediction accuracy among all methods.
SPLS and RPLS are nearly perfect in correctly identifying
the true variables, but SPLS tends to have higher rates of

false positives. In contrast, the lasso and elastic net have
high specificity, but fail to identify many true predictors.

4.2. Multivariate Simulation

In this simulation setting, we compare the mean squared
prediction error of regularized PLS against competing
methods for multivariate regression. As in the univariate
simulation, we include scenarios where n > p and n < p

with varying levels of noise, but now our response Y is
a matrix of dimension n × q with q = 10. For the n > p

scenario, we use n = 400 and p = 40 with 5 true predictors.
For the moderate n < p scenario, we use n = 40 and
p = 80 with 10 true predictors. We also include a more
extreme scenario where we use n = 40 and p = 200 with
25 true predictors. In each case, we test the methods using
SNR of 2 and 1.

The simulated data is generated using eight binary
hidden variables H1, . . . , H8 with entries drawn from
the Bernoulli (0.5) distribution. The coefficient matrix A
contains standard normal random entries for the first ptrue

columns, with the remaining columns set to 0. The predictor
matrix X = H · A + E, where the entries of E are drawn
from the N(0, 0.12) distribution. The coefficient matrix B
contains entries drawn from the N(0, SNR · n · q/tr(HH′))
distribution. The response matrix Y = H · B + F, where
the entries of F are drawn from the standard normal
distribution. Both training and test sets are generated using
this procedure, and both X and Y are standardized.

For the penalized methods including sparse PCA (SPCA)
and regularized PLS (RPLS) the penalty parameter λ is
chosen from 25 equally spaced values between −5 and
log(max(|X′Y|)) on the log scale using the BIC criterion.
For RPLS, γ , the PLS regression penalty parameter for
selecting K , is chosen from the same set of options as
λ using the BIC criterion. To obtain the coefficient β =
VZ′Ytraining, the columns of V and Z were normalized. The
results shown in Table 2 demonstrate that regularized PLS
outperforms both sparse PCA and standard PLS.

5. CASE STUDY: NMR SPECTROSCOPY

We evaluate the utility of our methods through a case
study on NMR spectroscopy data, a classic application of
PLS methods from the chemometrics literature. We apply
our RPLS methods to an in vitro one-dimensional NMR
data set consisting of 27 samples from five classes of
neural cell types: neurons, neural stem cells, microglia,
astrocytes, and ogliodendrocytes [40], analyzed by some of
the same authors using PCA methods in Ref. 36. Data are
pre-processed in the manner described by Dunn et al. [18]:
functional spectra is discretized into bins of size 0.04 ppms
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Table 1. Comparison of mean squared prediction error (MSPE), true positive rate (TPR) and false positive rate (FPR) with standard
errors (SE).

Simulation 1: n = 400, p = 40, SNR = 10 Simulation 2: n = 400, p = 40, SNR = 5

Method MSPE (SE) TPR (SE) FPR (SE) Method MSPE (SE) TPR (SE) FPR (SE)

PLS 504.2 PLS 655.2
(293.8) (212.9)

Sparse PLS 72.6 1.00 0.61 Sparse PLS 143.7 1.00 0.66
(4.1) (0.00) (0.27) (9.8) (0.00) (0.29)

RPLS 66.4 1.00 0.22 RPLS 131.4 1.00 0.19
(3.8) (0.00) (0.35) (9.3) (0.00) (0.37)

Lasso 70.9 0.60 0.00 Lasso 139.3 0.49 0.00
(4.9) (0.07) (0.02) (9.5) (0.07) (0.00)

Elastic net 70.5 0.61 0.01 Elastic net 139.0 0.50 0.00
(4.5) (0.07) (0.03) (9.5) (0.07) (0.00)

Simulation 3: n = 40, p = 80, SNR = 10 Simulation 4: n = 40, p = 80, SNR = 5

Method MSPE (SE) TPR (SE) FPR (SE) Method MSPE (SE) TPR (SE) FPR (SE)

PLS 624.1 PLS 612.6
(256.5) (256.8)

Sparse PLS 104.9 0.99 0.77 Sparse PLS 206.4 0.98 0.70
(26.3) (0.05) (0.30) (53.9) (0.07) (0.31)

RPLS 76.0 1.00 0.45 RPLS 155.1 1.00 0.52
(20.8) (0.00) (0.43) (59.0) (0.00) (0.43)

Lasso 83.7 0.17 0.02 Lasso 178.3 0.12 0.01
(19.7) (0.04) (0.06) (49.7) (0.04) (0.02)

Elastic net 82.4 0.17 0.02 Elastic net 172.7 0.12 0.01
(18.6) (0.03) (0.04) (46.0) (0.04) (0.03)

Simulation 5: n = 40, p = 200, SNR = 10 Simulation 2: n = 40, p = 200, SNR = 5

Method MSPE (SE) TPR (SE) FPR (SE) Method MSPE (SE) TPR (SE) FPR (SE)

PLS 649.7 PLS 691.9
(175.8) (188.5)

Sparse PLS 85.7 1.00 0.76 Sparse PLS 182.0 0.98 0.61
(20.4) (0.02) (0.32) (42.0) (0.08) (0.36)

RPLS 84.8 1.00 0.53 RPLS 153.3 1.00 0.48
(52.2) (0.00) (0.47) (40.9) (0.00) (0.49)

Lasso 83.1 0.19 0.01 Lasso 163.1 0.15 0.00
(15.1) (0.04) (0.01) (35.7) (0.04) (0.01)

Elastic net 82.2 0.19 0.00 Elastic net 160.6 0.15 0.01
(14.7) (0.05) (0.01) (33.7) (0.03) (0.02)

yielding a total of 2394 variables, spectra for each sample
are baseline corrected and normalized to their integral,
and variables are standardized. For all PLS methods, the
response, Y is 27 × 5 and coded with indicators inversely
proportional to the sample size in each class as described
by Barker and Rayens [8]. For each method, five PLS or
PCA factors were taken and used as predictors in linear
discriminant analysis to classify the NMR samples. To be
consistent, the BIC method was used to select any penalty
parameters except for the Sparse PLS method of Chun
and Keleş [4] where the default in the R package spls
was employed [39]. The Sparse GPCA and Sparse GPLS
methods were applied with non-negativity constraints as
described by Allen & Maletić-Savatić [36] and in Section 3.
Finally, for the generalized methods, the quadratic operator

was selected by maximizing the variance explained by the
first component; a weighted Laplacian matrix with weights
inversely proportional to the Epanechnikov kernel with a
bandwidth of 0.2 ppms was employed [24].

In Table 3, we give the training and leave-one out cross-
validation misclassification errors for our methods and
competing methods on the neural cell NMR data. Notice
that our Sparse GPLS method yields the best error rates
followed by the Sparse PLS [4] and our GPLS methods.
Additionally, our Sparse GPLS methods are significantly
faster than competing approaches. In Table 4, the time in
seconds to compute the entire solution path (51 values of
λ) is reported. Timing comparisons were done on a Intel
Xeon X5680 3.33 Ghz processor with 16 GB RAM using
single-threaded scripts coded in Matlab or C as indicated.
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Table 2. Comparison of mean squared prediction error (MSPE) with standard errors (SE) for multivariate methods.

Simulation 1: n = 400, p = 40, SNR = 2 Simulation 2: n = 400, p = 40, SNR = 1

Method MSPE (SE) Method MSPE (SE)

SPCA 2376.2 (337) SPCA 2204.1 (313)
PLS 2567.7 (316) PLS 2343.3 (281)
RPLS 404.7 (96) RPLS 339.4 (175)

Simulation 3: n = 40, p = 80, SNR = 2 Simulation 4: n = 40, p = 80, SNR = 1

Method MSPE (SE) Method MSPE (SE)

SPCA 711.3 (107) SPCA 721.7 (109)
PLS 647.0 (101) PLS 659.9 (81)
RPLS 14.2 (3) RPLS 13.3 (3)

Simulation 5: n = 40, p = 200, SNR = 2 Simulation 6: n = 40, p = 200, SNR = 1

Method MSPE (SE) Method MSPE (SE)

SPCA 1269.9 (211) SPCA 1263.1 (208)
PLS 830.0 (102) PLS 843.7 (87)
RPLS 20.3 (8) RPLS 19.4 (7)

Table 3. Misclassification errors for methods applied to the
neural cell NMR data. Various methods were used to first reduce
the dimension with the resulting factors used as predictors in linear
discriminant analysis.

Training error Leave-one-out CV error

Naive Bayes Classifier 0.0370 0.1481
PCA + LDA 0.1167 0.1852
PLS + LDA [6] 0.0000 0.1481
GPCA + LDA [24] 0.1833 0.1481
GPLS + LDA 0.0000 0.1111
SPCA + LDA [22] 0.1167 0.1481
SPLS + LDA [4] 0.0000 0.1111
SGPCA + LDA [36] 0.1833 0.1481
SGPLS + LDA 0.0000 0.0741

Table 4. Timings comparisons. Time in seconds to compute the
entire solution path for the neural cell NMR data.

Time in seconds

Sparse PLS (via RPLS in C) 1.01
Sparse PLS (via RPLS in Matlab) 57.01
Sparse PLS (R package spls) 1033.86
Sparse Non-negative GPLS (in C) 28.16

(These comparisons should be interpreted keeping in mind
that there are possibly minor speed differences between
Matlab and R.)

In addition to faster computation and better classification
rates, our method’s flexibility leads to easily interpretable
results. We present the Sparse GPLS loadings superimposed
on the scaled spectra from each neural cell type and sample
heatmaps in Fig. 1. For comparison, we give the first two
PLS loadings in Fig. 2 for PLS and Sparse PLS [4]. The
PLS loadings are noisy, and the sample PLS components

for PLS and Sparse PLS are difficult to interpret as the
loadings are both positive and negative. By constraining
the PLS loadings to be non-negative, the chemical shifts the
metabolites indicative of each neural cell type are readily
apparent with the Sparse non-negative GPLS loadings.
Additionally as shown in the sample PLS heatmaps, the
neural cell types are well differentiated. For example,
chemical resonances at 1.30 and 3.23 ppms characterize
Glia (Astrocytes and Ogliodendrocytes) and Neurons (PLS
1), resonances at 1.19 and 3.66 ppms characterize Microglia
(PLS 2), resonances at 3.23 and 2.65 ppms characterize
Astrocytes (PLS 3), resonances at 1.30, 3.02, and 3.55 ppms
characterize Ogliodendrocytes (PLS 4), and resonances at
1.28 and 3.23 ppms characterize Neural stem cells. Note
that some of these metabolites were identified by some
of the same authors using PCA methods in Refs 36,40.
Using our flexible PLS approach for supervised dimension
reduction, however, gives a much clear metabolic signature
of each neural cell type. Overall, this case study on NMR
spectroscopy data has revealed the many strengths of our
method as well as identified possible metabolite biomarkers
for further biological investigation.

6. DISCUSSION

We have presented a framework for regularizing partial
least squares with convex and order one penalties. Addi-
tionally, we have shown how this approach can be extend
for structured data via GPLS and Generalized RPLS and
extended to incorporate non-negative PLS or RPLS load-
ings. Our approaches directly solve penalized relaxations
of the SIMPLS optimization criterion. These in turn, have
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Fig. 1 Sparse non-negative GPLS loadings and sample PLS heatmaps for the neural cell NMR data. The loadings are superimposed on
the mean scaled spectral intensities for each class of neural cells. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

many advantages including computational efficiency, flex-
ible modeling, easy interpretation and visualization, bet-
ter feature selection, and improved predictive accuracy as
demonstrated in our simulations and case study on NMR
spectroscopy.

There are many future areas of research related to
our methodology. As many have advocated using PCA,
or even supervised PCA [41], as a dimension reduction
technique prior supervised modeling, RPLS may be a
powerful alternative in this context. While we have briefly
discussed the use of our methods for general regression
or classification procedures, specific investigation of the
RPLS factors as predictors in the generalized linear
model framework [7,35], the survival analysis framework
[42], and others are needed. Additionally, following
the close connection of PLS for classification with the
classes coded as dummy variables to Fisher’s discriminant
analysis [8], our RPLS approach may give an alternative

strategy for regularized linear discriminant analysis. Further
development of our novel extensions for GPLS and Non-
negative PLS is also needed. Finally, Nadler and Coifman
[12] and Chun and Keleş [4] have shown asymptotic
inconsistency of PLS regression methods when the number
of variables is permitted to grow faster than the sample size.
For related PCA methods, a few have shown consistency
of Sparse PCA in these settings [10,13]. Proving consistent
recovery of the RPLS loadings and the corresponding
regression or classification coefficients is an open area of
future research.

Finally, we have demonstrated the utility of our methods
through a case study on NMR spectroscopy data, but there
are many other potential applications of our technology.
These include chemometrics, proteomics, metabolomics,
high-throughput genomics, imaging, hyperspectral imaging,
and neuroimaging. Overall, we have presented a flexible
and powerful tool for supervised dimension reduction of
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Fig. 2 The first two PLS and Sparse PLS [4] loadings and sample PLS heatmaps for the neural cell NMR data. The loadings are
superimposed on the mean scaled spectral intensities for each class of neural cells. [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]

high-dimensional data with many advantages and potential
areas of future research and application. An R package
and a Matlab toolbox named RPLS that implements our
methods will be made publicly available.
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APPENDIX

PROOFS

Proof of Proposition 1: The proof of this result follows from an argument
in Ref. 24, but we outline this here for completion. The updates for
u are straightforward. We show that the subgradient equations of the
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penalized regression problem, 1
2 || M u − v || + λP (v), for v∗ as defined

in the stated result are equivalent to the KKT conditions of Eq. (1).
The subgradient equation of the latter is, M u −λ∇P(v∗) − 2γ ∗ v∗ = 0,
where ∇P() is the subgradient of P() and γ ∗ is the Lagrange multiplier
for the inequality constraint with complementary slackness condition,
γ ∗((v∗)T v∗ −1) = 0. The subgradient of the penalized regression problem
is M u −v̂ − λ∇P(v̂) = 0. Now, since P() is order one, we this
subgradient is equivalent to M u − 1

c
ṽ − λ∇P(ṽ) for any c > 0 and for

ṽ = cv̂. Then, taking c = 1/||v̂||2 = 1/2γ ∗ for any v̂ �= 0, we see that both
the complimentary slackness condition is satisfied and the subgradients are
equivalent. It is easy to verify that the pair (0, 0) also satisfy the KKT
conditions of Eq. (1). �

Proof of Corollary 1: The proof of this fact follows in a straightforward
manner from that of Proposition 1 as the only feasible solution
for u is u∗ = 1. We are then left with a concave optimization
problem, maximizev vT M −λP (v) subject to vT v ≤ 1. From the proof of
Proposition 1, we have that this optimization problem is equivalent to the
desired result. As we are left with a concave problem, the global optimum
is achieved. �

Proof of Proposition 2: First, define Q̃ to be a matrix square root
of Q as in Ref. 24. In this paper, they showed that Generalized
PCA was equivalent to PCA on the matrix X̃ = X Q̃ for projected
factors V = Q̃

†
Ṽ. In other words, if X̃ = ŨD̃Ṽ is the singular value

decomposition, then the GPCA solution, V can be defined accordingly.
Here, we will prove that the multi-factor RPLS problem for X̃ and
ṽk is equivalent to the stated Generalized RPLS problem (2) for λ =
0. The constraint regions are trivially equivalent so we must show
that ṽT

k P̃k−1M̃ = vT Q Pk−1 Q M. The PLS factors, z̃k = X̃ṽk = X Q vk =
zk , are equivalent. Ignoring the normalizing term in the denominator,
the columns of the projection weighting matrix are R̃k = X̃

T
z̃k =

Q̃
T

X zk = Q̃
T

Rk . Thus, the ij th element of R̃
T

R̃ = zT
i X Q̃Q̃

T
XT zj =

RT
i Q Rj as stated. Putting these together, we have ṽT

k P̃k−1M̃ = vT
k Q̃(I −

R̃k−1(RT
k−1 Q Rk−1)

−1R̃
T
k−1)Q̃

T
XT Y which simplifies to the desired

result.
Following this, the proof of the first part is a straightforward extension of
Theorem 1 and Proposition 1 in Ref. 24. The proof for the second part
follows from combining the arguments in Proposition 1 and those in the
proof of Theorem 2 in Ref. 24. �
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