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A B S T R A C T  

In this pa pe r, we propose Va rying Effe cts Re gres sion with Grap h Est imat ion (VERGE), a novel Bayesi an me thod for fea tur e selection in r e- 
gres sion . Our model has key aspects that allow it to leverage the complex structure of data sets arising from genomics or imaging studies. We 
di stingui sh betw e en the predict o rs , which are the features utilized in the outcome prediction model, and the s ubje ct-lev el cova ri ates , which mod- 
ulate the effects of the pred ictor s on the outc ome. We c onstruct a varying coefficients modeling framework where we infer a network among the 
predictor v ari ab les and utilize this netw ork inform ation to encourage the selection of r ela ted pr ed ictor s. We e mplo y va riable selection spike-a nd - 
slab priors that enable the selection of both netw ork-linke d pre dictor v ari ab les and cov ari a tes tha t modify the pr e dictor effe cts . We de mons trate 
thr ough simula tion studies tha t our me thod outperform s exis ting alte rn ativ e me thods in term s of both fea tur e selection and pr e dictiv e ac curacy. 
We i l lustr ate VER GE with a n a pplication to cha racte rizing the influence of gut microbiome fea tur es on obesity, where we identify a s e t of mi- 
cro bi al taxa and their e c o lo gical depe nde nce r ela tions . We allow s ubje ct-lev el c o variates, includin g sex and dieta ry in take va riables to modify the 
coefficie n ts of the microbiome pred ictor s, provid ing add itional insi gh t in to the in te rp l ay be tw e en these factors . 

KEY W OR DS : Bayesian variable selection; Gaussian process prior; graphical model; spike-a nd -slab prior; varying coefficient model. 
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1 I N T R O D U C T I O N 

n this pa pe r, w e propose a nov e l Baye sia n hie ra r chical r egr ession
odel that enables the selection of both netw ork-linke d pre-

ictor v ari ab les and cov ari a tes tha t modify the pr e dictor effe cts .
e re, we dis tinguish betw e en the pred ict o rs , which are the fea-

ures utilized in the outcome predict ion model , and the s ubje ct-
ev el cova ri ates , which modulate the effects of the pred ictor s.

ur method is motivated by app lication s to multiv ari ate d ata
 e ts arising from genomic and neuroimaging studies, where the
 bs erv e d pre d ictor s are l inked by me tabo lic or functional ne t-
 orks . As an i l lustration of the utility of our method, we consider
 n a pplica tion to a micr o biome d ata s e t exa mining the in te r-
 l ay be tw e en the micro biome, o besity, and subj ect-level cov a ri -
tes (Wu et al., 2011 ). In this con text, the depe nde nc e netw ork
mong the predictor v ari ab le s de scribe s e c o lo gical rel ation ships
etw e e n microorga nisms inhabiting the same niche (Kurtz et al.,
015 ). Subje ct-lev e l variable s, including sex and dietary intake
 ari ab les, modify the influence of the micr obiome fea tur es by
 egula tin g their a ctivity and their effects on the host (Leeming
t al., 2021 ). This effe ct m ay be partially driven by the produc-
ion of die tary me tabo lites (S onnenbur g and B äck hed , 2016 );
ow ev er, m any aspe cts of the se re l ation s are not comp le tely un-
e rs tood. 
Our proposed model builds upon the framework of varying

oefficie n t models (C le vela nd a nd Grosse, 1991 ; Has tie a nd
ibshira ni, 1993 ). Va rying -c oefficie n t models relax the assump-
e c eiv e d: Ja n ua ry 8, 2024; Re vised: S epte mbe r 9, 2024; Ac c epte d: Septe mbe r 20, 2024 
The Author(s) 2024. Published by Oxford University Press on behalf of The In te

ourn als .permis sion s@oup.com 
ion of linear effects in cl as sical r egr ession by allowing predictor
ffects to depend on factors that may modify their effects. This
l as s of model has bee n exte nded to allow for hi gh-dime nsional
ov ari ates using sp line- and tre e-base d approaches (Marx, 2009 ;
ürgin a nd Ritscha rd , 2015 ). Addit ionally, Bayesi an v arying-

coefficie n t models have been developed for sce na rios with spa-
ial or temporal dependence (Reich et al., 2010 ; Scheipl et al.,
012 ). The se approache s generally focus on selecting either the
 ain pre d ictor s or the mod ifyin g co v ari ate s. The simult aneous

election of pred ictor s and cov ari ates w as firs t in troduc e d in the
 li ab le l as s o ( Tibshira ni a nd Frie dm a n, 2020 ) a nd exte nded b y
im et al. ( 2021 ) to ac c ount for gr ouping structur e among the
red ictor s via a wei gh ted hie ra rchical pe nalty. In the Bayesian

ramework, Ni et al. ( 2019 ) proposed a va rying-spa rsity r egr es-
ion model, which allows for s ubje ct-spe c i fic predictor selection
 nd coefficie n t values . How ev e r, none of these a pproaches utilize
nformation on the network among the predictor v ari ab les. 

In our formulation of the varying coefficient modeling frame-
 ork, w e en able flexibility in the predictor effects by ut iliz ing
 Gaus si an proces s prior, which allows the model coefficie n ts
o vary smoothly as a function of the observ e d c ovariates . Fur-
hermore, to achieve model sparsity, we rely on spike-and-slab
riors for the selection of both the predictor a nd cova riate ef-

e cts . Our prior formulation allows to infer a network among
he pred ictor s and to util ize this inform ation to enc ourage the
election of netw ork-linke d pre dictors . In order to infer the
 rn ation al Biometric Society. All ri gh ts rese rv e d. For permis sion s, p leas e e-mail: 
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pred ictor s network, we adopt the prior formulation proposed
b y Wa ng ( 2015 ), which imposes a mixture of normals on the
off-diagonal ele me n ts of the precision matrix, along with an ef-
ficie n t b locked G ib bs s amp ling s cheme. This appr oach dir ectly
r epr ese n ts ed ge se lection, with re spect to altern ativ e shrinkage
priors, such as the Bayesian graphical lasso (Wang, 2012 ) or the
grap hical hors eshoe prior (Li e t al., 2019 ). For pos te rior infe r-
enc e, w e design a stochastic search Markov chain Monte Carlo
(MCMC) tha t r equir es car eful considera tion of how to handle
the chan gin g dimen sion s of the pa ra mete r spac e, clev erly dealing
with the multiple layers of selection while ensuring good mix-
ing. We also look into prediction. We call our proposed method
VERGE (Varying Effects Regression with Graph Est imat ion). 

We de mons tra te thr ough simula tion studies tha t our method
out performs exi st ing alternat ive methods in terms of both fea-
ture selection and pre dictiv e ac curacy. We i l lustrate VERGE with
a n a pplication to cha racte rizing the influe nce of gut microbiome
fea tur e s on obe sity, whe re we ide n tify a s e t of micro bi al taxa
and their e c o lo gical dependence r ela tions. Our findings high-
li gh t bacte rial ge ne ra with both prote ctiv e a nd detrime n tal ef-
fects, and provide insight into how these effects are modulated
b y dieta ry in take a nd bio lo gical s ex. 

Section 2 details our proposed VERGE a pproach, a nd Sec-
tion 3 d isc usses pos te rior infe re nce a nd pre diction. In Se ction 4 ,
we prese n t sim ulation s tudies a nd compa ris on s. Section 5 con-
tains a n a pplication to micro biome d ata and Section 6 conclu-
sions and d isc ussion. 

2 M ET H O D S  

2.1 Varying -effects r egr ess ion m odel 
Let Y i denote the observ e d response va riable, a nd X i =
(X i 1 , . . . , X iP ) denote the P -dimensional vector of pred ictor s for
s ubje ct i = 1 , . . . , n . We assume a joint distribution for the ran-
dom v ari ab les (Y , X ) . As in Pe ters on e t al. ( 2016 ), our joint dis-
tribution (Y , X ) can be factorized as (Y , X ) = f (Y | X ) · f ( X ) ,
where f (Y | X ) is a regression model and f ( X ) is a multiv ari ate
normal distribution. Both the response variable Y i and predic-
tors X i are ass ume d to be ce n te red . Addit ionally, for each sub-
je ct i , w e als o o bs e rve a K-dime nsion al c ov ari ate v e ctor Z i =
(Z i 1 , . . . , Z iK ) . Our proposed model allows for the effects of the
pred ictor s on the outcome to depend on spec i fic cov ari ates vi a
a varying -effe cts re gre ssion mode l form ulation whe re the coeffi-
cie n ts of X i j change based on the value of Z i as 

y i = 

p ∑ 

j=1 

X i j μ j ( Z i ) + ε i , ε i ∼ N (0 , τ 2 ) , (1)

with μ j ( Z i ) an unknown function of Z i , and ε i ’s iid white noise
with v ari ance parame ter, τ 2 , on which w e ass ume a standard
con ju g ate inverse g amma prior as τ 2 ∼ IG (a 0 , b 0 ) . Equation 1
r epr ese n ts a full model with no predictor selection; in the next
se ction, w e introduc e our prior formulation th at en able s mode l
sparsity. 

2.2 Prio rs fo r va riable a nd graph s e lectio n 

Our model builds on the Bayesian variable selection approach
origin ally propose d by Kuo and Mallick ( 1998 ). We innovate on
this framework in 2 key r egar ds: We utilize network r ela tions to 

l ink the probabil ity of pred ictor selection and allow the non-zero 

coefficie n ts to va ry as a smooth function of the cov ari ate v alues. 
To r epr ese n t the predictor sele ction, w e introduc e a s e t of l a-
te n t indicator v ari ab les, γ = (γ1 , . . . , γP ) , and write μ j ( Z i ) = 

γ j β j ( Z i ) , assuming a pr ior i indepe nde nc e betw e en the indica- 
tors γ j and the effects β j ( Z i ) . If γ j = 0 , then X j has no effect on 

the respon s e, as in the dis cre te spike-a nd -slab prior form ulation 

(Va nn ucci, 2021 ). Th us, the va rying -effe cts re gre ssion mode l in 

Equation 1 can be written as 

y i = 

p ∑ 

j=1 

X i j γ j β j ( Z i ) + ε i , ε i ∼ N (0 , τ 2 ) . (2) 

In this model formulation, γ j acts as an indicator for the rele- 
vance of the predictor X j . When γ j = 1 , it implies that the cor- 
responding β j ( z ) is included in the model; otherwise, β j ( z ) is 
effe ctiv e ly 0. Althou gh γ j and β j ( z ) are a pr ior i indepe nde n t, 
the MCMC s amp ling proces s captures their r ela tionship, with 

γ j more likely to be 1 when the Gaus si an Proces s (GP) realiza- 
tion of β j ( z ) (see Section 2.3) is si gnifica n tly diffe re n t from ze ro. 
In our s e tting, this model form allows us to integrate out the co- 
efficie n ts β j ( z ) . This in te gration m akes s amp ling more efficie n t
tha n alte rnative spike-a nd -slab prior formulations (George and 

McCulloch, 1997 ). 
Given our focus on both selecting a subs e t of exp l ana tory pr e- 

d ictor s and under stand ing the interc onne ctions among these 
v ari ab le s, we re ly on the Gaus si a n gra phical model to infe r a net-
work among the pred ictor s and assume that X i follow a m ulti - 
v ari ate normal distribution 

X i ∼ N ( 0 , �−1 ) , (3) 

where 0 is a P -v e ctor of 0s, and � is the pre cision m atrix, which 

can be used to r epr ese n t the c ondition al depe nde ncies a mong 
pred ictor s. Non-zero off-d iagonal e n trie s ω i j in � corre spond 

to c ondition al depe nde nce r ela tions betw e en the correspond- 
ing pred ictor s, while ω i j = 0 ind ica tes tha t pr ed ictor s i and j
are c ondition ally indepe nde n t give n the re maining va riables. To 

ide n tify a spa rs e s e t of depe nde nce r ela tions, w e plac e a mixture
prior on the e n tries in � as proposed by Wang ( 2015 ): 

p( � | θ ) = { C( θ ) } −1 
∏ 

i< j 

{
( 1 − π ) N (ω i j | 0 , ν2 

0 ) 

+ πN (ω i j | 0 , ν2 
1 ) 

}∏ 

i 

Exp 

(
ω ii | λ2 

)
I ( �∈ M 

+ ) , (4) 

where θ = { ν0 , ν1 , λ, π} r epr ese n ts the set of prior hyperpa- 
ra mete rs, C(θ ) is a normalizing cons ta n t, a nd π indicates the 
prior probability of edge selection. The prior distribution on the 
off-diagonal ele me n ts of � is a mixture of normals, with ν0 and 

ν1 being s e t small and large, respe ctiv ely. Thi s allow s a clear sep- 
aration betw e en sele cte d e dge s, with value s si gnifica n tly diffe r-
e n t from ze ro, a nd non-sele cte d e d ges, whe re ω i j is close to ze ro.
The diagonal ele me n ts follow a n expone n tial dis tribution with 

pa ra mete r λ2 . The final term I ( �∈ M 

+ ) expres s es the con s train t that 
� belongs to the cone of symmetric positive definite matrices. 

The gra ph ca n also be r epr ese n ted using a set of binary la- 
te n t va riables G = { g i j } i< j ∈ { 0 , 1 } , where g i j = 1 indicates the
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resence of edge (i, j) in the graph G . The model in Equation 4
a n the n be expres s ed as the hie ra rchical model 

p( � | G, ν0 , ν1 , λ) = { C(G, ν0 , ν1 , λ) } −1 

×
∏ 

i< j 

N (ω i j | 0 , ν2 
g i j 

) 
∏ 

i 

Exp 

(
ω ii | λ2 

)
, 

p(G | θ ) = { C (G, θ} −1 C (G, ν0 , ν1 , λ) 

×
∏ 

i< j 

{ π g i j (1 − π ) 1 −g i j } . (5) 

or s ta nda r dized da ta, Wang ( 2015 ) r e c ommends s e tting π =
2 

p−1 and λ = 1 , noting th at e dge sele ction t ends t o be in s en si-
ive to the choice of λ. For ν0 and ν1 , Wang ( 2015 ) o bs erves
hat st able MC MC conve rge nce is achieved with ν0 ≥ 0 . 01 and
1 ≤ 10 . Additional s en sitivity analysis results are provided in
ang ( 2015 ). 
Instead of using the c onv e n tional a pproach of e mplo ying a n

ndepe nde n t Be rnoulli prior for the va riable selection indicator
, we adopt the model proposed by Peterson et al. ( 2016 ), which
tiliz es a Mark ov r andom field prior to link the selection of pre-
 ictor s ac c ording to their r ela tions in the graph G as 

p( γ | G ) ∝ exp (a 1 

′ γ + b γ ′ G γ ) , (6) 

he re a a nd b a re s cal a r hype rpa ra mete rs . This prior c onne cts
he v ari ab le inclusion to the infe re nce of the depe nde nce net-
 ork, enc ouraging the selection of pred ictor s that are c onne cte d
ith other r elevant pr ed ictor s. The pa ra mete r a < 0 controls the
rior probability of selecting a variable without ac c ounting for

nformation in the graph, while the pa ra mete r b con trols the ex-
e n t to which a v ari ab le’s inclusion pro bability is influenc e d by
he inclusion of c onne cte d v ari ab les in the grap h . As dis cus s ed in
i a nd Zha ng ( 2010 ), b should be ca refully sele cte d, as hi gh val -
e s re s ult in v e ry de n s e models, a p he nome non known as p has e

ran sition . 

2.3 Prio rs o n p redicto r effects a nd cova riate s e lectio ns 
o allow for cov ari at es t o modulat e the s tre ngth of the predictor
ffe cts, w e e mplo y the Gaus si an proces s prior f ramework pro -
osed by Savitsky et al. ( 2011 ). Spec i fically, for each predictor,

he pr ior distr ibution of β j ( Z ) is defined by a Gaus si an proces s
 egr e ssion mode l 

β j ( Z ) = f j ( Z ) + δ j , (7) 

here Z is an n × K matrix, and f j ( Z ) is a r ealiza tion of a
aus si an proces s f ( Z ) ∼ N (0 , C j ) . The “jitt er” t erm δ j is dis-

ributed as N (0 , 1 
r j 

I n ) , and r j is a precision pa ra mete r with prior
a (a r , b r ) . We ca n in t egrat e out f j ( Z ) t o obtain the m argin al-

z ed lik elihood 

β j ( Z ) ∼ GP ( 0 , C j + 

1 

r j 
I n ) . (8) 

s noted in Neal ( 1998 ), the “jitter” term is added to the cova ri -
nc e m atrix to m aintain the positiv e definite c ondition in c om-
utation . G iven Equation 8 , by selecting an appr opria te cova ri -
nc e m atrix, w e e st abl ish a non-l inear r ela tionship betw e en the
re dictor effe cts β j and the cov ari a tes Z . Differ ent cov ari ance
 atric es can capture this rel ation ship, as dis cus s ed in Rasmus s en
nd Wi l liams ( 2006 ). We adopt the single-term exponential co-
 ari ance structure from Savitsky et al. ( 2011 ), for its simplicity
nd flexibility, which ac c ommodates a wide rang e of line a r a nd
on-linear r ela tionships . How ev e r, VERGE is ge ne ral a nd is ca-
able of using any valid kernel function, for example, the Matern
e rnel. The cova ria nc e m atrix C j in our model c omprises a c on-
 ta n t te rm a nd a n expone n tial te rm, 

C j = 

1 

λa j 
J n + 

1 

λz j 
exp (−M ) , (9)

here J n is an n × n matrix of 1’s and M is a matrix with en-
ries m ii ′ . Here, m ii ′ is defined as ( Z i − Z i ′ ) ′ P ( Z i − Z i ′ ) , where
 is the diagon al m atrix diag ( −log ( ρ j1 , . . . , ρ jK )) , and ρ jk ∈
0 , 1] is the pa ra mete r associated with cov ari ate Z k for k =
 , . . . , K. 
To ide n ti fy which spec i fic cov ari a tes ar e important in modu-

ating the effect of each pre dictor, w e p l ace spike-a nd -slab priors
n the cov ari ance parame ters 

p(ρ jk | ˜ γ jk ) = 

˜ γ jk I [0 < ρ jk < 1] + (1 − ˜ γ jk ) δ1 (ρ jk ) , 

(10)

or j = 1 , . . . , P and k = 1 , . . . , K, where δ1 re pre se n ts a poin t
ass distribution at 1, which tran sl at es t o 0 once the log transfor-
ation is applied. The indicator v ari ab le ˜ γ jk follows a Bernoulli

is tribution Be r (α jk ) . Whe n 

˜ γ jk = 1 , the magnitude of ρ jk ∈
(0 , 1) controls the s moothne ss of the function, while ˜ γ jk = 0
ndicates the cov ari ate Z k having no effect on the jth predic-
or, with ρ jk = 1 . Finally, we comp le te our model by assum-
ng Gamma priors on the scaling pa ra mete rs of Equation 9 as

a j ∼ Ga (a λ, b λ) and λz j ∼ Ga (a z , b z ) for j = 1 , . . . , P . Due
o the s en sitivity to s cal ing of prior ( 9 ), normal izin g the co va ri -
t es Z t o the unit cube is re c ommende d by Savitsky et al. ( 2011 ).

3 P O ST E R I O R I N F E R E N C E  

iv en th at the pos te rior is in tr actable, we utiliz e MCMC meth-
ds to s amp le pa ra mete rs from the pos te rior dis tribution. To
v oid dire ctly s amp ling the r ealiza tions for β j ( Z ) , and to min-
mize unce rtain ty, we in t egrat e out β j ( Z ) for j = 1 , . . . , P .
inc e w e h av e spike-a nd -slab prior s on both the pred ictor co-
fficie n ts a nd the cova ria nce pa ra mete rs for each cov ari ate, our

CMC scheme r equir es car eful considera tion of how to han-
le the chan gin g dimen sion s of the parameter space. To deal
ith the multip le l ayers of selection and ensure good mixing,
 e inc orporate both betw e en- mode l move s (wher e we upda te

he predictor or cov ari ate s e lection) and within- mode l move s
wher e we upda te the pa ra mete rs while keeping the predictor
 nd cova riate selection fixed). The details of the MCMC scheme
r e pr ovided in the Supplemen ta ry Mate rials . 

3.1 Va riable a nd edg e s e lectio ns 
or v ari ab le s ele ction, as re c ommende d b y Ba rbie ri a nd Be rge r
 2004 ), we utilize the median probability model, which includes
 ari ab les with a m argin al posterior probability of inclusion (PPI)
f at least 0.5. The m argin al PPI for each predictor j is deter-
ined by calculating the frequency of inclusion in the model

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae111#supplementary-data
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across the post burn-in MCMC s amp les, r epr ese n ted as δ j =∑ N 
t=1 I (γ

(t ) 
j =1) 

N 

, where N is the total n umbe r of sa mples. For each
cov ari ate Z jk , the PPI is calculated as the n umbe r of iterations
where Z jk is included in the model out of the total n umbe r of
ite rations whe re its corresponding X j was sele cte d. As a n alte r-
n ativ e, the expe cte d false disc ov ery rate (FDR ) can be use d to
s e t a threshold for the PPIs. This is calculated as FDR (κ) =∑ P 

j=1 I ( δ j >κ)( 1 −δ j ) ∑ P 
j=1 (δ j >κ) 

, where κ ∈ (0 , 1) is the threshold value. Fur-
the rmore, for ed ge s election, fo llowin g the approa ch from Wan g
( 2015 ) and Pe ters on e t al. ( 2016 ), we adopt the pos te rior me-
dia n gra ph for the selection of the graph structure. Spec i fically,
w e sele ct e dges th at h av e a m argin al PPI gr ea te r tha n 0.5. 

3.2 Prediction 

To perform pre diction, w e fo llow the me thod in Rasmus s en and
Wi l liams ( 2006 ) to incorporate the information provided by the
training data about the function. Let X 

∗ and Z 

∗ be the pred ictor s
a nd cova ria tes for futur e o bs erv ation s, and β∗ = β( Z 

∗) r epr e-
se n t the corresponding n 

∗ × 1 late n t v e ctor. We then consider
the joint distribution [

β

β∗
]

∼ N 

([
0 

0 

]
, 

[
C ( Z , Z ) C ( Z , Z ∗) 
C ( Z ∗, Z ) C ( Z ∗, Z ∗) 

])
, 

where C ( Z , Z ∗) := C ( Z , Z ∗) ( �) denotes the n × n 

∗ cov ari ance
ma trix calcula ted for all pairs of training a nd tes t poin ts,
� = { �1 , . . . , �P } , and � j = { ̃  γ j , ρ j , λa j , λz j , r j } for j =
1 , . . . , P . The expectation of the conditional joint predictive dis-
tribution for β∗ | β is C ( Z ∗, Z ) C 

−1 
( Z , Z ) β, which we can estimate

based on the MCMC samples as 

ˆ β
∗
j ( �

(t ) ) := C ( Z ∗, Z ) ( �(t ) ) C 

−1 
( Z , Z ) ( �

(t ) ) ̂  β j , (11)

w here ˆ β j = 

∑ N 
t=1 I ( γ

(t ) 
j =1) ̃ β j ( Z ) ∑ N 

t=1 I (γ
(t ) 
j =1) 

, w hen the jth predictor is in-

cluded in the model. Her e, ˜ β j ( Z ) r epr ese n ts the sa mpled values
from each iteration. We can then obtain the estim ate d respon s e
value ̂  y ∗ = 

1 
L 

∑ L 
t=1 

(∑ P 
j=1 I ( ̄γ j > 0 . 5) X 

∗
j ̂

 β
∗
j ( �

(t ) ) 
)

, where γ̄ j
r epr ese n ts the ma rginal PPI for the jth predictor, and L is the
total n umbe r of sa mples whe r e all pr ed ictor s with m argin al PPI
gr ea te r tha n 0.5 a re sele cte d. This inv olv es av eragin g o ver the
MCMC s amp les to o btain the final estimat e. Not e that only co-
v ari a tes tha t have been s elected bas ed on the marginal PPIs are
included in the computation of the cov ari anc e m atric e s in Equa -
tion 11 . More ov er, as s u gge s ted b y Neal ( 1998 ), we rely on the
Cholesky de c omposition for c omput ing C 

−1 
( Z , Z ) in Equat ion 11 . 

4 S I M U L AT I O N  ST U DY  

4.1 S imulat ion setup 

In our simulation design, we first construct the graph r epr ese n t-
ing the depe nde nce r ela tions among the predictor variables. We
cr ea te a sparse network with clus te rs of corr ela ted fea tur es, sim-
ilar to Li and Li ( 2008 ) and Pe ters on e t al. ( 2016 ). Pred ictor s
ar e r epr ese n ted as clus te rs of genes, including a tran s cription fac-
tor and its r egula te d genes . Our graph c onsists of P = 60 nodes,
divided into 12 clusters. Each cluster contains 1 primary node
functioning as a hub, c onne cte d to 4 remaining nodes in the clus- 
ter, resulting in a network with 48 total edges. 

The predictor v ari ab les X i are s amp led from a multiv ari ate 
normal distribution with mean zero and cov ari anc e m atrix �G 

. 
The matrix �G 

has unit v ari ances for each predictor. Within 

each clus te r, we s e t a correl ation of 0.7 betw e en the primary 
node and the 4 subsidiary nodes, and the corr ela tions among 
the subsidiary nodes are fixed to 0 . 7 

2 . This results in a sparse 
gra ph s tructure with ed ges limit ed t o within-clust er c onne ctions, 
whe re each prima ry node is c onne cte d to all 4 subsidiary nodes. 

We assume 10% of the pred ictor s a re releva n t to the out- 
c ome, res ulting in P true = P/ 10 = 6 . The respon s e v ari ab le y i 
is ge ne rated using the linea r model y i = 

∑ 6 
j=1 X i j β j ( Z i ) + ε i , 

for i = 1 , . . . , n, where ε i ∼ N (0 , 1) . We spec i fy n = 200 as
the n umbe r of training sa mples for pa ra mete r es t imat ion, and 

n t = 50 as the n umbe r of tes t sa mples for the evaluation of pre- 
diction pe rforma nce. The cova riates Z k a re ra ndomly sa mpled 

from Unif (−1 , 1) with K = 3 . For the pre dictor effe cts β j ( Z ) ,
w e c onside r diffe re n t ge ne rat ing funct ion s, including con s ta n t,
linea r, a nd non-linea r forms. The true values of the β j ( Z ) ’s are 
defined as follows: 

β1 ( Z 1 ) = 0 . 3 , β2 ( Z 2 ) = 2 sin ( πZ 2 ) , β3 ( Z 3 ) 

= 2 Z 

2 
3 − 1 , β4 ( Z 4 ) = −2 Z 4 , 

β5 ( Z 5 ) = 2 cos ( πZ 5 ) , β6 ( Z 6 ) = −2 N ( Z 6 | 0 . 3 , 0 . 3 

2 ) 

−3 N ( Z 6 | −0 . 5 , 0 . 3 

2 ) , β j ( Z j ) = 0 , (12) 

for j = 7 , . . . , 60 , where Z j , which r epr ese n ts the cova riate in-
fluencing the jth predictor, is randomly sele cte d from the K = 3 

cov ari a tes. We exclude ca tegorical functions in this s e tup since 
not all methods in our simulation studies are designed for han- 
dling cate gorical c ov ari ates . How ev er, VERGE is effe ctiv e with 

bina ry a nd cate gorical c ov ari ates, as shown in the app lication 

s ection . Finally, we ce n te r y a nd s ta nda rdize the pred ictor s X and
cov ari ates Z to ensure stable results when applying the graphical 
model (Wang, 2015 ) and the Gaus si an proces s model (Savitsky 
et al., 2011 ). 

Pa ra mete r settings a nd se nsitivity a nalyses a re d isc ussed in the 
Supplemen ta ry Mate rials . 

4.2 Co mpa rative a nal ysis 
To cha racte rize the impact of the compone n ts of our proposed 

VER GE model, including the incorpor ation of gr aph informa- 
tion and the selection of pred ictor s, we consider 2 reduced forms 
of our model as c omparators . In the first re duc e d model, w e omit 
the se c ond term in Equation 6 , so th at no graph inform ation is in- 
c orporate d under the prior. In this model, the prior on γ simpli- 
fies to an indepe nde n t Be rnoulli. In the se c ond re duc e d model,
we include a GP prior on β j ( Z ) , but do not perform selection of 
the primary pred ictor s. 

Furthermore, w e c ompare VERGE with 2 e st ab lished me th- 
ods: the p li ab le l as s o me thod (Kim e t al., 2021 ), imp le me n ted
in the R package svreg , and the sp line-bas ed Bayesi a n Hie r- 
a rchical Va rying-Spa rsity Re gression (BEHAVIOR ) model Ni 
et al. ( 2019 ). The p li ab le l as s o w as fit with 2 pe nalty pa ra me-
t ers select ed using 5-fold cr oss-valida tion on the training data. 
The Baye sian mode ls were run in Matl ab Releas e 2022b. For the 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae111#supplementary-data
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TA BLE 1 Simulat ion r esults for pr e dictor sele ction and pre diction ac curacy for n = 200 , P = 60 , K = 3 . 

pLas s o BEHAVIOR VERGE No graph No predictor selection 

TPR 0.460 (0.265) 0.853 (0.055) 0.960 (0.073) 0.833 (0.068) –
FPR 0.157 (0.190) 0.002 (0.006) 0.001 (0.004) 0.002 (0.005) –
MCC 0.340 (0.194) 0.905 (0.046) 0.974 (0.051) 0.896 (0.056) –
F1 0.356 (0.163) 0.911 (0.042) 0.975 (0.047) 0.902 (0.052) –
AUC 0.381 (0.159) 0.966 (0.027) 0.999 (0.001) 0.972 (0.033) –
PMSE 6.657 (2.195) 1.326 (0.199) 1.278 (0.260) 1.295 (0.276) 7.125 (2.220) 
Methods c ompare d include the p li ab le l as s o Tibshira ni a nd Frie dm an ( 2020 ), BEHAVIOR Ni et al. ( 2019 ), VERGE, and 2 re duc e d v ersions of VERGE: one 
with no graph selection, and one with no predictor s election . Pe rforma nce me trics ev alua ted ar e the true positive rate (TPR), false positive rate (FPR), F1 Score, 
Ma t thews corr ela tion coefficie n t (MCC), the a rea unde r the ROC curve (AUC), a nd mea n squa r ed pr ediction err or (PMSE). 

TA BLE 2 Simulat ion res ults for c ov ari ate s election for n = 200 , P = 60 , K = 3 . 

pLas s o BEHAVIOR VERGE No graph No predictor selection 

TPR 0.280 (0.271) 0.992 (0.040) 0.992 (0.040) 0.984 (0.055) 0.800 (0.062) 
FPR 0.018 (0.050) 0.001 (0.001) 0.007 (0.002) 0.001 (0.001) 0.011 (0.012) 
MCC – 0.986 (0.041) 0.985 (0.035) 0.988 (0.034) 0.758 (0.043) 
F1 0.263 (0.241) 0.985 (0.042) 0.985 (0.036) 0.988 (0.035) 0.764 (0.042) 
AUC 0.075 (0.084) 0.964 (0.018) 0.996 (0.022) 0.992 (0.029) 0.995 (0.007) 
Methods c ompare d include the p li ab le l as s o Tibshira ni a nd Frie dm an ( 2020 ), BEHAVIOR Ni et al. ( 2019 ), VERGE, and 2 re duc e d v ersions of VERGE: one with no 
grap h s election, and one with no predictor s election . Pe rforma nce me trics ev alua ted ar e the true positive rate (TPR), false positive rate (FPR), F1 scor e, Ma t thews 
corr ela tion coefficie n t (MCC), and the area under the ROC curve (AUC). Note: some MCC values for the pliable lasso are omitted due to zero denomin ators . 
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EHAVIOR model , 150 000 iterat ions for burn-in and 150 000
or infe re nc e w ere ne e de d to reach c onv e rge nce, using the Mat-
ab code provided by Ni et al. ( 2019 ). Our VERGE model re-
uired 60 000 iterations, with the first 30 000 for burn-in. The
c c e pt ance rate s for the Leve l 1 move s were 5% for the “Add”
roposal, 45% for the “Delete” proposal, and 25% for the “Keep”
roposal. Despite the lower acce pt ance rate for the “Add” move,

he rates for “Keep” and “Delete” mo ves fa cil itate u pdates in the
P ke rnel a nd impro ve mixin g. The a c c e pt ance rate s for updat-

n g co v ari ate inclusion in the within- mode l mo ve ran ged from
0% to 60%. We evaluated the Pears on correl ation for the PPIs
f both predictor a nd cova riate selections from 2 indepe nde n t
hains and found good indications of c onv e rge nce. 
We as s es s the pe rforma nce of the models using the fol-

owing metrics: the true positive rate (TPR), false posi-
ive rate (FPR), F 1 scor e, Ma t thews corr ela tion coefficie n t
MCC), and area under the ROC curve (AUC), for both
 ari ab le and cov ari ate s election . Addition ally, w e e mplo y the
ea n squa r ed pr ediction err or (PMSE) as a measure to eval-

ate the pre dictiv e perform anc e of the models . Spe c i fically,
he metrics are defined as TPR = 

TP 
TP + FN 

, FPR = 

FP 
FP + TN 

,
 1 = 

2 TP 
2 TP + FP + FN 

, MCC = 

TP ×TN −FP ×FN 

( TP + FP )( TP + FN )( TN + FP )( TN + FN ) and
MSE = 

1 
n t 

∑ n t 
i =1 ( ̂  y i − y test ,i ) 2 , where TP, TN, FP, and FN de-

ote the true positives, true ne gativ es, false positiv es, and false
e gativ e s, re spe ctiv ely, and n t is the s amp le size for the test
ata. For the pliable lasso, which has 2 tuning pa ra mete rs that
 egula te the penalties for predictor and cov ari ate s election s,
he AUC calculation requires varying one of these pa ra mete rs
hile selecting the se c ond pa ra mete r through a 5-fold cross-
 alid a tion a t each level of the firs t pa ra mete r. AUCs for VERGE
 nd BEHAVIOR a r e calcula te d by ch an gin g the thresholds for
he PPIs. 

We firs t conside red a sim ul ated s e tting with n = 200 , P =
0 , K = 3 . Results for predictor selection are shown in Table 1 ,
nd those for covariate selection are shown in Table 2 , across 25
imul ated d ata s e ts . In c omparison to the full VERGE model,
he predictor selection for the reduced model with no graph in-
orm ation exhibite d a low e r TPR. Upon exa minin g ea ch predic-
or, this decrease is a t tribut ed t o the extremely low TPR (0.080)
or the predictor with a small cons ta n t effect. Without graph in-
orma tion, the r educed model fails to ide n tify this effect. Ho w -
v er, the c ov ari ate s ele ction and PMS E rem ain similar. The re-
uc e d model v ari ant with no selection of the primary pred ictor s
chiev e d ac c e pt able pe rforma nce in cova riate selection, de mon-
trating its ability to identify most of the cov ari ate effe cts . Ho w -
v er, it le d to a high P MSE, lik ely due to o verfittin g caused by the
bsenc e of pre dictor sele ction, as all pre d ictor s w ere c onsidere d
n the model. 

With respect to compe ting me thods, r esults indica te tha t
ERGE performs well in both predictor a nd cova riate selection,
otably outperforming existing methods in predictor selection
ue to the integration of grap h information . This helps in iden-

ifying c onne cte d pre d ictor s with sl i gh tly weake r effe cts . Addi-
 ional simulat ions w ere c onducte d with more c ov ari ates ( K =
 ) and a smaller s amp le size ( n = 100 ), with det ailed re sults re-
orted in Supplemen ta ry Mate rials . Ove r all, VER GE achieves
PRs tha t ar e either 1 or close to 1 across all sc en arios, with
PRs below 0.001. In terms of c ovariate sele ction, VERGE is
omparable with BEHAVIOR. However, VERGE experiences a
li gh t reduction in pe rforma nce with an increase in cov ari ates
r a decrease in sample size, while BEHAVIOR shows a signif-

ca n t decrease in smaller s amp le s c en arios but m aintains strong
e rforma nce with increased cov ari ates. The p li ab le l as s o, lim-

t ed t o ide n tifying only linea r cova riate effects, exhibits lower ac-
ura cy a cros s all s c en arios . Addition ally, its pen alty parameters,
ptimize d for pre diction error through cros s-v alid ation, are not
 e ared to war d pr e dictor sele ction, as d isc ussed in Meinshausen
 nd Bühlma nn ( 2006 ). In pre dictiv e perform anc e, our method

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae111#supplementary-data
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FIGURE 1 True and estim ate d c oefficients for simulation study by generating functions. 
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has the lowest PMSE in all sce na rios, whe reas the p li ab le l as s o
has the hi ghes t. 

Figure 1 disp l ays true a nd es tim ate d c oefficie n ts for each un-
derlying function listed in Equation 12 , from 1 simulated d atas e t.
The estim ate d c oefficie n ts we r e calcula te d by av e raging the sa m-
pled β’s from the third step of the MCMC algorithm, as detailed
in the Supplemen ta ry Mate rials . VERGE effe ctiv ely re c ov ers all
function types, including cons ta n t, linea r, a nd non-linea r, closely
matching the true v alues. We als o ev aluated the average TPRs for
pre dictor sele ction acros s all me thods b y ge ne rat ing funct ion.
Focusing on the base sc en ario ( n = 200 , P = 60 , K = 3 ), re-
sults in Web Table 3 show that our method performs well across
all functions . BEHAVIOR exc els with c ov ari ate-dependent ef-
fects but stru ggle s with s m all c ons ta n t coefficie n ts. The p li ab le
l as s o only perform s well with function s tha t do not cr oss 0.
VERGE’s ability to dete ct sm all c ons ta n t coefficie n ts likely be n-
efits from the graph structure guiding the predictor s election . 
5 C A S E  ST U DY  

The gut micro biome, con sisting of tri l lion s of bacteri a, p l ays a 
critical role in extra ctin g e ne rgy from the diet a nd influe nces 
h uma n health outcomes, including obesity (Turnb a ugh et al., 
2006 ). How ev er, the me ch anis ms be hind this link are not fully 
unde rs tood. In this case study, w e c onsider how the effect of 
gut microorganisms on body mass index (BMI) may be mod- 
ulated by cov ari ates such as sex and dietary intake, using the 
COMBO d atas e t originally described by Wu et al. ( 2011 ). The 
da ta wer e obtained fr om a cr oss - se ction al study of 98 healthy 
v olunte ers, where stool samples were an alyze d using 16S rRNA 

ge ne segme n ts via 454/Roche p yroseque ncing. Additionally, 
diet and demo grap hic information, including age, sex, and BMI, 
w ere c olle cte d. This dataset was previously an alyze d by Lin 

et al. ( 2014 ) a nd Zha ng et al. ( 2021 ), who focused on micro- 
biome fea tur e sele ction without c onside ring pote n ti al cov ari ate 
effe cts . 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae111#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae111#supplementary-data
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TAB LE 3 Sele cte d ge ne ra in the gut micro biome d a ta and their corr espondin g co v ari ates. 

Sele cte d Av era ged 

Phylum Family Genus covariates coefficie n t 

B a ct eroidet es Bactero id ace ae Bacteroides tfat, aofib 0 .88 (0.30) 
Firmicutes Erysip elo trichaceae Ca t enibact erium tfat, aofib 0 .59 (0.15) 
Firmicutes Fa m il y XI I I A D3011 g roup sex, aofib 0 .84 (0.16) 
Firmicutes La ch nospira cea e An aero s t ipes aofib 0 .82 (0.17) 
Firmicutes La ch nospira cea e La ch noclostri d iu m – − 0 .88 (0.05) 
Firmicutes La ch nospira cea e NK4A136 group – − 0 .62 (0.03) 
Firmicutes La ch nospira cea e UCG-004 aofib 0 .58 (0.11) 
Firmicutes Ru m ino co cca cea e Ru m ino co ccus 2 – 0 .85 (0.09) 
Firmicutes Ru m ino co cca cea e UCG-002 sex, aofib − 1 .03 (0.14) 
Firmicutes Ru m ino co cca cea e Uncl assifie d sex, tfat − 0 .45 (0.11) 
Firmicutes Vei llonella cea e Megas p haera sex, tfat, aofib 0 .94 (0.14) 

FIG URE 2 Connection s among s ele cte d pre d ictor s (ge n us-level micr obiome fea tur es) and their corr espondin g co v ari ates. 
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In our an alysis, w e utilize d the r epr oces s ed d a ta fr om Zhang
 t al. ( 2021 ), which us ed the upd ate d S ILVA rRNA d atabas e
o assign the se quenc e s to t axonomy. We obt ained 156 ge ne ra
rom 1763 Operational Taxonomic Units (OTUs) using the R
a ckage phyloseq , focusin g on 69 taxa with a n ave rage abun-
 ance ≥ 0 . 1% . G iven the compositional na tur e of the data, the

ea tur es wer e transformed using a ce n te r ed log-ra tio transform
 Ait chison, 1982 ) prior t o do wnstre am an alysis . Sinc e w e are in-
e res ted in predicting obesity as a health outcome, we used BMI
s our respon s e v ari ab le. We s ele cte d sex, total fa t (tfa t), and total
ber meas ure d using the A OA C method (aofib, McCle ary et al.,
010 ) as the candidate covariates that could modify the effects
f the microbiome features on BMI. The respon s e v ari ab le w as
e n te red, a nd both the pred ictor s a nd cova riates we re normal -
zed in the analysis. 

We fit the model to the data using pa ra mete r settings simila r to
hose in our simulation study, but with slight modifications. To
c c ount for the r ela tiv ely w eake r si gn al c ompare d t o simulat ed
a ta, we incr eased the prior probability of predictor inclusion pa-
a mete r a to log (0 . 22) . We also chose smaller values for the hy-
e rpa ra mete rs ν0 and ν1 for graph est imat ion, s e tting them at 0.1
nd 5, respe ctiv ely. The MCMC simul ation s included a burn-in
f 100 000 iteration s, fo llow e d b y 100 000 ite rations for a n alysis .
imilar to the simulation study, we select ed predict ors a nd ed ges
ith m argin al PPIs abov e 0.5. For c ov ari ate s ele ction, w e use d
 cutoff of 0.5, rathe r tha n con trolling FDR, due to the weaker
ignal in real data. 

The VERGE model ide n tified 11 ge ne ra influe ncing BMI, as
hown in Table 3 . It lists the ge ne ra, their cova riates, a nd ave rage
oefficie n ts across 98 subjects. Four ge ne ra exhibit ed prot ective
ffects with a negative as s oci ation with B MI, including 2 from
he fa mily La ch nospira cea e a nd 2 from the family Ru m ino co c-
a cea e . Previous s tudies h av e note d the dep le tion of thes e fa mi -
ies in o bes e a dults, suggestin g they digest dietary fiber into short
hain fa t ty acids, pote n ti ally modul ated by die t (Pe ters e t al.,
018 ; Vac ca et al., 2020 ). Spe c i fically, both Ru m ino co cca cea e
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FIGURE 3 Estim ate d c oefficie n ts for sele cte d gut microbiome and their c orresponding c ov ari ates. 
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e ne ra show e d diet ary-de pendent effe cts . Conv ersely, genera
ike Ca t enibact eriu m and Megas p haera , linke d to increase d BMI
n prior r esear ch (Pinart et al., 2021 ), were also ident ified . 

In addition to ide n tifying microbiome features, we also un-
 ov er their interr ela tionships and the covariates that modulate
heir effe cts . Figure 2 shows the c onne ction s among s ele cte d pre-
 ictor s a nd cova riates for each ge n us. The infe rr ed micr obiome
etw ork c onsists of 108 edges, including 8 among the sele cte d
red ictor s. S e veral of the connections link closely r ela ted gen-
 ra, consis te n t with previous findings that microbiome networks
fte n show a n as s orta tive structur e, wher e taxa close in the taxo-
omic tree are commonly linked in co-occurrence networks (Ha
t al., 2020 ). 
The effects of the selected cov ari ates on the estim ate d pre-

ictor coefficie n ts a re i l lus trated in Fi gure 3 , hi ghli gh ting sev-
 ral in te res t ing relat ion ships. First, increas ed die ta ry fibe r in take
e ne rally a t te n uates the impact of micr obiome fea tur es on BMI,
nde rscoring fibe r’s pr otective r ole (De n Bes te n et al., 2013 ).
e c ond, c oefficie n t es tim ates for m ale v ers us fem ale s ubje cts
how notab le s eparation in many plots, both directly i l lustrat-
ng sex effects and indirectly through a striated pattern . Thes e
 ari ation s align with stud ies ind icating sex-depe nde n t r ela tion-
hips betw e en microbiome c omposition and body fat (Min et al.,
019 ), including sex-spec i fic effects of Rumino co cca cea e . 
We report on comparis on s to altern ativ e methods in the Supp

emen ta ry Mate rials . 

6 CO N C LU S I O N 

n this study, we proposed a novel r egr e ssion frame work,
ay esian VER GE, th at en ab les the s election of both ne twork-

inke d pre dictor v ari ab les and cov ari a tes tha t modify the pre-
ictor effects, while learning ne twork connection s among these
red ictor s. Our a pproach e mplo ys a Gaus si an proces s prior, al-

owing for a flexible and varying effect of pred ictor s on the out-
ome v ari ab le, dependent on spec i fic cov ari ates, and spike-and-

slab priors to achieve sparsity at both the predictor and cov ari ate
ev els . Simulate d data de mons tra te tha t our method can ma tch
r exc e e d exi sting method s in terms of predictor a nd cova riate
election and prediction a ccura cy, pa rticula rly in ide n tifying pre-
 ictor s with s ubtle c ons ta n t effects through the use of graph in-

ormation. 
We applied our method to ide n tify microbiome effects on obe-

ity, influenc e d by sex and d ietary factor s . The sele cte d gen-
 ra a nd ne twork rel ation ships align with previously reported
s s oci ation s . Our an alysis rev eals addition al n ua nc e d r ela tion-
hips, pa rticula rly hi ghli gh ting dieta ry fibe r’s prote ctiv e role on
ealth and how microbiome fea tur es impact BMI diffe re n tly
as ed on s ex. Thes e as s oci ation s su gge st corre l ation s rather
han causality due to the biological sys te m’s c omplexity. To c on-
rm causal links, prospe ctiv e r andomiz ed studies of microbiome
 nd dieta ry in te rve n tions a re ne c essa ry (Durack a nd Lynch,
019 ). 
While our curre n t fra me work focuse s on con tin uous re-

pon s es, VERGE is ad aptab le to other types, such as binary re-
pon s es or surviv al outc omes . Addition ally, it c ould be expande d
nto a longitudinal framework by incorporating time as a varying
ffect. Furthermore, while the curre n t a pproach uses the same
 e t of cov ari a tes for all pr ed ictor s, it could be mod ifie d to ac c om-
oda te differ ent cov ari ates for v arious pred ictor s based on prior

no wledg e. 
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