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ABSTRACT

In this paper, we propose Varying Effects Regression with Graph Estimation (VERGE), a novel Bayesian method for feature selection in re-
gression. Our model has key aspects that allow it to leverage the complex structure of data sets arising from genomics or imaging studies. We
distinguish between the predictors, which are the features utilized in the outcome prediction model, and the subject-level covariates, which mod-
ulate the effects of the predictors on the outcome. We construct a varying coefficients modeling framework where we infer a network among the
predictor variables and utilize this network information to encourage the selection of related predictors. We employ variable selection spike-and-
slab priors that enable the selection of both network-linked predictor variables and covariates that modify the predictor effects. We demonstrate
through simulation studies that our method outperforms existing alternative methods in terms of both feature selection and predictive accuracy.
We illustrate VERGE with an application to characterizing the influence of gut microbiome features on obesity, where we identify a set of mi-
crobial taxa and their ecological dependence relations. We allow subject-level covariates, including sex and dietary intake variables to modify the

coefficients of the microbiome predictors, providing additional insight into the interplay between these factors.

KEYWORDS: Bayesian variable selection; Gaussian process prior; graphical model; spike-and-slab prior; varying coefficient model.

1 INTRODUCTION

In this paper, we propose a novel Bayesian hierarchical regression
model that enables the selection of both network-linked pre-
dictor variables and covariates that modify the predictor effects.
Here, we distinguish between the predictors, which are the fea-
tures utilized in the outcome prediction model, and the subject-
level covariates, which modulate the effects of the predictors.
Our method is motivated by applications to multivariate data
sets arising from genomic and neuroimaging studies, where the
observed predictors are linked by metabolic or functional net-
works. As an illustration of the utility of our method, we consider
an application to a microbiome data set examining the inter-
play between the microbiome, obesity, and subject-level covari-
ates (Wu et al., 2011). In this context, the dependence network
among the predictor variables describes ecological relationships
between microorganisms inhabiting the same niche (Kurtzetal,,
2015). Subject-level variables, including sex and dietary intake
variables, modify the influence of the microbiome features by
regulating their activity and their effects on the host (Leeming
et al, 2021). This effect may be partially driven by the produc-
tion of dietary metabolites (Sonnenburg and Bickhed, 2016);
however, many aspects of these relations are not completely un-
derstood.

Our proposed model builds upon the framework of varying
coefficient models (Cleveland and Grosse, 1991; Hastie and
Tibshirani, 1993). Varying-coefficient models relax the assump-

tion of linear effects in classical regression by allowing predictor
effects to depend on factors that may modify their eftects. This
class of model has been extended to allow for high-dimensional
covariates using spline- and tree-based approaches (Marx, 2009;
Biirgin and Ritschard, 2015). Additionally, Bayesian varying-
coeflicient models have been developed for scenarios with spa-
tial or temporal dependence (Reich et al., 2010; Scheipl et al,,
2012). These approaches generally focus on selecting either the
main predictors or the modifying covariates. The simultaneous
selection of predictors and covariates was first introduced in the
pliable lasso (Tibshirani and Friedman, 2020) and extended by
Kim et al. (2021) to account for grouping structure among the
predictors via a weighted hierarchical penalty. In the Bayesian
framework, Ni et al. (2019) proposed a varying-sparsity regres-
sion model, which allows for subject-specific predictor selection
and coeflicient values. However, none of these approaches utilize
information on the network among the predictor variables.

In our formulation of the varying coefficient modeling frame-
work, we enable flexibility in the predictor effects by utilizing
a Gaussian process prior, which allows the model coeflicients
to vary smoothly as a function of the observed covariates. Fur-
thermore, to achieve model sparsity, we rely on spike-and-slab
priors for the selection of both the predictor and covariate ef-
tects. Our prior formulation allows to infer a network among
the predictors and to utilize this information to encourage the
selection of network-linked predictors. In order to infer the
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predictors network, we adopt the prior formulation proposed
by Wang (2015), which imposes a mixture of normals on the
off-diagonal elements of the precision matrix, along with an ef-
ficient blocked Gibbs sampling scheme. This approach directly
represents edge selection, with respect to alternative shrinkage
priors, such as the Bayesian graphical lasso (Wang, 2012) or the
graphical horseshoe prior (Li et al., 2019). For posterior infer-
ence, we design a stochastic search Markov chain Monte Carlo
(MCMC) that requires careful consideration of how to handle
the changing dimensions of the parameter space, cleverly dealing
with the multiple layers of selection while ensuring good mix-
ing. We also look into prediction. We call our proposed method
VERGE (Varying Effects Regression with Graph Estimation).

We demonstrate through simulation studies that our method
outperforms existing alternative methods in terms of both fea-
ture selection and predictive accuracy. We illustrate VERGE with
an application to characterizing the influence of gut microbiome
features on obesity, where we identify a set of microbial taxa
and their ecological dependence relations. Our findings high-
light bacterial genera with both protective and detrimental ef-
fects, and provide insight into how these effects are modulated
by dietary intake and biological sex.

Section 2 details our proposed VERGE approach, and Sec-
tion 3 discusses posterior inference and prediction. In Section 4,
we present simulation studies and comparisons. Section 5 con-
tains an application to microbiome data and Section 6 conclu-
sions and discussion.

2 METHODS

2.1 Varying-effects regression model

Let Y; denote the observed response variable, and X; =
(X1, - - -, Xip) denote the P-dimensional vector of predictors for
subjecti = 1, ..., n. We assume a joint distribution for the ran-
dom variables (Y, X ). As in Peterson et al. (2016), our joint dis-
tribution (Y, X) canbe factorizedas (Y, X) = f(Y|X) - f(X),
where f(Y|X) is a regression model and f(X) is a multivariate
normal distribution. Both the response variable Y; and predic-
tors X; are assumed to be centered. Additionally, for each sub-
ject i, we also observe a K-dimensional covariate vector Z; =
(Zi1, - .., Zix). Our proposed model allows for the effects of the
predictors on the outcome to depend on specific covariates via
a varying-effects regression model formulation where the coeffi-
cients of X;; change based on the value of Z; as

p
Vi = Z){,][L}(Z,) =+ Ei, &~ N(O, 72)7 (1)

j=1

with gt ; (Z;) an unknown function of Z;, and &;’s iid white noise
with variance parameter, 72, on which we assume a standard
conjugate inverse gamma prior as T> ~ IG(ag, by ). Equation 1
represents a full model with no predictor selection; in the next
section, we introduce our prior formulation that enables model
sparsity.

2.2 Priors for variable and graph selection

Our model builds on the Bayesian variable selection approach
originally proposed by Kuo and Mallick (1998). We innovate on

this framework in 2 key regards: We utilize network relations to
link the probability of predictor selection and allow the non-zero
coeflicients to vary as a smooth function of the covariate values.
To represent the predictor selection, we introduce a set of la-
tent indicator variables, y = (y1, ..., yp), and write 1 ;(Z;) =
¥jB;(Z:), assuming a priori independence between the indica-
tors y; and the effects ﬂj (Z;).1f y; = 0, then X; has no effect on
the response, as in the discrete spike-and-slab prior formulation
(Vannucci, 2021). Thus, the varying-effects regression model in
Equation 1 can be written as

P
Vi = ZXijyjﬂj(Zi) +&, & ~N(0,1%). (2)
j=1

In this model formulation, y; acts as an indicator for the rele-
vance of the predictor X;. When y; = 1, it implies that the cor-
responding 3;(z) is included in the model; otherwise, B;(2) is
effectively 0. Although y; and B;(z) are a priori independent,
the MCMC sampling process captures their relationship, with
y; more likely to be 1 when the Gaussian Process (GP) realiza-
tion of B;(z) (see Section 2.3) is significantly different from zero.
In our setting, this model form allows us to integrate out the co-
efficients j; (z). This integration makes sampling more efficient
than alternative spike-and-slab prior formulations (George and
McCulloch, 1997).

Given our focus on both selecting a subset of explanatory pre-
dictors and understanding the interconnections among these
variables, we rely on the Gaussian graphical model to infer a net-
work among the predictors and assume that X; follow a multi-
variate normal distribution

Xi ~ N(ov Sl_l)’ (3)

where 0 is a P-vector of Os, and 2 is the precision matrix, which
can be used to represent the conditional dependencies among
predictors. Non-zero off-diagonal entries w;; in € correspond
to conditional dependence relations between the correspond-
ing predictors, while @;; = 0 indicates that predictors i and j
are conditionally independent given the remaining variables. To
identify a sparse set of dependence relations, we place a mixture
prior on the entries in € as proposed by Wang (2015):

p(®10) = (@1 [T - mV oy 10.03)

i<j
5 A
+a N (wij | 0,7) l_[EXP(wii | E)I(QEM+)’ (4)

where 6 = {vg, vi, A, w} represents the set of prior hyperpa-
rameters, C(0) is a normalizing constant, and 7 indicates the
prior probability of edge selection. The prior distribution on the
off-diagonal elements of €2 is a mixture of normals, with vy and
V) being set small and large, respectively. This allows a clear sep-
aration between selected edges, with values significantly differ-
ent from zero, and non-selected edges, where w;; is close to zero.
The diagonal elements follow an exponential distribution with
parameter % . The final term I gep+) expresses the constraint that
2 belongs to the cone of symmetric positive definite matrices.
The graph can also be represented using a set of binary la-
tent variables G = {g;;}i<; € {0, 1}, where g;; = 1 indicates the
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presence of edge (i, j) in the graph G. The model in Equation 4
can then be expressed as the hierarchical model

P(SZ | Ga Vo, V1, )") = {C(G7 Vo, V1, )")}_1

A
X 1_[./\/(60,] | 0, V;])HEXP((U,‘,‘ | E),

i<j
P(G | 9) = {C(Gv 9}_1C(G7 Vo, V1, )")
x [Jtme (1 — 7)), (s)

i<j

For standardized data, Wang (2015) recommends setting 7 =
Iﬁ and A = 1, noting that edge selection tends to be insensi-

tive to the choice of A. For vy and v;, Wang (2015) observes
that stable MCMC convergence is achieved with vy > 0.01 and
V1 < 10. Additional sensitivity analysis results are provided in
Wang (2015).

Instead of using the conventional approach of employing an
independent Bernoulli prior for the variable selection indicator
¥, we adopt the model proposed by Peterson etal. (2016), which
utilizes a Markov random field prior to link the selection of pre-
dictors according to their relations in the graph G as

p(y | G) o exp(al’y + by'Gy), (6)

where a and b are scalar hyperparameters. This prior connects
the variable inclusion to the inference of the dependence net-
work, encouraging the selection of predictors that are connected
with other relevant predictors. The parametera < 0 controls the
prior probability of selecting a variable without accounting for
information in the graph, while the parameter b controls the ex-
tent to which a variable’s inclusion probability is influenced by
the inclusion of connected variables in the graph. As discussed in
Li and Zhang (2010), b should be carefully selected, as high val-
ues result in very dense models, a phenomenon known as phase
transition.

2.3 Priors on predictor effects and covariate selections
To allow for covariates to modulate the strength of the predictor
effects, we employ the Gaussian process prior framework pro-
posed by Savitsky et al. (2011). Specifically, for each predictor,
the prior distribution of 8 j (Z) is defined by a Gaussian process
regression model

B;(2) = f;(2) +§;, (7)

where Z is an n x K matrix, and fj(Z) is a realization of a

Gaussian process f(Z) ~ N (0, C;). The “jitter” term §; is dis-

tributed as A/ (0, %I,, ),and r; is a precision parameter with prior
J

Ga(a,, b,). We can integrate out f;(Z) to obtain the marginal-
ized likelihood

B;(Z) ~ GP(0, C; + %1,1). (8)
J

Asnoted in Neal (1998), the “jitter” term is added to the covari-
ance matrix to maintain the positive definite condition in com-
putation. Given Equation 8, by selecting an appropriate covari-
ance matrix, we establish a non-linear relationship between the
predictor effects B; and the covariates Z. Different covariance
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matrices can capture this relationship, as discussed in Rasmussen
and Williams (2006). We adopt the single-term exponential co-
variance structure from Savitsky et al. (2011), for its simplicity
and flexibility, which accommodates a wide range of linear and
non-linear relationships. However, VERGE is general and is ca-
pable of using any valid kernel function, for example, the Matern
kernel. The covariance matrix C; in our model comprises a con-
stant term and an exponential term,

L+ S exp(—M), (9)

C=3 Tt
aj Z]

where J, is an n X n matrix of 1’s and M is a matrix with en-
tries m;y. Here, myy is defined as (Z; — Z;)'P(Z; — Z; ), where
P is the diagonal matrix diag(—log(p;1, ..., pjx)), and pj €
[0, 1] is the parameter associated with covariate Z; for k =
1,...,K.

To identify which specific covariates are important in modu-
lating the effect of each predictor, we place spike-and-slab priors
on the covariance parameters

p(oji | 7ik) = 7iI[0 < pje < 1]+ (1 — 7)81(pje),
(10)

forj=1,...,Pandk =1, ..., K, where §; represents a point
mass distribution at 1, which translates to 0 once the log transfor-
mation is applied. The indicator variable 7 follows a Bernoulli
distribution Ber(ajx). When 7 = 1, the magnitude of pj €
(0, 1) controls the smoothness of the function, while 73 = 0
indicates the covariate Z; having no effect on the jth predic-
tor, with pj = 1. Finally, we complete our model by assum-
ing Gamma priors on the scaling parameters of Equation 9 as
Aaj ~ Ga(ay, by) and A;; ~ Ga(a,, b;) for j =1,..., P.Due
to the sensitivity to scaling of prior (9), normalizing the covari-
ates Z to the unit cube is recommended by Savitsky et al. (2011).

3 POSTERIOR INFERENCE

Given that the posterior is intractable, we utilize MCMC meth-
ods to sample parameters from the posterior distribution. To
avoid directly sampling the realizations for 8 j(Z) , and to min-
imize uncertainty, we integrate out f;(Z) for j=1,...,P.
Since we have spike-and-slab priors on both the predictor co-
efficients and the covariance parameters for each covariate, our
MCMC scheme requires careful consideration of how to han-
dle the changing dimensions of the parameter space. To deal
with the multiple layers of selection and ensure good mixing,
we incorporate both between-model moves (where we update
the predictor or covariate selection) and within-model moves
(where we update the parameters while keeping the predictor
and covariate selection fixed). The details of the MCMC scheme
are provided in the Supplementary Materials.

3.1 Variable and edge selections

For variable selection, as recommended by Barbieri and Berger
(2004), we utilize the median probability model, which includes
variables with a marginal posterior probability of inclusion (PPI)
of at least 0.5. The marginal PPI for each predictor j is deter-
mined by calculating the frequency of inclusion in the model
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across the post burn-in MCMC samples, represented as §; =

ZzNzll(V,(t)zl) h .
==—7— where N is the total number of samples. For each

covariate Z, the PPI is calculated as the number of iterations
where Zj;. is included in the model out of the total number of
iterations where its corresponding X ; was selected. As an alter-
native, the expected false discovery rate (FDR) can be used to
set a threshold for the PPIs. This is calculated as FDR(k) =
Zle 1(8;>k)(1-5;)
Y (36)
thermore, for edge selection, following the approach from Wang
(2015) and Peterson et al. (2016), we adopt the posterior me-
dian graph for the selection of the graph structure. Specifically,
we select edges that have a marginal PPI greater than 0.5.

, where k € (0, 1) is the threshold value. Fur-

3.2 Prediction

To perform prediction, we follow the method in Rasmussen and
Williams (2006) to incorporate the information provided by the
training data about the function. Let X* and Z* be the predictors
and covariates for future observations, and 8* = B(Z*) repre-
sent the corresponding n* x 1 latent vector. We then consider
the joint distribution

Bl (] | Czn Caz
ﬂ* 0 ’ C(Z*,Z) C(Z*,Z*) ’

where C(z 7+ := C(z,2+)(®) denotes the n x n* covariance
matrix calculated for all pairs of training and test points,
0 ={0,,...,0p},and O; = {)7]-, P Aajs Azjy 1} for j =
1, ..., P.The expectation of the conditional joint predictive dis-
tribution for B* | B is C(Z*‘Z)C(_lez)ﬂ, which we can estimate
based on the MCMC samples as

B (@) :=Cip 1 (®V)C, , (@B, (11)

a _ DL 0=DB(2)
where ﬂj B =

cluded in the model. Here, B j (Z) represents the sampled values
from each iteration. We can then obtain the estimated response
value j* = 1 Zthl (21;1 I(y; > O.S)X?B?(G)(t) ), where 7;
represents the marginal PPI for the jth predictor, and L is the
total number of samples where all predictors with marginal PPI
greater than 0.5 are selected. This involves averaging over the
MCMC samples to obtain the final estimate. Note that only co-
variates that have been selected based on the marginal PPIs are
included in the computation of the covariance matrices in Equa-
tion 11. Moreover, as suggested by Neal (1998), we rely on the

Cholesky decomposition for computing C(_Z1 z) in Equation 11.

, when the jth predictor is in-

4 SIMULATION STUDY

4.1 Simulation setup

In our simulation design, we first construct the graph represent-
ing the dependence relations among the predictor variables. We
create a sparse network with clusters of correlated features, sim-
ilar to Li and Li (2008) and Peterson et al. (2016). Predictors
are represented as clusters of genes, including a transcription fac-
tor and its regulated genes. Our graph consists of P = 60 nodes,
divided into 12 clusters. Each cluster contains 1 primary node

functioning as a hub, connected to 4 remaining nodes in the clus-
ter, resulting in a network with 48 total edges.

The predictor variables X; are sampled from a multivariate
normal distribution with mean zero and covariance matrix X.
The matrix X has unit variances for each predictor. Within
each cluster, we set a correlation of 0.7 between the primary
node and the 4 subsidiary nodes, and the correlations among
the subsidiary nodes are fixed to 0.72. This results in a sparse
graph structure with edges limited to within-cluster connections,
where each primary node is connected to all 4 subsidiary nodes.

We assume 10% of the predictors are relevant to the out-
come, resulting in Py, = P/10 = 6. The response variable y;
is generated using the linear model y; = 2?21 Xi;B j (Z) + e,
fori=1,...,n, where & ~ N (0, 1). We specify n = 200 as
the number of training samples for parameter estimation, and
n; = S0 as the number of test samples for the evaluation of pre-
diction performance. The covariates Z are randomly sampled
from Unif(—1, 1) with K = 3. For the predictor effects 8,(Z),
we consider different generating functions, including constant,
linear, and non-linear forms. The true values of the 8 j (Z)’s are
defined as follows:

B(Z1) =03, B,(Z,) = 2sin(72Z,), B3(Z3)
=273 -1, By(2,) = 224,
Bs(Zs) = 2cos(nZs), Bs(Zs) = —2N (Zs | 0.3,0.3%)
—3N(zs | —0.5,0.3%), B,(z;) =0,  (12)

for j =7, ..., 60, where Z;, which represents the covariate in-
fluencing the jth predictor, is randomly selected from the K = 3
covariates. We exclude categorical functions in this setup since
not all methods in our simulation studies are designed for han-
dling categorical covariates. However, VERGE is effective with
binary and categorical covariates, as shown in the application
section. Finally, we center y and standardize the predictors X and
covariates Z to ensure stable results when applying the graphical
model (Wang, 2015) and the Gaussian process model (Savitsky
etal,2011).

Parameter settings and sensitivity analyses are discussed in the
Supplementary Materials.

4.2 Comparative analysis

To characterize the impact of the components of our proposed
VERGE model, including the incorporation of graph informa-
tion and the selection of predictors, we consider 2 reduced forms
of our model as comparators. In the first reduced model, we omit
the second term in Equation 6, so that no graph information is in-
corporated under the prior. In this model, the prior on p simpli-
fies to an independent Bernoulli. In the second reduced model,
we include a GP prior on 8;(Z), but do not perform selection of
the primary predictors.

Furthermore, we compare VERGE with 2 established meth-
ods: the pliable lasso method (Kim et al., 2021), implemented
in the R package svreg, and the spline-based Bayesian Hier-
archical Varying-Sparsity Regression (BEHAVIOR) model Ni
et al. (2019). The pliable lasso was fit with 2 penalty parame-
ters selected using S-fold cross-validation on the training data.
The Bayesian models were run in Matlab Release 2022b. For the
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TABLE 1 Simulation results for predictor selection and prediction accuracy for n = 200, P = 60, K = 3.

pLasso BEHAVIOR VERGE No graph No predictor selection
TPR 0.460 (0.265) 0.853 (0.055) 0.960 (0.073) 0.833 (0.068) -
FPR 0.157 (0.190) 0.002 (0.006) 0.001 (0.004) 0.002 (0.005) -
MCC 0.340 (0.194) 0.905 (0.046) 0.974 (0.051) 0.896 (0.056) -
F1 0.356 (0.163) 0.911 (0.042) 0.975 (0.047) 0.902 (0.052) -
AUC 0.381(0.159) 0.966 (0.027) 0.999 (0.001) 0.972 (0.033) -
PMSE 6.657 (2.195) 1.326 (0.199) 1.278 (0.260) 1.295 (0.276) 7.125 (2.220)

Methods compared include the pliable lasso Tibshirani and Friedman (2020), BEHAVIOR Ni et al. (2019), VERGE, and 2 reduced versions of VERGE: one
with no graph selection, and one with no predictor selection. Performance metrics evaluated are the true positive rate (TPR), false positive rate (FPR), F1 Score,

Matthews correlation coeflicient (MCC), the area under the ROC curve (AUC), and mean squared prediction error (PMSE).

TABLE 2 Simulation results for covariate selection for n = 200, P = 60, K = 3.

pLasso BEHAVIOR VERGE No graph No predictor selection
TPR 0.280 (0.271) 0.992 (0.040) 0.992 (0.040) 0.984 (0.055) 0.800 (0.062)
FPR 0.018 (0.050) 0.001 (0.001) 0.007 (0.002) 0.001 (0.001) 0.011 (0.012)
MCC - 0.986 (0.041) 0.985 (0.035) 0.988 (0.034) 0.758 (0.043)
F1 0.263 (0.241) 0.985 (0.042) 0.985 (0.036) 0.988 (0.035) 0.764 (0.042)
AUC 0.075 (0.084) 0.964 (0.018) 0.996 (0.022) 0.992 (0.029) 0.995 (0.007)

Methods compared include the pliable lasso Tibshirani and Friedman (2020), BEHAVIOR Ni et al. (2019), VERGE, and 2 reduced versions of VERGE: one with no
graph selection, and one with no predictor selection. Performance metrics evaluated are the true positive rate (TPR), false positive rate (FPR), F1 score, Matthews
correlation coefficient (MCC), and the area under the ROC curve (AUC). Note: some MCC values for the pliable lasso are omitted due to zero denominators.

S

BEHAVIOR model, 150 000 iterations for burn-in and 150 000
for inference were needed to reach convergence, using the Mat-
lab code provided by Ni et al. (2019). Our VERGE model re-
quired 60 000 iterations, with the first 30 000 for burn-in. The
acceptance rates for the Level 1 moves were 5% for the “Add”
proposal, 45% for the “Delete” proposal, and 25% for the “Keep”
proposal. Despite the lower acceptance rate for the “Add” move,
the rates for “Keep” and “Delete” moves facilitate updates in the
GP kernel and improve mixing. The acceptance rates for updat-
ing covariate inclusion in the within-model move ranged from
40% to 60%. We evaluated the Pearson correlation for the PPIs
of both predictor and covariate selections from 2 independent
chains and found good indications of convergence.

We assess the performance of the models using the fol-
lowing metrics: the true positive rate (TPR), false posi-
tive rate (FPR), F; score, Matthews correlation coefficient
(MCC), and area under the ROC curve (AUC), for both
variable and covariate selection. Additionally, we employ the
mean squared prediction error (PMSE) as a measure to eval-
uate the predictive performance of the models. Specifically,
the metrics are defined as TPR = —->—, FPR = o

TP TP INC FPXEN FPHINY
_ __2TP _ XTN—FPx
Fi = smimrme MCC = (TP+EDP)(TP+EN)(TNLFP)(TNLEN) and

PMSE = i " (i — Yiest.i)?, where TP, TN, FP, and FN de-
note the true positives, true negatives, false positives, and false
negatives, respectively, and n, is the sample size for the test
data. For the pliable lasso, which has 2 tuning parameters that
regulate the penalties for predictor and covariate selections,
the AUC calculation requires varying one of these parameters
while selecting the second parameter through a 5-fold cross-
validation at each level of the first parameter. AUCs for VERGE
and BEHAVIOR are calculated by changing the thresholds for
the PPIs.

We first considered a simulated setting with n = 200, P =
60, K = 3. Results for predictor selection are shown in Table 1,

and those for covariate selection are shown in Table 2, across 25
simulated data sets. In comparison to the full VERGE model,
the predictor selection for the reduced model with no graph in-
formation exhibited a lower TPR. Upon examining each predic-
tor, this decrease is attributed to the extremely low TPR (0.080)
for the predictor with a small constant effect. Without graph in-
formation, the reduced model fails to identify this effect. How-
ever, the covariate selection and PMSE remain similar. The re-
duced model variant with no selection of the primary predictors
achieved acceptable performance in covariate selection, demon-
strating its ability to identify most of the covariate effects. How-
ever, it led to a high PMSE, likely due to overfitting caused by the
absence of predictor selection, as all predictors were considered
in the model.

With respect to competing methods, results indicate that
VERGE performs well in both predictor and covariate selection,
notably outperforming existing methods in predictor selection
due to the integration of graph information. This helps in iden-
tifying connected predictors with slightly weaker effects. Addi-
tional simulations were conducted with more covariates (K =
6) and a smaller sample size (n = 100), with detailed results re-
ported in Supplementary Materials. Overall, VERGE achieves
TPRs that are either 1 or close to 1 across all scenarios, with
FPRs below 0.001. In terms of covariate selection, VERGE is
comparable with BEHAVIOR. However, VERGE experiences a
slight reduction in performance with an increase in covariates
or a decrease in sample size, while BEHAVIOR shows a signif-
icant decrease in smaller sample scenarios but maintains strong
performance with increased covariates. The pliable lasso, lim-
ited to identifying only linear covariate effects, exhibits lower ac-
curacy across all scenarios. Additionally, its penalty parameters,
optimized for prediction error through cross-validation, are not
geared toward predictor selection, as discussed in Meinshausen
and Bithlmann (2006). In predictive performance, our method
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FIGURE 1 True and estimated coeflicients for simulation study by generating functions.

has the lowest PMSE in all scenarios, whereas the pliable lasso
has the highest.

Figure 1 displays true and estimated coeflicients for each un-
derlying function listed in Equation 12, from 1 simulated dataset.
The estimated coefficients were calculated by averaging the sam-
pled B’s from the third step of the MCMC algorithm, as detailed
in the Supplementary Materials. VERGE effectively recovers all
function types, including constant, linear, and non-linear, closely
matching the true values. We also evaluated the average TPRs for
predictor selection across all methods by generating function.
Focusing on the base scenario (n = 200, P = 60, K = 3), re-
sults in Web Table 3 show that our method performs well across
all functions. BEHAVIOR excels with covariate-dependent ef-
fects but struggles with small constant coeflicients. The pliable
lasso only performs well with functions that do not cross 0.
VERGE’s ability to detect small constant coeflicients likely ben-
efits from the graph structure guiding the predictor selection.

S CASE STUDY

The gut microbiome, consisting of trillions of bacteria, plays a
critical role in extracting energy from the diet and influences
human health outcomes, including obesity (Turnbaugh et al,,
2006). However, the mechanisms behind this link are not fully
understood. In this case study, we consider how the effect of
gut microorganisms on body mass index (BMI) may be mod-
ulated by covariates such as sex and dietary intake, using the
COMBO dataset originally described by Wu et al. (2011). The
data were obtained from a cross-sectional study of 98 healthy
volunteers, where stool samples were analyzed using 16S rRNA
gene segments via 454/Roche pyrosequencing. Additionally,
diet and demographic information, including age, sex, and BMI,
were collected. This dataset was previously analyzed by Lin
et al. (2014) and Zhang et al. (2021), who focused on micro-
biome feature selection without considering potential covariate
effects.
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TABLE 3 Selected genera in the gut microbiome data and their corresponding covariates.

Selected Averaged
Phylum Family Genus covariates coeflicient
Bacteroidetes Bacteroidaceae Bacteroides tfat, aofib 0.88 (0.30)
Firmicutes Erysipelotrichaceae Catenibacterium tfat, aofib 0.59 (0.15)
Firmicutes Family XIII AD3011 group sex, aofib 0.84 (0.16)
Firmicutes Lachnospiraceae Anaerostipes aofib 0.82 (0.17)
Firmicutes Lachnospiraceae Lachnoclostridium - —0.88(0.05)
Firmicutes Lachnospiraceae NK4A136 group - —0.62 (0.03)
Firmicutes Lachnospiraceae UCG-004 aofib 0.58 (0.11)
Firmicutes Ruminococcaceae Ruminococcus 2 - 0.85(0.09)
Firmicutes Ruminococcaceae UCG-002 sex, aofib —1.03(0.14)
Firmicutes Ruminococcaceae Unclassified sex, tfat —0.45(0.11)
Firmicutes Veillonellaceae Megasphaera sex, tfat, aofib 0.94 (0.14)

Covariates

Anaerostipes

B

Response

UCG-004

—
Megasphaera
Unclassified
S— #
Ruminococcus 2 BMI
NK4A136 group
Lachnoclostridium
—

Family

@ Family Xill

@ Bacteroidaceae
O Erysipelotrichaceae

O Lachnospiraceae
O Ruminococcaceae
@ Veillonellaceae

FIGURE 2 Connections among selected predictors (genus-level microbiome features) and their corresponding covariates.

In our analysis, we utilized the reprocessed data from Zhang
et al. (2021), which used the updated SILVA rRNA database
to assign the sequences to taxonomy. We obtained 156 genera
from 1763 Operational Taxonomic Units (OTUs) using the R
package phyloseq, focusing on 69 taxa with an average abun-
dance > 0.1%. Given the compositional nature of the data, the
features were transformed using a centered log-ratio transform
(Aitchison, 1982) prior to downstream analysis. Since we are in-
terested in predicting obesity as a health outcome, we used BMI
as our response variable. We selected sex, total fat (tfat), and total
fiber measured using the AOAC method (aofib, McCleary et al.,
2010) as the candidate covariates that could modify the effects
of the microbiome features on BMI. The response variable was
centered, and both the predictors and covariates were normal-
ized in the analysis.

We fit the model to the data using parameter settings similar to
those in our simulation study, but with slight modifications. To
account for the relatively weaker signal compared to simulated

data, we increased the prior probability of predictor inclusion pa-
rameter a to log(0.22). We also chose smaller values for the hy-
perparameters Vg and v; for graph estimation, setting them at 0.1
and S, respectively. The MCMC simulations included a burn-in
0f 100 000 iterations, followed by 100 000 iterations for analysis.
Similar to the simulation study, we selected predictors and edges
with marginal PPIs above 0.5. For covariate selection, we used
a cutoff of 0.5, rather than controlling FDR, due to the weaker
signal in real data.

The VERGE model identified 11 genera influencing BMI, as
shown in Table 3. It lists the genera, their covariates, and average
coefficients across 98 subjects. Four genera exhibited protective
effects with a negative association with BMI, including 2 from
the family Lachnospiraceae and 2 from the family Ruminococ-
caceae. Previous studies have noted the depletion of these fami-
lies in obese adults, suggesting they digest dietary fiber into short
chain fatty acids, potentially modulated by diet (Peters et al,,
2018; Vacca et al, 2020). Specifically, both Ruminococcaceae
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FIGURE 3 Estimated coefficients for selected gut microbiome and their corresponding covariates.
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genera showed dietary-dependent effects. Conversely, genera
like Catenibacterium and Megasphaera, linked to increased BMI
in prior research (Pinart et al,, 2021), were also identified.

In addition to identifying microbiome features, we also un-
cover their interrelationships and the covariates that modulate
their effects. Figure 2 shows the connections among selected pre-
dictors and covariates for each genus. The inferred microbiome
network consists of 108 edges, including 8 among the selected
predictors. Several of the connections link closely related gen-
era, consistent with previous findings that microbiome networks
often show an assortative structure, where taxa close in the taxo-
nomic tree are commonly linked in co-occurrence networks (Ha
etal, 2020).

The effects of the selected covariates on the estimated pre-
dictor coeflicients are illustrated in Figure 3, highlighting sev-
eral interesting relationships. First, increased dietary fiber intake
generally attenuates the impact of microbiome features on BMI,
underscoring fiber’s protective role (Den Besten et al., 2013).
Second, coeflicient estimates for male versus female subjects
show notable separation in many plots, both directly illustrat-
ing sex effects and indirectly through a striated pattern. These
variations align with studies indicating sex-dependent relation-
ships between microbiome composition and body fat (Min et al,,
2019), including sex-specific effects of Ruminococcaceae.

We report on comparisons to alternative methods in the Supp
lementary Materials.

6 CONCLUSION

In this study, we proposed a novel regression framework,
Bayesian VERGE, that enables the selection of both network-
linked predictor variables and covariates that modify the pre-
dictor effects, while learning network connections among these
predictors. Our approach employs a Gaussian process prior, al-
lowing for a flexible and varying effect of predictors on the out-
come variable, dependent on specific covariates, and spike-and-
slab priors to achieve sparsity at both the predictor and covariate
levels. Simulated data demonstrate that our method can match
or exceed existing methods in terms of predictor and covariate
selection and prediction accuracy, particularly in identifying pre-
dictors with subtle constant effects through the use of graph in-
formation.

We applied our method to identify microbiome effects on obe-
sity, influenced by sex and dietary factors. The selected gen-
era and network relationships align with previously reported
associations. Our analysis reveals additional nuanced relation-
ships, particularly highlighting dietary fiber’s protective role on
health and how microbiome features impact BMI differently
based on sex. These associations suggest correlations rather
than causality due to the biological system’s complexity. To con-
firm causal links, prospective randomized studies of microbiome
and dietary interventions are necessary (Durack and Lynch,
2019).

While our current framework focuses on continuous re-
sponses, VERGE is adaptable to other types, such as binary re-
sponses or survival outcomes. Additionally, it could be expanded
into alongitudinal framework by incorporating time as a varying
effect. Furthermore, while the current approach uses the same

Biometrics, 2024, Vol. 80,No.4 e 9

set of covariates for all predictors, it could be modified to accom-
modate different covariates for various predictors based on prior

knowledge.
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