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Abstract

In this article, we develop an analytical approach for estimating brain connectivity

networks that accounts for subject heterogeneity. More specifically, we consider a

novel extension of a multi-subject Bayesian vector autoregressive model that esti-

mates group-specific directed brain connectivity networks and accounts for the

effects of covariates on the network edges. We adopt a flexible approach, allowing

for (possibly) nonlinear effects of the covariates on edge strength via a novel Bayes-

ian nonparametric prior that employs a weighted mixture of Gaussian processes.

For posterior inference, we achieve computational scalability by implementing a

variational Bayes scheme. Our approach enables simultaneous estimation of group-

specific networks and selection of relevant covariate effects. We show improved per-

formance over competing two-stage approaches on simulated data. We apply our

method on resting-state functional magnetic resonance imaging data from children

with a history of traumatic brain injury (TBI) and healthy controls to estimate the

effects of age and sex on the group-level connectivities. Our results highlight differ-

ences in the distribution of parent nodes. They also suggest alteration in the relation

of age, with peak edge strength in children with TBI, and differences in effective

connectivity strength between males and females.

K E YWORD S

brain connectivity, fMRI data, Gaussian process, spike-and-slab prior, traumatic brain injury,
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1 | INTRODUCTION

Functional magnetic resonance imaging (fMRI) measures blood-oxy-

genation-level-dependent (BOLD) contrast, which reflects the

difference in magnetization between oxygenated and deoxygenated

blood arising from patterns in cerebral blood flow. Changes in BOLD

response are treated as a proxy for changes in neurological activity.

This technique remains one of the most popular for measuring brain

connectivity, mostly due to its noninvasive nature. In this article, we

are interested in effective connectivity, that is, the directed influenceYangfan Ren and Nathan Osborne contributed equally to this study.
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that one neural system exerts over another, which is often estimated

based on resting-state fMRI data (Friston, 2011).

Statistical approaches to modeling effective connectivity among

brain regions include dynamic causal modeling (DCM, Friston

et al., 2003), structural equation modeling (SEM, Mclntosh &

Gonzalez-Lima, 1994), Bayesian networks (BNs, Li et al., 2008;

Rajapakse & Zhou, 2007), and Granger causality (CG) modeling via

vector autoregressive (VAR) models (Granger, 1969; Roebroeck

et al., 2005). DCM and SEM are typically used as confirmatory tech-

niques to test predefined hypotheses about neural activity

(Friston, 2011). BNs employ directed acyclic graphs, ignoring the high

prevalence of reciprocal connections that commonly renders brain

connectivity cyclic (Friston, 2011). GC is based on the notion that

causes both precede and help predict their effects. This approach

infers effective connectivity by estimating coefficients from VAR

models. It is important to note that even though such methods allow

inference on directed connections between brain regions, causality

between fMRI signals does not translate into causality of the corre-

sponding neuronal activity (Wen et al., 2013).

VAR models have been used to estimate whole-brain connectivity

networks, where nodes represent brain regions of interest (ROIs)

obtained from a parcellation of the brain. Sparsity plays an essential

role in the estimation of these models. A common approach is to

impose sparsity through an ℓ1 penalty on the VAR coefficients

(Arnold et al., 2007; Valdés-Sosa et al., 2005). For fMRI studies with

multiple subjects, Gorrostieta et al. (2012, 2013) proposed mixed-

effect VAR models that achieve group-level selection, by identifying

significant connections between ROIs that are consistent across a

group of subjects. Chiang et al. (2017) considered a supervised setting

with subjects belonging to multiple groups and employed spike-

and-slab priors to achieve sparsity in the group-level networks. To

improve the computational scalability, Kook et al. (2021) developed a

variational Bayes (VB) approach for the model of Chiang et al. (2017).

See also Wang et al. (2023) for a recently proposed VB method for an

autoregressive state-space model. While these VAR-based models

have significantly advanced the understanding of brain connectivity,

they do not account for subject heterogeneity.

In fMRI studies, it is common to measure subject-level covariates,

such as age, sex and behavioral assessment scores, in addition to the

imaging data. In recent years, many researchers have focused on

the question of how to relate subject-level covariates to the observed

imaging data (Guha & Guhaniyogi, 2021; Kundu et al., 2021; Scheffler

et al., 2019; Zhao et al., 2021). Generally speaking, external covariates

can be incorporated into the estimation of graphs by linking them to

either node values (as covariate-adjusted models) or edge strengths

(covariate-dependent). However, most of these contributions in

graphical modeling have considered the framework of undirected net-

works. In this setting, graphs can be expressed as regression models

that link the mean values of the network nodes to external covariates,

allowing the estimation of a conditional network that reflects depen-

dencies among node variables after adjusting for external covariates

(Li et al., 2012; Yin & Li, 2011). Time-varying graphs can also be con-

sidered a special case of covariate-dependent graphical models, where

the network structure is allowed to change smoothly over time (Kolar

et al., 2010; Zhou et al., 2010). More advanced models may allow the

external covariates to have nonlinear effects on edge strength. These

approaches build on regression settings with varying effects, or vary-

ing coefficient models (Cleveland & Grosse, 1991; Hastie &

Tibshirani, 1993). By modeling regression coefficients as a function of

a covariate, these modeling approaches allow greater flexibility than

linear regression.

In this article, we develop an analytical approach for estimating

brain connectivity networks that accounts for subject heterogeneity

by modeling the effect of covariates on the edge strengths. More spe-

cifically, we build upon the VAR framework of Chiang et al. (2017)

and Kook et al. (2021) to construct a varying-effect VAR modeling

framework that estimates group-specific brain connectivity networks

and accounts for the effects of subject-level covariates on the net-

work edges. We name our method Varying-Effects Vector AutoRe-

gression (VEVAR). Within this modeling framework, we are able to

estimate both a group-level graph structure and edge strengths as

(possibly) nonlinear functions of subject-level covariates. We achieve

this via Gaussian process priors that capture the edge strengths as

smooth functions of covariate values. We model the covariate effects

as a sum of univariate Gaussian processes, which allows for edge-

specific covariate effect selection. Additionally, we use variable selec-

tion spike-and-slab priors to determine the presence or absence of

edges. For posterior inference, we address the scalability limitations

of the existing models by implementing a VB approach (Blei

et al., 2017; Dance & Paige, 2022; Titsias & Lázaro-Gredilla, 2011).

We use simulated data to compare our method with two-stage fre-

quentist and Bayesian approaches that first estimate the networks

and then select the covariates that explain the edge strengths. Our

results show that the proposed VEVAR model does well in terms of

both group-level edge selection and covariate effect selection.

Next, we apply our method to resting-state fMRI data from chil-

dren with a history of traumatic brain injury (TBI) and healthy controls

(HCs) to characterize age and sex effects on neural circuitry. TBI is

particularly concerning because it can disrupt the typical course of

brain development and lead to cascading effects on health-related

quality of life. Furthermore, TBI outcomes are characterized by signifi-

cant heterogeneity. Consequently, statistical approaches that can

account for variability related to subject-level covariates can substan-

tially refine the sensitivity and utility of connectivity network model-

ing. Here, in addition to the estimation of the group-level

connectivities, we evaluate whether specific group-level edge connec-

tivity strengths are affected by age and sex. A unique feature of our

approach is that, unlike other methods, VEVAR allows the estimation

of group-level edges as (possibly) nonlinear functions of these covari-

ates. Our results highlight differences in the distribution of parent

nodes. They also suggest alteration in the relation of age, with peak

edge strength in children with TBI, and differences in effective con-

nectivity strength between males and females. We provide some dis-

cussion corroborating our findings.

The rest of this article is organized as follows. In Section 2, we

introduce the model and the prior construction and briefly describe
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the proposed variational approach for inference. We also introduce

the simulation design and the empirical data. In Section 3, we assess

the performance of our proposed method against competing

approaches using simulated data and illustrate our method on resting-

state functional MRI data collected on children with a history of trau-

matic injury and HCs. Section 4 provides some interpretation of the

results and Section 5 concludes the paper with a discussion on limita-

tions and future directions.

2 | METHODS AND MATERIALS

2.1 | Statistical model

We describe the proposed varying-effects VAR model for simulta-

neous group- and subject-level network estimation and selection of

edge-specific covariate effects. A graphical representation of the

model is provided in Figure 1.

2.1.1 | Likelihood

We first introduce the structure of the observed data and the likeli-

hood. In our setting of interest, we observe multivariate time series

data on different groups of subjects. Specifically, let x sð Þ
t ¼ x sð Þ

t,1 ,…,x
sð Þ
t,R

h i
represent the R dimensional vector of observed values for subject s at

time t, with s¼1,…,n, and t¼1,…,T. We assume that subjects are

classified into G groups with η¼ η1,…,ηn½ � indicating the group mem-

bership for each subject, where ηs ¼ g if subject s belongs to group

g¼1,…,G. Furthermore, we assume that an additional set of P fixed

covariates m¼ m1,…,mP½ � are observed for each subject.

Within each group, we model the subject-level time series data

via a VAR model that expresses the observed values at time t as a

function of the R variables at the previous L lagged time points

x sð Þ
t|{z}

1�R

¼ u sð Þ
t|{z}

1�RL

� B sð Þ|{z}
RL�R

þ e sð Þ
t|{z}

1�R

, ð1Þ

where u sð Þ
t ¼ x sð Þ

t�1,x
sð Þ
t�2,…,x

sð Þ
t�L

h i
is the 1�RL vector of concatenated

lagged measurements, B sð Þ is the RL�R matrix of subject-specific

VAR coefficients, and, given ηs ¼ g, e sð Þ
t �N 0,X gð Þ� �

with

Ξ gð Þ ¼ diag ξ gð Þ
1 ,…,ξ gð Þ

R

� �
represents independent Gaussian noise. To

accommodate all T time points, we can write X sð Þ ¼ x sð Þ
2 ,…,x sð Þ

T

h i0
,

U sð Þ ¼ u sð Þ
1 ,…,u sð Þ

T�L

h i0
, and E sð Þ ¼ e sð Þ

1 ,…,e sð Þ
T�1

h i0
. We then use the vec

operator, which converts a matrix to a single column vector, and can

write model (1) as

x sð Þ|{z}
T�Lð ÞR�1

¼ I|{z}
R�R

� U sð Þ|{z}
T�Lð Þ�RL

0
@

1
A β sð Þ|{z}

RLð ÞR�1

þ e sð Þ|{z}
T�Lð ÞR�1

, ð2Þ

where x sð Þ, β sð Þ, and e sð Þ are equivalent to vec X sð Þ
� �

, vec β sð Þ
� �

, and

vec E sð Þ
� �

, respectively, and � represents the Kronecker product (Van

Loan, 2000). By writing the model in form (2), we can see that

x sð Þ j ηs ¼ g�N I�U sð Þ
� �

β sð Þ,Ξ gð Þ�I
� �

, ð3Þ

which allows us to recognize this as a linear regression problem. The

observed values for subject s, given the group membership g, follow a

normal distribution with mean I�U sð Þ
� �

β sð Þ and covariance Ξ gð Þ�I,

where I denotes the identity matrix and Ξ gð Þ is an error covariance

matrix defined as above. The subject-specific coefficients

β sð Þ ¼ β sð Þ
1 ,…,β sð Þ

RLð ÞR
h i

capture the temporal relationship of variables.

This model is illustrated in the right portion of Figure 1.

2.1.2 | Varying-effects selection priors

Chiang et al. (2017) used the VAR setting (1) to model fMRI data

observed on multiple groups of subjects. In that setting, inference on

the VAR regression coefficients allows the estimation of directed net-

works, where network nodes are brain regions and an edge represents

a directional influence of one region on another (Friston, 1994). The

authors adopted a hierarchical structure on the β sð Þ coefficients by

F IGURE 1 Graphical
representation of the proposed
model: circular nodes indicate
parameters, and square nodes
represent observed data. Links
between nodes represent direct
probabilistic dependence. Some
hyperparameters are not shown
for clarity. Indices refer to subject,
s¼1,…,n, coefficient,
j¼1,…, RLð ÞR, and
group, g¼1,…,G.
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assuming that they are generated from a common group-level coeffi-

cient vector β gð Þ, and imposed spike-and-slab priors on the group-level

coefficients. Here, we build upon this supervised hierarchical setting

by proposing a novel prior formulation that allows the edge strengths

of the group-level graphs to vary as functions of the covariate values.

We achieve this by imposing nonparametric spike-and-slab priors at

the group level that allow edges to be either zero or nonzero func-

tions of the covariate values. Additionally, we employ univariate

spike-and-slab priors to select covariates influencing individual edge

strengths, for each subject group. Our novel prior formulation allows

for nonlinear effects of covariates on the edge strengths of the

inferred networks and simultaneous selection of the relevant effects.

As in Chiang et al. (2017), we assume that the VAR coefficients

for each subject, β sð Þ
j , are noisy realizations of a group-level network.

However, at the group level, we model the edge strengths as func-

tions of the subject-specific covariate values, m. We write

β sð Þ
j jm�N β gð Þ

j mð Þ,σ gð Þ
j

� �
, ð4Þ

for all subjects s such that ηs ¼ g, with j¼1,…, RLð ÞR and g¼1,…,G.

We place the priors σ gð Þ
j ¼ σ gð Þ

0 � IG a gð Þ
0 ,b gð Þ

0

� �
for δ gð Þ

j ¼0 and

σ gð Þ
j ¼ σ gð Þ

1 � IG a gð Þ
1 ,b gð Þ

1

� �
for δ gð Þ

j ¼1. We seek to estimate a network

for each of the G groups, that is, to find the nonzero group-level

edges. We achieve this by proposing a novel discrete nonparametric

spike-and-slab prior that imposes sparsity on the networks at the

group level while modeling the nonzero edges as smooth functions of

the covariate values:

β gð Þ
j mð Þ¼ δ gð Þ

j f gð Þ
j mð Þþ 1�δ gð Þ

j

� �
δ0 mð Þ, ð5Þ

with δ gð Þ
j �Bernoulli πδð Þ, where the functional notation β gð Þ

j mð Þ repre-

sents possible values of the VAR coefficient as a function of the

covariate values m, the “spike” δ0 represents a Dirac delta function,

and the notation δ gð Þ
j ¼0 implies that the group-level coefficient for

group g is zero for all possible values of m. Spike-and-slab priors typi-

cally include a normal distribution as the “slab” portion (George &

McCulloch, 1997; Vannucci, 2021). We innovate on this framework,

to instead allow the strengths of the selected nonzero edges to

depend on covariate values in a nonlinear manner, as described below.

A nice result of this modeling choice is that we can obtain a set of

directed edges for each group, that is, a form of interpretable func-

tional group networks where the strengths of the included edges vary

as smooth functions of the covariate values. Our nonparametric “slab”
portion of the mixture prior (5) is defined as follows. We first incorpo-

rate the covariates as

f gð Þ
j mð Þ¼ μ gð Þ

j þ
XP
p¼1

w gð Þ
j,p ϕ

gð Þ
j,p mpð Þ, ð6Þ

with μ gð Þ
j �N 0,σ2μ

� �
a baseline value reflecting edge strength not

driven by covariate effects, ϕ gð Þ
j,p mpð Þ a univariate function dependent

on the pth covariate, and w gð Þ
j,p the corresponding weight. We then

model the functions ϕ gð Þ
j,p mpð Þ via Gaussian process priors (Williams &

Rasmussen, 2006) as

ϕ gð Þ
j,p �GP μ �ð Þ,K � , �ð Þð Þ, ð7Þ

with μ �ð Þ¼0 and covariance function K mp,k ,mp,k0
� �¼ cov f mp,k

� �
, f mp,k0
� �� �

,

which allows us to model nonlinear effects of the covariates on edge

strength. Finally, we impose a parametric discrete spike-and-slab prior

on the coefficients in (6) as

w gð Þ
j,p � πϕN 0,σ2w

� �þ 1�πϕ
� �

δ0, ð8Þ

where πϕ is the prior probability that the coefficient is nonzero, that

is, the corresponding covariate is determined to be important in esti-

mating the edge strength function, β gð Þ
j mð Þ. For each edge j in group g,

formulation (6) employs P nonlinear functions, ϕ gð Þ
j,p mpð Þ, one for each

covariate. Thus, using the spike-and-slab prior (8) on the individual

w gð Þ
j,p

0
s allows us to select possibly different covariates, with nonlinear

effects, for each group-level edge. We complete our model by assum-

ing priors ξ gð Þ
r � IG aξ,bξð Þ, for r¼1,…,R, on the diagonal elements

of Ξ gð Þ.

The proposed modeling framework described here represents a

novel approach to inference of covariate effects on edge strength

within a VAR model that leads to the estimation of sparse networks at

the group level and the selection of key covariates that influence indi-

vidual edge strengths. Figure 2 shows an illustration of our proposed

varying-effect nonparametric selection prior. The top row shows

group-level networks, which will be estimated using the spike-

and-slab prior (5). The lower row shows the underlying group-level

function, β gð Þ
j mð Þ, modeled via the nonparametric slab (6) incorporating

the covariates, as a function of a single covariate, m1, and for a single

edge, j¼1. Subject-level edge strengths, β sð Þ
1 m1ð Þ, for all s such that

ηs ¼ g, are shown as points following the shape of the function

β gð Þ
1 m1ð Þ. Notice that the edge corresponding to β gð Þ

1 is present in the

group-level network for g¼1 but not for g¼G.

The GP construction in (7) requires selecting a kernel function.

Here, we used a squared exponential (SE) of the form

K x,x0ð Þ ¼ σ2 exp � x�x0ð Þ2
2l2

� �
. We found a length scale fixed at l¼0:5 to

be sufficiently flexible for our application. In addition, we found this

kernel to work for both continuous and categorical covariates, as

shown by our results in the simulation study presented below. Our

methodology is general and can accommodate any valid kernel func-

tion. Moreover, a common kernel does not need to be used across all

covariates or across all edges. Additional flexibility could be gained by

placing a prior on any of the hyperparameters of the kernel.

2.1.3 | Variational algorithm for scalable inference

One challenge in network estimation is the large number of parame-

ters that need to be estimated. This is particularly challenging in

Bayesian estimation, as Bayesian methods frequently rely on Markov

4 of 17 REN ET AL.
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chain Monte Carlo methods (Gelman et al., 2013) to sample from the

posterior. In our model formulation, complexity and computational

costs are compounded by the consideration of the covariates and the

large number of inclusion indicators we need to estimate in the non-

parametric spike-and-slab construction.

To allow the model to scale up to large data sizes, in particular

those encountered in our application setting, we implement a varia-

tional approximation method for posterior inference which dramati-

cally improves computational time. Variational schemes for linear

models that use spike-and-slab priors have been previously described

(Carbonetto & Stephens, 2012; Kook et al., 2021; Titsias & Lázaro-

Gredilla, 2011). Variational inference (VI) aims at finding an approxi-

mation of the posterior by using optimization methods. It works by

specifying a family of approximate distributions, Q, which are densi-

ties over model parameters and latent variables that depend on free

parameters Θ, and then seeks to find the values of Θ that minimize

the Kullback–Leibler (KL) divergence between the approximate distri-

bution and the true posterior. Let Z indicate the set of model

parameters and latent variables. As discussed in Blei et al. (2017), min-

imizing the KL divergence is equivalent to maximizing the Evidence

Lower BOund (ELBO), defined as

ELBO¼Θ log p Z,Yð Þ½ ��Θ log q Zð Þ½ �, ð9Þ

with p Z,Yð Þ the joint distribution of Z and the data, and q Zð Þ the

approximate distribution. The complexity of the optimization

procedure is determined by the complexity of the variational distri-

bution. A common family of approximate distributions is the mean

field approximation, which assumes that the approximate distribu-

tion factorizes over some partition of the parameters and latent

variables as

q Zð Þ¼
Y
k

q Zkð Þ: ð10Þ

The exact parametric form of each q Zkð Þ is selected based on

whether Zk is continuous or discrete, and may exploit conditional

F IGURE 2 An example diagram of the proposed varying-effects selection prior, with an illustration of group-level edges, subject-level
coefficients, and group-level coefficient functions. The top row shows group-level networks. The lower row shows the underlying group level
function, β gð Þ

j mð Þ, as a function of a single covariate, m1, for a single edge, j¼1. Subject-level edge strengths, β sð Þ
1 m1ð Þ, are shown as points

following the shape of the function β gð Þ
1 m1ð Þ.
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conjugate distributions to allow for simpler derivation of the optimiza-

tion steps.

In our framework, we adopt a mean field approach and introduce

a family of approximate distributions Q Θð Þ. We follow the work of

Titsias and Lázaro-Gredilla (2011) by reparameterizing the spike-

and-slab prior in (8) through the introduction of new variables

~w gð Þ
j,p �N 0,σ2w

� �
and sj,p � π

sj,p
ϕ 1�πϕ
� �1�sj,p . This allows us to rewrite

w gð Þ
j,p as w gð Þ

j,p ¼ ~w gð Þ
j,p s

gð Þ
j,p . We then find q ~w gð Þ

j,p jsj,p
� �

and q s gð Þ
j,p

� �
and model

~w gð Þ
j,p ,s

gð Þ
j,p

n o
jointly, according to the mean field approach. The remain-

ing variational distributions are proposed as:

q μ gð Þ
j

� �
�N u gð Þ

j ,v gð Þ
j

� �
q δ gð Þ

j

� �
�Bernoulli γ gð Þ

δð Þ,j
� �

q β sð Þjβ gð Þ m sð Þ
� �

,σj
� �

�N u sð Þ
β ,S sð Þ

� �
q ξ gð Þ

r ja gð Þ
ξ ,b gð Þ

ξ

� �
� IG z gð Þ

1r ,z
gð Þ
2r

� �
q σ gð Þ

0 ja gð Þ
0 ,b gð Þ

0

� �
� IG a gð Þ

0 ,b gð Þ
0

� �
q σ gð Þ

1 ja gð Þ
1 ,b gð Þ

1

� �
� IG a gð Þ

1 ,b gð Þ
1

� �
q ϕ gð Þ

j,p mð Þ
� �

�N ~μϕj,g ,K
ϕ
j,g

� �
q ~w gð Þ

j,p js gð Þ
j,p

� �
�N ω gð Þ

j,p ,~σ
gð Þ
j,p

� �
q s gð Þ

j,p

� �
�Bernoulli γ gð Þ

ϕð Þ,j,p
� �

,

ð11Þ

where β gð Þ mð Þ¼ β gð Þ
j mð Þ,…,β gð Þ

RLð ÞR mð Þ
h i

is the collection of realizations

of the group-level function at subject s's covariate measurements, and

Kϕ
j,g is the covariance matrix corresponding to the kernel K m gð Þ

p ,m gð Þ
p

� �
where m gð Þ

p ¼ m s¼1ð Þ
p ,…,m s¼Nð Þ

p

h i
for ηs ¼ g. Using a mean field family,

and the reparameterizations discussed above, we write the full

approximate distribution for all variational parameters as a product

over the approximate distributions:

Q Θð Þ¼
YG
g¼1

YR�R�L

j¼1

q μ gð Þ
j

� �
q δ gð Þ

j

� �YP
p¼1

q ϕ gð Þ
j,p

� �
q ~w gð Þ

j,p

�
js gð Þ
j,p Þq s gð Þ

j,p

� �( )"

�
YR
r¼1

q ξ gð Þ
r

� �#YN
s¼1

q β sð Þ
j

� �
q σ gð Þ

1

� �
q σ gð Þ

0

� � ,

where Θ represents the parameters to be optimized. As common with

VI, these are updated via coordinate ascent VI. This algorithm is

repeated until the ELBO has converged or has changed by some mini-

mum threshold. Updates of the parameters and the parameter blocks

are outlined in the Supplementary Material.

Posterior inference based the VI algorithm results in estimates of

the group-level networks, together with estimates of the edge

strengths at the group- and subject-level, and simultaneous selection

of the covariates that are relevant to the edge strengths. After con-

vergence of the VI algorithm, we classify edge j as being present in

group g if the estimated γ gð Þ
δð Þ,j is greater than 0.5, and select covariate p

as affecting the jth edge strength in group g if the estimated γ gð Þ
ϕð Þ,j,p is

greater than 0.5. We infer the nonzero group-level edge strength

functions by the values of u gð Þ
j þPP

p¼1γ
gð Þ
ϕð Þ,j,pω

gð Þ
j,p ~μ

ϕ
j,g in (11) and the

subject-level edge strengths by the values of u sð Þ
β in (11). We note that

variational approaches are only suitable for point estimation and do

not allow the assessment of uncertainty about the estimates. Addi-

tionally, in situations with correlated covariates, performance can be

sensitive to initializations and to the order that variables are updated,

possibly resulting in poor selection performance. Ray and Szabó (2022)

proposed a prioritized updating scheme, where the importance of the

variable is determined using a preliminary estimator. Here, we

obtained the preliminary estimator as the average of the output from

several cold starts, where each covariate is afforded the opportunity

to be the first and also the last covariate proposed.

2.2 | Simulation experiment

We use simulated data to test the performance of the proposed

model and compare results to competing approaches.

In our simulation, we considered two groups of subjects with

sample sizes 30 and 60, respectively, to assess the robustness of the

model to an unbalanced sample size setting. For each subject, we gen-

erated the time series data x sð Þ
t to represent realistic fMRI signal across

ROIs over time. These data were drawn from a multivariate normal

distribution N u sð Þ
t B sð Þ,σ2IR

� �
, for t¼2,…,200, with noise variance

σ2 ¼0:5. We selected R¼100 ROIs to mirror the level of granularity

commonly observed in brain network studies. This choice ensures that

our simulation represents the complex connectivity between different

brain regions. The initial time point x sð Þ
1 was randomly drawn from

N 0,0:25IRð Þ. We simulated the VAR coefficients B sð Þ, representing the

connectivity strength and direction between different ROIs, in a man-

ner that allowed us to test a range of possible functions and covariate

associations. The time lag value was set to L¼1, ensuring the simula-

tion of direct, immediate connections typical in brain networks. We

checked to make sure that the process generated only stationary time

series for each subject, and repeated the data generating process if

not. We considered six random subject-level covariates,

m¼ m1,…,m6ð Þ, with the first five drawn from a uniform �1,1ð Þ, and
the sixth one from a Bernoulli 0:5ð Þ. These covariates affect the edge

strengths within the brain connectivity network, inducing individual

differences in neural connections. Next, we generated each element

of the subject level vector of coefficients B sð Þ from a N f mð Þ,0:08ð Þ,
with f �ð Þ the generating function of covariates on the edge strengths

defined by setting each element B sð Þ
j,j0 , with j¼1,…,RL and j0 ¼1,…R, as

follows:

if j j� j0 j¼0, f �ð Þ¼0:15 i:e:,constantð Þ
if j j� j0 j¼1, f �ð Þ¼mp �0:25

if j j� j0 j¼2, f �ð Þ¼ 1:0þmpð Þ0:40
if j i� j0 j¼3, f �ð Þ¼ mpð Þ2

if j j� j0 j¼4, f �ð Þ¼0:20 �sine πmpð Þ
if j j� j0 j¼5, f �ð Þ¼0:20 �m6

if j j� j0 j¼6, f �ð Þ¼0:3mp1 �0:3mp2

if j j� j0 j¼7, f �ð Þ¼ 1:0þmpð Þ0:70,

ð12Þ
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where mp is randomly selected from the first five covariates, and mp1

and mp2 refer to two randomly selected covariates from the first five

covariates. Note that mp,mp1 , and mp2 are randomly selected sepa-

rately for each B gð Þ
j,j0 . Additionally, f �ð Þ was rescaled to be within

�0:2,0:2½ � in the case where j j� j0 j is equivalent to one of 2,3,4½ �, and
within �0:15,0:35½ � when j j� j0 j¼7, to explore scenarios with both a

nonzero mean and covariate effect. Additionally, to more easily sam-

ple stationary time series, each function was multiplied by �1 with

probability 0.5. Finally, to allow differences between the two sample

groups, while remaining mostly similar, each f gð Þ �ð Þ outlined above

was set to 0 with probability 0.2, resulting in some group-level edges

being present in one group but not the other. By not restricting our

simulation to predefined patterns, we can capture the diverse and

complex network structure observed in the brain. Furthermore, the

magnitude and variance of the edge strengths in our simulation are

designed to replicate the estimated values in previous fMRI studies

(Kook et al., 2021).

2.3 | Observational study on traumatic brain injury

We analyzed data from an fMRI study on children with a history of

TBI following a vehicle collision and HCs. Subjects were recruited

from the Emergency Department or Level 1 Pediatric Trauma Center

at the Children's Memorial Hermann Hospital, University of Texas

Health Science Center at Houston (UTHealth), between September

2011 and August 2015 (Ewing-Cobbs et al., 2019; Kook et al., 2021;

Watson et al., 2019).

2.3.1 | Participants

Participants were included in the study if they met the following

criteria: (1) injured in a vehicle accident between 8 and 15 years of

age; (2) proficiency in English or Spanish; (3) residing within a

125 mile catchment radius; (4) no prior history of major neuropsy-

chiatric disorder (intellectual deficiency or low-functioning autism

spectrum disorder [ASD]) that would complicate assessment of the

impact of injury on brain outcomes; (5) no metabolic, endocrine, or

systemic health problems (e.g., hypertension); (6) no prior

medically-attended TBI; and (7) no habitual use of steroids,

tobacco, or alcohol. The latter four criteria were assessed during

screening using a brief parent interview. A quality control evalua-

tion of all scans resulted in 70 TBI samples being selected for analy-

sis. Additionally, 50 subjects with no history of trauma were

measured as part of a HC group. Subjects were excluded for exces-

sive motion or scanner error (e.g., operator error, crack in scanner

head coil). Written informed consent was obtained from each

child's guardian and written assent was obtained from all children

in accordance with Institutional Review Board guidelines. The

demographic characteristics of the participants in the study are

shown in Table 1.

2.3.2 | Data preprocessing

The fMRI data were preprocessed using SPM12 from the Wellcome

Trust Center for Neuroimaging (http://www.fil.ion.ucl.ac.uk/spm/).

The preprocessing steps involved correcting motion through realign-

ment, correcting slice timing, separating gray matter, white matter,

and CSF, registering the data to the subject's T1-weighted MPRAGE

image and a standard space using the ICBM space template, and

smoothing with an 8 mm full-width half maximum Gaussian kernel.

The data were then screened using the Artifact Detection Tools tool-

box (Whitfield-Gabrieli et al., 2011) to eliminate volumes with exces-

sive motion. Participants with more than 15% of their volumes

affected by motion outliers were excluded from the analysis. Finally, a

3D parcellation was performed using the MarsBaR toolbox in SPM

12 and the automated anatomical labeling brain atlas, resulting in

90 ROIs excluding regions associated with the cerebellum.

2.3.3 | Previous findings

In Kook et al. (2021) and Vaughn et al. (2022), Bayesian vector-

autoregressive models were employed to identify unique effective

connectivity patterns within the default mode network in children

with TBI relative to HCs. The connectivity patterns differed according

to the severity of TBI and showed specific directional relations with

symptom profiles. Fewer post-concussion and anxiety symptoms were

associated with stronger regional effective orbitofrontal to posterior

cingulate cortex connectivity for mild TBI, whereas weaker connectiv-

ity was associated with better outcomes for more severe TBI (Vaughn

et al., 2022). These findings were similar to prior reports in adults with

TBI showing different relations of frontal lobe connectivity with out-

comes after mild TBI versus more severe TBI (Wu et al., 2015; Zhou

et al., 2012).

3 | RESULTS

3.1 | Simulation results

We fit our proposed model by setting parameters πϕ ¼ πδ ¼0:1 for

the selection priors on covariate effects and group-level edges,

respectively. We also set σw ¼1 as the variance of the slab in (8) and

σμ ¼1 as the variance of the baseline in (6). For the priors on the vari-

ance of the subject-level edge strengths, that is, σ gð Þ
0 � IG a gð Þ

0 ,b gð Þ
0

� �

TABLE 1 Demographic information for participants. Age is
summarized as mean (range), and sex is summarized as number
(percentage).

TBI (n = 70) HC (n = 50)

Age (years) 12.54 (8.08–16.0) 12.13 (8.08–16.0)

Sex (M, %) 45 (64%) 30 (60%)
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and σ gð Þ
1 � IG a gð Þ

1 ,b gð Þ
1

� �
, we imposed vague priors by setting

a0 ¼ a1 ¼2 and b0 ¼ b1 ¼1. Similarly, for the prior on the variance of

the time series data x, that is, ξ gð Þ
r � IG aξ,bξð Þ, we set aξ ¼2,bξ ¼1. For

the kernel of the Gaussian process, we set length-scale l¼0:5 and

output variance σ2 ¼1. A sensitivity analysis of the parameter choices

is provided in Section 3.1.2. We executed our simulations on a Mac-

Book Pro with an M1 chip. The running time ranged from 12 to 16 h,

according to the convergence speed of the VI algorithm for the differ-

ent replicated datasets.

3.1.1 | Comparative performance

Table 2 provides results for group-level edge selection and for covari-

ate effect selection, averaged over 25 replicated datasets, in terms of

true positive rate (TPR), false positive rate (FPR), Matthew's correla-

tion coefficient (MCC), F1 score, and accuracy (Acc). Specifically, the

metrics are defined as

TPR¼ TP
TPþFN

,

FPR¼ FP
FPþTN

,

MCC¼ TP�TN�FP�FN
TPþFPð Þ TPþFNð Þ TNþFPð Þ TNþFNð Þ ,

F1 ¼ 2TP
2TPþFPþFN

,

Acc¼ TPþTN
TPþTNþFPþFN

,

where TP, TN, FP, and FN denote the number of true positives, true

negatives, false positives and false negatives, respectively. In the

same table, we report results from alternative approaches. Since we

are not aware of other methods that achieve simultaneous group-

level edge selection and covariate effect selection, we considered

two-stage approaches that, at the first stage, estimate the networks

and at the second stage select the covariates that explain the edge

strengths. For one approach, at the first stage, that is, group-level

edge selection, we considered a traditional GC model. GC

(Granger, 1969) is a statistical hypothesis test to assess whether one

time series can predict another time series. Here, it estimates

subject-level VAR coefficients via ordinary least squares and then

performs group-level inference through one-sample t tests. Nonzero

group-level edges were identified by thresholding p-values with false

discovery rate control at the .05 level. At the second stage, that is,

covariate effect selection, we regressed the subject-level strengths

estimated via the GC method on the covariates and performed selec-

tion using LASSO (Tibshirani, 1996) (GC-LASSO), which identifies lin-

ear covariate effects, and plsmselect (Ghosal & Kormaksson, 2019)

(GC-plsmselect), which fits generalized additive models with flexible

penalties, allowing for linear and smooth covariate effects. We also

considered a second two-stage approach, obtained by considering at

the first stage model (6) with the GP component removed and only

an intercept term included. The resulting model, which we call

VEVAR-S1, estimates subject- and group-level networks without

accounting for covariate effects. At the second stage, we regressed

the estimated subject-level coefficients on the covariates and per-

formed variable selection via the model of Carbonetto and Stephens

(2012) (VEVAR-S1-SS), which uses mixture priors on the regression

coefficients to perform variable selection. Given the relatively low

FPRs for edge selection using GC and VEVAR-S1, we performed

selection at the second stage by using all estimated edges rather

than only the selected ones.

Results from Table 2 show that our proposed VEVAR model does

well in terms of all performance measures, for both group-level edge

selection and covariate effect selection. For edge selection, VEVAR

does considerably better than the other methods in all metrics, with

only slightly higher FPRs compared to VEVAR-S1. This is because the

TABLE 2 Simulation study: Results of competing methods and VEVAR for group-level edge selection and covariate effect selection,
evaluated using true positive rate (TPR), false positive rate (FPR), Matthew's correlation coefficient (MCC), F1 score, and accuracy (Acc). GC
indicates Granger causality, and VEVAR-S1 refers to the VEVAR model without covariate effects. GC-LASSO employs LASSO to select covariates
affecting edge strengths estimated by GC, while GC-plsmselect utilizes the method described in Ghosal and Kormaksson (2019). VEVAR-S1-SS
applies the spike-and-slab approach from Carbonetto and Stephens (2012) for selecting covariates impacting edge strengths in VEVAR-S1. Bold
values denote the best performance for each metric.

Group 1 Group 2

TPR FPR MCC F1 ACC TPR FPR MCC F1 ACC

Edge selection

GC .373 .060 .339 .407 .874 .456 .064 .400 .467 .881

VEVAR-S1 .560 .003 .711 .707 .947 .633 .018 .692 .716 .942

VEVAR .935 .029 .852 .863 .962 .999 .039 .859 .868 .965

Covariate effect selection

GC-LASSO .275 .030 .190 .204 .950 .276 .022 .220 .236 .964

GC-plsmselect .364 .127 .099 .098 .863 .359 .105 .115 .112 .884

VEVAR-S1-SS .693 .020 .532 .527 .974 .780 .025 .546 .528 .971

VEVAR .879 .000 .936 .935 .998 .998 .000 .999 .999 .999
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inclusion of covariate effects introduces more variability while

improving the edge selection. For covariate effect selection, we see

again that VEVAR performs the best across all metrics.

Unlike competing methods, VEVAR allows the estimation of

group-level edges as (possibly) nonlinear functions of the

covariate values. Figure 3 provides true and estimated subject-level

edge strengths and group-level functions, for one of the simulated

datasets, and Table 3 shows TPRs for each of the underlying func-

tions in (12) that we used to generate the VAR coefficients, aver-

aged over all replicated datasets. All functions were recovered

relatively well for both linear and nonlinear functions and the

estimated edge strengths were close to the true simulated values.

For example, the average MSEs across selected edges generated by

function 1 were 0.0034 and 0.0027 for the two groups, respec-

tively, and those for function 3 were 0.0054 and 0.0043, respec-

tively. As expected, it was more difficult to recover complex

functions for the group with a smaller sample size, though the

performance was generally good. It is also worth noting that the

categorical covariate effects were selected correctly at a high rate,

as seen in column 5.

3.1.2 | Sensitivity analysis

We investigated the sensitivity to the key parameter choices that

determine the sparsity of the model, that is πδ and πϕ. We also consid-

ered sensitivity to the choice of σ2, the variance of the GP kernel. We

used the same simulation setting as outlined above, but with smaller

networks (R¼10) for computational convenience. Parameters were

varied one at a time keeping the others fixed at the values specified in

the simulation as described above, and the reported results were

averaged across 25 replicated datasets. Results from this sensitivity

analysis are shown in Table 4, for both network edge selection and

covariate effect selection. The parameter πδ can be interpreted as the

prior probability of a group-level VAR coefficient being nonzero. As πδ

increases, so does the number of selected edges. As expected, this

parameter had no influence on the selection of the covariate effects.

Parameter πϕ represents the prior probability of a covariate being

selected as relevant for a certain edge strength. As πϕ increases so

does the number of selected covariate effects. This in turn causes a

slight increase in the number of selected edges. Despite this increase,

the performance results remain pretty stable. The parameter σ2 repre-

sents the variance of the GP kernel. As shown in Table 4, the numbers

of selected edges and selected covariate effects increase as σ2

increases, but this trend could be the opposite for data with different

scales. A general trend that can be noticed in all results is that the

inference is more robust to parameter selection for groups with larger

sample sizes.

3.2 | Results from observational study on TBI

We are interested in estimating group-level connectivity networks

and evaluating whether specific edge strengths are affected by

F IGURE 3 Simulation study: True and estimated edge strengths and group-level functions. Gray points represent simulated subject-level
edge strengths and gray lines represent the true group-level functions. Blue points represent estimated subject-level edge strengths and blue
lines indicate the estimated group-level functions.

TABLE 3 Simulation study: Results of the proposed VEVAR
method, showing true positive rates (TPRs) of group-level edge
selection for each of the underlying functions in Formula (12), which
were used to generate the VAR coefficients. The results, averaged
over all replicated datasets, indicate that all functions were recovered

relatively well for both linear and nonlinear functions.

TPR by generating function

j i� j j = 1 2 3 4 5 6 7

Group 1 .944 .909 .807 .873 .999 .989 1.00

Group 2 1.00 1.00 .999 1.00 1.00 1.00 1.00
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covariates of age and sex. For the application of the proposed model,

we rescaled the continuous covariate (age) so that the min and max

values were �1 and 1. Putting covariates on the same scale is com-

monly done with GP priors, as it allows the use of the same length

scale parameter in the GP kernel function across all covariates. We

fitted the model to the TBI and HC data using the same parameter

settings as outlined in the simulation study, with minor adjustments.

Due to the different scale of the fMRI data, we set πϕ ¼0:9,

σ2μ ¼0:01, and adjusted the variance of the GP kernel function to be

0.5 to better identify the effects of covariates. This prior specification

allows us to achieve the expected level of sparsity in brain networks

and covariate space and to identify only the most significant

connections, therefore retaining interpretability and focusing on the

most relevant brain regions and covariates. We are cautious to avoid

over-fitting, which could lead to a model too finely tuned to the data.

Therefore, the selection of the model is a balance between achieving

a sparse, interpretable network and maintaining general applicability.

When fitting the model, we use the ELBO to determine the conver-

gence of the VB algorithm.

Estimated group-level networks for the two groups, TBI and HC,

are shown in Figure 4, with shared edges in red. The number of

selected edges is 419 for the HC group and 405 for the TBI group,

with 182 overlapping edges between the two groups and with the HC

group having more parent nodes than the TBI group in the left frontal

lobe regions and right temporal gyrus regions. We conducted t tests

to compare the estimated subject-level edge strengths between the

TABLE 4 Simulation study: Sensitivity analysis to assess model robustness by varying key parameters and observing their effects on
performance metrics. The metrics evaluated are true positive rate (TPR), false positive rate (FPR), Matthew's correlation coefficient (MCC), F1
score, and accuracy (Acc). We focus on the parameters πδ and πϕ, which determine the sparsity of the model, and σ2, the variance of the GP
kernel. This analysis helps identify how the model's performance depends on specific input variables.

Network edge selection

Group 1 Group 2

TPR FPR MCC F1 Acc TPR FPR MCC F1 Acc

Varying πδ

.1 .733 .000 .636 .845 .798 .998 .010 .988 .997 .996

.5 .892 .460 .450 .881 .814 1.00 .626 .550 .907 .846

.9 1.00 1.00 .000 .871 .772 1.00 1.00 .000 .862 .758

Varying πϕ

.1 .733 .000 .636 .845 .798 .998 .010 .988 .997 .996

.5 .821 .001 .739 .901 .868 1.00 .018 .988 .997 .995

.9 .931 .000 .876 .964 .948 .999 .016 .987 .996 .996

Varying σ2

.1 .487 .000 .429 .653 .609 .928 .018 .857 .959 .940

.5 .651 .000 .787 .786 .957 .998 .008 .976 .978 .994

1 .733 .000 .636 .845 .798 .998 .010 .988 .997 .996

Covariate effect selection

Group 1 Group 2

TPR FPR MCC F1 Acc TPR FPR MCC F1 Acc

Varying πδ

.1 .535 .000 .707 .692 .943 .979 .002 .981 .983 .996

.5 .525 .000 .701 .687 .941 .981 .001 .984 .985 .996

.9 .522 .000 .697 .683 .940 .981 .002 .982 0.984 0.996

Varying πϕ

.1 .535 .000 .707 .692 .943 .979 .002 .981 .983 .996

.5 .706 .000 .824 .827 .965 .999 .003 .987 .988 .997

.9 .882 .000 .931 .936 .985 .999 .004 .985 .987 .997

Varying σ2

.1 .160 .000 .370 .271 .895 .864 .003 .906 .915 .980

.5 .420 .000 .602 .575 .873 .923 .002 .976 .978 .994

1 .535 .000 .707 .692 .943 .979 .002 .981 .983 .996
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F IGURE 4 Application: Estimated connectograms for HC and TBI groups. Arcs indicate group-level edges (self-connections are not drawn)
and node sizes are representative of the number of connected edges, including incoming, outgoing and self-connections. Edges in red are shared
between the two groups. The number of selected edges is 419 for the HC group and 405 for the TBI group, with 182 overlapping edges between
the 2 groups. The HC group has more parent nodes than the TBI group in the left frontal lobe regions and right temporal gyrus regions.

F IGURE 5 Application: (Top) Group-level edges affected by age. An arc between ROIs indicates that the group-level edge is selected and
influenced by the covariate “age,” with more edges exhibiting age dependence in the HC group. Self-connections not shown. (Bottom) Subject-
level edge strength estimates and the resulting estimated function of the covariate “age” values. Only four of the most interesting estimated
effect functions are shown. Notably, the effective connectivity between the left and right supplementary motor areas in the HC group displays a
nonlinear, inverted U-shaped response to increasing age, initially decreasing then increasing, with a pivot at around 11 years old.
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HC and TBI groups. Our analysis revealed that among the overlapping

edges, 154 out of 182 showed significant differences between the

two groups. Furthermore, for edges selected in one group but not in

the other one, over 95% of these edges exhibited statistically signifi-

cant differences in edge strength.

Examining the results further, networks displayed in Figures 5

and 6 show the selected edge strengths that are affected by age and

sex, respectively. From these plots, we see that both age and sex have

an influence on the edge strength function for both HC and TBI

groups, with more edges in the HC group exhibiting a covariate

dependence than in the TBI group. While fewer edges were evident

for the TBI group compared to HC, in the TBI group age, and to a

lesser extent sex, selectively influenced edges of the left putamen. At

a more granular level, our inference reveals how edge strengths

change as a function of each covariate. This is illustrated in the bot-

tom parts of Figures 5 and 6, for a few of the most interesting esti-

mated patterns of dependence. For example, in the TBI group, we

observe stronger effective connectivity between the left triangular

part of the inferior frontal gyrus and the left inferior temporal gyrus

for males compared to females. A table with all selected edges and

estimated covariate effect functions can be found in the Supplemen-

tary Material, together with plots of the estimated covariate effects

for common edges in two groups. Broadly, we see that the model

does well in capturing different functional shapes as well as capturing

functions of categorical and continuous data.

We also compared our findings with three other methods: GC-

LASSO, GC-plsmselect, and VEVAR-S1-SS. GC selected 1324 edges

for the HC group and 1645 edges for the TBI group, with 101 and

171 overlapping edges with our methods, respectively. VEVAR-S1

selected 398 edges for the HC group and 362 edges for the TBI

group, with 215 and 233 overlapping edges with our methods, respec-

tively. We note that, as there is no ground truth from real data, the

number of selected edges simply illustrates the relative sparsity of

F IGURE 6 Application: (Top) Group-level edges affected by sex. An arc between ROIs indicates that the group-level edge is selected and
influenced by the covariate “sex,” with edges in red shared between the two groups and more sex-dependent edges in the HC group. Self-
connections not shown. (Bottom) Subject-level edge strength estimates and the resulting estimated function of the covariate “sex” values. Only
four of the most interesting estimated effect functions are shown, indicating how edge strengths vary with sex. For example, there is a stronger
connectivity in the TBI group between the left triangular part of the inferior frontal gyrus and the left inferior temporal gyrus for males compared
to females.

TABLE 5 Application: Results of competing methods and VEVAR
for numbers of edges that are influenced by covariates. Note that
these results include self-connections within the networks.

Covariate effect selection

HC TBI

Age Sex Age Sex

GC-LASSO 7 23 12 7

GC-plsmselect 55 95 273 105

VEVAR-S1-SS 2 51 42 17

VEVAR 26 96 9 75
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the inferred networks. However, the primary focus of our method lies

in its ability to incorporate significant covariates directly into the esti-

mation of edge strengths, thereby enhancing our understanding of

individual variability in brain connectivity. Results for covariate effect

selections are shown in Table 5. Unlike GC, which provides a single

estimation for the whole group, our approach allows for a nuanced

analysis that can differentiate and track changes across various demo-

graphic and developmental stages. Furthermore, GC-LASSO and

VEVAR-S1-SS are limited to identifying only linear effects of covari-

ates, while VEVAR can handle nonlinear effects. Although GC-

plsmselect is capable of handling nonlinear effects, the simulation

study results showed that GC-plsmselect had a significantly high FPR,

which may explain the larger number of selected edges with covariate

effects seen in Table 5. Finally, it is also worth mentioning that the

two-stage methods GC-LASSO, GC-plsmselect and VEVAR-S1-SS

may select edges with covariate effects that were not selected in the

first stage, which may not be relevant to the study.

3.2.1 | Sensitivity analysis

Results from the sensitivity analysis for the application conducted on

the parameters πδ, πϕ, and σ2 are shown in Table 6. Consistent with

the findings from the simulation study, an increase in the value of πδ

was observed to correspond to an increase in the number of selected

edges. This parameter had no impact on the selection of covariate

effects. An increase in the value of πϕ led to a rise in the number of

selected effects for the binary covariate (sex), while having a limited

effect on continuous covariate (age). This increase resulted in an over-

all increase in the number of selected edges, as we also observed in

the simulation study. For the TBI group, our observations revealed a

negative relationship between σ2 and the number of selected edges

associated with covariates. On the other hand, for the HC group with

a smaller sample size, no clear trends were observed for the total

number of selected edges and the number of selected edges associ-

ated with age. This highlights the need for careful selection of the σ2

parameter as it can be impacted by both the scales of covariates and

the estimated edge strengths. While there are variations in the covari-

ates selected under different parameter settings, the majority of the

covariate effects that are identified tend to overlap, and the relation-

ships between effective connectivity and the covariates remain rela-

tively consistent.

4 | DISCUSSION

We have developed VEVAR, a novel extension of a Bayesian VAR

model, and examined its ability to characterize group differences in

effective network connectivity while simultaneously evaluating the

potentially nonlinear impact of covariates on network edges. Using

simulated data sets, VEVAR outperformed other competing

approaches in terms of group-level edge selection as well as in covari-

ate effect selection. We then applied VEVAR to assess its utility in

characterizing subject and group-level connectivity network edge

strengths using resting state fMRI data from a clinical sample of chil-

dren with TBI and HC. Further, we estimated the effects of age and

sex covariates on the group-level edge strengths. The groups differed

in the distribution of parent nodes, which were fewer in children with

TBI compared to controls. Age effects were largely nonlinear and

influenced edges predominantly in healthy children, suggesting alter-

ation in the relation of age with peak edge strength in children with

TBI. Group-level edges were also affected by sex; effective connectiv-

ity strength was higher in more edges in males than in females.

VEVAR has major potential to generate refined analyses of network-

level data while clarifying potentially nonlinear relations with diverse

covariates.

Unlike traditional methods that assume constant edge strengths

across the group, VEVAR offers a flexible estimation of network edges

that vary with covariate values, which is particularly advantageous in

scenarios where edge strengths are potentially related to covariates

in a nonlinear fashion. For group-level edge selection, VEVAR can

model the edge strength as a dynamic function influenced by covari-

ates, rather than as a static feature. In cases where competing

methods might overlook an edge due to averaging effects (where the

mean edge strength across subjects is zero), VEVAR retains the ability

to detect these edges because it accounts for the covariate-driven

variability in edge strength. In the simulation study, we compared per-

formances to two-stage approaches that estimate the networks at the

first stage and then select the covariates that explain the edge

strengths at the second stage. We found that VEVAR does well in

terms of all performance measures considered, for both group-level

edge selection and covariate effect selection. For covariate effect

selection, we saw again that VEVAR performs the best across all met-

rics, demonstrating superior accuracy and sensitivity in identifying the

TABLE 6 Application: Sensitivity analysis. Total numbers of
selected edges and number of selected edges that are influenced by
age and sex.

Sensitivity analysis

HC TBI

Total Age Sex Total Age Sex

Varying πδ

.1 419 26 96 405 9 75

.5 458 37 88 434 13 64

.9 527 26 92 507 10 65

Varying πϕ

.1 353 24 89 282 13 53

.5 391 29 89 381 13 58

.9 419 26 96 405 9 75

Varying σ2

.1 324 13 128 440 14 146

.5 419 26 96 405 9 75

243 28 47 179 7 36
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true effects of covariates on network connectivity, likely due to its

capability to model both linear and nonlinear relationships between

covariates and edge strengths. One may raise a concern about com-

paring VEVAR to other methods for covariate selection, as it was

shown that other models did not do well in selecting group-level net-

works. However, upon examining the subject level edge strength esti-

mates, both GC and VEVAR-S1 gave estimates that were close to the

underlying values used to simulate the data, minimizing our concern

about this causing the difference in performance.

When applying VEVAR to data from the resting state fMRI study,

our findings revealed that in the HC group the left frontal lobe regions

and right temporal gyrus regions have more parent nodes than the

corresponding nodes in the TBI group. These findings are consistent

with those from other analytical approaches and reflect a consensus

on the vulnerability of structural and functional connectivity in the

frontal and temporal regions following TBI (Botchway et al., 2022;

Johnson et al., 2011; Vaughn et al., 2022; Ware et al., 2022; Watson

et al., 2019). Furthermore, the TBI group showed higher edge strength

in the connectivity of the right temporal pole with the right-sided

striatal and limbic structures, including the putamen, amygdala and

hippocampus. This may reflect the reduced top-down regulation of

limbic structures noted after TBI (Ewing-Cobbs et al., 2019). Regional

hyperconnectivity has been reported in children and adults across the

spectrum of TBI severity and chronicity (Caeyenberghs et al., 2017).

Hyperconnectivity, especially in the default mode network, has been

linked to better task performance in several studies (Grossner

et al., 2019; Lancaster et al., 2019; Palacios et al., 2017; Stephens

et al., 2018; Venkatesan & Hillary, 2019). Although hyperconnectivity

is often viewed as a compensatory mechanism, the potential long-

term metabolic costs have not been established (Hillary &

Grafman, 2017).

Both age and sex significantly impacted edge strength in HC and

TBI groups. In particular, we identified a higher count of edges in the

HC group. Edges in the HC group that were influenced by age primar-

ily connected left inferior temporal to bilateral frontal and temporal–

parietal regions. These anterior and posterior association areas are

among the later-developing brain regions. Reduced connectivity in

these edges following TBI may reflect vulnerability of these connec-

tions among regions that develop rapidly during early to late adoles-

cence. We also identified a distinct influence of these demographic

factors, particularly age, on the left putamen edges in the TBI group.

DTI tractography has previously identified the putamen as a structural

hub in children with a history of TBI but not in an age matched HC

group (Caeyenberghs et al., 2012). Moreover, frontal-striatal (including

putamen and caudate) network disruption is evident following pediat-

ric TBI (Watson et al., 2019). Of the few studies examining functional

connectivity changes after pediatric TBI, only one evaluated the influ-

ence of age and sex on connectivity metrics. In a sample of children

with mild TBI, Onicas et al. (2024) found that by 3–6 months after

injury, global clustering was reduced in superior parietal and occipital

regions in adolescents as well as in females experiencing persistent

symptoms relative to orthopedic injury. Although our sample con-

tained a broad spectrum of TBI severity, our findings converge to

indicate vulnerability of adolescents and females to disruption of spe-

cific connectivity metrics. Current findings elucidate the functional

implication of striatal injury and characterize how patient characteris-

tics, in this case, age or sex, might strengthen or attenuate the impact

of injury on striatal brain networks.

The effective connectivity between the left supplementary motor

area and right supplementary motor area for the HC group have

shown an interesting nonlinear, inverted U shape as age increases,

first decreasing and then increasing. The trends of the estimated

effective connectivities with respect to age change at around 11 years

old for the HC group while the trends change at around 13 years old

for the TBI group. Importantly, our approach does not constrain asso-

ciations between covariates and edge strength to a nonlinear function

but instead allows for discovery of the pattern of influence of the

covariate to be detected. Developmental profiles showing inverted

U-shapes are consistently reported in brain morphometry via regional

volume or thickness of cortical gray matter and are broadly inter-

preted to reflect initial overly abundant synaptic production and the

subsequent synaptic pruning (Giedd et al., 1999, 2006; Gogtay

et al., 2004). Although functional profiles corresponding to an inverted

U during childhood and adolescence are established in the literature,

it is to a lesser degree relative to the morphometric literature. Nota-

bly, the pattern of inverted U in brain functioning, even in develop-

ment, is most often associated with an increase in expertise or skill

(often in language/reading domains), such that learning initially trig-

gers an increase (the rise in the inverted U) with the falling end of the

U associated with experience, and ultimately expertise, see Perkins

and Jiang (2019).

Despite its importance as a biological variable, few imaging stud-

ies have examined how sex may affect connectivity metrics. In our

results, many group-level edges were influenced by sex. Except for

bilateral temporal pole regions, very few edges were shared in females

and males. Relations also differed by group. In the TBI group,

females had higher effective connectivity than males in both temporal

poles. Males had a unique pattern wherein edges originating in multi-

ple bilateral structures converged in the left putamen. Effective con-

nectivity in males in the HC group was higher in multiple bilateral

regions impacting bilateral mid- and inferior temporal regions while

females had higher connectivity in edge strengths affecting left tem-

poral regions. We note that there could be other confounding factors,

such as head size, influencing the observed sex differences in brain

connectivity. Given that we do not have head size data, we cannot

conclusively link the correlations directly to sex. Therefore, our results

should be viewed as indicative of a correlation between sex and spe-

cific brain connectivity patterns, rather than conclusive evidence of

sex-based differences. Additional studies should examine the relation

of connectivity metrics and covariate effects with cognitive and

behavioral outcomes to more fully elucidate specific brain-behavior

relations.

There are several aspects of the proposed model that allow the

practitioner added flexibility. For example, as previously discussed,

the GP kernel can differ across datasets, edges, or covariates. In both

the simulation and case study application, the covariates used were

14 of 17 REN ET AL.
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subject-specific measurements, constant across edges and nodes.

The model, however, could easily be adjusted to accommodate

covariates specific to a subset of edges or groups. Alternatively,

covariates whose values vary at each node or edge could be consid-

ered. Finally, while the current model formulation relies on the group

subject memberships to be known, unsupervised settings could also

be considered via nonparametric priors such as the Dirichlet process.

This would lead to broader applications and potentially further

insights into the data.

5 | CONCLUSION

In this article, we have proposed VEVAR, an analytical approach for

estimating brain connectivity networks that accounts for subject het-

erogeneity. We have employed a hierarchical Bayesian VEVAR model

to identify connectivity networks for different groups of subjects,

allowing for dependence of the connection strength on covariate

values. We have designed a sparse prior to identify key connections

within each group and subsets of edges with strengths affected by

the covariates. Our novel nonparametric spike-and-slab prior includes

a “slab” portion as a function mapping possible covariate values to

coefficient values. Additionally, we have assumed a weighted mixture

of Gaussian process priors on this function, to allow modeling of (pos-

sibly) nonlinear effects and selection of relevant covariates. We have

estimated the proposed model using VI, which has allowed for appli-

cation to large-scale data. The model has been shown to perform bet-

ter than competing two-stage approaches on simulated data, in both

network discovery and covariate selection. We have applied our

method to resting-state fMRI data on children with a history of TBI

and HCs to estimate group-level connectivity networks and evaluate

whether specific edge strengths are affected by age and sex. The

identified differences in effective connectivity network patterns

between TBI and HC groups, along with the influence of age and sex,

have provided valuable insights into the complexity of brain function-

ing after TBI. Furthermore, TBI as a case study application, where

effects of age are evaluated within effective connectivity networks,

highlights the promise of the proposed approach for evaluating devel-

opmental and aging effects in a breadth of disorders impacting the

brain. For future studies, extensions to longitudinal data may provide

valuable insights into connectivity changes over an extended period

after TBI.

Broadly, VEVAR contributes to the current understanding of

brain mechanisms by identifying functionally connected brain

regions, enabling researchers to characterize information flow within

and between brain networks. Moreover, VEVAR determines the

directionality of functional connections between brain regions, offer-

ing insights into how specific cognitive functions like memory, atten-

tion, language, and decision-making are temporally implemented

within overlapping brain networks. In the context of development,

VEVAR advances understanding by tracking the development of

neural networks from infancy through adolescence and into adult-

hood. By observing changes in connectivity patterns over time,

researchers can identify sensitive developmental periods and map

the integration of different brain regions. VEVAR in brain connectiv-

ity research has been implemented to provide crucial insights into

altered neural circuits associated with injuries such as TBI (Kook

et al., 2021; Vaughn et al., 2022). This method is poised for similar

use in neurodevelopmental disorders like ASD (Hanson et al., 2013;

Rolls et al., 2020), dyslexia (Di Pietro et al., 2023), or attention deficit

hyperactivity disorder (Kumar et al., 2021), where effective connec-

tivity findings suggest that differences in the connectivity patterns in

individuals with developmental disorders compared to typically

developing individuals. Moreover, VEVAR facilitates the comparison

of connectivity profiles between typically developing individuals and

those affected by these disorders while controlling for nuisance vari-

ables. This enables analyses that may identify aberrant developmen-

tal trajectories and potential biomarkers for early diagnosis and

intervention.
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