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Abstract 
There is a keen interest in characterizing variation in the microbiome across cancer patients, given increasing 
evidence of its important role in determining treatment outcomes. Here our goal is to discover subgroups of 
patients with similar microbiome profiles. We propose a novel unsupervised clustering approach in the 
Bayesian framework that innovates over existing model-based clustering approaches, such as the Dirichlet 
multinomial mixture model, in three key respects: we incorporate feature selection, learn the appropriate 
number of clusters from the data, and integrate information on the tree structure relating the observed 
features. We compare the performance of our proposed method to existing methods on simulated data 
designed to mimic real microbiome data. We then illustrate results obtained for our motivating dataset, a 
clinical study aimed at characterizing the tumour microbiome of pancreatic cancer patients.
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1 Introduction
Pancreatic cancer remains one of the hardest cancers to treat, with a 5 year survival rate of only 
10% (Mizrahi et al., 2020). In recent years, increasing evidence has shown that the microbiome 
plays an important role in shaping both pancreatic cancer risk and treatment outcomes (Fan 
et al., 2018; Wei et al., 2019). We are motivated by a recent multi-site study examining micro-
biome composition in pancreatic cancer patients (Riquelme et al., 2019), and propose a novel 
Bayesian clustering approach to discover groups of subjects with similar microbiome profiles 
from this data. Our method offers key advantages over existing methods for clustering of micro-
biome data: (i) it identifies specific features that are relevant, (ii) it allows the appropriate number 
of clusters to be learned from the data, and (iii) it integrates information encoded in the phylogen-
etic tree structure relating the observed features. Importantly, our case study findings have impli-
cations for the development of future microbiome interventions aimed at improving pancreatic 
cancer outcomes.

We now briefly review microbiome data collection and existing statistical methods for cluster-
ing of microbiome samples. In the past decade, advances in next-generation sequencing have en-
abled researchers to cheaply and comprehensively analyze microbial communities across various 
sites in the human body (Knight et al., 2017). To date, most large-scale microbiome studies rely on 
sequencing of the 16S ribosomal RNA marker gene. The observed sequences are grouped based on 
similarity into operational taxonomic units (OTUs) using specially designed processing pipelines. 
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These software pipelines also enable assignment to known taxonomic classifications based on 
similarity to sequences in a reference database, and the construction of a phylogenetic tree describ-
ing evolutionary relationships among the OTUs. After these preprocessing steps, the observed data 
from a microbiome study consist of an N × d matrix of counts, where N is the number of obser-
vations and d is the number of features (OTUs).

Microbiome data pose a number of challenges to downstream statistical analysis. First, the data 
are high-dimensional, with thousands of features quantified in each sample. This represents a chal-
lenge both in terms of identifying relevant features and ensuring that methods are computationally 
scalable. Second, the data are noisy, with wide variability in microbial abundances across subjects. 
This challenge necessitates the use of sparse modelling approaches to focus on the most inform-
ative features. Next, the data are compositional, which means that the counts within each sample 
have a fixed sum constraint, and can only be interpreted on a relative scale. Finally, there is a ques-
tion of how to best leverage the information encoded in microbiome tree structures. Taxonomic 
trees reflect the traditional classification of microorganisms into a hierarchy with the levels king-
dom, phylum, class, order, family, genus, and species. Phylogenetic trees reflect evolutionary his-
tory, with branch points corresponding to events that gave rise to differences in the genomic 
sequences. Phylogenetic trees are potentially useful in analysis because they encode rich informa-
tion on sequence similarity, which drives phenotypic and functional similarity. Without account-
ing for phylogenetic tree structures, genetically distinct but functionally similar OTUs are treated 
as independent features, which can make inference more challenging.

Both machine learning and model-based approaches have been proposed for clustering of mi-
crobiome samples. Most machine learning methods require first determining pairwise distances 
between samples, using metrics such as Bray-Curtis dissimilarity (Bray and Curtis, 1957), un-
weighted UniFrac distance (Lozupone and Knight, 2005), or weighted UniFrac distance 
(Lozupone et al., 2007). The pairwise distances are then taken as input to an algorithm such as 
K-means (MacQueen, 1967) or PAM (Kaufman and Rousseeuw, 2008) to identify an appropriate 
partition of the samples into groups.

As an alternative to distance-based clustering methods, Holmes et al. (2012) proposed the 
model-based Dirichlet multinomial mixtures (DMM) approach. The DMM method can be ap-
plied to a few hundred variables, and may therefore be used to analyze counts grouped by genus. 
However, it does not perform feature selection, and therefore does not scale well to the thousands 
of features in data defined at the finer level of OTUs. Beyond the limited scalability of DMM, the 
machine-learning and model-based clustering methods listed above share a common limitation: 
the number of clusters needs to be either taken as known, or chosen based on post-hoc criteria. 
For example, to apply K-means or PAM when the number of clusters is not known a priori, 
one can calculate the silhouette width for a range of possible cluster numbers, and adopt the cluster 
number which achieves the highest value (Rousseeuw, 1987). Other commonly used methods for 
determining the number of clusters, such as the gap statistic, can only be applied to Euclidean dis-
tances, and are therefore not suitable for microbiome data. For the DMM model, Holmes et al. 
(2012) proposed determining the number of clusters by calculating model evidence via the 
Laplace approximation over a range of possible values and choosing the maximum.

In this paper, we adopt a mixture of finite mixtures (MFM) model, which puts a prior on the 
number of clusters. To efficiently handle the high dimensionality of microbiome data, in the choice 
of mixture component distributions, we exploit the conjugacy between the Dirichlet and Dirichlet 
tree distributions and the multinomial distribution. Also, we hypothesize that microbiome data-
sets often contain “noise” OTUs that mask signal from informative OTUs and hinder successful 
clustering. We therefore select informative features during the clustering processes. We refer to our 
proposed modelling approaches based on the Dirichlet and Dirichlet tree distributions as MFM 
Dirichlet multinomial (MFMDM) and MFM Dirichlet tree multinomial (MFMDTM), 
respectively.

To illustrate the real-world utility of our proposed microbiome clustering approaches, we apply 
these methods to characterize tumour microbiome heterogeneity in a study of pancreatic ductal 
adenocarcinoma (PDAC) patients (Riquelme et al., 2019). This dataset consists of 68 tumour sam-
ples from PDAC patients collected at two hospitals, where each patient contributed one tumour 
sample. Of the patients included in the study, 36 survived longer than 5 years after surgery (long- 
term survivors), while the rest died within 5 years after surgery (short-term survivors). Riquelme 
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et al. (2019) reported that higher microbiome diversity was associated with better outcomes in 
these patients and identified a microbiome signature based on differentially abundant microbiome 
features between the long- and short-term survivors. However, their results indicated that long- 
term survivors had more consistent tumour microbiome profiles than short-term survivors, which 
suggests that two-group comparisons might not appropriately capture the heterogeneity among 
short-term survivors. Here, we provide further insight into this dataset, through the use of un-
supervised clustering to characterize naturally occurring sample groups and identify relevant 
features.

The paper is structured as follows. In section 2, we present the formulation of the clustering and 
feature selection methods. In section 3, we describe the implementation of the proposed method. 
In section 4, we provide an extensive comparison of the performance of our proposed method to com-
peting methods on simulated data. Finally, we provide results from our proposed method on the mo-
tivating pancreatic cancer dataset in section 5, and we conclude with a brief discussion in section 6.

2 Formulation of the MFMDM and MFMDTM methods
In a model-based clustering approach, samples are assumed to come from various subpopulations. 
The observations within each subpopulation, or mixture component, are assumed to follow a 
parametric distribution with parameters specific to that mixture component. In the current 
work, we adopt this model-based framework. In this section, we first describe the likelihood of 
the data within each mixture component. We consider both the basic Dirichlet multinomial distri-
bution, which underlies the existing DMM approach, as well as the Dirichlet tree multinomial, 
which allows us to integrate information on the taxonomic or phylogenetic tree structure. We 
then develop the Bayesian prior formulation that allows us to achieve both feature selection 
and clustering into a flexible number of mixture components, using an MFM model. We therefore 
refer to our method based on the Dirichlet multinomial as the MFMDM method and the approach 
based on the Dirichlet tree multinomial as the MFMDTM method.

2.1 Dirichlet multinomial and Dirichlet tree multinomial distributions
The simplest form of a microbiome dataset involves an N × d matrix Y, where N is the number of 
observations, and d is the number of features. The entry yi,j represents the number of counts ob-
served for the jth feature in the ith observation. Under the simplest model for count data, the vector 
of counts for the ith observation could be modelled as yi ∼ Multinomial(q1, q2, . . ., qd). In prac-
tice, microbiome data tend to have higher variation than captured by the multinomial distribution, 
which assumes fixed proportions q = q1, q2, . . ., qd. For this reason, it is helpful to treat the pro-
portions q as random variables. If we assume q ∼ Dirichlet(α, α, . . ., α), we can integrate out q to 
obtain the Dirichlet multinomial distribution:

P(yi | α) =
yi,.!

yi,1!yi,2!. . .yi,d!

Γ(dα)

Γ(α)d

Γ(yi,1 + α)Γ(yi,2 + α). . .Γ(yi,d + α)
Γ(yi,. + dα)

, (1) 

where yi,. is the summation of counts for the ith observation. The Dirichlet multinomial distribu-
tion is frequently used to model microbiome data because it better captures overdispersion than 
the simple multinomial likelihood (Chen and Li, 2013; Holmes et al., 2012). In particular, several 
regression models for microbiome data have been proposed that rely on the Dirichlet multinomial 
distribution (Chen and Li, 2013; Wadsworth et al., 2017).

Since microorganisms that are closely related often have similar functions, we can potentially 
better capture microbiome variation among samples by recognizing the structure among the ob-
served features, which can be described using a taxonomic or phylogenetic tree structure. An ex-
tension of the Dirichlet distribution, the Dirichlet tree distribution (Dennis, 1991), can help us 
achieve this goal while maintaining conjugacy to the multinomial distribution. Figure 1 gives an 
example of the Dirichlet tree distribution, where the probability of a count being allocated to a 
leaf is the product of the branch probabilities leading to that leaf. When applied to model micro-
biome data, each tree node represents a taxonomy unit, and nodes closer to the top correspond to 
more generic or broad groupings. In the toy example shown in Figure 1, node A (the root node) 
could represent the kingdom Bacteria. We could then classify a random sequence as belonging 

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssc/article/72/1/20/7035416 by U

niv. of Texas M
. D

. Anderson C
ancer C

enter user on 03 April 2023



J R Stat Soc Series C: Applied Statistics, 2023, Vol. 72, No. 1                                                                 23

to either phylum B or phylum C, each with 50% probability. If the sequence corresponds to phy-
lum B, it could be further classified as belonging to class D with 40% probability or class E with 
60% probability. Finer taxonomic or phylogenetic classification could be reflected by a tree with 
additional levels. While the Dirichlet multinomial distribution remains more commonly used to 
model microbiome data, the Dirichlet tree multinomial distribution has also been proposed in set-
tings such as differential abundance testing and regression modelling (Tang et al., 2018; Tang and 
Nicolae, 2017; Wang and Zhao, 2017). To the best of our knowledge, we are the first to propose 
using the Dirichlet tree multinomial in the context of clustering.

We now describe some useful properties of the Dirichlet tree distribution in more detail. In par-
ticular, the Dirichlet tree distribution is conjugate to the multinomial distribution. To demonstrate 
this property, we can represent a multinomial sample as the outcome of a finite stochastic process. 
The probability of a count assigned to tree node j being further classified to its child node k is bjk. 
Given the tree structure T and the branch probabilities B between nodes and their children, the 
probability of a single count x can be written as P(x |B, T) =


j∈J


k∈Kj

b
δjk(x)
jk , where J is the set 

of parent nodes, Kj is the set of child nodes directly descending from node j (not including any grand-
children or further descendants), and δjk(x) is the indicator of whether the count x passes through 
the branch linking node j and node k. For the branch probabilities bjk ∈ B, bjk > 0 for j ∈ J, and 

k∈Kj
bjk = 1. In this paper, we use yi to denote the count vector for the ith observation, and Y 

to denote the corresponding count matrix for all the observations. Given the tree structure T and 
the vector yi, one can compute the |J| × (|J| + d) matrix Xi for the ith observation, where |J| is the 
number of internal nodes of the tree and d is the number of OTUs, i.e., leaf nodes of the tree. 
The matrix Xi describes the number of counts travelling from parent nodes to children nodes. 
The collection of these matrices is denoted as X. The probability of the matrix of counts for the 
ith sample is:

P(Xi |B, T) =


j∈J

nj,.(Xi)!
nj,1(Xi)!nj,2(Xi)!. . .nj,|Kj|(Xi)!



k∈Kj

b
nj,k(Xi)
jk , (2) 

where nj,.(Xi) is the sum of the counts for all the nodes descending from node j for the ith observa-
tion, nj,k(Xi) is the number of counts descending from node j to node k for the ith observation, and 
|Kj| is the number of children of node j.

A Dirichlet tree distribution can be expressed as a product of Dirichlet densities, 
P(B) =


j∈J p(bj). If each bj is given a Dirichlet prior, P(bj|α) = Dirichlet(α, α, . . ., α), one can ob-

tain a Dirichlet tree multinomial distribution for observation i, after integrating out B:

Figure 1. An example of the Dirichlet tree distribution.
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P(Xi |T) =


j∈J

nj,.(Xi)!
nj,1(Xi)!nj,2(Xi)!. . .nj,|Kj|(Xi)!

·





k∈Kj

Γ(|Kj|α)

{Γ(α)}|Kj|

{


k∈Kj
Γ(α + nj,k(Xi))}

Γ(|Kj|α +


k∈Kj
nj,k(Xi))

⎤

⎦.

(3) 

2.2 Feature selection
In the current work, feature selection is achieved by identifying a parsimonious set of OTUs or tree 
nodes that exhibit differential abundance across groups. The rest of the features are not inform-
ative regarding the sample clustering, meaning that the corresponding parameters describing their 
relative abundance are not cluster-specific. To obtain a sparse model that selects informative 
OTUs or tree nodes, we introduce a binary vector γ, whose entries indicate whether the corre-
sponding features are useful in discriminating between sample groups, where γj = 1 if j is an in-
formative feature and 0 otherwise. For simplicity, we use a Bernoulli prior for γ: 
p(γ) ∝

d
j=1 wγj (1 − w)1−γj (George and McCulloch, 1993; Madigan et al., 1995), where d is the to-

tal number of features, and the prior probability of a feature being informative is w. In both the 
MFMDM and MFMDTM models, we select features that are relevant to clustering. We consider 
features not contributing to clustering as “noise” features, and features facilitating clustering as 
informative features.

2.2.1 Feature selection in the MFMDM model
In the proposed parsimonious model, the parameters describing the ith observation can be divided 
into a common part shared across all observations p1, p2, . . . , pd−dγ , and a part specific to the clus-
ter the ith observation belongs to, wci , qci,1, qci,2, . . . , qci,dγ , where ci denotes the index of the clus-
ter to which observation i belongs, dγ denotes the number of informative features, and wci controls 
the proportion of counts belonging to the informative features in cluster ci. Each observation is 
modelled as a multinomial variable with parameters yi ∼ Multinomial((1 − wci )p1, (1 − wci )p2, 
. . ., (1 − wci )pd−dγ , wci qci,1, wci qci,2, . . ., wci qci,dγ ). In our notation, we reorder the elements of yi 
such that the first d − dγ elements are noisy and the remaining are informative, i.e., yi = (yni, yei).

The length of the vectors p = (p1, p2, . . . , pd−dγ ) and qci
= (qci,1, qci,2, . . . , qci,dγ ) will change 

with the number of OTUs selected as informative, but both p and qci 
sum to 1, thus guaranteeing 

the mean vector of the multinomial distribution will sum to 1 as well. Finally, the likelihood for 
observation i can be written as:

P(yi | ci, p, qci
, wci , γ) =

yi,.!

yn,i,1!. . .yn,i,d−dγ !ye,i,1!. . .ye,i,dγ !

× {(1 − wci )p1}yn,i,1 . . .{(1 − wci )pd−dγ }
yn,i,d−dγ

× (wci qci,1)ye,i,1 . . .(wci qci,dγ )
ye,i,dγ .

(4) 

For observation i, yn,i,j is the number of counts of “noise” OTU j, ye,i,l is the number of counts of 
the informative OTU l, and yi,. = yn,i,. + ye,i,. is the total number of counts. The likelihood for all 
the observations is P(Y | p, q, w, γ, c) =


c∈C


ci=c P(yi | ci, p, qci

, wci , γ), where C denotes the set 
of distinct cluster indices.

In order to obtain a more tractable posterior distribution, we use the simplest conjugate priors 
by setting:

p1, p2, . . ., pd−dγ ∼ Dirichlet(α, α, . . ., α)
qc,1, qc,2, . . ., qc,dγ ∼ Dirichlet(α, α, . . ., α)

wc ∼ Beta(β1, β2).
(5) 
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For simplicity and objectivity, we assume all the parameters in the Dirichlet distribution are equal. 
Since our primary interest is in learning the cluster assignments and identifying discriminating fea-
tures, we integrate out the remaining parameters to speed up computation. The resulting marginal 
likelihood is:

P(Y | γ, c) =
N

i=1

yi,.!

yn,i,1!. . .yn,i,d−dγ !ye,i,1!. . .ye,i,dγ !

Γ((d − dγ)α)

{Γ(α)}d−dγ

×
Γ
N

i=1 yn,i,1 + α


. . .Γ
N

i=1 yn,i,d−dγ + α


Γ(yn,.,. + (d − dγ)α)

×


c∈C

Γ(β1 + β2)
Γ(β1)Γ(β2)

Γ


β1 +


ci=c ye,i,.


Γ


β2 +


ci=c yn,i,.



Γ


β1 + β2 +


ci=c yi,.



×
Γ(dγα)

{Γ(α)}dγ

Γ


ci=c ye,i,1 + α


. . .Γ


ci=c ye,i,dγ + α


Γ


ci=c ye,i,. + dγα
 .

(6) 

2.2.2 Feature selection in the MFMDTM model
In the MFMDTM model, “noise” nodes’ allocation probabilities are the same across clusters. In 
contrast, informative nodes have cluster-specific allocation probabilities. We denote the set of in-
formative parent nodes Je, and the set of “noise” parent nodes Jn, with J = Je ∪ Jn. The MFMDTM 
method can therefore highlight the level within the tree structure where the sample composition 
begins to differentiate between clusters. This could be potentially advantageous when groups of 
microorganisms close together in the tree, which are typically functionally related, are up- or 
down-regulated in a coordinated manner.

We denote all the parameters associated with observation i as Bi, with the part belonging to the 
“noise” nodes as bj, j ∈ Jn, and the part shared only by the observations in the same cluster bj(ci), 
j ∈ Je, ci ∈ {1, 2, . . ., C}. The likelihood of the vector of counts for the ith observation Xi is:

P(Xi |B, T, γ, ci) =


j

nj,.(Xi)!
nj,1(Xi)!nj,2(Xi)!. . .nj,|Kj|(Xi)!



j∈Jn



k∈Kj

b
nj,k(Xi)
jk



j∈Je



k∈Kj

bjk(ci)
nj,k(Xi).

(7) 

The likelihood for the matrix of counts across all observations X is then:

P(X|B, T, γ, C) =


i



j

nj,.(Xi)!
nj,1(Xi)!nj,2(Xi)!. . .nj,|Kj|(Xi)!

 



j∈Jn



k∈Kj

b
nj,k(X)
jk



c∈C



j∈Je



k∈Kj

bjk(c)nj,k(Xc).

(8) 

Here nj,k(X) is the total number of counts descending from node j to the kth child node for all the 
observations, nj,k(Xc) is the total number of counts descending from node j to the kth child node 
for the observations in cluster c, bj,k is the probability of assigning count from non-informative 
node j to its kth descending node, and bj,k(c) is the probability of assigning count from informative 
node j to its kth descending node in cluster c.

Again, for simplicity of computation, we use the strategy of integrating out parameters. We con-
sider the simplest conjugate prior bj | α ∼ Dirichlet(α, α, . . . , α), and integrate out B. The marginal 
likelihood is:

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssc/article/72/1/20/7035416 by U

niv. of Texas M
. D

. Anderson C
ancer C

enter user on 03 April 2023



26                                                                                                                                                         Shi et al.

P(X |T, γ, c) =


i



j

nj,.(Xi)!
nj,1(Xi)!nj,2(Xi)!. . .nj,|Kj|(Xi)!

 



j∈Jn

Γ(|Kj|α)

{Γ(α)}|Kj|

(


k∈Kj
Γ(α + nj,k(X)))

Γ(|Kj|α +


k∈Kj
nj,k(X))



c∈C



j∈Je

Γ(|Kj|α)

{Γ(α)}|Kj|

(


k∈Kj
Γ(α + nj,k(Xc)))

Γ(|Kj|α +


k∈Kj
nj,k(Xc))

.

(9) 

2.3 Mixture of finite mixtures
When the number of clusters is not prespecified, one can treat the data as arising from an infinite 
mixture of distributions, as in a Bayesian non-parametric approach such as the Dirichlet process 
mixture model. However, it has been shown that in a Dirichlet process mixture model, the number 
of clusters will grow with the number of observations (Miller and Harrison, 2014). Alternatively, 
one can treat the data as arising from a finite mixture of a given distribution and use methods such 
as reversible-jump Markov chain Monte Carlo (RJMCMC) to learn the number of clusters from 
the data (Richardson and Green, 1997; Tadesse et al., 2005). Miller and Harrison (2018) proved 
that the MFM can consistently estimate the number of clusters, while the number of clusters in 
Dirichlet process mixtures will increase with sample size. They also demonstrated that efficient al-
gorithms designed for the Dirichlet process mixture context can be applied for MFMs, avoiding 
the need for RJMCMC, which is notorious for being difficult to implement and computationally 
intensive. For this reason, we adopt the MFM in our modelling approach. The hierarchical formu-
lation of our proposed model using the MFM framework is:

M ∼ pm, where pm is a p.m.f on {1, 2, . . .},

(π1, . . ., πM)|M = m ∼ Dirichletm(η, . . ., η),

c1, . . ., cN|π ∼ Categorical(π),

γ ∼
d

j=1

Bernoulli(w),

θ ∼ G00, θ1, . . ., θM ∼ G0,

MFMDM model:

G0 | γ = Dirichlet(αe),

G00 | γ = Dirichlet(αn),

MFMDTM model:

G0 | γ =


γk=1

Dirichlet(αk),

G00 | γ =


γl=0

Dirichlet(αl),

Xi | θ1 : M, c1 : N, θ ∼ F(θci , θ), for i = 1, . . ., N.

Here, M is the underlying number of components in the population. The vector π = (π1, . . ., πM) is 
the probability of a random sample belonging to a component. c1, . . ., cN are the indices of the clus-
ter to which each sample belongs. The vector γ is the feature selection indicator introduced in section 
2.2. θ includes the parameters of the “noise” features, which are shared across all clusters, while θi is 
the set of corresponding parameters for informative features of cluster i. For the MFMDM model, 
the distribution for θ – G00 and the base distribution for θms – G0, are two Dirichlet distributions, 
and the length of the parameter vectors correspond to the number of 0 and 1 elements in γ, 
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respectively. For the MFMDTM model, G00 and G0 are products of Dirichlet distributions, where 
the length of vector αj depends on the number of children nodes for node j. Without knowledge sug-
gesting that informative features allocate counts more evenly (or less evenly) to their children than 
noisy features, we adopt the same prior for noisy features and informative features, with the pur-
pose of facilitating a smooth transition between noisy and informative in the feature selection pro-
cess. For simplicity, we let the parameter vectors of the Dirichlet distributions, including αe, αn in the 
MFMDM model and αj in the MFMDTM model be vectors of 1s for both G0 and G00. F is the mix-
ing kernel introduced in the above subsections, i.e., the multinomial distribution.

Similar to the Dirichlet process mixture model, the underlying discrete measure of the MFM 
model has a Pólya urn scheme representation, which enables sampling of the parameters for 
each observation sequentially. This close parallelism makes most sampling algorithms designed 
for the Dirichlet process mixture model directly applicable (Miller and Harrison, 2018). The par-
ameter set for observation i, θi, will either take the identical value of an existing parameter, or a 
newly generated value from the base distribution G0 with the following probability: θi | θ−i ∼ 

c∈C (nc,−i + η)δ(θ∗c ) + VN(|C|+1)
VN(|C|) ηG0, where θ−i are the parameters for all the observations except 

for the ith observation; θ∗cs are the distinct values of θ−i, and nc,−is are the corresponding numbers 
of observations having the parameter θ∗c , except for the ith observation. The function VN(R) is de-
fined as VN(R) =

∞
m=R

Γ(m+1)Γ(ηm)
Γ(m−R+1)Γ(ηm+N) pM(m). This completes the specification of the MFMDM 

and MFMDTM models.

3 Method implementation
Obtaining a sample from the posterior distribution of either model requires the use of Markov 
chain Monte Carlo (MCMC). In each MCMC iteration, we first select OTUs or tree nodes by up-
dating the latent indicator γ given the current cluster assignments, then fix γ and apply the 
split-and-merge algorithm to assign observations into clusters. Here we provide a high-level de-
scription of the algorithm, with additional details provided in the online supplementary material.

3.1 Updates to feature selection indicators
The latent selection indicator γ is updated by repeating the following Metropolis step t times, 
where t = 20 following the suggestion of Kim et al. (2006). A new candidate γnew is generated 
by randomly choosing one of the two transition moves: 

(a) add/delete by randomly picking one of the d indices in γold and changing its value (from 0 to 1 
or from 1 to 0);

(b) swap by randomly drawing a 0 and a 1 in γold and switching their values.

The new candidate is accepted with probability min 1, f (γnew |X, c)
f (γold |X, c)

 
, where c is the cluster assignment 

vector. As f (γ |X, c) ∝ f (X | γ, c)P(γ), the proposed acceptance probability can be calculated by:

f (γnew |X, c)
f (γold |X, c)

=
f (X | γnew, c)P(γnew)
f (X | γold, c)P(γold)

. (10) 

With the saved MCMC samples, one can calculate the marginal posterior inclusion probability vec-
tor π for all the features. For feature i, the posterior inclusion probability πi is the number of times 
feature i was selected divided by the number of saved MCMC iterations. One could then rely on a 
pre-specified threshold as the cutoff for selection; a threshold of 0.5 is a common choice, as it was 
shown to be optimal in the context of regression modelling (Barbieri and Berger, 2004). An alter-
native approach is to calculate the expected false discovery rate (FDR) from π and control the FDR 
to a target level. Further discussion is given in online supplementary material, Section S4.1.

3.2 Updates to cluster assignments
We update the latent sample allocation vector c using Jain and Neal (2004)’s split-and-merge al-
gorithm by first selecting two distinct observations, i and l uniformly at random. Let C denote the 
set of other observations that are in the same cluster with i or l.
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If C is empty, we use the simple random split-merge algorithm. Otherwise, we use the restricted 
Gibbs sampling split-merge algorithm. Both involve a Metropolis-Hastings sampling step, with 
acceptance probability:

a(cmerge, c) = min 1,
q(c | cmerge)P(cmerge)L(cmerge |X, γ)

q(cmerge | c)P(c)L(c |X, γ)

 

(11) 

if ci ≠ cl, and

a(csplit | c) = min 1,
q(c | csplit)P(csplit)L(csplit |X, γ)

q(csplit | c)P(c)L(c |X, γ)

 

(12) 

if ci = cl.
For the simple random split-merge algorithm, q(c|cmerge)

q(cmerge|c) = 1, q(c|csplit)
q(csplit|c) = 1. For the restricted Gibbs   

sampling, we first randomly create a launch state. This launch state is modified by a series of “inter-
mediate” restricted Gibbs sampling steps to achieve a reasonable split of the observations. The last 
launch state is used for the calculation of the transient probabilities. Details on the split-and-merge 
algorithm and computing times are provided in the online supplementary material.

The prior ratio, P(cmerge)/P(c) or P(csplit)/P(c), relies on the partition distribution P(c). In an 
MFM model, the probability function of c is P(c) = VN(|C|)


c∈C η(nc).

The probabilities of splitting a cluster and combining two clusters are:

P(csplit)
P(c)

=
VN(|C| + 1)

VN(|C|)
Γ(nc1 + η)Γ(nc2 + η)
Γ(nc1 + nc2 + η)Γ(η)

; (13) 

P(cmerge)
P(c)

=
VN(|C| − 1)

VN(|C|)
Γ(nc1 + nc2 + η)Γ(η)
Γ(nc1 + η)Γ(nc2 + η)

, (14) 

where nc1 and nc2 are the number of observations in the two clusters.

3.3 Post-processing of MCMC samples
The sampled values of the cluster indices can only describe whether two observations belong to the 
same cluster, but are not comparable between iterations, as the same index value may represent 
different clusters due to the “label switching” issue. In this paper, we adopt Fritsch and Ickstadt 
(2009)’s method for summarizing posterior cluster labels from MCMC samples. We denote the 
proposed clustering estimate as c∗, and estimate the probability that samples i and j belong to 
the same cluster from M MCMC samples by ζ ij = 1

M

M
m=1 I(c(m)

i = c(m)
j ). A posterior cluster assign-

ment can be obtained by maximizing the adjusted Rand index:

AR(c∗, ζ) =


i<j I{c∗i =c∗j }ζ ij −


i<j I{c∗i =c∗j }


i<j ζ ij/

N
2

( 

1
2


i<j I{c∗i =c∗j } +


i<j ζ ij

 
−


i<j I{c∗i =c∗j }


i<j ζ ij/
N
2

( 
. (15) 

This method can handle the label-switching issue, and can be simply implemented using the R 
package “mcclust” (Fritsch, 2012).

4 Simulation studies
In this section, we first introduce the simulation setup, and then compare the performance of the 
proposed MFMDM and MFMDTM approaches with those from existing distance-based cluster-
ing methods, including PAM and hierarchical clustering (i.e., hcut) with complete linkage using 
the Euclidean, Bray Curtis, unweighted UniFrac, and weighted UniFrac distance metrics. black 
For the completeness of comparison, the performances from the Dirichlet process mixture of 
Dirichlet (tree) multinomials (DPDM and DPDTM) are also included.

To construct the simulated data, we generated observations with structure similar to the dataset 
described in De Filippo et al. (2010). This study included two groups of samples, 14 from Africa 
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and 15 from Italy. The original dataset has 2,803 OTUs with a median sequencing depth of 
13,523. Due to the geographic distance and lifestyle difference between the two sample groups, 
we expect the microbiome profiles for the two groups to be well separated. We chose this dataset 
as the basis for our simulation study since their sequencing data is publicly available and the sam-
ples are well annotated. Also, it has a large number of OTUs with only a moderate number of ob-
servations, which is typical in microbiome data analysis. By relying on an existing microbiome 
dataset as the basis for our simulation study, we ensure that aspects of the simulated data such 
as the distribution of counts and shape of the tree structure resemble those in real data.

In our simulation design, each group has 15 observations, and each observation has 15,000 total 
counts. We simulated five scenarios, with decreasing levels of complexity, and generate the OTU 
counts for the zth scenario, z = 1, 2, . . ., 5, in the following way. 

(a) Choose two non-overlapping subsets of OTUs, Ψ and Λ. In our simulation set-up, one subset 
Ψ accounts for 13% of the counts and 356 OTUs, while the other subset Λ accounts for 15% 
of the counts and 595 OTUs.

(b) Set the expected abundance of the two groups using the marginal distributions. Let pΨ 
and pΛ represent the vectors of marginal probabilities for the subsets Ψ and Λ, respectively. 
For group A, we set the marginal probabilities for OTUs in subset Ψ to pA

Ψ = (1 − z/5)pΨ, and 
correspondingly change the marginal probabilities for OTUs in subset Λ to 
pA

Λ = pΛ(


i∈Λ pi + z/5


i∈Ψ pi)/


i∈Λ pi. For group B, we change the marginal probabilities 
in the opposite direction, pB

Ψ = (1 + z/5)pΨ and pB
Λ = pΛ(


i∈Λ pi − z/5


i∈Ψ pi)/


i∈Λ pi.

(c) Generate the count vectors from a Dirichlet multinomial with the sum of parameters to be 
200. The tree used in the MFMDTM model is the phylogenetic tree of the De Filippo dataset.

(d) Repeat the above steps 200 times to generate 200 simulated datasets.

We now describe the parameter settings using in applying the proposed MFMDM and MFMDTM 
models. The parameters of the Beta distribution in the MFMDM model are set to be β1 = β2 = 1, 
which corresponds to a uniform prior on the number of counts which are informative for cluster-
ing. Similarly, the parameters of the Dirichlet distribution for both the MFMDM and MFMDTM 
are set to be α = 1, which is a uniform prior in the multinomial case. The prior probabilities of 
OTUs being informative is 50%, i.e., w = 0.5 for the MFMDM model. We give M − 1 a 
Poisson(1) distribution, which expresses a preference for a small number of clusters. Sensitivity 
analyses regarding the choice of priors are included in the online supplementary material, S.3.

In both models, a large number of observed sequences inflates the factorial terms in the likeli-
hood, which tends to support finer clusters. Unlike scale invariant mixtures (Malsiner-Walli 
et al., 2014), such as Gaussian mixtures, the likelihood of the Dirichlet (tree) multinomial is de-
pendent on the number of sequences, which reflects both sequencing depth and rarefaction. To 
temper this effect and better achieve meaningful clustering, we take an approach similar to that 
of Grier et al. (2018) who “normalize” the data by first dividing the observed counts by a scaling 
parameter. For the simulated data, we found 50 to be a reasonable scaling parameter. Based on our 
experiments with both simulated and real data, we found that the maximum sequencing depth div-
ided by 300 worked well for the choice of scaling parameter across all settings considered.

For each dataset, we run 20,000 iterations, the first 10,000 of which are discarded as burn-in, and 
then apply a thinning of 10 and keep 1,000 samples for inference. For machine learning methods, 
the number of clusters is determined by the silhouette width, which is appropriate for 
non-Euclidean distances. We measure clustering performance using the adjusted Rand index. 
The expected value of the adjusted Rand index is 0 when clustering is done at random, while 1 re-
flects perfect recovery of the true underlying clusters in the data. Figures 2a and 2b show the per-
formance of our proposed methods, compared to some distance-based clustering methods for 
scenarios 2 and 4. Barplots for scenarios 1, 3, and 5 can be found in online supplementary 
material, Figure S1 Compared with the Dirichlet process mixture (DPM) model, the mixture of fi-
nite mixture (MFM) model can estimate the number of clusters consistently, i.e., the estimated num-
ber of clusters will not inflate with increased sample size. However, we found from our simulation 
studies that the performance of the DPM model and the MFM model is similar, which is in align-
ment with the empirical comparison in Miller and Harrison (2018), who observed that the two 
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methods perform similarly on simulated datasets with moderate sample sizes. The main difference 
is the underlying belief: DPM assumes there are infinite number of mixture components, whereas 
MFM assumes finite number of mixture components. When the separation between the two clusters 
is relatively small, the proposed MFMDTM method, which performs variable selection accounting 
for the tree structure among features, shows a sizeable advantage over the distance-based methods 
including PAM using UniFrac distances, which incorporate phylogenetic information (Figure 2a). 
When the separation between the clusters becomes larger, the performance of MFMDTM still 
shows significant improvement over that of competing methods that do not account for phylogeny 
(Figure 2b). Though the empirical confidence interval is wide, the performance of the MFMDM 
model also improves significantly in this more separated scenario, achieving a median Rand index 
of 1. In general, the methods that incorporate tree information outperform those that do not, with 
MFMDTM achieving the highest adjusted Rand indices across all methods considered.

An advantage of the proposed methods over existing alternatives is that they enable the selection 
of informative features. The inference about informative vs. noisy features is based on the marginal 
posterior distribution of the latent indicator γ, which is estimated from the selection frequencies in 
the MCMC output (Kim et al., 2006). It is worth mentioning that Ψ and Λ contain OTUs with low 
abundance, whose effects are negligible compared with the simulation noise. To set a meaningful 
goal for selection, we consider the 37 high abundance OTUs that differ across groups, from among 
the 197 high abundance OTUs in the dataset, as the true discriminatory features, where “high abun-
dance” is defined as marginal abundance greater than 0.001. For more details regarding feature se-
lection under different thresholds, readers can refer to online supplementary material, Figure S9. As 
shown in Figure 2c, the area under the curve (AUC) values for the receiver operating curve (ROC) 
describing the accuracy of feature selection suggest that MFMDM’s selections are successful even 
when the Rand index is low. To provide intuition for this result, we note that achieving a high Rand 
index is a more challenging task than identifying influential features. To give an extreme example, 
the true cluster assignment is: two clusters with 15 observations each, however, the clustering al-
gorithm concludes that there are two clusters, one with one observation while the other has 29 ob-
servations. The Rand index in this example is 0, but the features that separate one observation from 
the rest can still be the correct features that distinguish the two true clusters. The decrease in the 
AUC for Scenario 5 is due to the fact that the larger separation enables detection of informative 
OTUs that have marginal abundance below 0.001, reducing the specificity. For five simulation 
scenarios, we show the ROC curves generated by varying the threshold on the posterior probability 
of feature inclusion of the 200 datasets in online supplementary material, Figure S10. These results 
show that the proposed method is able to accurately recover the informative features.

The proposed methods are fairly computationally intensive, but still feasible to run on a desktop 
computer. More specifically, for the simulated data described above, on a computer with an Intel 
Core i9-10900K 3.70GHz processor and 64 GB memory, it takes Rcpp 14.58 minutes for 1000 
MCMC iterations with the MFMDM model, and MATLAB R2020a 21.87 min for 1000 MCMC 
iterations with the MFMDTM model. We adopted a MATLAB implementation for the 
MFMDTM due to its simplicity in handling multi-dimensional arrays. The run time for the 
DPMDM model is similar to that of the MFMDM model (14.53 min). The difference in computation 
time between the MFM model and the DPM model is within 1% of the total run time. Increasing the 
number of samples to 200 results in a run time of less than 2 h for 1000 MCMC iterations.

5 Case study: tumour microbiome heterogeneity in pancreatic cancer
The goal of this case study is to provide insight into heterogeneity of the microbiome across pan-
creatic cancer patients. We rely on the dataset described by Riquelme et al. (2019), which consists 
of microbiome profiles for 68 surgically resected PDAC samples. Among these 68 samples, 36 
were obtained from long-term survivors, with survival times greater than 5 years, and 32 were ob-
tained from stage-matched short-term survivors, who survived 5 years or less. Subjects were re-
cruited from two cancer centres: The University of Texas MD Anderson Cancer Center (MDA, 
n = 43) and Johns Hopkins University (JHU, n = 25). The microbiome profiling data include 
2,410 OTUs corresponding to 1,095 taxonomic units at or above the species level.

In order to uncover the natural sample groups and features driving these sample clusters, we ap-
plied the MFMDTM method to this dataset, using the same parameter settings as in the 
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simulation. For the MDA cohort, exact survival times were reported for 42 subjects, while for the 
JHU cohort, only a binary indicator of whether a patient survived more than 5 years was provided. 
For the patients with exact survival times, we plot a heatmap showing the posterior probability of 
any two observations belonging to the same cluster, where samples are sorted by survival time 
(Figure 3). The heatmap shows that long-term survivors cluster together with high probability, 
suggesting that their microbiome profiles are more consistent than that of short-term survivors. 
This finding suggests that it may be fruitful for researchers to investigate the specific bacteria pre-
sent in long-term survivors, as reflecting a distinctive protective microbiome state. A similar con-
clusion can be drawn from the heatmap of all the samples using both the MFMDM and 
MFMDTM methods (online supplementary material, Figure S2). Our finding that long-term sur-
vivors consistently cluster together is particular interesting, since the long-term survivors came 
from two distinct geographic locations. Though some pre-clinical models (Aykut et al., 2019; 
Pushalkar et al., 2018) have suggested that certain microbial species are positively associated 
with tumour progression, our finding is aligned with that of Riquelme et al. (2019), who con-
cluded that a protective microbiome induces anti-tumour immunity in long-term survivors and 
that those protective species are the key for future interventions.

Our model can also identify nodes in the taxonomic tree that drive the clustering of the samples. 
Figure 4 shows the nodes with high posterior inclusion probabilities, the majority of which were 
also identified in Riquelme et al. (2019). The original paper showed the predominance of 
Clostridia in short-term survivors and Alphaproteobacteria in long-term survivors at the class lev-
el, while our method shows that the two corresponding phyla, Firmicutes and Proteobacteria, are 
differential across clusters with posterior probability greater than 95%. Riquelme et al. (2019)
identified the species Bacillus clausii as predictive of survivorship, and our method selects the ge-
nus it belongs to as a relevant feature. Some of the taxa identified our analysis using MFMDTM 
and the analysis by Riquelme et al. (2019) were discovered by previous research on PDAC. For 
example, Farrell et al. (2012) found that the abundance of the genus Corynebacterium is lower 
in PDAC patients than in healthy individuals, while our method specifically points out that the al-
location probability for the family Corynebacteriaceae is differential across clusters. Geller et al. 
(2017) discovered that Proteobacteria producing cytidine deaminase are most associated with 
pancreatic cancer and our model identified several features under the phylum Proteobacteria, in-
cluding the families Porphyromonadaceae and Enterobacteriaceae. In addition, MFMDTM iden-
tifies features that have not been thoroughly discussed in the pancreatic cancer literature before, 
such as the order Rhizobiales, which was found in higher abundance among patients with 
Helicobacter pylori-negative intestinal metaplasia than those with Helicobacter pylori-negative 
chronic superficial gastritis or cancer (Park et al., 2019).

Compared with the LEfSe method used in the original paper for differential abundance analysis 
(Segata et al., 2011), which tends to select nested features, our method can identify the exact 

Scenario2

Eu: Euclidean Distance BC: Bray Curtis UU: Unweighted UniFrac WU: Weighted UniFrace DPM MFM

E
u 

PA
M

 s
ilh

ou
et

te

E
u 

hc
ut

 s
ilh

ou
et

te

B
C

 P
A

M
 s

ilh
ou

et
te

B
C

 h
cu

t s
ilh

ou
et

te

U
U

 P
A

M
 s

ilh
ou

et
te

U
U

 h
cu

t s
ilh

ou
et

te

W
U

 P
A

M
 s

ilh
ou

et
te

W
U

 h
cu

t s
ilh

ou
et

te

D
P

D
M

M
F

M
D

M

D
P

D
T

M

M
F

M
D

T
M

0.0

0.2

0.4

0.6

0.8

1.0

Scenario4

E
u 

PA
M

 s
ilh

ou
et

te

E
u 

hc
ut

 s
ilh

ou
et

te

B
C

 P
A

M
 s

ilh
ou

et
te

B
C

 h
cu

t s
ilh

ou
et

te

U
U

 P
A

M
 s

ilh
ou

et
te

U
U

 h
cu

t s
ilh

ou
et

te

W
U

 P
A

M
 s

ilh
ou

et
te

W
U

 h
cu

t s
ilh

ou
et

te

D
P

D
M

M
F

M
D

M

D
P

D
T

M

M
F

M
D

T
M

MFMDTM

0.0

0.2

0.4

0.6

0.8

1.0

OTUSelectionAUC

S
ce

na
rio

 1

S
ce

na
rio

 2

S
ce

na
rio

 3

S
ce

na
rio

 4

S
ce

na
rio

 5

0.0

0.2

0.4

0.6

0.8

1.0

(a) (b) (c)

Figure 2. Comparison with machine learning methods in terms of Rand indices, and the area under the curve (AUC) 
of the high abundance OTUs. The bar heights represent the median over 200 datasets, and the black intervals 
represent the empirical estimate of the 95% confidence interval. (a) Scenario 2 (b) Scenario 4 (c) OTU Selection AUC.
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taxonomic level at which clusters are different. For completeness, we plot a heatmap showing the 
conditional probability of allocating a count to each child node for each selected parent node 
(online supplementary material, Figure S3) and a principal coordinate analysis (PCoA) plot of 
the samples coloured by the MFMDTM cluster assignment (online supplementary material, 
Figure S4).

6 Discussion
We have proposed two novel approaches for clustering of microbiome samples. Unlike existing ap-
proaches for microbiome clustering, our methods perform variable selection, which enables biological 
understanding of features that differentiate clusters present in the data, and does not require pre- 
specification of the number of clusters. The simulation results demonstrate that our methods can 
outperform commonly used unsupervised clustering algorithms in terms of the adjusted Rand index, 
suggesting that our sparse models are not only more interpretable but also more robust to noise.

Our application to tumour microbiome profiling of pancreatic cancer patients enhances the ori-
ginally published analysis of this dataset: while (Riquelme et al., 2019) applied LefSe to identify 
microbiome features assuming known group membership, our approach shows that the long-term 
survivors make up a more natural cluster, while the short-term survivors are more heterogeneous, 
and our approach identifies additional features that are differential across the inferred clusters. 
These findings could guide the development of future microbiome interventions to improve cancer 
outcomes, which is an active and exciting area of current medical research (McQuade et al., 2019; 
Reticker-Flynn and Engleman, 2019). The DMM model code is included in the R package 
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Figure 3. Heatmap showing the posterior probability of being assigned to the same cluster for patients with exact 
survival time for Riquelme et al. (2019) data. Patients are ordered by their survival times.
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BayesianMicrobiome, while the Dirichlet tree multinomial mixture is implemented using Matlab. 
Both are available at https://github.com/YushuShi/sparseMbClust.

In this manuscript, we have largely focused on data obtained from 16S profiling. However, there 
is increasing interest in metagenomic whole-genome sequencing (WGS) approaches, which allow 
for the comprehensive sequencing of all DNA present in a sample. While there are some differences 
between these two sequencing approaches, our methods are applicable to WGS data as well. More 
specifically, WGS can allow additional characterization of functional metabolic pathways by as-
signing the observed genetic sequences to biological roles, using tools such as HUMAnN2 or 
FMAP (Franzosa et al., 2018; Kim et al., 2016). Interestingly, these pathways can be organized 
into an ontological hierarchy (Caspi et al., 2013), making our tree-based clustering approach ap-
plicable in this context as well. The proposed methods can be scaled to hundreds of observations 
with several thousand features, as they exploit the conjugacy between the Dirichlet (tree) priors 
and multinomial distributions and rely on efficient Rcpp/Matlab implementations. If greater com-
putational scalability is needed (for example, when applying the method to amplicon sequence 
variants obtained from WGS), a faster approach would be using variational inference to approxi-
mate the posterior. Variational inference for unsupervised clustering with simultaneous feature se-
lection is an area that we would like to explore in our future research.

Finally, the proposed MFMDTM model assumes a fixed tree, but in reality, there may be uncer-
tainty regarding the tree structure. One potential approach to incorporate uncertainty in the tree 
structure is to summarize the tree as a matrix of pairwise distances between the features 
(Zhang et al., 2021) and express the uncertainty of the tree structure through the variance of 
this matrix. The application of our methods to functional data derived from WGS and to settings 
with uncertainty regarding the tree structure are potential topics of interest in future work.

Supplementary material
Supplementary material are available at Journal of the Royal Statistical Society: Series C online.
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