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Introduction: Imaging of tumors is a standard step in diagnosing cancer and
making subsequent treatment decisions. The field of radiomics aims to develop
imaging based biomarkers using methods rooted in artificial intelligence applied
to medical imaging. However, a challenging aspect of developing predictive
models for clinical use is that many quantitative features derived from image data
exhibit instability or lack of reproducibility across different imaging systems or
image-processing pipelines.

Methods: To address this challenge, we propose a Bayesian sparse modeling
approach for image classification based on radiomic features, where the inclusion
of more reliable features is favored via a probit prior formulation.

Results: We verify through simulation studies that this approach can improve
feature selection and prediction given correct prior information. Finally, we
illustrate the method with an application to the classification of head and neck
cancer patients by human papillomavirus status, using as our prior information a
reliability metric quantifying feature stability across different imaging systems.
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1 Introduction

Imaging is a key step in the diagnosis, staging, and assessment of treatment response in
cancer. Patient images, which may be collected using x-ray, computed tomography (CT),
magnetic resonance (MR), or other imaging systems, are typically interpreted by a
radiologist. However, relying on humans to review medical images has critical
limitations, including time, expense, and variability among image readers. The field of
radiomics aims to use quantitative methods to characterize images, essentially considering
them as a form of high-dimensional data. A large number of radiomic features can be
automatically extracted from the image that can then be used in the development of
diagnostic, predictive, or prognostic models.

In this work, we propose a novel approach for the classification of patients based on
radiomic features derived from imaging data. Our method relies on Bayesian priors to favor
the selection of features that have been shown in previous studies to be more robust to
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extraneous aspects of image acquisition and processing. To lay the
groundwork for our proposed method, we begin with a review of
radiomics and relevant statistical modeling approaches in Section 2.
In Section 3, we introduce our proposed sparse classification model,
which can predict a patient’s group membership based on radiomic
features. To improve estimation accuracy and interpretability of the
model, we rely on a Bayesian variable selection framework to
identify features that are relevant to the classification task,
favoring the inclusion of features that are more robust to
extraneous sources of variation. Specifically, we use a probit prior
to incorporate information on feature stability. In Section 3.5, we
describe posterior inference and prediction. In Section 4.1, we
compare the performance of our proposed approach to
alternative methods in terms of variable selection and
classification accuracy. We conclude with a case study in Section
4.2 illustrating the application of our model to classify head-and-
neck cancer patients based on radiomic data, identifying
quantitative imaging features that differ by HPV status.

2 Background

2.1 Radiomics

Radiomics is a framework for medical image analysis that entails
extracting large numbers of quantitative features from imaging data
(Lambin et al., 2012; Gillies et al., 2016). As illustrated in Figure 1,
these features can then be used to objectively characterize aspects of
the tumor, group patients with similar imaging features, and predict
outcomes such as survival or response to treatment. It has been
hypothesized that radiomic features derived from imaging data may
reflect molecular and genomic characteristics of a patient’s tumor
(Aerts et al., 2014). The idea that advanced analytics on images can
capture important information on a patient’s tumor biology and
prognosis is called the radiomics hypothesis (Lambin et al., 2012).

There are many factors motivating the development of the field of
radiomics. A standard approach to ascertain molecular features of the
tumor is to biopsy specific locations within the tumor; this approach is
not only invasive, but may fail to capture the heterogeneity of the tumor
beyond the sites assayed. In particular, it has been noted that
quantifications of molecular features such as protein expression
exhibit spatial and regional differences when multiple biopsies are
taken within a single tumor (Van Meter et al., 2006). To get a more
comprehensive view, radiomic features summarizing the entire tumor
in a medical image can be extracted (Aerts et al., 2014). These radiomic
features are objectively assessed and can be used to develop models for
diagnosis, classification, or prediction. Although not currently in wide
use clinically, radiomics is gaining traction in the clinical sphere, with
great interest in developing diagnostic tools and personalized medicine
approaches (Lambin et al., 2017).

As illustrated in Figure 1, a first step in the analysis is
segmentation of the tumor, or delineation of the tumor
boundaries. Various radiomics features can then be extracted
using tools such as IBEX (Zhang et al., 2015) or PyRadiomics
(Van Griethuysen et al., 2017):

• Shape features, including volume, surface area, sphericity, and
compactness, summarize morphological aspects of the tumor.

Unsurprisingly, volume tends to be a useful predictor;
however, its performance as a biomarker can be improved
by considering additional radiomic features (Aerts et al.,
2014).

• Histogram features, also known as first order features,
summarize the distribution of pixel intensity values,
without consideration of their position. Histogram features
include standard univariate summary measures such as mean,
median, minimum, maximum, standard deviation, skewness,
and entropy.

• Texture features summarize spatial relations among pixels.
These features describe the tendency of pixels with similar
intensities to occur nearby (gray level co-occurrence) and the
number of pixels in a row or the size of regions with shared
intensities (gray level run length and gray level size zone).

• Advanced features, including model-based Mayerhoefer et al.
(2020) and tree-based features Shoemaker et al. (2018) have
also been proposed.

Current work on predictive modeling from radiomics features
relies heavily on machine learning methods such as support vector
machines and random forests (Hawkins et al., 2014; Parmar et al.,
2015; Vallières et al., 2017). Although models derived from
radiomics data show promising performance, they have not yet
filtered into clinical practice, as it is difficult for clinicians to
understand these models and feel confident in the results. In
their critical review paper, Morin et al. (2018) argue that in order
to realize the potential for radiomics models to be used clinically,
researchers must focus on clarity and interpretability, moving away
from black-box methods towards more transparent modeling
approaches. In recent years, deep learning approaches for image
segmentation and predictive modeling have shown incredible
promise, but the black-box nature of deep learning methods
remains a hurdle to the acceptance of their use in clinical
decision making (Rogers et al., 2020).

In addition to the need for interpretable models, another
concern for clinical translation of radiomics models is that many
radiomics features are dependent on aspects of the image acquisition
and processing (Scalco and Rizzo, 2016). Essentially, differences in
radiomics feature values may not only arise from aspects of the
tumors being imaged, but also from extraneous aspects of the image
collection and processing. This can make it challenging to validate
radiomics models across institutions. Previous work has highlighted
various sources contributing to this instability. In particular, it has
been shown that radiomic features are influenced to varying extents
by differences in the imaging system used (Ger et al., 2018) as well as
by processing steps including the image reconstruction algorithm
(Zhao et al., 2016) and the choice of how to quantize the image data
(Desseriot et al., 2017). Traverso et al. (2018) provide an overview of
research on repeatability and reproducibility of radiomic features,
including both phantom and human studies for a variety of cancer
types. Subsequent work has explored the use of image perturbations
to quantify radiomic feature robustness (Zwanenburg et al., 2019).
In an important first step towards reproducibility, the Image
Biomarker Standardization Initiative (IBSI) has recently
developed standardized names, definitions, and reference values
for a core set of radiomic features, but differences in image
acquisition and processing prior to radiomic feature calculation

Frontiers in Genetics frontiersin.org02

Shoemaker et al. 10.3389/fgene.2023.1112914

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1112914


remain challenges (Gillies et al., 2016; Morin et al., 2018;
Zwanenburg et al., 2020). Critically, these differences can result
in instability and a lack of reproducibility. While many studies on
predictive modeling using radiomics features ignore this issue, some
authors have chosen to filter out features with low reproducibility
prior to model building (Velazquez et al., 2017). Rather than
screening features upfront, in the current work, we propose a
more flexible approach to model building that can account for
feature reliability as a continuous value.

2.2 Bayesian variable selection

In high-dimensional data applications, variable selection
methods can be applied to encourage sparse solutions and enable
the identification of a “best” subset of predictors. By reducing
dimensionality and filtering out potentially irrelevant features,
sparse modeling approaches can improve predictive accuracy,
mitigate issues with collinearity, and allow for the interpretation
of the model through the investigation of selected features (Hastie
et al., 2009). In the frequentist framework, variable selection may be
achieved through the use of penalties on model parameters, as in the
lasso (Tibshirani, 1996) or elastic net (Zou and Hastie, 2005). In the
Bayesian framework, variable selection entails the choice of
appropriate priors on the model parameters (Tadesse and
Vannucci, 2021). Broadly speaking, Bayesian variable selection
approaches offer a number of attractive qualities as compared to
alternative statistical and machine learning methods, including the
ability to quantify uncertainty regarding model and feature
selection, the ability to incorporate prior information in the
model construction, and the fact that parameters can be
automatically chosen through the use of hyperpriors, avoiding
the need for cross-validation.

We now discuss prior work on Bayesian variable selection in
more detail. Bayesian variable selection approaches include mixture

priors (George and McCulloch, 1993, 1995), Bayesian analogs to the
lasso (Park and Casella, 2008) and elastic net (Li and Lin, 2010), and
global-local shrinkage priors such as the horseshoe (Carvalho et al.,
2009), horseshoe+ (Bhadra et al., 2017), and regularized horseshoe
(Piironen and Vehtari, 2017). In the mixture prior framework, the
inclusion of each variable in the model is directly represented via a
latent indicator. Stochastic search algorithms (George and
McCulloch, 1995) can then be applied to identify models with
high posterior probability. In addition to the regression setting
(George and McCulloch, 1993), mixture priors have been
incorporated for feature selection in clustering and classification
problems (Tadesse et al., 2005; Stingo et al., 2013). Shrinkage priors
offer some improved computational scalability, since they do not
require sampling of latent indicator variables; when using shrinkage
priors, feature selection can be achieved based on criteria such as
whether posterior credible intervals overlap zero, and prior
information (for example, on the expected degree of model
sparsity) can be incorporated through the choice of
hyperparameters. In the mixture model framework, the explicit
representation of variable inclusion allows for the formulation of
informative priors on the latent indicator variables and posterior
model selection via thresholding of posterior probabilities of feature
inclusion. In low-dimensional settings, the maximum a posteriori
(MAP) model may be considered as the “best” model. For high-
dimensional settings, where the space of potential models is quite
large, it makes more sense to focus on the marginal posterior
probabilities of inclusion for each feature. The median
probability model, which includes all features with marginal
posterior probability greater than 0.5, is a popular choice, as it
has been shown to be optimal for prediction in settings with
Gaussian noise (Barbieri and Berger, 2004).

As mentioned above, the ability to incorporate prior knowledge
in feature selection is a key advantage of the Bayesian framework. In
the mixture prior setting, the inclusion of feature j in the model can
be represented using a latent binary variable γj. To reflect a

FIGURE 1
Overview of radiomics. Here, we use images from Aerts et al. (2014) to illustrate the initial step of tumor imaging and segmentation. Quantitative
features can then be extracted that summarize the tumor boundary (shape features), the distribution of the pixel intensity values within the tumor
(histogram features), and aspects of the spatial relations among pixels with differing intensities (texture features). More advanced features such asmodel-
or tree-based summaries may also be computed. These features can then be used as input to approaches aimed at prediction of survival outcomes
or classification methods such as mixture models, as illustrated generically in Step 3.
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preference for sparsity, the prior probability of variable inclusion
π(γj = 1) can be assumed to follow a Bernoulli distribution with a
small mean, such as 0.05. Including an additional layer in the
hierarchical prior specification by placing a Beta prior on the
Bernoulli parameters has been shown to provide automatic
adjustment for multiplicity (Scott and Berger, 2010).
Alternatively, if information on individual features or their
interrelation is available, this can be reflected in a more tailored
prior specification. In early work in this area, Chipman (1996)
described the formulation of Bayesian priors for models with
interaction terms, grouped predictors, and competing predictors.
Li and Lin (2010) and Stingo et al. (2011) encourage the joint
selection of predictors that are related within a network using a
Markov random field prior. Finally, Quintana and Conti (2013)
propose a hierarchical probit model that allows for the integration of
multiple sources of information on the model covariates.

Here, we propose a sparse Bayesian model for image
classification based on radiomic features. We refer to this
method as RVS, for radiomic variable selection. Elements of the
model including the mixture formulation with selection of
discriminatory features build on Tadesse et al. (2005) and
Stingo et al. (2013). However, there are key differences of the
current model from prior work. In particular, Stingo et al. (2013)
proposed a hierarchical model with selection of upstream factors
influencing the discriminatory features, while we focus on the
integration of external information on feature reliability via the
probit prior.

3 Methods

3.1 Classification model

In this section, we describe the structure of the observed data
and the formulation of the model, including the likelihood and
priors. Let X represent the n × p matrix of radiomics data, where
j = 1, . . . , p indexes the radiomic feature, and i = 1, . . . , n indexes
the subject. We also observe the n-vector of class membership g,
where gi ∈ {1, . . . , K}. This class membership may correspond to
disease subtype or any other categorization of the subjects into K
groups.

We assume that only a subset of the p features are relevant to the
classification problem. By assuming a sparse model, we reduce noise

in prediction and are able to identify a set of important variables. We
use the latent binary vector γ = (γ1, . . . , γp) to represent the feature
selection. Specifically, γj = 1 indicates that the jth feature is useful in
discriminating the subjects into groups, while γj = 0 indicates the jth
feature is not relevant to the classification problem. This leads to the
mixture model:

fk xij|γj( ) � 1 − γj( )f0 xij; θ0j( ) + γjf xij; θkj( ), (1)

where the term f0(xij; θ0j) represents the distribution of the non-
discriminatory “noise” features, and f(xij; θkj) represents the
distribution in group k of the differential features relevant to the
classification task, for k = 1, . . . , K. Here, θ0j represents the
parameters of the distribution of a non-discriminatory feature,
while θkj represents the group-specific parameters of the
distribution of a differential feature.

Assuming that the radiomic features have been transformed to
improve normality if appropriate and centered at 0, we take the
distributions f0 and f to be the following Gaussian densities:
f0(xij; θ0j) � N (0, σ20j) and f(xij; θkj) � N (μkj, σ2kj). Based on
the latent indicator vector γ, the matrix X can be split into X(γ),
composed of the features such that γj = 1, and X(γc), containing the
features for which γj = 0. Using the model in Eq. 1, it follows that
xi(γ) follows a multivariate normal distribution conditional on the
group assignment gi, and xi(γc) follows a multivariate normal
distribution which is not conditional on the group assignment.
If we let pγ represent the total number of selected features, we can
write:

xi γ( )|gi � k ~ N μk γ( ),Σk γ( )( )
xi γc( ) ~ N 0,Ω0 γc( )( ),

(2)

where Σk(γ) and Ω0(γc) are diagonal matrices, specifically, Σk(γ) =
Diag(σ2k1, . . . , σ2kpγ

) and Ω0(γc) = Diag(σ201, . . . , σ20(p−pγ)). For
simplicity of notation, we assume that the variables are
rearranged such that the pγ selected variables are followed by the
(p − pγ) non-selected variables. In this formulation, the
discriminatory features are allowed to have both a group-specific
mean and a group-specific variance, while the non-discriminatory
features are assumed to come from a distribution that is not group-
specific, and therefore share a common mean of zero after centering
and a common variance. Relaxing the assumption that Σk(γ) is
diagonal could allow additional flexibility to model the

FIGURE 2
Schematic illustration of sparse Bayesian classification model. Feature-specific prior information is incorporated through the probit prior.
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correlations among the discriminatory features within each class k;
these could potentially be linked across classes through a
hierarchical prior. For the variance terms in Eq. 2, we place the
following inverse-gamma priors on the diagonal elements:
σ2kj | ak, bk ~ IG(ak, bk), and σ20j | a0, b0 ~ IG(a0, b0).

3.2 Variable selection using a probit prior

The latent indicator vector γ represents the selection of features
for use in the classification problem. As mentioned in Section 2.1,
radiomic features are often characterized by high variation across
imaging systems or parameters in image reconstruction and
processing. To develop models with robust predictive
performance across settings, we would like to favor the inclusion
of predictors which are the most reliable, ones that vary the least
from machine to machine. Specifically, we place a probit prior that
can take into account the stability of each feature as quantified by
previous computational or phantom studies. For j = 1, . . . , p, we
place an independent prior on γj such that

p γj � 1 | α0, α1, Nj( ) � Φ α0 + α1Nj( ), (3)

where N is a vector of length p that denotes the reliability of each
feature. The vectorN = (N1, . . . ,Np) represents external information

on each covariate. Although it is not constrained mathematically, for
ease of interpretation, it may make sense to scale the entries of N to
the interval [0,1] such that Nj = 0 reflects a lack of prior preference
for feature j and higher values reflect stronger prior preference. The
parameter α0 establishes the prior probability of variable inclusion in
the case that the reliability metric for that particular feature has the
value 0. Specifically, if Nj = 0 for feature j, then the prior probability
of inclusion for that feature, i.e., for γj to be non-zero, reduces to
p(γj = 1 | α0). We assume that α0 is a fixed hyperparameter. The
parameter α1 influences the impact of the prior information on the
selection. We allow α1 to be fixed, but if more flexibility is needed, α1
could be allowed to follow a hyperprior such as α1 ~ N (w, τ2).

3.3 Prior for group-specific means

We now describe the prior distributions for the mean parameter
introduced in Eq. 2 above. For the selected variables, we allow the
group-specific mean parameters to come from a normal prior:

μk γ( ) ~ N νk γ( ), h1Γk γ( )( ). (4)

To complete the hierarchical prior specification for the group-
specific means, we place a normal prior on the mean term and
an inverse-Wishart prior on the variance term from Eq. 4:

TABLE 1 A summary of the RVS model specification.

Likelihood

L(X|g, γ, ·) � ∏K
k�1∏i: gi�k N (xi(γ); μk(γ) ,Σk(γ)) × N (xi(γc ); 0,Ω0(γc )){ }

Σk(γ) � Diag(σ2k1 , . . . , σ2kpγ
)

Ω0(γc ) � Diag(σ201 , . . . , σ20(p−pγ ))

Probit prior on variable selection indicators

P(γ | α0 , α1 , N) � ∏p
j�1Φ(α0 + α1Nj)γj × (1 −Φ(α0 + α1Nj))1−γj

Priors for selected variable parameters

μk(γ) | νk(γ) , Γk(γ) ~ N (νk(γ) , h1Γk(γ))

νk(γ) | mk(γ) , Γk(γ) ~ N (mk(γ) , h1Γk(γ))

Γk(γ) | dk, Q ~IW(dk, Q)

σ2kj | ak, bk ~ IG(ak, bk)

Priors for non-selected variable parameters

σ20j | a0 , b0 ~ IG(a0 , b0)

TABLE 2 Feature selection: The true positive rate (TPR), false positive rate (FPR), andMatthew’s Correlation Coefficient (MCC) for feature selection, for the balanced
simulated data. All metrics are averaged over 100 simulated data sets. The highest MCC value is indicated in bold.

TPR FPR MCC

RVS 0.93 0.0005 0.95

Neutral 0.55 0.0004 0.71

Lasso 0.995 0.11 0.52
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νk(γ) ~ N (mk(γ), h1Γk(γ)) and Γk(γ) ~IW(dk,Q). We assume the scale
matrix Q is the diagonal matrix c ×I. The non-selected features have
a common prior mean of 0.

3.4 Model overview

We now summarize the proposed RVS model, including the
likelihood and priors. The following mixture describes the likelihood
of the observed radiomic featuresX given groupmemberships g, and
variable selection indicators γ:

L X|g, γ, ·( ) � ∏
K

k�1
∏
i: gi�k

× ∏
p

j�1
γjN Xij; μkj, σ

2
kj( ) + 1 − γj( )N Xij; 0, σ

2
0j( ){ }.

We illustrate our proposed model using a plate diagram in
Figure 2, and summarize the full hierarchical model, including the
likelihood and priors, in Table 1.

3.5 Posterior inference

Since the posterior distribution of the parameters is intractable,
we rely on Markov chain Monte Carlo (MCMC) sampling to
perform posterior inference. As in Stingo et al. (2013), to
simplify the posterior sampling and speed up the computation,
parameters including the variances σ2 and hyperparameters in Eq. 4
are integrated out. The selection of the discriminatory features
(through the variable γ) is then the main objective of the
sampling algorithm. MCMC sampling for Bayesian variable
selection, generally referred to as stochastic search variable
selection, involves searching over the space of likely
configurations of the latent indicator variables, and has been
successfully applied in a variety of high-dimensional applications
(George and McCulloch, 1993; Tadesse et al., 2005). Details on the
MCMC algorithm, including the full conditional distributions,

sampling steps, and formula for posterior prediction, are
provided in Supplementary Section S1.

4 Results

4.1 Simulation studies

In this section, we describe our exploration of the model’s
performance on simulated data sets. The simulation set-up was
designed to assess the impact of adding the novel prior on feature
selection and classification accuracy, as compared to both a neutral
prior setting and alternative frequentist methods. Since the case
study described in Section 4.2 entails imbalanced data, in Section
4.1.3, we include a set of simulation studies with unequal group sizes.

4.1.1 Data generation
For each simulated data set, we generated observations

corresponding to subjects from two classes with equal sample
sizes (n1 = n2 = 50) with 4 discriminatory features, generated
with σtii � 1 and σtij � 0.1, i ≠ j, and 100 noise features, generated
with σnii � 0.7 and σnij � 0.3, i ≠ j. The means of the discriminatory
features were set to −1 and 1 for class 1 and 2, respectively.

4.1.2 Comparison of methods
For both the proposed method and the model with a neutral

prior setting, three MCMC chains were run, each with
100,000 iterations and a burn-in of 20,000 iterations. For the
proposed method, the hyperprior values for the probit prior
were set to α0 = −2.75 and α1 = 3. As prior information, we
used Nj = 0.35 for the reliability metric of the discriminatory
variables, and 0.15 for all other entries in N. For the neutral prior
setting, Nj was set to be 0.15 for all variables. With the given setting
of α0 and α1, these values of Nj correspond to a prior probability of
inclusion of 4% when Nj = 0.35 and 1%, when Nj = 0.15. The
remainder of the hyperparameter values were set as in Stingo et al.
(2013). Specifically, the parameter settings were as follows: a = 3,
b = 0.1, ak = 3, bk = 0.1, c = 0.5, Q = cpIp, dk = 3, and h1 = 1. For a
discussion of parameter sensitivity, see Section 4.1.4 below. In the

FIGURE 3
The posterior probability of inclusion for all variables from the proposed method, for one simulated data set. The first four variables are the
discriminatory variables, and the remaining 100 are the noise variables.
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MCMC algorithm, the probability of add/delete vs. swap was set to
50/50. For the Bayesian methods, we consider a feature to be
selected if its marginal posterior probability of inclusion exceeds
0.5, as this has been shown to be optimal in terms of predictive
accuracy (Barbieri and Berger, 2004).

To provide a benchmark for comparison, we also applied lasso
logistic regression (Friedman et al., 2010), a frequentist method that
relies on penalization to achieve model sparsity, and a support vector
machine (SVM), a machine learning model designed for

classification tasks that does not perform feature selection. The
results of our proposed RVS method, the Bayesian method with a
neutral prior, and the lasso in terms of feature selection are provided
in Table 2. The results shown are averaged over 100 simulated
data sets.

To assess the performance of these methods in terms of feature
selection, we computed the average true positive rate (TPR), false
positive rate (FPR), and Matthew’s Correlation Coefficient (MCC),
which is a measure of the overall feature selection accuracy that

TABLE 3 Classification accuracy: The true positive rate (TPR), false positive rate (FPR), and Youden’s Index for group classification, for the balanced simulated data.
All metrics are averaged over 100 simulated data sets. The highest Youden's index value is indicated in bold.

TPR FPR Youden

RVS 0.93 0.06 0.87

Neutral 0.89 0.11 0.78

Lasso 0.92 0.08 0.84

SVM 0.90 0.09 0.80

TABLE 4 Feature selection: The true positive rate (TPR), false positive rate (FPR), and Matthew’s Correlation Coefficient (MCC) for feature selection, for the
simulated data with unequal group sizes. All metrics are averaged over 100 simulated data sets. The highest MCC value is indicated in bold.

TPR FPR MCC

RVS 0.96 0.001 0.96

Neutral 0.72 0.001 0.82

Lasso 0.98 0.10 0.51

FIGURE 4
Classification accuracy: ROC curves for the RVS model, the Bayesian model with a neutral prior, lasso logistic regression, and SVM on an example
simulated test set, as described in Section 4.1.2.
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ranges from −1 to 1. The MCC is an informative metric
particularly when there are significant size differences between
the positive and negative classes, as we have here with
4 discriminatory variables and 100 noise variables (Chicco and
Jurman, 2020). We also considered the model’s performance with
respect to classification, computing the average TPR, FPR and
Youden’s Index for categorizing the observations based on their
true class membership. Youden’s Index is a summary measure of
classification accuracy frequently used in conjunction with ROC
analysis that is computed by sensitivity + specificity − 1, and thus
ranges from 0 to 1 (Youden, 1950).

The proposed RVS method and lasso logistic regression both
achieved a high TPR for feature selection. For this simulation setting,
both Bayesian methods achieved specificity close to 1 (with average
FPR values of 0.0005 and 0.0004, respectively), while the lasso had a
higher rate of 0.11. Since there are far more noise variables than
discriminatory features in the ground truth, the proposed method
achieves the highest MCC for feature selection. An illustration of the

marginal posterior probabilities of feature inclusion obtained using
RVS for one simulated data set (Figure 3) shows a clear separation
between the posterior probabilities of the discriminatory variables
(the first four features, with posterior probabilities close to 1) and the
remaining noise variables. In this simulation setting, the “neutral”
prior setting expressed a strong preference for sparsity without a
preference for any individual features; this resulted in a lower TPR
and MCC.

The results in terms of classification accuracy on simulated test
data are provided in Table 3. We provide the mean value for each
metric, over the 100 simulated datasets. The proposed RVS method
has an improved TPR and FPR over the lasso and SVM, achieving
the highest Youden’s index. The four models’ ROC curves for a
randomly selected simulation are presented in Figure 4. It is worth
noting that the ROC curves show small differences. Indeed, the
average AUC value across the 100 simulated datasets was 0.986 for
RVS, 0.962 for the Bayesian method with the neutral prior, 0.981 for
lasso logistic regression, and 0.970 for SVM. It has been previously

FIGURE 5
Classification accuracy: ROC curves for the RVS model, the Bayesian model with a neutral prior, lasso logistic regression, and SVM on a test set with
unequal group sizes, as described in Section 4.1.3.

TABLE 5 Classification accuracy: The true positive rate (TPR), false positive rate (FPR), and Youden’s index for group classification, for the simulated data with
unequal group sizes. All metrics are averaged over 100 simulated datasets. The highest Youden's index value is indicated in bold.

TPR FPR Youden

RVS 0.95 0.06 0.89

Neutral 0.93 0.08 0.85

Lasso 0.90 0.07 0.83

SVM 0.87 0.08 0.79
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noted in the literature that the lasso tends to be insufficiently sparse
when using prediction accuracy as the criterion for penalty
parameter selection (Leng et al., 2006). This suggests that more
advanced methods for tuning the penalty parameter selection could
improve the performance of lasso logistic regression (Chen and
Chen, 2012).

4.1.3 Additional simulation scenarios
To enable performance comparison in a broader range of

settings, we constructed additional simulation scenarios. We first
considered a simulation on data generated with unequal class sizes:
n1 = 60 and n2 = 40. The results in terms of feature selection are
given in Table 4. The results in Table 5 show that the informative
prior allows the proposed RVS method to achieve better
classification accuracy than the Bayesian model with the neutral
prior, the frequentist lasso method, or SVM. The ROC curves for the
four models on a randomly selected simulation dataset can be found
in Figure 5. The average AUC value across the 100 simulated
datasets was 0.991 for RVS, 0.980 for the neutral prior, 0.980 for
the lasso, and 0.969 for SVM.

To characterize the performance of the methods under a larger
variety of scenarios, we performed simulation studies with a stronger
class imbalance (90% vs. 10% split), varying number of predictors,
varying signal strength, and a varying ratio of discriminatory to non-
discriminatory covariates. Across all methods compared, the settings
with stronger class imbalance and fewer discriminatory features
were more challenging, resulting in lower classification accuracy on
the test set. Relative performance was consistent with the simulation
study of Section 4.1.2, in that the proposed RVS method achieved
the highest MCC for feature selection and highest Youden’s index
for classification. Results are provided in Supplementary Section S2.

4.1.4 Sensitivity analysis
Here we provide an overview of parameter sensitivity,

performed on the main simulation. Additional details and plots
are provided in Supplementary Section S3. Sensitivity analysis was
done on three key hyperparameters: c, α0 and α1. The parameter c,
the value of the diagonal entries of the scale matrixQ, influences the
inverse-Wishart hyperprior on the variances of the class-specific
means of the features. For values of c smaller than 0.3, the model
selected a large number of variables. As we varied c from 0.3 to 0.7,
we found that the FPR and the accuracy only suffered at the larger
end of the range, and were fairly consistent otherwise. This is
illustrated in the left panel of Supplementary Figure S2, available
in Supplementary Section S3.

The parameters α0 and α1 modify the impact of the reliability
measure for the probit prior on the likelihood of variable selection, γ,
p(γ) =Φ(α0 + α1pN). In our simulationmodel, α0 = −2.75 and α1 = 3.
The plots in Supplementary Figure S2, illustrate the changes in the
mean posterior probability of inclusion for the real and noise
variables, as we vary the values of c, α0, and α1. These are
generally stable across the range of values considered.

4.1.5 Convergence
To assess convergence of the MCMC chains, we provide

traceplots and R̂ values for the μ parameters in Supplementary
Section S4. In general, the traceplots suggest good mixing and
consistent behavior across chains. We estimated the R̂ values using
the rhat() function from the posterior R package (Bürkner
et al., 2022), which provides the maximum of the rank normalized
split-R̂ (Gelman et al., 2013) and the rank-normalized folded-split-R̂
(Vehtari et al., 2021). The resulting R̂ values had a maximum of
1.048 for the simulation study summarized in Section 4.1.2 above.

TABLE 6 Confusion matrices for the classification performance of the proposed RVS model, the Bayesian model with a neutral prior, and lasso on the case study
data.

True class

Negative Positive Total

Prediction Negative 14 2 16

Positive 6 4 10

Total 20 6 26

True Class

Negative Positive Total

Prediction Negative 11 2 13

Positive 9 4 13

Total 20 6 26

True Class

Negative Positive Total

Prediction Negative 20 6 26

Positive 0 0 0

Total 20 6 26

Frontiers in Genetics frontiersin.org09

Shoemaker et al. 10.3389/fgene.2023.1112914

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1112914


4.2 Case study

We now illustrate the application of the proposed method to a
real-world data set aimed at characterizing imaging features
associated with head and neck cancer.

4.2.1 Radiomic features of head and neck cancer
There are more than 800,000 new cases of head and neck cancer

diagnosed worldwide every year (Cramer et al., 2019). The majority of
these cancers are driven by known risk factors including tobacco use,
alcohol, and human papillomavirus (HPV) infection (Rettig and
D’Souza, 2015; Vokes et al., 2015). Although smoking-related
cancers have declined in the US in recent years, as fewer
Americans smoke, the incidence of HPV-associated head and neck
cancer has increased rapidly during this time. There is a great interest
in understanding how radiomic features relate to tumor
characteristics and patient prognosis in head and neck cancer.
Previous research has linked radiomic features to genomic aspects
of the tumor and survival (Aerts et al., 2014;Wang et al., 2020). Recent
work (Zhu et al., 2019) on head and neck cancer radiomics has shown
that radiomic features can be used to predict HPV infection as well as
TP53mutation status, which suggests that radiomic features can serve
as relevant biomarkers for genomic alterations in the tumor.

In this case study, we consider a data set with radiomic features
extracted from CT scans of 102 patients with head and neck cancer.
We have clinical information including HPV status, survival time,
and staging. It should be noted that smoking information is not
available for this cohort. There are 160 radiomic variables, computed
in the same manner as those used in the reliability study by Ger et al.
(2018), which we combined with two clinical variables, Age and
Shape Volume. Our case study investigates the relationship between
the radiomic features, the reliability of those features, and the HPV
status of the patient. In particular, we applied our proposed Bayesian
model as well as the lasso to predict HPV status from the radiomic
data. Of the 102 patients, 84 were HPV negative and 18 were HPV
positive.

4.2.2 Data processing
The radiomic features were computed using IBEX, an open

source radiomics tool (Zhang et al., 2015). As described in Fave et al.
(2017), the features were each calculated using four different image
preprocessing techniques. It has been shown that the utility of a
feature in downstream modeling may depend on preprocessing, but
that none of the preprocessing methods are superior in general (Fave
et al., 2016). We therefore included features produced using all
4 preprocessing approaches as candidates in our modeling. Since
some features were highly skewed, Box-Cox transformations were
applied as appropriate to improve normality. Finally, the features
were centered and scaled, resulting in distributions that were
approximately standard normal.

4.2.3 Prior information
In Ger et al. (2018), the authors scanned a phantom on 100 CT

machines produced by various manufacturers in 35 clinics
throughout the Texas Medical Center (Ger et al., 2018).
Radiomic features were calculated on the 100 scans, and a linear
mixed effect model was used to partition the variability due to the
manufacturer and to the individual scanners. In this study, we used

the standard deviation of the features from the individual scanners
as a measure of feature reliability, with the motivation that features
that are highly dependent on the individual scanner being used may
contribute less relevant information regarding tumor biology.

To use the standard error measure given in Ger et al. (2018) as a
reliability metric, we used the following formula to transform the
information on the jth feature rj:

Nj � |log rj( ) −max
k

log rk( )( )|

By using this formula, we were able to transform the measure into a
reliability metric where higher values correspond to more reliable
features. The two clinical values were given the mean value of the
measure as their metric. To standardize the values, we scaled the
metric from 0 to 1, and this value was used as the value Nj in our
probit prior.

4.2.4 Application of the proposed model
The data were randomly split 75%/25% into training and test data

sets, resulting in groups of size ntrain = 76 and ntest = 26. The split was
balanced with respect to the classification; the training group was 18%
HPV positive, while the test group was 16% HPV positive.

For the proposed Bayesian method, three chains were run for
100,000 iterations with a burn-in period of 20,000 iterations each. As
in the simulation study, variable inclusion was determined by
thresholding the PPI at 0.5. For both RVS and the Bayesian
method with the neutral prior, an additional MCMC chain was
run to resample μ with γ fixed, to obtain a sample of the mean
parameters conditional on the set of selected features. Parameters for
the probit prior were set to α0 = −2.75, and α1 = 1, to express a strong
preference for sparsity; the remainder of the parameters were set as
in the simulation study. The reliability vector N was set as described
above in Section 4.2.3, using the processed values of the standard
error of the features between various machines.

As in the simulation study, to provide a comparison for our
proposed model, we applied two additional methods. For the neutral
prior, we set the prior parameter Nj to the median value of the
reliability values, Nj = the median of N = 0.39. We also applied lasso
logistic regression, with tuning parameter selection via the one
standard deviation method on 10 fold cross-validation on the
training data.

4.2.5 Convergence
We computed R̂ values as described in Section 4.1.5 above. The

maximum value for RVS across all selected features in both groups
was 1.001. The full set of R̂ values and corresponding traceplots are
provided in Supplementary Section S4.

4.2.6 Results
In terms of feature selection, our proposed model selected 11 of

the 162 features (7%). This is a sparse subset, allowing for
interpretation of the specific features selected. Of the 11 features,
9 were texture features, and the remaining 2 were histogram features.
The 9 texture features included 3 gray-level co-occurrence matrix
features, 4 gray-level run-length matrix features, and
2 neighborhood intensity difference features (busyness and
coarseness). Texture features have been identified as relevant to
prediction of survival in prior studies (Aerts et al., 2014). In
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particular, high tumor busyness (which reflects rapid changes in
intensity between neighboring voxels) has been linked to risk of
recurrence (Ahn et al., 2019). Recent work published in JAMA
Oncology proposed a radiomic signature for survival prediction that
included features characterizing spatial heterogeneity and texture.
This signature held up to validation across multiple medical centers,
suggesting that texture features are clinically relevant and potentially
generalizable across different settings (Farwell and Mankoff, 2022).

In terms of accuracy on the test set, the proposed model
correctly classified 18 of the 26 test observations, with a
sensitivity of 66.6% (4 of 6), specificity of 70% (14 of 20), an
overall accuracy of %, and a Youden’s Index of 0.37. Although
the Youden’s index is fairly low, it is higher than that obtained
from the Bayesian model with the neutral prior or from lasso
logistic regression: the model obtained using the neutral prior
was even more sparse, with 6 of the 162 features selected, but
was less accurate, correctly classifying 15 of the 26 test
observations, with a sensitivity of 66.6% (4 of 6), specificity
of 55% (11 of 20), an overall accuracy of 57.69%, and a Youden’s
Index of 0.22.

For the lasso logistic regression, while the model produced
results with 76.9% accuracy overall (20 of the 26), it had a
sensitivity of 0% and a specificity of 100%, predicting all
observations into the more common class, HPV negative.
This result has a Youden’s index of 0. The lasso selected
5 variables, none of which were selected by the informative
prior. 3 variables were selected by both the informative and
neutral model settings. More details about the prediction
accuracy can be found in Table 6. The poor performance of
the lasso is likely due to class imbalance in the training data;
various methods have been proposed to address the challenge of
machine learning on imbalanced data, including oversampling
of the minority class, downsampling of the majority class, and
more complex schemes that combine these strategies (Chawla
et al., 2002).

5 Discussion

In the current work, we have proposed a novel approach for
incorporating prior information on feature reliability into a Bayesian
classification model. The development of this model was motivated
by the challenges of radiomic feature data, which may include
features that are susceptible to sources of variation related to
image processing or scanner type, rather than underlying signal.
We have illustrated this method through both the application to
simulated and real data. The case study results reflect a split of the
available data into training and testing. We expect the benefit of
using the proposed method would be even greater when attempting
to train a method on data collected at a particular site or institution
and apply this model to external data, where systematic differences
in scanner type or machine settings could come into play.

The RVS framework is based on a normal mixture model, which
assumes that the features are reasonably normally distributed within
each class. In practice, radiomic features may exhibit skewness: in
this case, a log or Box-Cox transformation may be applied to achieve
approximate normality. We adopted this approach as a
preprocessing step of our real data application (Section 4.2.2).

Extending the RVS model to allow for heavy-tailed or binary
features would be of interest in future work.

The proposed method is implemented in Matlab using
MCMC methods. In recent years, alternative computational
approaches such as variational inference have gained
increasing popularity. Variational inference is attractive as it
allows model estimation to be framed as an optimization rather
than a sampling problem; however, previous work has shown
that it may underestimate posterior variance (Blei et al., 2017).
Investigation of its properties in our proposed setting would be
of interest in future work. Another alternative computational
approach would be to implement the model using a
probabilistic programming language such as Stan (Gelman
et al., 2015). Since Stan does not directly support sampling
of discrete parameters, this would require marginalizing out the
latent feature selection indicators γ. We already integrate out
parameters including σ20j and σ2kj to speed up the MCMC
sampling; marginalizing over γ could further improve the
efficiency of posterior inference.
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