
Journal of the Royal Statistical Society Series C: 
Applied Statistics, 2025, 00, 1–20 
https://doi.org/10.1093/jrsssc/qlaf024

Original Article

Location smoothed Bayesian additive 
regression trees: a method for interpretable 
and robust quality assurance of organ 
contours in radiotherapy treatment planning
Zachary T. Wooten1 , Mary Pham2, Laurence E. Court2

and Christine B. Peterson3

1Department of Statistics, Rice University, 6100 Main St., Houston, TX 77005, USA
2Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1400 Pressler St., 
Houston, TX 77030, USA
3Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1400 Pressler St., 
Houston, TX 77030, USA
Address for correspondence: Zachary T. Wooten, Department of Statistics, Rice University, 6100 Main St., Houston, TX 
77005, USA. Email: zachary.t.wooten@rice.edu

Abstract
Deep learning techniques for image segmentation are increasingly used in automating anatomical structure 
delineation in medical images for radiation treatment planning. Given the critical role these contours play in 
guiding radiotherapy, it is crucial to flag errors before planning, necessitating robust quality assurance 
methods for the clinical adoption of automated contours. To address this challenge, we introduce location 
smoothed Bayesian additive regression trees (lsBART), a novel Bayesian tree-based model for nonparametric 
scalar on function regression. Our proposed method can identify both relevant functions and important 
regions within those functions, enabling interpretable, and sparse solutions. We benchmark lsBART on a 
simulated regression setting with multiple functional predictors, where it achieves a lower root mean squared 
error than existing alternative methods. In our real data application to identifying errors in kidney contours, we 
attained a cross-validated area under the curve of 0.905 for detecting unacceptable contours. Using Shapley 
values, we provide guidance on aspects of the contour in specific regions that led to the contour being 
flagged, indicating our method’s potential clinical utility.
Keywords: Bayesian additive regression trees, functional data analysis, medical imaging, radiotherapy planning, 
Shapley value
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1 Introduction
Radiation therapy treatment planning relies on accurate segmentation of anatomical structures 
from medical images to ensure precise targeting of radiation to the tumour and to minimize dam
age to nearby organs. With the emergence of deep learning models such as convolutional neural 
networks, there has been significant progress in automating the contouring of organs in medical 
images (Cardenas et al., 2018). This automation has several potential benefits, including reducing 
the workload of clinicians, minimizing human error, and enhancing healthcare accessibility for 
low-income communities (Court et al., 2023). However, deep learning models can fail when con
fronted with unexpected differences in patient anatomy or imaging protocols different from those 
in their training data. As such, there is a growing need to ensure the reliability of deep learning 
model outputs. To illustrate this challenge, Figure 1a showcases an axial slice from a cervix 
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radiotherapy treatment plan. The highlighted arrows differentiate between a clinically acceptable 
contour of the kidney and an unacceptable contour that misses part of the organ. Since radiation 
treatment plans are optimized to minimize radiation to critical structures, erroneous organ con
tours can put patients at increased risk of radiation-associated toxicities.

While current methodologies call for manual inspection of automatically generated contours, a 
streamlined, automated review process that identifies and highlights problematic contours re
mains a more desirable solution. Reviewing contours can be particularly time-consuming given 
that each plan consists of dozens of image slices, corresponding to the three-dimensional organ 
when stacked (Figure 1b). Various approaches have been proposed for performing contour quality 
assurance on both human and computer-generated contours (Chen et al., 2015; McIntosh et al., 
2013; Rhee et al., 2019; Wooten et al., 2023).

However, these methods have key limitations that hinder their clinical translation: they either 
depend heavily on the image intensity values, which limits generalization across imaging modal
ities and institutions; rely on the same modelling approach for the contouring and quality 

Figure 1. (a) Radiotherapy treatment plan with clinically acceptable and unacceptable kidney contours (Wooten 
et al., 2023); (b) stacking of axial slices; we take the scalar shape statistic values from each axial slice of the 
treatment plan and turn the collection of values into a shape statistic functional predictor on s ∈ [0, 1] representing 
the percentage of the plan; (c) area functional predictors, where green are extracted from acceptable contours and 
red from unacceptable contours.
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assurance tasks, which can result in repetitive mistakes between planning and verification stages; 
or generically flag an entire treatment plan without pinpointing problematic areas for further re
view. Clinically, an organ contour could be considered unacceptable due to inaccuracies in any 
image slice. An optimal tool would be robust to differences in imaging platform and directly indi
cate the erroneous slices, streamlining the review process for clinicians and ensuring precise 
correction.

To address this challenge, we propose location smoothed Bayesian additive regression trees 
(lsBART), a novel statistical learning method based on the BART framework (Chipman et al., 
2010), which has key advantages over existing approaches for our motivating application. 
Location smoothed BART offers the flexibility of tree-based models, which can capture nonlinear 
and interaction effects (Breiman, 2001). Additionally, lsBART promotes sparsity in both function
al predictors and specific locations within these predictors, making it ideal for high-dimensional 
datasets with spatial correlation. To handle the spatial structure in our data, lsBART incorporates 
smoothing on the probability of feature selection across neighbouring locations, to reflect that 
the organ contours vary smoothly across neighbouring image slices. To the best of our knowledge, 
we are the first to apply a new and highly efficient method for computing Shapley values to the 
Bayesian tree ensemble setting, enabling insight for our real data application on the location 
and type of potential contouring errors for a specific patient.

To illustrate our proposed method, we apply lsBART in a simulated regression setting and a real 
data application to kidney contours for use in cervix radiotherapy treatment plans. Importantly, 
lsBART cannot only identify erroneous contours but also indicate locations that caused the con
tour to be flagged. Current quality assurance techniques lack the ability to inform radiation treat
ment planners which slices may contain errors. Furthermore, our method for quality assurance 
relies solely on shape statistics, making it robust to potential differences in image intensity across 
institutions and imaging platforms, such as MRI vs. CT. Even within a single modality such as CT, 
differences in imaging protocols across institutions (such as the use of different tube voltages) may 
result in different image intensity values.

A central argument of our paper is that the collection of two-dimensional shape statistics from 
each image slice can be conceptualized as a functional data object, enabling the application of 
functional data analysis (FDA) tools. Figure 1b illustrates the sequential stacking of axial 
slices. Due to differences in the slice width and patient size, each observation contains a differing 
number of slices. When computing a shape statistic, like area, for each axial slice, we derive a vec
tor whose length corresponds to the number of slices encompassing the organ. Through the 
functional data framework, we are able to leverage the spatial smoothness in our input data to 
place the observed data on a common grid. Figure 1c presents a series of smooth functional 
data observations, with 0% marking the organ’s lower boundary and 100% denoting its upper 
boundary.

The rest of the paper is organized as follows. Section 2 provides background on methods for 
FDA and BART since our framework builds on these methods. Section 3 describes a novel location 
smoothed BART model. In Section 4, we illustrate the utility of this model on both simulated 
data and our motivating task of quality assurance for radiotherapy treatment planning contours. 
We conclude with a discussion in Section 5.

2 Background
2.1 Functional data
Since each patient has a different number of axial image slices, we adopt a FDA framework to le
verage smoothness across neighbouring slices and place the observed data onto a common grid. 
Functional data analysis addresses data characterized by continuous variation across domains 
such as time. Such data, termed functional data, can be represented by smooth functions spanning 
a designated domain. A dataset with n observations of a functional predictor X(s) and scalar re
sponse y can be represented as (X(s), y), where s ∈ S represents a range of underlying points. 
The predictor function for the ith subject Xi(s) can be expressed as a weighted sum of basis func
tions Xi(s) ≈

􏽐B
b=1 cibϕb(s), where cib is the coefficient for basis function ϕb(s), for b = {1, . . . , B}. 

The basis functions may be a set of standard functions, such as polynomials or splines, or may be 
estimated from the data (Ramsay & Silverman, 2005).

J R Stat Soc Series C: Applied Statistics, 2025, Vol. XX, No. XX                                                               3
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/advance-article/doi/10.1093/jrsssc/qlaf024/8096258 by M
 D

 Anderson C
ancer C

enter - R
M

L user on 30 M
ay 2025



2.2 Bayesian additive regression trees
Before introducing lsBART, we briefly review the BART framework. The BART model is a 
Bayesian machine learning technique adept at capturing intricate relationships between predictors 
and a response (Chipman et al., 2010). It constructs decision trees within a Bayesian framework, 
allowing the inclusion of prior information on parameters and enhancing model interpretability. 
As in classical Bayesian inference, the BART model is defined by a likelihood and set of priors, and 
inference is performed by sampling from the posterior. Let yi be a scalar response, xi be a vector of 
p covariates, and μ0 be a known constant which centres y. The default value of μ0 is typically set to 
be the mean of y. The BART model assumes yi = μ0 + f (xi) + εi, where εi ∼ N (0, σ2) and f (xi) is 
modelled as a sum of H decision trees 

􏽐H
h=1 g(xi, T h,Mh). Here, T h represents a binary tree con

taining split rules, e.g. xi < 0.5, and Mh denotes the mean values associated with each leaf node, 
i.e. for L leaf nodes Mh = {μh1, μh2, . . . , μhL}. Then g(xi, T h,Mh) = μhl represents the step func
tion that maps input vector xi to a leaf node value μhl for l = {1, . . . , L} for the hth tree T h with 
leaf parameters Mh.

Various extensions to BART have been proposed that have a bearing on this research. To better 
handle settings with a large number of irrelevant predictors, Linero (2018) developed the Dirichlet 
additive regression trees (DART) model, which introduces a sparsity-inducing Dirichlet prior. To 
handle grouped predictors such as genes within pathways, Du and Linero (2019) proposed over
lapping group BART to enforce sparsity across and within groups. Finally, BART with target 
smoothing is tailored for function-on-scalar regression scenarios (Starling et al., 2020). 
However, none of these directly address our problem of interest; therefore, we develop BART pre
diction methodology for multiple functional input variables.

3 Location smoothed Bayesian additive regression trees
3.1 Proposed model
We now describe the lsBART model, which is designed to both select relevant predictor functions 
and identify regions of interest within those functions for regression and classification. Location 
smoothed Bayesian additive regression trees extends the BART framework to address the chal
lenges of our motivating application by incorporating a novel prior distribution and smoothing 
technique that leverages the unique structure of functional data to achieve improved prediction 
and model inference.

We first introduce the structure of our input data. We observe p predictor functions Xj(s), where 
j = {1, . . . , p}, for each subject. We assume that the function values are available on a common 
spatial grid with S discrete values, s = {s1, s2, . . . , sS}, which can be achieved through the use of 
a functional basis representation. Then for each functional predictor Xj(s), we have a vector of 
S discrete values (Xj(s1), Xj(s2), . . . , Xj(sS)). We concatenate the functions for each subject to ob
tain a p ∗ S vector x̂i, where the hat symbol indicates the estimated values obtained from the func
tional basis representation. For large p or S, achieving model sparsity is crucial and improves 
interpretability by highlighting the most relevant functional predictors and regions. We can write 
our input data matrix as

X̂n×(p∗S) =

X1(s1)1 · · · X1(sS)1 X2(s1)1 · · · X2(sS)1 · · · Xp(s1)1 · · · Xp(sS)1
X1(s1)2 · · · X1(sS)2 X2(s1)2 · · · X2(sS)2 · · · Xp(s1)2 · · · Xp(sS)2

..

.
· · · ..

. ..
.

· · · ..
. . .

. ..
.

· · · ..
.

X1(s1)n · · · X1(sS)n X2(s1)n · · · X2(sS)n · · · Xp(s1)n · · · Xp(sS)n

⎛

⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎠
.

For a single subject, the lsBART model assumes yi = μ0 + f (x̂i) + εi, where yi is a scalar response 
variable, x̂i is the collection of S discrete values from each of the p functional predictors 
defined above, μ0 is the known constant which centres y, and εi ∼ N (0, σ2) is Gaussian error. 
The idea is to estimate f as a sum of decision trees with parameters (T h,Mh), such that 
f (x̂i) ≈ g(xi, T 1,M1) + · · · + g(xi, T H,MH). In our approach, we focus on discrete points 
within the function, rather than the shape of the entire function, while still allowing for spatial 
correlation. This decision is motivated by several considerations. Namely, by focusing on 
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discrete points, we can pinpoint specific locations within the functional data that are most rele
vant to the prediction task. These specific locations allow for enhanced interpretability of the 
model’s output.

3.2 Prior formulation
Now that we have introduced the lsBART sum-of-trees structure, we describe the priors on the 
model parameters. Specifically, we discuss the priors on the parameters that influence the probabil
ity of node splitting, the selection of the function in the splitting rule, the chosen location, the leaf 
node’s final value, and the standard deviation of error. Our proposed lsBART model employs 
Dirichlet priors to select relevant functional predictors and pinpoint important regions within 
them. lsBART uses a regularization prior similar to that of the original BART model to regulate 
the size and fit of (T h,Mh). This ensures that each tree contributes modestly to the overall fit, 
preventing any single tree from being overly dominant. The novel aspect of our approach lies in 
our sequential approach to encourage sparsity in both the selection of functions and critical re
gions. First, we adopt a Dirichlet prior to determine which function to use in the splitting rule 
from the p functional predictors. Second, we incorporate another Dirichlet prior to select values 
from the underlying spatial grid, s = {s1, s2, . . . , sS}, that are crucial for the prediction task, 
subject to the constraint that location probabilities are smooth across space. This dual-layered 
approach induces sparsity in identifying functional predictors and in pinpointing the locations 
within selected functions, highlighting significant functions and their essential locations 
probabilities.

3.2.1 Priors for each tree T h

The tree depth prior (item (1) below) controls tree complexity and prevents overfitting by reducing 
the likelihood of splits at large depths. The functional predictor selection prior (item (2)) en
courages sparsity by favouring a small subset of relevant functional predictors for splitting. 
Additionally, for each selected predictor, the location selection prior (item (3)) further promotes 
sparsity across regions. Finally, a cut-off selection prior (item (4)) allows for flexibility in defin
ing decision rules for splitting features, ensuring that the model can capture a wide range of 
potential split points. In more detail: 

1. As the prior on the tree structure, we assume P(split at node depth d) = α(1 + d)−β for 
α ∈ (0, 1), β ∈ [0, ∞). We use the parameter setting of α = 0.95 and β = 2 as in Chipman 
et al. (2010). This choice of hyperparameters favours small trees with two to three leaf nodes, 
regularizing the complexity of the individual trees within the ensemble.

2. Next, we specify the prior on the probabilities that the tree will split based on a certain pre
dictor. Let π = {π1, π2, . . . , πp} be the vector of inclusion probabilities for each functional pre
dictor. We assume a Dirichlet prior π ∼ Dirichlet(απ1 , απ2 , . . . , απp ), where each απj represents 
the hyperparameter associated with the inclusion probability πj. As described in Linero 
(2018), a Dirichlet splitting rule prior encourages sparsity and allows for fully Bayesian infer
ence of feature importance. We set the prior parameters to be uniform across the candidate 
functions, with απj = 1

p.
3. We now describe the prior that controls the selection of locations within each function. 

Conditional on the selection of the jth predictor function, let the probability of using a specific 
location in the splitting rule be τj = {τ j1, τ j2, . . . , τ jS}. Then τj ∼ Dirichlet(ατ j1 , ατ j2 , . . . , ατ jS ), 
where each ατ jk represents the hyperparameter associated with the inclusion probability τ jk. 
In our prior formulation, we set the prior parameters to be uniform across the candidate lo
cations to ensure that each location has an equal likelihood of being selected, with ατ jk = 1

S for 
k = {1, . . . , S}. The Dirichlet splitting rule encourages sparsity across spatial locations, pro
moting a focus on specific, relevant regions. We impose a prior constraint that the location 
probabilities should be smooth over space. We describe our approach to smoothing the τj val
ues in Section 3.3.

4. Lastly, given the selected function Xj(s) and location within the function sk, we need to specify 
the threshold used to define the decision rule used for splitting the observations. Since we 
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assume the function values are continuous, this decision rule will be of the form x ≤ λ vs. 
x > λ. We place a uniform prior on the possible splitting values as in Chipman et al. (2010): 
λ jk ∼ Uniform(range(X̂ jk)), where X̂ jk = (Xj(sk)1, Xj(sk)2, . . . , Xj(sk)n).

For completeness, we now describe the prior distributions on the leaf node values and the standard 
deviation of error, where we follow the settings recommended by Chipman et al. (2010).

3.2.2 Prior for each leaf value μhl

Let a single leaf value for a given tree T h be denoted as μhl. Suppose yi ∈ [ymin, ymax] for all i and 
denote the set {μ1(i), . . . , μH(i)} as the leaf values from each tree corresponding to xi. As described in 
Sparapani et al. (2021), we use a conjugate normal distribution for the prior P(μh(i) | T h): 
μh(i) | T h ∼ N (0, σ2

μ). Then the model’s estimate for a single subject is μi = E[y |xi] = μ0 +
􏽐H

h μh(i), 

where μi ∼ N (μ0, Hσ2
μ). Here, we choose a value for σμ that satisfies ymin = μ0 − κ

���
H
√

σμ and ymax = 
μ0 + κ

���
H
√

σμ which is σμ = ymax−ymin

2κ
��
H
√ . So, for a single leaf. we arrive at the prior μhl ∼ N (0, [ ymax−ymin

2κ
��
H
√ ]2). 

As originally suggested by Chipman et al. (2010), setting κ = 2 ensures a 95% prior probability that 
E[y | x̂i] is ∈ [ymin, ymax].

3.2.3 Prior for standard deviation P(σ)
As proposed in Chipman et al. (2010), we use the inverse chi-square distribution as a conjugate 
prior on the error variance, σ2 ∼ inverse-χ2(ν). Here, the hyperparameter ν is chosen by compari
son to a functional linear regression fit to the data, with the idea being that a linear regression will 
overestimate the residual standard deviation. Hence, ν is chosen such that P(σ < σ̂OLS) = 0.9.

3.3 Posterior inference
For posterior inference, we rely on a Bayesian backfitting Markov chain Monte Carlo (MCMC) 
algorithm (Chipman et al., 2010). Here, we briefly review the sampling steps specific to the 
lsBART model, including efficient updates to the split probabilities and the application of a spatial 
smoothing kernel. We include details on the remaining sampling steps in Appendix A.

3.3.1 Updating the predictor and interval probabilities
We can efficiently update the probabilities of a predictor function, π, and the probabilities of a lo
cation within a predictor function, τj, being chosen for a split. As noted in Linero (2018), the con
jugate Dirichlet prior allows for Gibbs updates. The posterior full conditional distributions for 
π = {π1, π2, . . . , πp} and τj = {τ j1, τ j2, . . . , τ jS} are found by incorporating the number of times a 
tree chooses a particular predictor function and location within that function. Let Ψ represent 
all model parameters. Let cj be the total count of the jth functional predictor variable being 
used as a splitting rule across all trees. Likewise, let c jk be the total count of the kth location inter
val for the jth functional predictor being used as a splitting rule across all trees. We obtain the pos
terior full conditionals as the following:

π |Ψ ∼ Dirichlet(απ1 + c1, απ2 + c2, . . . , απp + cp),

τj |Ψ ∼ Dirichlet(ατ j1 + c j1, ατ j2 + c j2, . . . , ατ jS + c jS).
(1) 

As noted in Linero (2018), these updates are in fact an approximation, based on the assumption 
that every predictor is a valid choice for every split. Since our predictors are continuous, we expect 
this to be generally the case.

3.3.2 Smoothing of the τ probabilities
For each MCMC draw, we update the neighbouring positions within τj by using a Gaussian neigh
bourhood function. This smoothing process ensures that the model will consider neighbouring lo
cations within a predictor function and hence, leverages the correlation across the domain of 
functional data. Here, we took inspiration from similar implementations of neighbourhood 
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functions for spatial correlation used in the self-organizing map algorithm (Kohonen, 1990). 
First, we calculate the Gaussian neighbourhood for the kth location probability, τ jk, as τ jk × 
exp ( −(k−k′)2

2σ2
τ

) for k′ = {1, . . . , S}, where στ is the bandwidth parameter. We calculate this neigh

bourhood vector for each τ jk. Then, we update the probabilities of each location by adding all 
of its Gaussian neighbourhood location probabilities. Formally, we update the kth location prob
ability as

τ jk = τ jk +
􏽘S

k′=1

τ jk′ × exp
−(k − k′)2

2σ2
τ

􏼠 􏼡

, (2) 

Finally, we normalize the τj vector, making sure 
􏽐S

k=1 τ jk = 1. This smoothing step leverages the 
fact that functional data values are highly correlated to their neighbouring values on the under
lying spatial grid. Hence, if a location sk contains important information for the prediction 
task, then it is likely that both sk−1 and sk+1 will also contain important information. Thus, the 
trees will be encouraged to look at neighbouring values as well.

The novelty of our approach lies in smoothing the location probabilities described above and in 
the priors on the tree structures as described in Section 3.2. This allows lsBART to identify both 
relevant predictors and important regions within those predictors. Although the initial update of 
the location probabilities, τj, reflects a draw from a Dirichlet posterior full conditional, the subse
quent smoothing process described in Equation (2) is an ad hoc modification rather than part of a 
formally defined Bayesian posterior. This smoothing step is introduced to capture the smooth spa
tial variation inherent in functional data, ensuring that neighbouring locations are considered 
jointly during prediction. Our approach allows us to balance the preference for sparsity expressed 
through the Dirichlet prior with a desire for smoothness, while maintaining computational effi
ciency. The approach of transforming MCMC draws from an unconstrained distribution to 
accommodate constraints is supported by the work of Yang et al. (2010) on semiparametric 
Bayes hierarchical models with mean and variance constraints. Yang et al. (2010) show that trans
forming the draws from an unconstrained Dirichlet process prior is more computationally con
venient than sampling directly from a constrained posterior.

3.4 Binary classification
Bayesian additive regression trees have a natural extension to binary classification problems 
through the use of a probit model (Chipman et al., 2010). We can similarly extend lsBART to 
the binary case where y = 0 or y = 1. When predicting the probability that a single observation 
x̂i belongs to class y = 1, let

p(x̂i)≡ P[y = 1 | x̂i] = Φ(μ0 + f (x̂i)), (3) 

where Φ is the c.d.f. of the standard normal distribution. Unlike other ensemble tree classification 
algorithms, which use a majority or average vote from the trees, here, the classification probability 
is a function of the sum of trees output. Thus, the more negative that μ0 + f (x̂i) is, the closer the 
p(x̂i) is to 0. Likewise, the more positive, the closer p(x̂i) will be to 1. If all the tree values and 
the constant add up to 0, then p(x̂i) = 0.50.

4 Results
4.1 Simulation study
To demonstrate the utility of our method, we compare its performance in a regression setting with 
multiple functional predictors to existing alternative methods. For the simulation study, we create 
a set of functional predictors that are linked with the response y via Friedman’s five-dimensional 
test function, which is frequently used as a benchmark to test performance. First, we randomly 
generate 10 values from a standard normal distribution as the function realizations across 10 
equally spaced points in the interval [0, 1]. We then fit these 10 values to a smooth function using 
B-splines with eight basis functions. This becomes the generating function X1(s) for s ∈ [0, 1], 
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which will be used for all our simulated functions. With this smooth generating function X1(s), we 
create 2,000 simulated functional observations by extracting 100 data points at specific s intervals. 
To mimic how functional data is observed in a real-world setting, where the recorded measurement 
has some noise associated with it, we add Gaussian noise to each data point. This process results in 
2,000 functional observations of 100 data points that are all noisy versions of X1(s). We repeat this 
process to get a total of five predictor functions: X1(s), X2(s), X3(s), X4(s), and X5(s).

We then compare our model’s performance to alternative methods in a regression setting 
where y is generated using the Friedman function, which was also used in the original BART paper 
(Chipman et al., 2010; Friedman, 1991). The original function is

y = 10 sin (πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5. (4) 

We modified the Friedman function to use functional data as inputs using specific s intervals on the 
underlying grid s ∈ [0, 1], where for each predictor function Xj, we have an interval of discrete 
points s j such that s j = {s j1, s j2, . . . , s jK}:

y =
􏽘K

k=1

10 sin (πX1(s1k)X2(s2k)) + 20(X3(s3k) − 0.5)2 + 10X4(s4k) + 5X5(s5k)
􏼐 􏼑

, (5) 

To closely mirror real-world data conditions, the error variance for y was set to σ = 74.9, yielding 
a signal-to-noise ratio (SNR) of 11. This choice was informed by our motivating dataset, 
where an SNR of 11.4 was estimated using a logistic regression model (Czanner et al., 2008). 
For the simulation study, we chose the following intervals; s1 = {0.01, 0.02, . . . , 0.10}, 
s2 = {0.21, 0.22, . . . , 0.30}, s3 = {0.41, 0.42, . . . , 0.50}, s4 = {0.61, 0.62, . . . , 0.70}, and 
s5 = {0.81, 0.82, . . . , 0.90}. This is to illustrate that each predictor function has a unique window 
of importance in the regression. Location smoothed BART should detect these important locations 
through the τj probability values of a given predictor function. To highlight the sparsity-inducing 
effects of the lsBART model, we include scenarios with additional noisy predictor functions that 
have no relation to the outcome y. We consider a range of settings from a relatively simple case 
with the five original predictor functions to a setting with 50 predictor functions, where 45 predict
or functions are not used in the generation of y.

We evaluated lsBART against BART, DART, functional linear regression, LASSO regression, 
ridge regression, a feed-forward neural network with a single hidden layer, and the random forest 
model, using the BART, fda, glmnet, nnet and randomForest packages (Friedman et al., 
2010; Liaw & Wiener, 2002; Ramsay et al., 2020; Sparapani et al., 2021; Venables & Ripley, 
2002). The 2,000 observations were split evenly into training and test sets, with performance as
sessed using test set root mean squared error (RMSE). We extract 100 evenly spaced points on the 
underlying s grid so that s = {0.01, 0.02, . . . , 1.00} for each predictor function. Hence, for five 
predictor functions, we have X̂1000×(5∗100) as the predictor training matrix, while for the 50 predict
or function case, we have X̂1000×(50∗100). We used default model parameters for all tree-based mod
els, including 200 trees and 100 draws for lsBART, BART, DART, and random forest. We set the 
hyperparameter στ = 1 for lsBART. We used the same training and test matrices for each model.

We see in Figure 2 that the lsBART model, indicated by the solid line with triangular points, 
achieves a substantially lower RMSE than the competing methods, and that its performance is 
relatively unaffected by the inclusion of additional noise predictor functions. Averaged over all set
tings, lsBART had an RMSE of 105, while its closest competitor DART had an RMSE of 166, 
BART 188, random forest 204, LASSO 220, ridge regression 227, neural network 235, and func
tional regression 256. Additionally, the gap in performance increased with the number of predict
or functions, indicating that lsBART is the most robust to the inclusion of irrelevant predictor 
functions. Furthermore, we found that the time it takes to train the model remains relatively stable, 
averaging at about 4.4 s, even with 50 functional predictors. This is the case for all BART models 
and most linear regression models, in stark contrast to the random forest, neural network, and 
ridge regression models, which require significantly more training time as the number of functional 
predictors increases. Chipman et al. (2010) found similar results when comparing the run time of 
BART to the random forest model.
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4.1.1 Signal-to-noise ratio
We look at lsBART’s performance as we alter the SNR in the simulation. Previously, we assessed 
the models’ performance at an SNR of 11. For this simulation set-up, we used a total of 15 func
tional predictors where five functional predictors are used in the generation of y using the modified 
Friedman function from Equation (5), and 10 are predictor functions not used in the generation of 
y. Now, we examine how RMSE changes as we vary the SNR from 1 to 100, by altering the error 
variance on y. In Figure 3, we see that the lsBART model outperforms the other models across SNR 
values. Averaged over all SNR values, lsBART had an RMSE of 135, while DART had an RMSE of 
173, BART 196, random forest 215, LASSO 242, ridge regression 247, neural network 249, and 
functional regression 269.

4.1.2 lsBART inference
Aside from outperforming the other models in prediction, our model is the only model that selects 
both relevant functions and regions within those functions. Figure 4 shows how the lsBART model 
is able to capture the dependence of y on the unique intervals in each predictor function. We illus
trate the case with 10 predictor functions, where X1 through X5 are the predictor functions that 
contain signal, while X6 through X10 are additional noisy predictor functions. Figure 4a shows the 
posterior π probabilities from the lsBART model. The posterior probabilities accurately indicate 
that X1 through X5 are the important predictor functions. This is particularly impressive as it 
captures both X1 and X2, which are put through the sine function and hence are difficult to 

Figure 2. Comparing location smoothed Bayesian additive regression trees (lsBART) performance on the Friedman 
function in terms of root mean squared error (RMSE) on a test set (left) and time to train the model (right); BART and 
Dirichlet additive regression trees (DART) had similar run times to lsBART and are omitted in the right-hand plot for 
visual clarity.

Figure 3. Comparing location smoothed Bayesian additive regression trees (lsBART) performance as the 
Signal-to-Noise ratio varies on 15 predictor functions.
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detect because of their nonlinear influence on y. Furthermore, we see that our proposed lsBART 
model is able to capture the important regions of each predictor function used in the modified 
Friedman function. In Figure 4b, we see a plot of X1 with the region of importance, 
s1 = {0.01, 0.02, . . . , 0.10}, indicated with green lines. The τ1 probabilities for X1 accurately iden
tify the truly relevant s1 region. Similarly, in Figure 4c, we see a plot of X2 with the region of im
portance, s2 = {0.21, 0.22, . . . , 0.30}, indicated with green lines. The τ2 probabilities for X2 

capture that s2 region. We found that all τj probabilities accurately reflected the region of import
ance for the remaining predictor functions. Hence, using the lsBART model, a researcher is able to 
determine important functional predictors and unique regions within each function that are rele
vant to the outcome.

4.2 Application to radiation treatment planning
We obtained a set of kidney contours from a cohort of 140 patients who underwent radiation 
treatment planning as a part of therapy for cervical cancer. The kidney is contoured during the 
planning process as it constitutes a nearby organ at risk. Since most patients have two kidneys, 
this yields two structures per patient plan. The contours were generated by the Radiation 
Planning Assistant (RPA), using a deep learning model based on a convolutional neural network 

Figure 4. (a) The π probabilities from the location smoothed Bayesian additive regression trees (lsBART) model, 
which capture the five important functions and leave out the five noisy function predictors; (b) All X1 predictor 
functions and the τ1 probabilities from X1, which captures the true important region highlighted in green; (c) Similarly 
shows X2 and the τ2 probabilities for the third functional predictor X2, which correctly capture the true important 
region.
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(CNN) algorithm (Rhee, Jhingran, Rigaud, et al., 2020). In total, we obtained 260 contours that 
were deemed clinically acceptable. A dosimetrist then manually introduced errors, yielding 52 un
acceptable contours. We applied the lsBART model to predict the binary response of whether a 
contour of the kidney is clinically acceptable or not.

From the axial view of the kidney structure, we derived quantitative shape statistics to capture 
its geometric aspects, including familiar summaries such as area and perimeter and also more ad
vanced features such as sphericity, which describes how closely a shape resembles a sphere, and 
rectangularity, which describes how closely a shape resembles a rectangle (Dryden & Mardia, 
2016; Rosin, 2005; Wirth, 2004). Leveraging these shape statistics obtained per slice allows us 
to apply the lsBART model to the stack of contours generated for each kidney. As each plan com
prises stacked images, we obtained multiple shape statistics from each slice, resulting in a function
al observation with s denoting the slice location. We relied on the binary matrix representation of 
the contour mask, which reflects a singular, closed contour. Edge voxels were used to define the 
perimeter. We relied on the EBImage package to compute sphericity based on the minimum, 
mean, maximum, and standard deviation of the radii lengths from the contour’s midpoint 
(Pau et al., 2010). We utilized the grDevices package to identify the contour’s convex hull, en
abling convexity and roundness calculations (R Core Team, 2023). We computed area using the 
concaveman package (Gombin et al., 2020) and metrics, including circularity, eccentricity, 
elongation, rectangularity, and centroid size using the Momocs package (Bonhomme et al., 
2014). These metrics, recorded per slice, produced a feature vector across slices, leading to a func
tional observation. In total, each kidney contour was summarized using 345 values, derived from 
15 shape statistics across 23 location points.

We compared the performance of lsBART in terms of cross-validated classification accuracy to 
BART and DART, its closest competitors in the simulation study. We used 100 trees with 200 
draws for each model, and set στ = 2 when applying lsBART. To obtain out-of-sample predictions 
for each method, we performed 10 replicates of 10-fold cross-validation. For each fold, we have 
X̂280×(15∗23) as our training set and X̂32×(15∗23) as our test set. Table B1 in Appendix B summarizes 
the relative performance of the models using comparison metrics, including the area under the 
curve (AUC) of the receiver operating characteristic (ROC) and precision-recall (PR) curves, sen
sitivity, and specificity. In Table B1, we see that lsBART performed similarly to BART and DART, 
achieving an AUC value of 0.905. Based on these cross-validation results, we see that the lsBART 
is a competitive option; as described in more detail in the next section, it provides an added bonus 
of interpretability that BART and DART do not.

4.2.1 Location interpretation with Shapley values
Shapley values in machine learning explain model predictions by evaluating the contribution of 
individual features for specific instances (Cohen et al., 2005; Shapley, 1953). Unlike global import
ance scores, Shapley values provide insights tailored to the model prediction for a specific input 
observation. Features that, when removed, significantly impact the prediction receive high 
Shapley values. To elaborate, let A = {x1, x2, . . . , xp} denote the set of p input features. To deter
mine how much each feature contributes to the function f, we evaluate the contribution of each 
feature xj by calculating its Shapley value ϕj:

ϕj =
􏽘

B⊆A\{xj}

|B|!(p − |B| − 1)!
p!

[f (B ∪ {xj}) − f (B)], (6) 

where B represents any subset of A that excludes xj. The idea is to measure how the output of 
f changes when xj is added to different subsets B, and then average this contribution over all pos
sible subsets. Our model’s location-specific nature allows us to use Shapley values to identify which 
functional predictors and which specific locations within these functions influence the prediction. 
The rapid tree-based Shapley approach, TreeSHAP, has been effectively integrated into models 
such as random forest and XGBoost. We incorporated this approach into the lsBART framework 
using the treeshap package (Komisarczyk et al., 2023). To the best of our knowledge, the appli
cation of Shapley values for interpretation in the BART framework appears novel. The unique de
sign of BART, which introduces a new ensemble of trees with each MCMC iteration, enables us to 
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compute Shapley values across each tree and iteration. Averaging these values yields a mean 
Shapley value for predictive features. For binary classifications, Shapley values are derived from 
the leaf values of g(x̂i, T h,Mh) and not probabilities, due to BART’s inherent sum of trees struc
ture. To interpret the Shapley values in this case we recall that Φ(μ0 + f (x̂i))→ 0 as μ0 + f (x̂i)→
−∞ and Φ(μ0 + f (x̂i))→ 1 as μ0 + f (x̂i)→∞. Hence, negative Shapley values contribute to the 
prediction being 0, and positive Shapley values contribute to the prediction being 1.

To illustrate the interpretability of the Shapley values obtained from lsBART, we performed an 
80% training and 20% testing split of the kidney contour dataset and calculated the mean Shapley 
values from lsBART for an exemplary test set contour that was flagged (Figure 5). In Figure 5a, we 
see the Shapley values for each shape statistic, with rectangularity, centroid size, and area being of 
particular interest. Figure 5b shows an image from the 65% axial location within the treatment 
plan with both a clinically acceptable contour in green and an unacceptable contour in red. The 
unacceptable contour has a much smaller area and centroid size in comparison to the acceptable 
contour. Figure 5c shows the Shapley values for the location in the plan of the centroid size pre
dictor function. We see a clear spike in the Shapley value from 60%–70%, indicating something 
suspicious in that region. Furthermore, we show the average centroid size predictor function of all 
the acceptable kidney contours in green and the current flagged observation’s centroid size func
tion in red. The large spike in the Shapley value corresponds to a large difference in the flagged 
contour’s centroid size value from the mean of the acceptable contours. Hence, we see that the lar
gest Shapley value spike indicates the location of a specific error in the plan. We show the patient- 
specific interpretation of a potential contouring error with another example in Figure 6. As in 
Figure 5, here we see an axial slice from the treatment plan with both the acceptable (green) 
and unacceptable (red) contours. The image in Figure 6b is from about the 55% location of the 
images in the plan and corresponds to the location of the largest Shapley value from the rectangu
larity predictor function. We are thus able to simultaneously flag a plan and find which images in 
the plan contain the error.

Figure 5. (a) The Shapley values for each functional predictor; (b) CT image showing the acceptable contour in green 
and the unacceptable contour in red; (c) the Shapley values of location within the centroid size predictor function in 
blue bars, the mean functional predictor of acceptable kidney contours in green, and the flagged kidney contour 
functional predictor in red.
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4.2.2 Application to unlabelled data
We aimed to evaluate the effectiveness of our innovative method on an external dataset. Initially, 
we trained the lsBART model on the comprehensive dataset of 312 kidney contours. Since a more 
sensitive classifier is desired in the context of radiation therapy quality assurance to ensure meticu
lous review of suspicious cases, we identified an optimized cut-off threshold using Youden’s index. 
Training on the full dataset, lsBART with Youden’s index achieved a total accuracy of 93.27%, 
AUCROC value of 0.983, and AUCPR value of 0.945.

We acquired an external data set of 18 radiation treatment plans for cervical cancer radiother
apy from a radiation physics lab at MD Anderson Cancer Center. From these, we extracted 36 
kidney contours that were computer generated. As these contours were novel to our model, 
they were treated as unlabelled data. Following the extraction of shape feature functional predic
tors as earlier described, we applied our trained lsBART model to obtain interpretable predictions. 
Figure 7 shows the estimated probabilities with standard deviations from each posterior draw of 
each contour being unacceptable for use in radiotherapy planning. Notably, nine contours were 
flagged as surpassing Youden’s index threshold, the black dashed horizontal line. As would hap
pen in the potential clinical application of our approach, a dosimetrist then inspected the flagged 
contours to simulate the clinical workflow. Of these, seven were discerned to have discrepancies, 
ranging from over-contouring to under-contouring. Notably, the remaining two flagged contours, 
while error-free, were truncated, affecting a segment of the kidney and possibly leading to their 
high posterior probabilities.

The dosimetrist subsequently reviewed the remaining contours to identify ones that would be 
clinically unacceptable. In total, out of the 36 contours, 15 exhibited errors that rendered them 
clinically unacceptable, whereas 21 would be acceptable. Using Youden’s index from the training 
set, we achieved a total accuracy of 72.2% and AUCROC and AUCPR values of 0.641 and 0.628, 
respectively.

Figure 6. (a) The Shapley values for each functional predictor; (b) CT image showing the acceptable contour in green 
and the unacceptable contour in red; (c) the Shapley values of location within the rectangularity function in blue bars, 
the mean functional predictor of acceptable kidney contours in green, and the flagged kidney contour functional 
predictor in red.
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A pivotal aspect of our advanced quality assurance methodology is the interpretability offered 
by integrating Shapley values with lsBART. When contours are flagged, we can derive useful 
explanations for the flagging and pinpoint suspicious regions within the plan. In Figure 8, the 
Shapley values for each functional predictor are illustrated, accompanied by an axial-view image 
of a kidney contour from the position with the largest Shapley value. These Shapley values, asso
ciated with functional predictors, provide insights into potential locations of error. As observed, a 
pronounced peak of the Shapely value on a functional predictor consistently correlates with the 
detected anomaly. Additional illustrations of flagged errors are provided in Appendix B.

5 Discussion
Location smoothed Bayesian additive regression trees are a novel extension of BART that priori
tizes identifying important predictor functions and their significant regions. The motivating appli
cation is for locating contouring errors within treatment plans. To the best of our knowledge, we 
are first in applying a functional data framework for radiation treatment plan quality assurance 
and in integrating Shapley values within a BART framework.

In our model, we encourage smoothness of the location probabilities across space. To ensure 
sparsity and maintain computational efficiency, we achieve this by imposing a constraint on the 
Dirichlet prior for the location parameters, which we enforce by manipulating our posterior sam
ples. Thus, our algorithm can be considered approximate. We also considered alternative fully 
Bayesian formulations for achieving smoothness, such as placing a Gaussian process prior on 
τj. We found that this approach resulted in denser models with increased computational time. 
Further exploration of a fully Bayesian approach to lsBART remains a direction for future work.

However, our study is not without limitations. Firstly, the unacceptable contours in the training 
data were manually generated, since any contours where errors are noticed would be corrected be
fore use in clinical radiotherapy treatment planning, and are therefore difficult to obtain. This 
manual generation process may not fully represent all potential clinical scenarios. Secondly, given 
the heterogeneous nature of contour errors, a supervised classifier could miss a contour error that 
reflects an issue not seen in the training data. Future contour quality assurance methods could in
corporate more deep learning techniques. With the emergence of vision transformer models, such 
as GPT-4V, the focus could shift significantly towards deep learning image processing. However, 
privacy concerns and inconsistencies in medical image interpretation must be addressed to ensure 
these models’ reliability and accuracy in clinical practice (OpenAI, 2023).

Our work can be extended to address other settings beyond radiation treatment planning with a 
need for classifying objects. While lsBART currently focuses on extracted shape statistics rather 

Figure 7. Probabilities from the external dataset where the unacceptable contours are in red and the acceptable 
contours are in green, with probabilities ordered from lowest to highest.
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than direct image analysis, potential applications include extending the methodology to predict 
treatment outcomes directly from segmented MRI images of tumours or applying it to computer 
vision tasks such as object detection and classification in autonomous driving. More broadly, our 
lsBART model can be generalized to other prediction tasks with multiple functional or spatially 
related inputs, including auditory signal processing and applications in public health such as asso
ciating disease risk with time-varying exposures to environmental pollutants. A potential applica
tion in genomics would be outcome prediction from methylation data; this can be seen as a 
prediction problem with a functional predictor for each chromosome. Methylation markers rele
vant to the outcome are likely to be concentrated within spatial regions, corresponding to the near
by genes that they regulate. We expect that our proposed model would work well in this setting.
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Data availability
We provide code to run the lsBART algorithm and to reproduce the analysis. We also provide the 
shape statistic functional predictors from the labelled and unlabelled kidney data sets. The code 

Figure 8. (a) The Shapley values for each functional predictor; (b) CT image showing the unlabelled contour in red; 
(c) the Shapley values of location within the Mean Radius function in blue bars, the mean functional predictor of 
acceptable kidney contours in green, and the flagged kidney contour functional predictor in grey.
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and datasets are available online here: https://github.com/wootz101/LocationSmoothedBART. 
Moreover, we would like to thank Licai Huang for guidance on the BART code.

Appendix A
We now explain in full detail the posterior distribution and how to update the model through each 
posterior sample. After describing the updates for each parameter, we summarize the sampling 
steps in Algorithm 1.

A.1 Posterior calculations
Let Ψ represent all model parameters, and let D represent all of the data, so 
D = {(X1(s), y1), (X2(s), y2), . . . , (Xn(s), yn)}. Then, we can define the posterior as proportional 
to the likelihood times the prior distributions.

P(Ψ |D) ∝
􏽙n

i=1

􏽙H

h=1

P(yi | X̂, T h,Mh, σ)P(Mh | T h)P(T h)P(σ)

􏼨 􏼩

. (A1) 

A.2 Updating T t , Mt , and σ2

We can use the residuals to update a single tree at a time (Chipman et al., 2010). We define the 
residual for the ith observation when tree t is left out as Rti = yi −

􏽐H
h≠t g(x̂i, T h,Mh) = μ0 + 

g(x̂i, T t,Mt) + εi and hence we see that Rti ∼ N(μ0 + g(x̂i, T t,Mt), σ2).

A.3 Updating terminal nodes (leaves)
First, we note that P(Rti | x̂i, T t,Mt, σ) = 1

σ
��
2π
√ exp ( −(Rti−g(x̂i, T t ,Mt))

2

2σ2 ) and we recall that 

for the tth tree and lth leaf node μtl | T t ∼ N(0, σ2
μ) and hence P(μtl | T t) = 1

σμ
��
2π
√ exp (− (μtl)

2

2σ2
μ

). 

Algorithm 1 Location smoothed BART Algorithm

Require: data format as X̂n×(p∗S) with scalar response, y = {y1, y2, . . . , yn}, V: the number of iterations

1:  for v ≤ V do

2:   for h ≤ H do

3:    T h|Rh, σ2                                           ⊳ update tree structure using Backfitting (Algorithm 2)

4:    Mh|Rh, T h, σ2                              ⊳ update leaf node values using Backfitting (Algorithm 2)

5:   end for

6:   π|T 1,M1, T 2,M2, . . ., T H,MH                        ⊳ draw predictor probabilities from posterior

7:   for j ≤ P do

8:    τj|π, T 1,M1, . . ., T H,MH                               ⊳ draw location probabilities from posterior

9:   end for

10:    for k ≤ S do

11:   τ jk = τ jk +
􏽐S

k′=1 τ jk × exp −(k−k′)2

2σ2
τ

􏼐 􏼑
⊳ Gaussian smoothing

12:    end for

13:    for j ≤ P do

14:     τj = τj􏽐S

k=1
τ jk                                                                       

⊳ Normalize location probabilities

15:    end for

16:    σ2|T 1,M1, T 2,M2, . . ., T H,MH                                         ⊳ update variance from posterior

17:  end for
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Let Yμtl
= {yi : g(x̂i, T t,Mt) = μtl} be a nμtl 

sized vector and the set of all observations that end in the 
terminal node μtl. Then the posterior distribution of μtl is

P(μtl |Ψ) ∝
􏽙nμtl

i=1

P(Rti | x̂i, T t,Mt, σ)

􏼨 􏼩

P(μtl | T t), (A2) 

P(μtl |Ψ) ∼ N
σ2

μ
􏽐nμtl

i=1 Rti

σ2
μnμtl

+ σ2 ,
σ2σ2

μ

(σ2
μnμtl

+ σ2)

􏼠 􏼡

. (A3) 

A.4 Updating the variance σ2

We use a conjugate prior for the variance, where σ2 ∼ inverse-χ2(ν), as mentioned in Section 3.
We obtain the posterior distribution for σ2 as the following:

P(σ2 |Ψ) =
􏽙n

i=1

{P(Rti | x̂i, T ,M, σ2)}P(σ2), (A4) 

P(σ2 |Ψ) ∼ inverse-Gamma
ν + n

2
,

4 +
􏽐n

i=1 (Rti − g(x̂i, T t,Mt))
2

2

􏼠 􏼡

. (A5) 

A.5 Updating the tree structure
Let T (h) = {T l : 1 ≤ l ≤ H, l ≠ h} be the set of all trees not including the hth tree. Likewise, let 
M(h) = {Ml : 1 ≤ l ≤ H, l ≠ h} be the set of all mean leaf values not including the hth one. Let θ 
be the vector of other parameters including σ, π, and τ. Then the likelihood of the T h tree is:

L(T h; T (h),M(h), θ) = ∫
􏽙n

i=1

P(yi | T h,Mh, T (h),M(h), θ)

􏼠 􏼡

P(Mh | T h, θ)dMh, (A6) 

Algorithm 2 Backfitting Algorithm

Require data format as X̂n×(p∗S)

1: for 1 ≤ h ≤ H

2:   Propose T ∗h ∼ q(T ∗h; T h) ⊳ Proposal can grow, prune, swap, change tree

3:   Let a = L(T∗
h
; T (h) ,M(h) , θ)P(T ∗h)

L(Th ; T (h) ,M(h) , θ)P(T ∗h)
q(T ∗h ; T h)
q(T h ; T ∗h)

4:   Set T h = T ∗h with probability min (a, 1)

5:   Sample Mh ∼ P(Mh|T h, T (h),M(h), θ, D)                                                            ⊳ Draw new leaves

6: end for
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Appendix B
In this section, we provide a summary of crosst-validated performance on the training data and 
additional examples of contour errors from the unlabelled data set (Figures B1 and B2).

Table B1. Quality assurance performance comparison based on cross-validated classification accuracy

lsBART BART DART

AUCROC 0.905 (0.016) 0.908 (0.014) 0.898 (0.010)

AUCPR 0.736 (0.033) 0.746 (0.018) 0.749 (0.023)

Sensitivity 0.294 (0.046) 0.288 (0.043) 0.390 (0.047)

Specificity 0.997 (0.004) 0.998 (0.002) 0.996 (0.003)

Figure B1. (a) The Shapley values for each functional predictor; (b) CT image showing the unlabelled contour in blue; 
(c) the Shapley values of location within the Mean Radius function in blue bars, the mean functional predictor of 
acceptable kidney contours in green, and the flagged kidney contour functional predictor in grey.
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