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Abstract 

Background: Identification of features is a critical task in microbiome studies that is 
complicated by the fact that microbial data are high dimensional and heterogeneous. 
Masked by the complexity of the data, the problem of separating signals (differen‑
tial features between groups) from noise (features that are not differential between 
groups) becomes challenging and troublesome. For instance, when performing dif‑
ferential abundance tests, multiple testing adjustments tend to be overconservative, 
as the probability of a type I error (false positive) increases dramatically with the large 
numbers of hypotheses. Moreover, the grouping effect of interest can be obscured by 
heterogeneity. These factors can incorrectly lead to the conclusion that there are no 
differences in the microbiome compositions.

Results: We translate and represent the problem of identifying differential features, 
which are differential in two‑group comparisons (e.g., treatment versus control), as a 
dynamic layout of separating the signal from its random background. More specifically, 
we progressively permute the grouping factor labels of the microbiome samples and 
perform multiple differential abundance tests in each scenario. We then compare the 
signal strength of the most differential features from the original data with their perfor‑
mance in permutations, and will observe a visually apparent decreasing trend if these 
features are true positives identified from the data. Simulations and applications on real 
data show that the proposed method creates a U‑curve when plotting the number of 
significant features versus the proportion of mixing. The shape of the U‑Curve can con‑
vey the strength of the overall association between the microbiome and the grouping 
factor. We also define a fragility index to measure the robustness of the discoveries. 
Finally, we recommend the identified features by comparing p‑values in the observed 
data with p‑values in the fully mixed data.

Conclusions: We have developed this into a user‑friendly and efficient R‑shiny tool 
with visualizations. By default, we use the Wilcoxon rank sum test to compute the 
p‑values, since it is a robust nonparametric test. Our proposed method can also utilize 
p‑values obtained from other testing methods, such as DESeq. This demonstrates the 
potential of the progressive permutation method to be extended to new settings.
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Background
With the advent of next-generation sequencing technologies to quantify the composi-
tion of human microbiome, there have been drastic increases in the number of micro-
biome studies and vast improvements in microbiome analysis [1]. In recent decades, 
a tremendous amount of evidence has strongly suggested that the human microbiota 
is becoming a crucial key to understanding human health and physiology  [2–8]. In 
practice, identification of microbial biomarkers often requires singling out specific 
taxa that are differentially abundant between two groups of interest (e.g. treatment vs. 
control). Differential abundance analysis  [9] in this setting, however, is challenging. 
On the one hand, microbiome data are high dimensional with complex structures. A 
single sample can produce as many as tens of thousands of distinct sequencing reads. 
These reads are clustered into operational taxonomic units (OTUs) and mapped to 
the microbial species according to a reference library. At the same time, the OTUs 
(which can be considered as the lowest level taxa) are routinely aggregated to higher 
taxonomic levels (phyla, order, class, family, genus, or species). On the other hand, 
microbiome data are heterogeneous across subjects that belong to different popula-
tions, because microbiome samples interact with different body environment that 
might be depicted by multiple clinical outcomes. It is highly likely that not all of these 
host phenotypes are collected and included in the study, but with all the available 
clinical factors in the current data, we would like to explore and investigate a sub-
set that are most associated with differences in microbiome compositions. Then we 
would like to identify the corresponding microbiome features that are significantly 
and robustly associated with these clinical outcomes.

Researchers have adapted classical differential analysis tools developed for RNA 
sequencing data, such as edgeR [10] and DESeq [11], to microbiome data, as both data 
types are essentially read count data. Others have proposed methods that account for the 
compositional nature of microbiome data, including ANCOM  [12] and ALDEx2  [13]. 
Segata et al.  [14] developed LEfSe (Linear discriminant analysis Effect Size) to identify 
differential taxonomic features between groups by using standard tests for statistical sig-
nificance. When doing multiple tests, the probability of a Type I error (false positive) 
increases dramatically as high throughput sequencing data is tested  [15]. Adjustment 
methods such as the Benjamini–Hochberg procedure will become over-conservative 
and incorrectly lead to conclusions that there are no differences in the microbiome, 
because the threshholds of rejecting the null hypothesis for each microbe becomes 
extremely small as the number of tests increases [16]. Although these differential testing 
methods are able to identify the significance of individual microbiomarkers when asso-
ciating with a single clinical outcome, they do not answer a more general question as to 
which grouping factors better identify more differences in microbiome communities and 
deserve further analysis when multiple clinical outcomes are presented in the observed 
data. Researchers usually use dimension reduction plots (e.g. PCoA or NMDS) at the 
beginning to explore the overall associations between clinical outcomes and microbiome 
compositions before any further investigations. But the expected clustering effect may 
or may not be observed depending on the degree of heterogeneity across samples and 
populations, which could lead to the false conclusion that the microbiome is not asso-
ciated with a clinical factor. Therefore, a systematic tool is needed to explore both the 
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overall and the individual associations, and to provide measures on the robustness of the 
discoveries and the reliability of the results.

We propose a novel method named progressive permutation. The method progres-
sively permutes the grouping factor labels of microbiome samples and performs dif-
ferential testing (such as a Wilcoxon rank-sum test or a Kruskal–Wallis test) on the 
permuted data in each scenario. We then compare the signal strength ( − log10 p-values) 
of top hits from the observed data with their testing performance in permuted data sets. 
We can observe an apparent decreasing trend of the signal strength from the no permu-
tation scenario to the full permutation scenario, if these top hits are true positives identi-
fied from the data. As the fragility index is a measure of the robustness of the results of 
a clinical trial [17, 18], we propose a similar concept in our progressive permutation to 
measure the minimum number of permutation steps that would change the variable’s 
significance to nonsigificance. We also extend these concepts to a continuous outcome 
using correlation tests (such as Kendall’s tau or Spearman Rank Correlation tests). We 
have developed this method into a user-friendly and efficient RShiny tool with visualiza-
tions, so that the method becomes easy to apply, the results are easy to understand and 
the process of analyzing is well organized. Hawinkel et al. [19] proposed a permutation 
filtering method to measure the taxa importance by the filtering loss of exclusion of the 
taxa. The method randomly permutes the labels of taxa and evaluates the proportion of 
total variance loss. Our method permutes the sample labels to regroup them and evalu-
ate the robustness of group differences. We validate our method with simulations and 
applications in real data. We conclude that the proposed method can not only compare 
the overall association between the microbiome and multiple grouping factors (that 
might be obscured by heterogeneity), but also single out the robust individual hits. It 
achieves the former by measuring the changing trend of the number of significant hits 
across permutation scenarios and ranking the fragility index of the discovered microbes. 
It achieves the latter by comparing the p-values of the observed data (signals) with p-val-
ues of the fully mixed data (noise). To finalize the results, the RShiny tool lists the dis-
coveries, their effect sizes and individual abundances.

The paper is organized as follows. In “Methods” section, we include a detailed descrip-
tion of the proposed method. In “Simulations” section, we run simulations, and use the 
U-Curve and fragility index to measure overall associations with grouping factors and 
the robustness of microbiome discoveries. In “Application” section, we apply the method 
to real data to test overall associations and identify robust hits. In “Analytical property” 
section, we show the analytical properties of the proposed method in a simple setup. We 
conclude with a discussion in “Discussion” section.

Methods
Suppose that we collect N samples and obtain p microbiome taxa. We denote the micro-
bial features as X = (x1, . . . , xp) , where each xi is an N-dimensional vector. We aim 
to identify which variables are differential by the grouping factor of interest with two 
groups g = (g1, g2) (e.g. g1 denotes the treatment group while g2 denotes the control 
group). We denote the grouping labels in group 1 as g1i = 1, i = {1, . . . , n1} and group 
2 as g2i = 2, i = {1, . . . , n2} , where n1 + n2 = N  . The hypothesis test performed on 
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each variable is denoted as Hj , j = {1, . . . , p} . The corresponding p-value is denoted as 
pj , j = {1, . . . , p}.

We use k = {0, 1, . . . ,K } to describe progressive permutation scenarios. k = 0 
describes the observed data without any permutation. K = min(n1, n2) is the maximal 
permutation scenario. The permutation scenario k is constructed as follows. Each time, 
we start from the original grouping labels g = (g1, g2) . We randomly draw k samples 
from group 1 (sample labels {i11, . . . , i1k} ⊆ {1, . . . , n1} ) and k samples from group 2 (sam-
ple labels {i21, . . . , i2k} ⊆ {1, . . . , n2} ), and then exchange their grouping labels, meaning 
that g1i = 2, i = {i11, . . . , i1k} and g2i = 1, i = {i21, . . . , i2k} . In the k-th permutation scenario, 

we have 
(

n1
k

)(

n2
k

)

 choices. The number of choices 
(

n1
k

)(

n2
k

)

 approaches its maxi-

mum, when k equals the closest integer greater than n1n2−1
n1+n2+2 . We call it as the full per-

mutation scenario with Kf = ⌈ n1n2−1
n1+n2+2⌉ . If n1 = n2 = n , then Kf = ⌈n−1

2 ⌉ . Adding up the 
choices of all the scenarios, we get the following equation

The above equation can be derived from Vandermonde’s convolution identity for bino-
mial coefficients. The details are shown in Additional file 1: Sect. S1. The left side lists 
all the progressive permutation scenarios which are disjoint meaning that grouping 
labels are distinct between scenarios. The right side lists all possible combinations when 
you group N samples into two subgroups with n1 and n2 samples respectively. With the 
increase of k, the two groups are mixing more with each other. In other words, among 
all the grouping assignments at random, the permuted assignments more similar to the 
original data (the observed grouping factor) would differentiate the two groups more 
than the less similar ones, if the microbiome variables were strongly associated with the 
observed grouping factor.

Next we introduce how to perform differential tests and utilize the testing results from 
all the progressive permutation scenarios. In both the permuted and unpermuted data, 
we perform differential testing of each feature, and obtain the corresponding − log10 p

-values. By default, we use the Wilcoxon rank sum test to compute the p-values, since it 
is a robust nonparametric test. Our proposed method can also utilize p-values obtained 
from other testing methods, such as DESeq [20].

Each permutation scenario consists of multiple combination choices, implemented as 
follows. For each permutation scenario k ( k ≥ 1 ), we start from a random seed and per-

form a subset of ν = N
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 (rounded to the nearst integer) draws 

out of a total of 
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)

 draws. For each draw in every scenario k, we perform p 

independent tests to differentiate each microbiome features between the two groups and 
calculate all the p-values. Therefore, for each variable j ( j = 1, . . . , p ), we obtain ν sam-
ples of p-values pj(k) . We summarize the distribution of these samples by their medians 
pmj (k) and 2.5–97.5% quantile intervals. To visualize these p-values in an organized 
manner, we rank the p-values (defined as pj(0) ) of all the variables in the observed data, 
and then plot their − log10 median p-values with the same order across permutation 
scenarios. Please note that the observed data can be considered as one draw ( ν = 1 ), so 
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the median p-value pmj (0) is equivalent to the p-value pj(0) . As illustrated in Fig. 1, we 
presented the traces of − log10 p-values for an example data set with 100 microbiome 
features. In general, the paralleled traces of − log10 median p-values of more significant 
variables will be higher than those of less significant ones. With the increase of mixing, 
the significant p-values gradually become nonsignificant, indicating that the signal is 
weaker and the noise is stronger. As there would be almost no signal if the data were 
fully mixed, more p-values are close to 1 at the full permutation scenario k = Kf  . We 
describe the computational scaling of the progression permutation approach in Addi-
tional file 1: Sect. S2.

For microbiome data, the number of taxa p is usually a larger number. It is not easy to 
display and compare a large number of traces. So we summarize individual p-values into 
a single quantity, the number of significant taxa. We can obtain the number of significant 
taxa as nsig(k) =

∑p
j=1 Ipmj (k)≤α , where α is the prespecified significance level (default 

value is 0.05). We expect to see the lowest nsig(k) in the full permutation scenario Kf  , 
because more p-values become close to 1 here. The number of significant features nsig(k) 
decreases with the proportion of mixing k/K, when k ≤ Kf  . nsig(k) increases with the 
proportion of mixing k/K, when k ≥ Kf  . If the two groups have balanced sample sizes (i.e. 
n1 = n2 ), we will visualize a symmetric U-shape curve if we plot the number of significant 
features with the proportion of mixing k/K. The shape of U-Curve measures the signal 
strength how differential the microbiome compositions are between two groups. We 
potentially can use the U-Curve as a global measure to depict the overall association 
between microbiome compositions and different clinical outcomes.

To allow the U-Curve comparable across various data sets with different number of 
microbiome features, we scale the number of significant features nsig(k) by total num-
ber of features considered p, which is named as the proportion of significant features 
nsig(k)/p (ranges from 0 to 1). As illustrated in Fig.  2, we define the area of interest 
(AOI) as the rectangular region covering the curve (green plus purple), which actually 

Fig. 1 Trace plot of − log10 p‑values changing with the proportion of mixing. x‑axis denotes the proportion 
of mixing. y‑axis denotes the − log10 p‑values of the 100 features. Each curve denotes the trace of − log10 p

‑value of an individual microbiome feature. The scale of rainbow colors shows the contrast of curves that 
− log10 p‑values of more significant variables will be higher than those of less significant ones. The vertical 
bars describe the 95% quantile confidence intervals of the − log10 p‑values across permutation scenarios
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measures the proportion of significant features nsig(k)/p . In order to describe the shape 
of the U-Curve, we define area under the mixing curve (AUMC) and the decreasing 
slope of the initial point depicting the observed data. The AUMC measures the purple 
area in Fig. 2, which can be calculated numerically. The slope of the initial point is cal-
culated as the slope of the line connecting the first two points. Bigger AUMC means 
that the number of significant features varies more considerably from the observed data 
( k = 0 ) to the fully mixed data ( k = Kf  ), which indicates the higher association between 
clinical outcomes and microbiome compositions in the observed data. For two clinical 
outcomes giving equal AOIs, if one outcome provides smaller slope (meaning the signal 
is stable at the beginning) and bigger AUMC, we will conclude that the overall associa-
tion between this outcome and the microbiome features were higher.

The fragility index was originally defined as a measure of the robustness of the results 
of a clinical trial [17, 18]. We introduce a similar concept to measure how fast the signals 
break down as the mixing increases. We introduce and define the fragility index of jth 
variable of each draw at permutation scenario k as FIj = mink

(

pmj (k) > α

)

 , where 

pmj (k) is the median p-value obtained above in each scenario k. In other words, the fra-
gility index of a variable is the minimum number of permutation steps that would 
change the variable’s significance into nonsignificance. So the fragility index is smaller 
than full permutation scenario Kf  , where all p-values are not significant. Therefore, we 
can obtain the scaled fragility index as sFIj = FIj/Kf  . The larger the fragility index is, the 
more stable the identified taxa are. Therefore, within the same data set, we can rank the 
importance of the taxa by their fragility indices. For two clinical outcomes, if one out-
come is more associated with microbiome features, this outcome will provide higher 
average fragility indices.

If we roll back the wheel of our proposed method (i.e. Eq. 1), we will find an analogy to 
scientific research that permuting grouping labels actually lists all the possible arrange-
ments of observations from the same random phenomenon. However, in a single study, 

cba

Fig. 2 An illustration plot of the U‑Curve of proportion of significant features versus proportion of mixing. 
x‑axis describes the proportion of mixing the two groups of data. y‑axis describes the proportion of 
significant features. The red triangle describes the observed data. The black dots describe the permuted data. 
The vertical bars describe the 95% quantile confidence intervals
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researchers observe merely one arrangement, and expect this occasional arrangement 
among all the others could convey the signal that the two groups are differential. We 
propose progressive permutation to recover the missing arrangements. We assume that 
the observed data are differential between the two groups. Then the method generates 
all the other disjointed arrangements in a systematic manner with fixed sample sizes so 
that the signal progressively diminishes from the no-permutation scenario (the observed 
data) to the full-permutation scenario. In other words, if the grouping factor is associ-
ated with the microbial difference between the two groups, the observed data defining 
the signals will be readily able to distinguish from the fully mixed data which character-
izes the noise. Therefore, we achieve the identification of robust variables by judging that 
the significant p-values obtained from the observed data lie outside of the 95% confi-
dence intervals of the fully mixed data.

Simulations
In this section, we first generate two types of simulations to show the performance of 
our method. First, we change the group mean, variance, correlation and number of sig-
nificant variables to simulate data with different levels of signals. Second, we control the 
number of significant variables and simulate three data sets with different levels of het-
erogeneity. Then we compare the performance of our progressive permutation method 
on these data.

We follow the same simulation setup used by [21]. We simulate the OTU counts as 
random samples drawn from a negative binomial distribution F(m, κ) , where κ is 
called the dispersion parameter, as the variance is m+ m2

κ
 . To simulate the depend-

ence between OTUs, we use the Gaussian copula [22] to combine the correlation struc-
ture R with the negative binomial distributions. Here are the simulation steps. First, we 
draw Gaussian samples of Z ∼ N (0,R) . Second, we obtain the negative binomial sam-
ples X j = F−1(�(Z j)), j = 1, . . . , p . �(·) denotes the Gaussian cumulative distribution 
function. Third, we obtain the compositions by dividing each element Xij by a constant 
greater than the sum of each rows.

To gain a sense of how the shape of the U-Curve depicts the strength and robustness 
of signals, we construct multiple data sets, changing the simulation parameters and per-
forming progressive permutation on each data set. Let x1ij ∼ F(m1

j , κ
1
j ) denote the simu-

lated data from Group 1. Let x2ij ∼ F(m2
j , κ

2
j ) denote the simulated data from Group 2. 

The two groups have the same sample size n1 = n2 = 30 and the same correlation struc-
ture as Rij = ρi−j . We simulate the grouping factor of interest y as [1, . . . , 1, 2, . . . , 2] . 
Suppose both group consist of 100 variables. Let “nsv” denote the number of differential 
variables whose distribution means are m1

j  or m2
j  , the means of all the other variables is 

set as 1. As shown in Table 1, we set the means of Group 1 as {10, 10, 10} and the means 
of Group 2 as {1, 6, 10} , so the mean differences between the two groups are {9, 4, 0} . For 
instance, a data set is generated with m1 −m2 = 9 and nsv=30, meaning that 30% of the 
100 variables have strong differences ( m1

j = 10 vs. m2
j = 1 , where j = 1, . . . , 30 ) between 

the two groups, while all the other 70 variables are not differential (mean difference is 0) 
between the two groups. We summarize the following observations based on the above 
simulations. AOI in general increases with the proportion of significant features in the 
simulated data. As the variance increases when κ becomes smaller, the differential effect 
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between the two groups shrinks with κ . So the AUMC and average fragility of the first 50 
features become smaller. The differential effect increases with the two mean differences 
between the two groups. So the corresponding AUMC and average fragility of the first 
50 features become smaller when mean differences are smaller. As shown in Fig. 2, the 
shape of U-Curve becomes flatter when two groups are less differential. Therefore, the 
more a grouping factor differentiates the features, the bigger AOI, AUMC and fragility 
index will be obtained. In particular, when the mean difference between the two groups 
is close to 0, the AOI and AUMC are almost zero, indicating that the U-Curve of number 
of significant features is flat when there are no differential signals. Additionally, corre-
lations between microbiome features do not affect the values of the AOI and AUMC. 
The significant features identified by the proposed method is a subset of features whose 
p-values are less than 0.05 in the observed data.

However, the behavior of steepness of the U-Curve is not clear in the previous simula-
tions. In the following simulations, we control the data to produce the same AOI, but 
with different slopes. In other words, the number of identified features are the same, 

Table 1 Comparison on progressive permutation results produced by multiple simulated data sets 
with different simulation parameters, including correlation ρ , number of significant variables (nsv), 
group mean difference ( m1 −m2 ), and dispersion κ

AOI is short for area of interest. AUMC is short for area under the mixing curve. “ slope0 ” denotes the slope of the first point 
in the U-Curve of number of significant features (the slope of the line connecting the first two points). “ slope1 ” denotes the 
average value of the slope of the first 15 points ( Kf = 15 ) in the U-Curve of number of significant features (the slope of the 
line connecting the point with its next neighbor). “fragility” denotes the average value of the fragility index of the first 50 
microbiome features. “ select0 ” denotes the number of p-values that are less than 0.05 given by the testing results on the 
observed data. “ select1 ” denotes the number of significant features identified by the proposed method

ρ nsv m1 −m2 κ AOI AUMC slope0 slope1 Fragility select0 select1

0.5 30 9 24 0.30 0.23 0 − 0.54 6.64 30 30

9 1 0.30 0.20 0 − 0.54 5.74 30 30

4 24 0.30 0.18 0 − 0.52 5.96 30 30

4 1 − 0.05 − 0.05 0.45 0 1.44 5 3

0 24 0.00 − 0.02 0 0.1 0.44 0 0

0 1 0.00 − 0.02 0 0.1 0.46 0 0

90 9 24 1.00 0.67 0 − 2 11.02 100 100

9 1 1.00 0.58 0 − 1.98 10.14 100 100

4 24 0.89 0.44 − 0.6 − 1.74 8.84 89 84

4 1 − 0.08 − 0.08 1.5 − 0.08 2.06 8 3

0 24 0.00 − 0.02 0 0.1 0.34 0 0

0 1 0.00 − 0.02 0 0.1 0.5 0 0

0.8 30 9 24 0.30 0.23 0 − 0.54 6.58 30 30

9 1 0.30 0.20 0 − 0.54 5.8 30 30

4 24 0.30 0.18 0 − 0.52 5.14 30 30

4 1 0.04 0.04 − 0.45 0.02 1.2 4 0

0 24 0.00 − 0.02 0 0.1 0.66 0 0

0 1 0.00 − 0.02 0 0.1 0.3 0 0

90 9 24 1.00 0.67 0 − 2 11.12 100 100

9 1 1.00 0.58 0 − 1.98 10.1 100 100

4 24 0.97 0.45 − 2.1 − 1.9 8.82 97 87

4 1 − 0.07 − 0.08 2.25 − 0.04 2.06 7 0

0 24 0.00 − 0.02 0 0.08 0.54 0 0

0 1 0.00 − 0.02 0 0.1 0.2 0 0
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but actually the robustness of these features are different. Rather than just consider the 
significance depicted by p-values, we can further consider robustness to evaluate the fea-
ture-outcome associations using the U-Curve and fragility index from progressive per-
mutation. We will show that some unknown heterogeneity might be one reason affecting 
the robustness of the features that are identified as differential. We generate three simu-
lation data sets, which are denoted as SimData 1, SimData 2 and SimData 3. They have 
the same sample size n1 = n2 = 30 and same number of variables p = 100 . The 60 sam-
ples differ substantially between Group 1 (30 samples) and Group 2 (30 samples). We 
denote data of Group 1 as D1 and data of Group 2 as D2 . For the 100 variables, we define 
the proportion of significant features to be 0.6, which implies that 60 variables are signif-
icant. To construct heterogeneity, we create the second source of difference by splitting 
Group 1 into two subgroups of samples, which are denoted as D11 and D12 . In the same 
way, we split Group 2 into two subgroups of samples, which are denoted as D21 and D22 . 
The grouping factor of interest y is [1, . . . , 1, 2, . . . , 2].

We describe the data generation as follows. We use (m)c to denote a sequence contain-
ing c number of m. RN(µ0, σ0) describes the random number drawn from normal distri-
bution with mean µ0 and variance σ0 . We define the correlation structure as Rij = ρi−j . 
ρ is set up as 0.5. Zero-Inflation is one of the main characteristics of microbiome data. 
Note that µ controls the magnitude of each variable and number of zeros in each sample. 
The distribution of zeros across samples and variables of SimData 1, SimData 2 and Sim-
Data 3 is comparable to the distribution of zeros in real Data, please see the histograms 
in Additional file 1: Sect. S3.

SimData 1: D11 contains 8 samples. The mean is [(6)30, (4)30, (1)40] . The dispersion 
parameter κ is 2. D12 contains 22 samples. The mean is [(4)30, (6)30, (1)40] . The dis-
persion parameter κ is 36. D2 contains 30 samples. The mean is [(15)30, (0.5)30, (1)40] . 
The dispersion parameter κ is 36.
SimData 2: D11 contains 16 samples. The mean is [(8)30, (2)30, (1)40] . The disper-
sion parameter κ is 25. D12 contains 14 samples. The mean is [(2)30, (8)30, (1)40] . 
The dispersion parameter κ is 24. D21 contains 20 samples. The mean is 
[(15)30, (0.5)30, (1)40] . The dispersion parameter κ is 26. D22 contains 10 samples. 
The mean is [(m1)60, (m2)40] , where m1 = RN(5, 1.2) and m2 = RN(1, 0.1) . The dis-
persion parameter κ is 24.
SimData 3: D11 contains 24 samples. The mean is [(8)30, (2)30, (1)40] . The disper-
sion parameter κ is 14. D12 contains 6 samples. The mean is [(1)30, (10)30, (1)40] . 
The dispersion parameter κ is 14. D21 contains 20 samples. The mean is 
[(15)30, (0.5)30, (1)40] . The dispersion parameter κ is 14. D22 contains 10 samples. 
The mean is [(m1)60, (m2)40] , where m1 = RN(5, 1.6) and m1 = RN(1, 0.3) . The dis-
persion parameter κ is 12.

Based on the above setup, we expect to see there are more and more levels of heteroge-
neity by constructing subgroups from SimData 1 to SimData 2 to SimData 3. As a result, 
the associations between the microbiome features and the grouping factor of interest is 
weaker and weaker because the proportion of differential samples between Group 1 and 
Group 2 is lower and lower. Traditionally, non-metric multidimensional scaling (NMDS) 
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is used to collapse information from multiple dimensional features into just a few, so 
that clustering effect will be visualized and interpreted when we link them with a group-
ing factor of interest [23]. However, in the dimension reduction plots, the expected clus-
tering effect can not be witnessed, because this main differential effect is mixed with 
heterogeneity. As shown in Fig. 3, only the NMDS plot of SimData 1 shows us the clear 
cluster separations between Group 1 and Group 2. But both the NMDS plot of Sim-
Data 2 and the NMDS plot of SimData 3 show overlaps of Group 1 and Group 2 simi-
larly. Therefore, NMDS plots could not distinguish the strength of the overall association 
between microbiome compositions and the grouping factor of interest. Besides, we can 
not visualize differences in heterogeneity between SimData 2 and SimData 3.

When testing the relationship between an explanatory variable and an outcome, 
the variable’s effect might be modified by other variables and distorted by potential 
systematic bias, confounding or effect modification. The U-Curve and fragility index 
plots provides us with a measure of all these disturbances mixed with the main signals 
in the collected data. The U-Curve provides a dynamic depiction of how our method 
progressively singles out signals from randomized trials. In each plot, the number of 

a b c

d e f

g h i

Fig. 3 Result comparisons of three simulated data sets with different levels of heterogeneity. The first row 
(a–c) shows the NMDS plot using the Bray‑Curtis distance. The second row (d–f) shows the U‑Curve of 
proportion of significant features. AOI is short for area of interest, which denotes the proportion of significant 
features out of all the features (area of green plus purple). AUMC is short for area under the mixing curve, 
which denotes the area under the U‑Curve (area of purple). Slope denotes the slope of the red triangle. 
The red triangle denotes the real data. The third row (g–i) shows the fragility index. The height of each bar 
represents the Fragility Index value for a given feature. Each color denotes features that have the same levels 
of fragility. To save space, the legend listing the names of the 50 features are omitted
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significant features decreases from observed data to full permutation scenario. The 
shape becomes steeper when the associations are less stable (with more disturbances). 
We use AUMC (area under the mixing curve) to quantify the shape of the U-Curve. 
AUMCs in Fig. 3d–f are 0.392, 0.283 and 0.163, which ranks the decreasing order of 
robustness of the association between microbiome compositions and the grouping 
factor. The average fragility index of the top 50 features are 10.12 for SimData 1, 7.44 
for SimData 2, and 5.24 for SimData 3. Since the full permutation scenario Kf = 15 , 
the average scaled fragility indices are 0.675 for SimData 1, 0.496 for SimData 2 and 
0.349 for SimData 3.

Please note that, when generating the U-Curve plots (d–f in Fig. 3), the black dots 
describe the median value. The black bars describe the 2.5% and 97.5% quantile inter-
vals. We follow the same setup in all the subsequent figures.

In applying our proposed progressive permutation method, we consider p-values 
obtained using the Wilcoxon test and DESeq. Specifically, for DESeq, we rely on the 
DESeq2 package in R [11], with multiplicity-adjusted p-values used to determine hits. 
We consider features to be significant if their − log10 p-values in the unpermuted sce-
nario lie outside the 95% quantile intervals of those in the full permutation scenario. 
We apply these two permutation methods, as well as the standard versions of the 
DESeq, LEfSe and logistic regression methods, to the simulated data.

We now describe our data generation procedure. Microbiome data are typically 
overdispersed and zero-inflated. Since the negative binomial distribution can not cap-
ture excess zero values, we use another generation mechanism “sparseDOSSA” (https 
://hutte nhowe r.sph.harva rd.edu/spars edoss a/) to allow zero-inflation in the simu-
lated data. In our simulation, we consider a setting with 60 samples (30 samples in 
each group) and 100 variables. The simulated abundance of each microbial variable 
is jointly controlled by three parameters: the proportion of zero inflation, mean, and 
variance.

To study the impact of excessive zero values on the performance of the testing 
methods, we keep the mean difference (between two groups) and variance to be the 
same for each variable. We fit the data generation model to a subset of the DeFilippo 
data (see “Application” section) and obtain the zero inflation parameters for 100 vari-
ables. Then we rank the estimated values of the zero inflation parameter from lowest 
to highest, so that the mean abundances of the simulated data have a decreasing order 
from the first to the last variable. Let nsv denote the number of variables that are truly 
differential. We set the mean parameter of the first nsv true variables as 3 in Group 
1, and as 0 in Group 2. The variance parameter is set as 1 for all variables. With this 
setup (named as Set 1), the variables with a smaller zero inflation parameter should 
be more differential than the ones with a bigger zero inflation parameter.

We also consider an alternative setup (named as Set 2), to observe how the testing 
methods perform with changes to the mean differences. In this setting, we fix the pro-
portion of zero-inflation (set as 0.1) and variance (set as 0.2) to be the same for each 
variable. We make a decreasing order of the mean differences from the first to the last 
variable. With this setup, the variables with bigger mean differences should be more 
differential than the ones with smaller mean differences. We also design comparisons 
between data sets with dense signal and sparse signal. For the data with dense signal, 

https://huttenhower.sph.harvard.edu/sparsedossa/
https://huttenhower.sph.harvard.edu/sparsedossa/
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the first 70 variables ( nsv = 70 ) are simulated to be differential. For the data with 
sparse signal, the first 30 variables ( nsv = 30 ) are simulated to be differential.

We report the mean values for all the performance measures in Table 2. FP stands for 
false positives, where the method identifies a feature that is truly non-differential. FN 
stands for false negatives, where the method does not identify a feature that is truly dif-
ferential. RC denotes the rank correlation (Spearman’s ρ ) between the true and estimated 
ranks of the features. When comparing the two permutation methods, the version based 
on the Wilcoxon test achieves higher accuracy than the version based on DESeq. This 
is likely because the Wilcoxon test is a non-parametric test, while DESeq is a paramet-
ric test that requires distributional assumptions. As shown in the U-Curve plots of the 
number of significant features (Additional file 1: Figs. S4, S6, S8 and S10), the number 
of significant features does not approach zero in the full permutation scenario when the 
data are highly zero inflated. This result suggests that the DESeq method incorrectly 
identifies noise as signal when the data do not follow the assumed distribution. In brief, 
permutation with the Wilcoxon test is more flexible in dealing with data with unknown 
complex distributions.

When comparing the proposed permutation method with standard versions of DESeq 
and LEfSe, we notice that DESeq has high specificity in Setting 1, but an increased rate 
of false positives in Setting 2, due to violations of its parametric assumptions. Compared 

Table 2 Comparisons of identification performance among different methods.

“WilPerm” stands for progressive permutation equipped with Wilcoxon tests. “DESPerm” stands for progressive permutation 
equipped with DESeq method. FP denotes number of false positives. FN denotes number of false negatives. Sensitivity 
measures the proportion of positives that are correctly identified. Specificity measures the proportion of negatives that are 
correctly identified. Accuracy measures the proportion of true positives and true negatives. RC denotes the rank correlation 
(Spearman’s ρ ) between the true and estimated ranks of the features. Set 1 denotes the simulation data that varies the zero 
inflation parameter for each variables. Set 2 denotes the simulation data that varies the mean difference parameter for each 
variables

Data nsv Method FP FN Sensitivity Specificity Accuracy RC

Set 1 70 WilPerm 1 3 0.96 0.97 0.96 0.80

DESPerm 3.5 33.6 0.52 0.88 0.63 0.50

DESeq 2 0 1 0.93 0.98 0.55

LEfSe 19 2 0.97 0.37 0.79 0.16

Logistic 1 4 0.94 0.97 0.95 0.58

30 WilPerm 3 6.3 0.79 0.96 0.91 0.004

DESPerm 2.1 12.8 0.57 0.97 0.85 0.094

DESeq 4 0 1 0.94 0.96 0.17

LEfSe 10 5 0.83 0.86 0.85 0.24

Logistic 1 5 0.83 0.99 0.94 0.07

Set 2 70 WilPerm 6.3 0 1 0.79 0.94 0.02

DESPerm 30 6.3 0.91 0 0.64 0.79

DESeq 30 9 0.87 0 0.61 0.81

LEfSe 30 4 0.94 0 0.66 − 0.04

Logistic 5 40 0.43 0.83 0.55 − 0.88

30 WilPerm 7 0 1 0.9 0.93 0.35

DESPerm 19 0 1 0.73 0.81 0.80

DESeq 3 7 0.77 0.96 0.90 0.80

LEfSe 70 5 0.83 0 0.25 0.08

Logistic 7 5 0.83 0.9 0.88 − 0.79
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with the other methods, LEfSe is too generous, with a high number of false positives. 
LEfSe uses both p-values and effect size to determine hits; however, it does not adjust 
the p-values for multiplicity, and our results suggest that the default threshold on the 
effect sizes may be overly generous. We also notice that logistic regression has high false 
negatives in Setting 2. Logistic regression treats the binary outcome as the response var-
iable and the microbial features as the independent variable. This model assumes a linear 
relationship between the logit of the response variable and the predictors, and may not 
perform well when this assumption is violated.

Application
In this section, we apply the proposed method into two microbiome studies. The first 
study includes five groups. We regroup them to construct two data sets with different 
levels of heterogeneity. In the second study, we link microbiome compositions with two 
different outcomes.

The first study examined the gut microbiota of 350 stool samples collected longitu-
dinally for more than a year from the Hadza hunter gatherers of Tanzania. The sam-
ples were collected subsequently with 5 seasonal groups: 2013-LD (Late dry), 2014-EW 
(Early wet), 2014-LW (Late wet), 2014-ED (Early dry) and 2014 LD (Late Dry). Smits 
SA, et al. [24] found that Hadza gut microbial community compositions are cyclic and 
differential by season. They observed that samples from the dry seasons were distin-
guishable from the wet seasons and were indistinguishable from other dry seasons in 
sequential years. We combine 2014-ED ( n = 33 ) and 2014-LD ( n = 133 ) as the “Dry” 
group, and combine 2014-EW ( n = 62 ) and 2014-LW ( n = 58 ) as the “Wet” group. We 
call this regrouped data as SmitsData 1. In the same way, we combine 2013-LD ( n = 64 ) 
and 2014-EW ( n = 62 ) as the “LDEW” group, and combine 2014-LW ( n = 58 ) and 
2014-ED ( n = 33 ) as the “LWED” group. We call this regrouped data as SmitsData 2. We 
expect that SmitsData 1 is more differential between Dry and Wet group than SmitsData 
2 between LDEW and LWED group. As shown in PCoA plots of both data (Fig. 4), the 
Dry and Wet groups in SmitsData 1 (p-value = 1e−5 based on PERMANOVA) are more 
differential than the groups in SmitsData 2 (p-value = 2e−5 based on PERMANOVA).

In total, we have 786 taxonomic features. We perform the progressive permutation 
tests on SmitsData 1 (Dry n1 = 166 vs. Wet n2 = 120 ) and SmitsData 2 (LDEW n1 = 126 
vs. LWED n2 = 91 ). The results of SmitsData 1 (A1–A4) and SmitsData 2 (B1–B4) are 
shown in Fig. 5. In the observed data (no permutation), differential tests provide more 
significant hits (p-value less than 0.05) from SmitsData 1 (672 in A1) than SmitsData 2 
(345 in B1). There are more − log10 p-values greater than − log10 0.05 (A2 vs. B2). The 
U-Curve of SmitsData 1 (AUMC is 0.53) is steeper than SmitsData 2 (AUMC is 0.148). 
Based on the plot of fragility index, the overall robustness of the top 100 features from 
SmitsData 1 (average fragility index is 54.93 in A4) is more than SmitsData 2 (average 
fragility index is 29.93 in B4). The full permutation scenario for SmitsData 1 is Kf = 70 . 
So the average scaled fragility index for SmitsData 1 is 0.785. The full permutation sce-
nario for SmitsData 2 is Kf = 53 . So the average scaled fragility index for SmitsData 2 is 
0.565. In addition, the initial slopes of the first points for SmitsData 1 and SmitsData 2 
are − 0.153 and − 0.463 respectively, which also indicate the significance in SmitsData 
1 is more robust. All these results demonstrate that the progressive permutation results 
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can convey and quantify the overall association which is disturbed by heterogeneity. 
When it comes to feature identification, the proposed method obtains 656 features for 
SmitsData 1 and 271 features for SmitsData2.

The second study investigated the impact of diet by comparing the gut microbiota 
of 14 children aged 1–6 years in a village of rural Africa with the gut microbiota of 15 
European children of the same age. De Filippo et al. [25] found significant differences in 
gut microbiota between the two groups, as children at these two locations have different 

ba

Fig. 4 Comparisons of grouping effect in SmitsData 1 (a) versus SmitsData 2 (b) using PCoA plot. The length 
of straight line denotes the distance of each individual point to the centroid. The centroid of each group is 
labeled. The ellipse denotes a 1 standard deviation to the centroid. In plot A, the blue circle denotes the PCoA 
score of Dry groups, while the red triangle denotes the PCoA score of Wet groups. In plot B, the blue circle 
denotes the PCoA score of LDEW group, while the red triangle denotes the PCoA score of LWED group

Fig. 5 Result comparisons of regrouped data SmitsData 1 (A1–A4) and SmitsData 2 (B1–B4) with different 
levels of heterogeneity. A1 and B1 plot the U‑Curve of number of significant hits. In A2 and B2, we rank the 
significance of the 786 features, and then plot their − log10 p‑values with the same order across permutation 
scenarios. A3 and B3 plot the U‑Curve of proportion of significant hits. A4 and B4 plots the fragility index of 
the top 100 features with a decreasing order. To save space, the legend listing the names of the 100 features 
are omitted
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dietary habits. 11 of them are female. 18 of them are male. There is almost no difference 
in microbiome compositions by gender. In total, we have 267 taxonomic features in the 
DeFilippo Data. We perform the progressive permutation tests to associate microbiome 
compositions with location and gender respectively. The results of location (A1–A4) 
and gender (B1–B4) are shown in Fig. 6. In the observed data, differential tests provide 
more significant hits for Location (161 in A1) than for Gender (11 for A2). The results 
illustrate that microbiome compositions are strongly associated with location instead of 
gender, because AUMC of location (0.253 in A3) is greater than AUMC of gender (0.035 
in B3). The U-Curves of gender (B1 and B3) are almost flat, which imply that the overall 
association between microbiome compositions and gender is weak. Based on the plot of 
fragility index, the overall robustness of the top 50 features for Location (average fragil-
ity index is 4.12 in A4) is more than Gender (average fragility index is 0.98 in B4). The 
full permutation scenario for Location is Kf = 7 , and the average scaled fragility index 
for location is 0.589. The full permutation scenario for gender is Kf = 7 , and the aver-
age scaled fragility index for gender is 0.14. In addition, the average slopes of the first 7 
points for location and gender are − 1.17 and − 0.03 respectively, which also indicate 
there is no significance for gender across all the scenarios. All these results demonstrate 
that the progressive permutation method can measure and rank the overall association 
between microbiome and multiple outcomes of interest. For the outcomes with high 
association, we will continue to identify the microbiome features that are linked to them.

We include the identification of individual features in our software by observing 
whether the − log10 p-values of targeted features lie within the 95% confidence inter-
val of median − log10 p-values of the full permutation scenario. The proposed method 
has identified 155 features for location and 0 features for gender. As shown in the upper 
left panel in Fig.  7, all the top 50 features are significant. The effect sizes of these 50 

Fig. 6 Result comparisons when linking microbiome compositions with location (A1–A4) and gender 
(B1–B4). A1 and B1 plot the U‑Curve of number of significant hits. In A2 and B2, we rank the significance 
of the 267 features, and then plot their − log10 p‑values with the same order across permutation scenarios. 
A3 and B3 plot the U‑Curve of proportion of significant hits. A4 and B4 plots the fragility index of the top 50 
features with a decreasing order. To save space, the legend listing the names of the 50 features are omitted
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significant features are plotted in the upper right panel. Our findings are consistent with 
published results [25]. Firmicutes are more abundant in European children than in Afri-
can children. Prevotella and Treponema (Spirochaetaceae) are more abundant in Afri-
can children than in European children (as shown in the lower panels of Fig. 7).

In summary, our method first explores the overall association (that might be com-
plicated by heterogeneity) between microbiome compositions and outcome variable. If 
the association is reasonable, it will identify the significance of individual hits, list their 
effect sizes and plot individual abundances.

Analytical property
Various summary statistics, like mean, variances, median and rank sums, have been used 
to analyze differences between two groups. Each statistic goes along with an assumption 
of a sample distribution, including normal, negative binomial and so on. Among these, the 
mean test under a normal assumption is one of the most widely-used statistical techniques 
for group comparisons. Other types of tests extend the standard to broader situations that 
require specific assumptions or less restrictions. Therefore, it is worthwhile to pursue the 

a

c d

b

Fig. 7 List of discoveries, effect sizes and individual abundances. a Denotes the coverage plot of the top 50 
features with decreasing order. The color dots denote the − log10 p‑value of top 50 features in the original 
data (permutation proportion is 0). The horizontal bars describe the 95% quantile confidence intervals of the 
− log10 p‑value in the full permutation scenario. b Denotes the effect sizes of identified features. c, d Denote 
the dot plot of abundance of Prevotella and Treponema with median‑quantile vertical lines
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theoretical aspects of the progressive permutation method in a basic setup that performs 
Z-tests. The theoretical results from parametric tests can provide insights to the progres-
sive permutation coupling non-parametric tests, as we expect to observe similar patterns 
between them. To simplify the problem, we assume observing two groups of variables from 
Gaussian family. Both groups have the same number of variables p. The population distri-
bution of Group 1 is N (µ1

j , σ
2) , and the population distribution of Group 2 is N (µ2

j , σ
2) . 

We aim to test the hypothesis H0j : µ1
j = µ2

j , versusH1j : µ1
j �= µ2

j .
For the sample data, we use x1ij to denote the ith observation of the jth variable in Group 

1 and x2ij to denote the ith observation of the jth variable in Group 2. The data samples are 
generated from Gaussian distributions with x1ij ∼ N (m1

j , σ
2) and x2ij ∼ N (m2

j , σ
2) . The 

observations of every variable in each group are independent and identically distributed. 
We denote the grouping labels in Group 1 as I1 = {1, . . . , n1} . We denote the grouping 
labels in Group 2 as I2 = {1, . . . , n2} . To test the population mean difference ( µ1

j − µ2
j  ) of 

the jth variable between the two groups, we calculate the sample mean difference as below:

Now we perform the progressive permutation method and randomly draw k samples 
from group 1 and k samples from group 2, and then exchange their grouping labels. We 
denote the selected labels in Group 1 as I1k = {i11, . . . , i1k} . We denote the selected labels 
in Group 2 as I2k = {i21, . . . , i2k} . Then the sample mean difference of the jth variable in 
permutation scenario k becomes

We assume m1
j > m2

j  . The sample mean differences after permutation (3) are smaller 
than those before permutation (2). Denote δj =

m1
j −m2

j

σ
 . The p-value of the jth variable 

(under null hypothesis) is

where k ≤ ⌈ n1n2−1
n1+n2+2⌉ . �(·) denotes the cumulative function of standard normal distribu-

tion. Therefore, with the increase of exchanged labels k, − log10 p-value is smaller. As we 
perform two sided Z-tests in each scenario, the permutation results (p-values) are sym-
metric with respect to the fully mixing scenario Kf = ⌈ n1n2−1

n1+n2+2⌉ . Then we can obtain the 
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1
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p-value of the jth variable when k = Kf , . . . ,K  as pj(k) = 2�
(
√

n1n2
2(n1+n2)

(

1− n1+n2
n1n2

k
)

δj

)

 . 

− log10 pj(k) decreases with k when 0 ≤ k ≤ Kf  and increases with k when Kf ≤ k ≤ K .
For real-world data, the scaled sample mean difference δj takes a series of different 

numbers. For example, suppose that n1 = n2 = n and δj ranges from 0 to 2, then for 
k = 0 , the p-values pj(0) = 2�(−

√
n
2 δj) will be distributed uniformly between 0 and 1. If 

we assume an extreme case that all the sample mean differences are the same and equal 
to 0 ( δj = 0 ), indicating there is no group difference, all the p-values will be 1 across all 
permutation scenarios so that the curve of − log10 p-values and number of significant 
features will become a flat horizontal line at 0. We define kK  as the proportion of mixing. 
We let n1 = n2 = 20 . If we generate the sample data with group difference meaning that 
δj > 0 , then we can observe in Fig. 8, − log10 pj(k) is a U-Curve of kK  . To simplify the 
the visualization, we assume all the δj are the same, so then the p-values are the same as 
well. If the differences of sample means are bigger, the U-Curve is steeper. If the stand-
ard deviation of the samples is bigger, the U-Curve is flatter. Therefore, the shape of the 
U-Curve measures how differential the quantifies of interest are between the two groups.

Discussion
In this work, we propose a method for the analysis of microbiome data which progres-
sively permutes a grouping factor and performs differential abundance tests in each 
scenario. To convey the overall association with the grouping factor, we summarize the 
resulting p-values by the number of significant hits. This number will exhibit a U-Curve 
across mixing depths if the overall association between the microbiome and the group-
ing factor is not zero. The AUMC provides a summary of the progressive permutation 
results, allowing for quantification of the overall signal strength, which is interestingly 
impacted by heterogeneity. Simulation results show that the shape of the U-Curve can 
quantify different levels of heterogeneity within data sets. If we have multiple group-
ing factors, we can rank their AUMCs by associating each grouping factor with the 

ba

Fig. 8 U‑Curve plots of p‑values calculated from formula (4). Both of the sample sizes n1 and n2 are 20. x‑axis 
is k

K
 . In a, standard deviation σ is fixed at 2. In b, mean difference m1

j −m2
j  is fixed at 1
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microbiome composition as a whole. In general, we recommend focusing on grouping 
factors with higher AUMC values for subsequent in-depth analysis.

Once we have decided on a grouping factor of interest, we may then seek to identify 
microbiome features which are robustly associated with the grouping factor. Based on 
the permutation results, we can rank all the microbiome features by their fragility index, 
where larger values of the fragility index correspond to more robust discoveries. We 
can identify potentially relevant microbiome features by comparing the p-values of the 
observed data with the confidence region of p-values for the fully mixed data. The simu-
lation and real data application show that our proposed method can convey the over-
all association between microbiome compositions and outcomes of interest, rank the 
robustness of the discovered features, and identify robust individual hits.

Through simulations, we show that the signal strength of the observed features is con-
trolled by several factors, including the proportion of zeros, mean difference, and vari-
ance. The correctness of the ordering of the signals is partly affected by the choice of 
test used to obtain p-values within each permutation setting. The Wilcoxon test is a 
nonparametric test, which takes into account the ranks of the abundances for each taxa. 
Although the ordering results are not perfect, we show through simulations that the pro-
posed method can identify the differential features with a high accuracy rate. Our paper 
is mainly designed for the general exploration and visualization of microbiome data, and 
does not come with a formal inference method. The measures we propose, such as AOI 
or AUMC, are meant to be descriptive, but researchers could take the results generated 
from our method as a guide to help with identifying robust features. At this time, our 
method does not control the false discovery rate or calculate adjusted p-values. In future 
work, we will consider using the progressive permutation results to adjust the p-values 
by controlling the empirical Bayes false discovery rates.

To better understand the relationship between progressive permutation and hypoth-
esis testing, we use the language of signal and noise to describe hypothesis testing. The 
null hypothesis can be identified as the case where the data contain only noise and no 
signal. The alternative hypothesis is the case where the data contain both important sig-
nals and noise  [26]. Progressive permutation progressively mixes the samples between 
two groups. With each increase of mixing, the proportion of signal decreases, while the 
proportion of noise increases. Therefore, the fully permuted data can be considered as 
realizations of the null hypothesis, while the observed data (without permutations) can 
be considered as a realization of the alternative hypothesis. Conceptually, progressive 
permutation connects the binary ends of hypothesis testing from the alternative hypoth-
esis to the null hypothesis in a continuous manner. Therefore, the proposed method 
considers the signal identification problem as progressively singling out signals from 
permuted randomized versions of an original data set.

In this paper, we focus on linking microbiome composition with a binary outcome, 
creating a new framework to understand the significance and robustness of micro-
biome features. Following the same logic, we can extend the binary outcome to a 
continuous outcome. When constructing the progressive permutation scenarios, we 
permute a proportion (select k samples and calculate kn ) of the continuous outcome. 
In each scenario, we perform Kendall’s tau and Spearman’s rank correlation tests to 
associate microbiome compositions with the permuted continuous outcome. We then 
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adopt similar procedures as in the binary outcome to summarize the permutation 
results. We have applied the progressive permutation with a continuous outcome to a 
sample data set (see Additional file 1: Sect. S5).

We have developed these methods into user-friendly and efficient R Shiny tools with 
visualizations. In our implementation, we first perform differential testing of each fea-
ture, and then obtain the − log10 p-values from permutations of the data. By default, 
we use the Wilcoxon rank sum test to compute the p-values, since it is a robust non-
parametric test. Our proposed method can also utilize p-values obtained from other 
testing methods, such as DESeq. This demonstrates the great potential of the progres-
sive permutation method to be extended to new settings.
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