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Abstract
The microbiome plays a critical role in human health and disease, and there
is a strong scientific interest in linking specific features of the microbiome to
clinical outcomes. There are key aspects of microbiome data, however, that
limit the applicability of standard variable selection methods. In particular, the
observed data are compositional, as the counts within each sample have a fixed-
sum constraint. In addition, microbiome features, typically quantified as oper-
ational taxonomic units, often reflect microorganisms that are similar in func-
tion, and may therefore have a similar influence on the response variable. To
address the challenges posed by these aspects of the data structure, we propose
a variable selection technique with the following novel features: a generalized
transformation and 𝑧-prior to handle the compositional constraint, and an Ising
prior that encourages the joint selection of microbiome features that are closely
related in terms of their genetic sequence similarity. We demonstrate that our
proposed method outperforms existing penalized approaches for microbiome
variable selection in both simulation and the analysis of real data exploring the
relationship of the gut microbiome to body mass index.

KEYWORDS
Bayesian variable selection, compositional covariates, Ising prior, linear regression, micro-
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1 INTRODUCTION

The human microbiome consists of the trillions of micro-
bial cells harbored by each person, primarily as bacteria in
the gut (Turnbaugh et al., 2007). It has been estimated that
there aremore than 10 times as manymicrobial cells in the
human body as our own somatic or germ cells, and that the
gut microbiomemay containmore than 100 times as many
genes as the human genome (Bäckhed et al., 2005). Due to
the emergence of next-generation sequencing techniques,
which enable comprehensive profiling of the microbiome,

there is growing recognition of its critical role in health and
disease. In particular, there is increasing evidence showing
that the composition of the gut microbiota may be asso-
ciated with inflammation and metabolic disorders, which
are common features of obesity and cancer (Cani and Jor-
dan, 2018).
The development of next-generation technologies has

made it possible to directly quantify the composition of
the microbiome using DNA sequencing. Although whole
genome shotgun sequencing is increasing in popularity,
due to its relative expense,mostmicrobiome studies to date
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rely on sequencing of the 16S ribosomal RNA (rRNA) gene,
a highly conserved region of the bacterial genome, which
is themost commonly usedmolecular marker inmicrobial
ecology (Case et al., 2007). Standard pipelines for analyzing
16S rRNA sequencing data include initial processing steps,
such as demultiplexing and quality filtering (Nguyen et al.,
2016). The processed sequences are then clustered based
on sequence similarity into operational taxonomic units, or
OTUs, which represent a group of closely related microor-
ganisms (Ursell et al., 2012).
Analysis of microbiome data is challenging for several

reasons. The number of sequencing reads observed in a
single sample is an arbitrary total that may vary widely,
and the observed counts assigned to a given operational
taxonomic unit (OTU) can only be interpreted relative to
this fixed sum. The data are therefore compositional, and
require specialized methods for analysis to avoid mislead-
ing results (Gloor et al., 2017). In particular, standard ana-
lytic methods such as regular linear regression are not
applicable to microbiome data (Li, 2015). An additional
challenge in the analysis of microbiome data is its high
dimensionality. Sparse modeling approaches are therefore
important to reduce noise in estimation and enable the
identification of key features. The features identified can
guide the future development of microbiome interven-
tions. For example, understanding which bacteria increase
cancer risk or drive response to therapy could inform rec-
ommendations on diet, probiotic use, or choice of antibi-
otics, as these factors play an important role in shaping the
state of the microbiome.
Although the rawnumber of features for analysismay be

large, many OTUs represent organisms that are phenotyp-
ically similar and have related function. This relatedness is
captured by the phylogenetic tree structure, which reflects
evolutionary relationships among the organisms surveyed
based on their DNA sequence similarity. OTUsmay also be
mapped to existing taxonomic tree structures using bacte-
rial 16S rRNA databases. Taxonomy refers to the grouping
of microorganisms into the traditional Kingdom-Phylum-
Class-Order-Family-Genus-Species hierarchy, while phy-
logeny aims to capture the series of branching events dur-
ing evolutionary history that separated the various bacte-
rial species observed in the sample. Taxonomic classifica-
tion is coarser than phylogenetic organization, but easier
to compare across studies due to the standardized naming
system. Although the relatedness among OTUs is a source
of dependence, knowledge of the tree structure can be used
to reduce dimension or improve power (Washburne et al.,
2018). For example,microbiomedatamay be analyzed after
aggregating the OTUs into a higher taxonomic level such
as species, genus, or family.
In the current work, we propose a Bayesian sparse

regression model for microbiome data that addresses the

challenges outlined above, including the compositional
nature of the data, the high dimension, and the related-
ness among the features. To address the fixed-sum con-
straint, we propose a generalized transformation and 𝑧-
prior, which enables us to impose sparsity directly on the 𝑝
regression coefficients. To take advantage of the phyloge-
netic tree information, we formulate a structured prior to
link the selection of closely related organisms, which are
likely to have a similar effect on the outcome.
The paper is organized as follows. Section 2 provides

a brief review of existing methods for compositional data
analysis and microbiome regression. In Section 3, we
include a detailed description of the proposed model-
ing approach, including the generalized transformation
and the prior formulation. We compare the performance
of the proposed method with that of penalization-based
approaches on simulated data in Section 4, and apply these
methods to real data examining the association of the gut
microbiome to body mass index (BMI) in Section 5. We
conclude with a discussion in Section 6.

2 BACKGROUND

We denote the compositional data by an 𝑛 × 𝑝 matrix of
variables 𝑼 = (𝑢𝑖𝑗), where each row of 𝑼 is constrained
to sum to 1 across the 𝑝 variables. In the context of
microbiome data, these values correspond to the relative
abundances of the OTUs. Due to the unit-sum constraint,
the 𝑝 components of each observation cannot be inter-
preted independently, as they are restricted to lie in a
(𝑝 − 1)-dimensional simplex. In groundbreaking work on
this issue, Aitchison (1982) proposed the additive log-ratio
transformation. As some of the observed counts may be 0s,
a typical first step in these approaches is to add a small
pseudo-count (typically 0.5), and then divide by the sum
of the counts within each sample to obtain relative abun-
dances that sum to 1. To link the compositional data with
an 𝑛 × 1 vector of continuous response values 𝒚, Aitchison
and Bacon-Shone (1984) included the same transformation
idea into linear regression and proposed the linear log-
contrast model 𝒚 = 𝑿𝜼⧵𝑝 + 𝜺, where 𝑿 = {log(𝑢𝑖𝑗∕𝑢𝑖𝑝)} is
an 𝑛 × (𝑝 − 1)matrix of the additive log-ratio transformed
predictor values, taking the 𝑝th predictor as the reference
component, 𝜼⧵𝑝 = (𝜂1, … , 𝜂𝑝−1)

𝑇 is the regression coeffi-
cient vector, and the noise vector 𝜺 has entries indepen-
dently distributed as  (0, 𝜎2). An intercept term is not
included in the model, as it can be eliminated by center-
ing the response and predictor variables.
Several recently proposed methods have extended this

framework to propose sparse regression models for micro-
biome data. In particular, Lin et al. (2014) reformulated
the log-contrast model into a symmetric form with a
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linear constraint by letting 𝜂𝑝 = −
∑𝑝−1

𝑗=1
𝜂𝑗 ,

𝒚 = 𝒁𝜼 + 𝜺,

𝑝∑
𝑗=1

𝜂𝑗 = 0, (1)

where 𝒁 = (log 𝑢𝑖𝑗) is an 𝑛 × 𝑝 matrix of log transformed
predictor values, and 𝜼 = (𝜂1, … , 𝜂𝑝)

𝑇 is the vector of
regression coefficients. Lin et al. (2014) proposed applying
an 𝑙1 penalty to the coefficient vector to perform feature
selection. Shi et al. (2016) extended this work by allow-
ing the selection of subcompositions at a fixed taxonomic
level.
The approaches developed by Aitchison (Aitchison,

1982; Aitchison and Bacon-Shone, 1984) rely on a transfor-
mation of the compositional variables. In the framework
of Bayesian variable selection, we would like to instead
focus on achieving sparsity of the regression coefficients.
We therefore start from the symmetric form of a linear
regression with constraints imposed on the parameters. In
the remainder of this section, we create a general frame-
work in which we shift the transformation from the com-
positional covariates to the linear coefficients, using the
unified matrix operation 𝑻. This framework can accom-
modate the contrast transformation approach, as well as
a generalized transformation that will be discussed in the
next section.
Let 𝑻 represent the contrast transformation matrix.

By definition, 𝑻 must be a 𝑝 × (𝑝 − 1) matrix where
each column sums to 0. Based on linear algebra, the
𝑝-vector 𝜼 can be decomposed as 𝜼 = 𝑻𝜽 + 𝜽0, where
𝜽 is a (𝑝 − 1)-vector with no constraints, and 𝜽0 is a
solution to the linear equation 𝟏𝜽0 = 0, with the sim-
plest choice being 𝜽0 = [0, 0, … , 0]𝑇 . As above, we let
𝑼 = (𝑢𝑖𝑗) represent the observed relative abundances,
and 𝒁 = (log 𝑢𝑖𝑗) represent their log-transformed values.
Then the linear model in Equation (1) can be expressed
as

𝒚 = 𝒁𝑻𝜽 + 𝜺 = 𝑿𝜽 + 𝜺, (2)

where 𝑿 = 𝒁𝑻 and 𝜽 = (𝜃1, … , 𝜃𝑝−1). In other words, the
parameter space degenerates to 𝑝 − 1 dimensions after the
contrast transformation 𝑻 is performed on 𝒁. The additive
log-ratio (ALR) and centered log-ratio (CLR) transforma-
tions are widely used in microbiome analysis. Both belong
to the category of contrast transformations, as they satisfy
the constraint that each column sums to zero.We give their
explicit matrix forms in Supporting Information Section
S1. In the next section, we describe our proposed Bayesian
modeling approach that allows the integration of either of
these or a generalized transformation within a Bayesian
variable selection framework.

3 PROPOSEDMODEL

We now describe our proposed sparse regression model,
which has two key aspects designed to address the unique
challenges of microbiome data: (a) a novel generalized
transformation, which allows us to handle the composi-
tionality of the data while still imposing sparsity directly
on the 𝑝 regression coefficients; and (b) a structured prior
that encourages the joint selection of microbiome fea-
tures based on their genetic sequence similarity. We pro-
vide a schematic illustration of our proposedmodel, which
we discuss in detail in the remainder of this section, in
Figure 1.

3.1 Generalized transformation

One obvious drawback of the additive log-ratio and cen-
tered log-ratio transformations is that the transformed
design matrix 𝑿 depends on the choice of transformation
and requires that one of the original variables be dropped.
To address this limitation, we propose a generalized trans-
formation,which allows us to avoid dropping variables and
satisfy the permutation and selection invariance proper-
ties described in Lin et al. (2014). Our proposed approach
allows us to maintain a parameter space of dimension 𝑝,
corresponding to the number of observed variables. We
write the linear model of Equation (1) in the standard
form

𝒚 = 𝑿𝜷 + 𝜺, (3)

where𝑿 = 𝒁 and 𝜷 = 𝜼. Instead of conducting the contrast
transformation on the linear coefficients in the regression
model (2), we can perform a generalized transformation on
the parameters and build the linear combination

∑𝑝

𝑗=1
𝛽𝑗

into the Bayesian prior.We define the generalized transfor-
mation 𝑻 as

𝑻 =

[
𝑰𝑝

𝑐 × 𝟏′𝑝

]
(𝑝+1)×𝑝

, (4)

where 𝑐 is a constant and 𝟏′𝑝 is a 𝑝-dimensional row vec-
tor of 1s. Recalling the generalized lasso (Tibshirani and
Taylor, 2011), we can see that 𝑻 plays a similar role as the
penaltymatrix in the generalized lasso formulation, which
can be used to express structural or geometric constraints.
We will provide details on the prior formulation in the
next subsection. In addition to imposing shrinkage on the
regression coefficients, we propose shrinkage of the lin-
ear sum term. This is controlled by the parameter 𝑐, where
larger values of 𝑐 induce more shrinkage on

∑𝑝

𝑗=1
𝛽𝑗 .
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F IGURE 1 Schematic illustration of the
proposed model. Squares indicate fixed
parameters; circles indicate random variables.
Filled-in squares indicate known values.
Filled-in circles indicate observed data. 𝑻
denotes the transformation matrix. 𝜼 denotes
constrained linear coefficients, while 𝜷 denotes
the unconstrained linear coefficients after
transformation. 𝑿 denotes the transformed
covariates. The prior variance of each 𝜷 is
denoted by 𝜎2, which is assumed to follow an
Inverse Gamma distribution with
hyperparameters 𝜈 and 𝜔. 𝜏 denotes the variance
scale of 𝜷.𝑵𝒄 denotes the number of covariates.
𝑵𝒇 denotes the number of unconstrained
parameters. In the Ising prior, 𝒂 denotes
shrinkage parameter, and 𝑸 denotes the
dependence structure

We now summarize the main differences between the
contrast transformations (2) and the proposed generalized
transformation (3) in terms of estimation of the regres-
sion coefficients. When using a contrast transformation,
the linear regression has a parameter space of dimen-
sion 𝑝 − 1. Within the Bayesian modeling framework, we
can apply the ALR or CLR transform, and then estimate
the parameter vector 𝜽 in the 𝑝 − 1 space. However, to
obtain the estimated effect sizes for the originally mea-
sured variables, we then have to transform these estimates
to the original 𝑝 space via 𝜼̂ = 𝑻𝜽. When using the gener-
alized transformation, we obtain estimates in the original
𝑝-dimensional space, which can be directly interpreted as
the estimated coefficients.

3.2 Prior formulation

In our Bayesian variable selection approach, we rely on
a latent indicator 𝛾𝑖 ∈ {0, 1} to represent the inclusion of
the 𝑖th covariate in the model. We can therefore index the
model space by the vector 𝜸 . Undermodel𝜸 , we assume
that the 𝑛-dimensional response vector 𝒚 follows a multi-
variate normal distribution

𝒚|𝜸 , 𝜷𝜸 , 𝜎
2 ∼ 

(
𝑿𝜸𝜷𝜸, 𝜎

2𝑰𝑛
)
, (5)

where 𝑿𝜸 denotes a modified version of the 𝑿 matrix
including only those columns corresponding to nonzero
entries in 𝜸 , and 𝜷𝜸 represents the corresponding linear
coefficients for the selected covariates. The coefficient vec-
tor 𝜷𝜸 has length 𝑝𝜸 =

∑
𝑖
𝛾𝑖 .

From the frequentist perspective, the regression coeffi-
cients are fixed, but unknown, quantities. In this frame-
work, linear algebra can be used to transform the con-
strained parameters to unconstrained parameters in a
lower dimensional space. These transformations need to
satisfy the “contrast” property that each column of the
transformationmatrix sums to 0. FromaBayesian perspec-
tive, the regression coefficients are random. In this frame-
work, we can assume a multivariate prior on the param-
eters, so that their random draws sum to zero. A natural
idea inspired by the 𝑔-prior (Zellner, 1986) is the introduc-
tion of a specific structure into the Gaussian distribution.
Suppose that the prior follows the form 𝜷𝜸 |𝜸 , 𝜎

2, 𝜏2 ∼

 (0, 𝜏2𝜎2𝑹𝜸). If the sum of all the elements of 𝑹𝜸 equals
zero (which we refer to as the zero-constrained property),
then the sum of the normal random variables

∑
𝜸
𝜷𝜸 will

be zero because the variance of the sum becomes 0. We
name the multivariate Gaussian prior that satisfies the
zero-constrained property the 𝑧-prior. To give an explicit
form for the 𝑧-prior, we use the generalized transformation
𝑻𝜸 to build the linear combination

∑𝑝

𝑗=1
𝛽𝑗 into a multi-

variate Gaussian prior. We define the 𝑧-prior of 𝜷𝜸 condi-
tional on𝜸 as

𝜷𝜸 |𝜸 , 𝜎
2, 𝜏2 ∼ 

(
𝟎, 𝜎2𝜏2(𝑻′

𝜸𝑻𝜸)
−1
)
, (6)

where 𝑻𝜸 consists of the columns of the generalized trans-
formation 𝑻 defined in Equation (4) corresponding to the
selected variables, that is, the nonzero entries of 𝜸 .
The term (𝑻′

𝜸𝑻𝜸)
−1, which appears in the prior vari-

ance of Equation (6) above, has the explicit form 𝑰𝑝𝜸
−

𝑐2

1+𝑐2𝑝𝜸

𝟏𝑝𝜸
𝟏′𝑝𝜸

. Thus, the sum of the linear coefficients
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∑
𝑖∈𝛾

𝛽𝑖 follows a normal distribution with mean 0 and
variance 𝑝𝜸

1+𝑐2𝑝𝜸

𝜎2𝜏2. When 𝑐 becomes large, the vari-

ance approaches 0, which implies that more shrink-
age is imposed on

∑
𝑖∈𝛾

𝛽𝑖 . We can even let 𝑐 be +∞;

then the term (𝑻′
𝜸𝑻𝜸)

−1 converges to 𝑰𝑝𝜸
−

1

𝑝𝜸

𝟏𝑝𝜸
𝟏′𝑝𝜸

and

var(
∑

𝑖∈𝛾
𝛽𝑖) = 0. For more details, please see Section S3

of the Supporting Information. This zero constraint on the
sum of the coefficients is needed to handle compositional-
ity, but is flexible enough to accommodate modifications,
such as shrinkage on any individual 𝛽𝑖 . Finally, the 𝑧-prior
is analytically tractable, because the variance 𝑝𝜸

1+𝑐2𝑝𝜸

𝜎2𝜏2 is

less than 1

𝑐2
𝜎2𝜏2, which does not depend on 𝑝𝜸 . For exam-

ple, if we set 𝑐 to be 100, then the variance will be suffi-
ciently small. Thus, we successfully reframe the linear con-
straint on the coefficients in Equation (3) to a joint Gaus-
sian prior in the Bayesian framework.
We now discuss the link between our 𝑧-prior and the 𝑔-

prior, which has a similar form. As described below, the 𝑧-
prior addresses both the high dimensionality and compo-
sitionality of the data, and is therefore better suited to our
applications than the 𝑔-prior. The 𝑔-prior (Zellner, 1986;
Bayarri et al., 2012) has been widely adopted because of
its simple form, which requires the specification of only
a single parameter 𝑔, and because it has convenient ana-
lytical and computational properties. The variance of the
𝑔-prior is proportional to the inverse of the Fisher informa-
tion matrix 𝜎2(𝑿𝑇

𝜸 𝑿𝜸)
−1. However, in the context of high-

dimensional data where 𝑝 ≫ 𝑛, such as microbiome data,
(𝑿𝑇

𝜸 𝑿𝜸) is typically not invertible. Even if this matrix were
invertible, a traditional 𝑔-prior is designed for Euclidean
space rather than compositional space. In particular, the
sumof all the elements in thematrix (𝑿𝑇

𝜸 𝑿𝜸)
−1 is not equal

to zero, so the traditional 𝑔-prior does not satisfy the zero-
constrained property. For more details, please see Section
S2 of the Supporting Information.
We introduce the Bayesian model and prior for the con-

trast transformation as follows. For the linear model of
Equation (2), which relies on a contrast transformation,
the Bayesian likelihood is 𝒚|𝜸 , 𝜽𝜸 , 𝜎

2 ∼  (𝑿𝜸𝜽𝜸 , 𝜎
2𝑰𝑛),

where 𝜽𝜸 = {𝜃𝑖|𝑖 ∈ 𝜸}. The coefficient 𝜽𝜸 has 𝑝𝜸 − 1

degrees of freedom. We can impose a normal shrinkage
prior on 𝜼𝜸 = 𝑻𝜸𝜽𝜸 to achieve sparsity in the original
parameter space. So we define the normal shrinkage prior
of 𝜽𝜸 as 𝜽𝜸 |𝜸 , 𝜎

2, 𝜏2 ∼  (𝟎, 𝜎2𝜏2(𝑻′
𝜸𝑻𝜸)

−1), where 𝑻𝜸

includes the columns of contrast transformation corre-
sponding to the variables selected under 𝜸 .
We assume that 𝜎2 follows a conjugate inverse-gamma

prior

𝜎2|𝜈, 𝜔 ∼ InvGamma
(𝜈

2
,
𝜈𝜔

2

)
. (7)

For the prior on 𝜸 , the simplest choice is an indepen-
dent Bernoulli prior 𝑃(𝛾𝑖 = 1) = 𝑝. In the next section,
we describe a more sophisticated alternative: a structured
hyperprior that enables us to link the selection of closely
related taxa.

3.3 Ising prior

To address the challenge of the relatedness among the
observed taxa, a number of recent publications have
attempted to incorporate information from the phyloge-
netic tree into statistical modeling. Wang et al. (2017) pro-
posed a tree-guided regularization method to select sub-
compositions corresponding to sets of features grouped
based on their position in the tree. This approach, however,
has limited computational scalability. Xiao et al. (2018)
developed a mixed modeling approach that incorporates
the correlation among OTUs based on their evolutionary
distance, but does not allow for feature selection. In the
Bayesian framework, Li andZhang (2010) proposed the use
of an Ising prior, which captures known information about
the structure among the covariates, for high-dimensional
variable selection; this method is not designed for compo-
sitional data, however. Finally,Wadsworth et al. (2017) take
themicrobiome data as the response variable, and perform
selection to identify environmental or clinical factors that
affect the taxa abundances.
As we are interested instead in treating the microbiome

variables as predictors, we must incorporate the related-
ness of compositional covariates within the Bayesian vari-
able selection framework. In our regression model, we
would like to favor the inclusion of taxa that have simi-
lar genetic sequences to other taxa identified as relevant,
as they are likely to play a similar functional role and have
similar impact on clinical outcomes. To achieve this goal,
we integrate prior information on the similarity of the taxa
into an Ising prior on the variable inclusion indicators.
Specifically, as shown in Figure 1, we rely on the phylo-
genetic tree 𝑷 to capture the similarity between OTUs (𝑼).
We re-express this tree as a matrix 𝑸, where large entries
reflect close dependence, small entries reflect more distant
relations, and 0s represent that no dependence is assumed.
Let𝒂 = (𝑎1, … , 𝑎𝑝)

𝑇 be a vector and𝑸 = (𝑞𝑖𝑗)𝑝×𝑝 be a sym-
metric matrix of real numbers, where 𝑞𝑖𝑗 = 0 for all fea-
tures 𝑖 and 𝑗 whose selection is not linked under the prior.
Then the Ising prior distribution for 𝜸 is defined as

𝑃(𝜸) = 𝑒𝒂
𝑇𝜸+𝜸𝑇𝑸𝜸−𝜓(𝒂,𝑸), (8)

where 𝜓(𝒂,𝑸) represents the normalizing constant. The
shrinkage parameters 𝒂, which take negative values, con-
trol the sparsity of 𝜸 . The smaller the 𝑎𝑖 is, the more likely
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it is a priori that the 𝑖th covariate will not be included. The
entries in the structural parameter 𝑸 control the strength
of association between the selection of OTUs 𝑖 and 𝑗.
The larger the 𝑞𝑖𝑗 is, the more likely it is that the 𝑖th
and 𝑗th covariates will be jointly selected. Therefore, the
Ising prior given in Equation (8) acts to favor inclusion of
OTUs that are close in genomic distance. When 𝑞𝑖𝑗 = 0 for
all pairs (𝑖, 𝑗), the Ising prior reduces to an independent
Bernoulli prior.

3.4 Posterior inference

We now briefly describe the Markov chain Monte Carlo
(MCMC) method for generating samples from the poste-
rior. We formulate an efficient Gibbs sampling approach
by integrating out the parameters 𝜷 and 𝜎2, so that we only
need to update the inclusion indicators 𝜸 . Our Gibbs sam-
pler is then a search over the space ofmodels {0, 1}𝑝. Details
on the derivations and MCMC algorithm are provided in
Supporting Information Section S4. As described below,
estimates of 𝜷 and 𝜎2 can be obtained post-MCMC condi-
tional on the selected model.
Bayesian model selection approaches often use the

scheme of calculating the posterior probability of a given
model. However, this strategy is infeasible in high dimen-
sions because any specific model is highly likely to be sam-
pled only a small number of times in a workable length
of MCMC. For our setting, it is therefore more appropri-
ate to calculate the posterior marginal of each indicator
𝑝(𝛾𝑖 = 1|𝒚), adopting an approach used by Ibrahim et al.
(2002).We obtain posteriormarginals by dividing the num-
ber of iterations where 𝛾𝑖 = 1 by the total number of itera-
tions excluding the burn-in. To perform selection, we then
threshold the posterior marginal probabilities following
themedianmodel approach of Barbieri et al. (2004), where
covariates 𝑖 with 𝑝(𝛾𝑖|𝒚) ≥ 0.5 are positives, while those
with posterior probabilities < 0.5 are negatives.
Conditional on the selected model 𝜸 , the posterior

density of the nonzero coefficients 𝜷𝜸 follows a multivari-
ate 𝑡-distribution, with mean 𝜷𝜸 = 𝑨−1

𝜸 𝑿𝑇
𝜸 𝒚 and covari-

ance 1

𝑛−2
𝐶𝜸𝑨

−1
𝜸 , where 𝐶𝜸 = 𝒚𝑇𝒚 − 𝒚𝑇𝑿𝜸𝑨

−1
𝜸 𝑿𝑇

𝜸 𝒚. The
posterior density of 𝜎2 follows an inverse-gamma distribu-
tion with the shape parameter 𝑛

2
and the scale parameter

1

2
𝐶𝜸 . The mean is given by

𝐶𝜸

𝑛
. For justification of the prior

on 𝜎2, please refer to Supporting Information Section S5.

4 SIMULATIONS

In this section, we compare our proposed Bayesian vari-
able selection method using either the additive log ratio

transformation (Bayesian ALR), centered log ratio trans-
formation (Bayesian CLR), or the generalized transfor-
mation (Bayesian generalized) with the following existing
approaches:

lasso ref: the lasso applied after dropping a reference
variable, where the estimated coefficient of the ref-
erence variable is taken as −1 × the sum of the
remaining coefficients

lasso std: a naïve application of the standard lasso,
simply ignoring the sum constraint

lasso comp: the penalized approach proposed in Lin
et al. (2014) that addresses the compositionality of
the data

group lasso: the group lasso of Yuan and Lin (2006),
which addresses structured dependence

Importantly, none of the first three lasso approaches
take into account the phylogenetic relationship among the
bacterial taxa, while the group lasso, which enables selec-
tion based on a prespecified group structure, does not han-
dle the compositional constraint. To compare the variable
selection performance in settings with both independent
and dependent compositional predictors, we design two
simulation scenarios: one with independent covariates,
and onewith structured dependence among the covariates.
We assume the following data-generating model,

𝑦𝑖 =

𝑝∑
𝑗=1

𝑋𝑖𝑗𝛽𝑗 + 𝜀𝑖,

𝑝∑
𝑗=1

𝛽𝑗 = 0, 𝑖 = 1, … , 𝑛, (9)

where the 𝜀𝑖 are independent and identically distributed as
 (0, 𝜎2).

4.1 Independent covariates

This simulation setup resembles the one included in Lin
et al. (2014). We first generate an 𝑛 × 𝑝 data matrix 𝑶 =

(𝑜𝑖𝑗) fromamultivariate normal distribution𝑝(𝜽, 𝚺), and
then obtain the OTU relative abundance matrix 𝑼 = (𝑢𝑖𝑗)

by the transformation𝑢𝑖𝑗 = 𝑒2𝑜𝑖𝑗 ∕
∑𝑝

𝑘=1
𝑒2𝑜𝑖𝑘 . The variables

generated using this approach follow a logistic normal dis-
tribution (Aitchison and Shen, 1980). As the abundances
of features in microbiome data often differ by orders of
magnitude, we let 𝜃𝑗 = log(0.5𝑝) for 𝑗 = 1,… , 5 and 𝜃𝑗 =

0 otherwise. To assume that all the covariates are inde-
pendent, we let 𝚺 = 𝑰𝑝, where 𝑰𝑝 is the identity matrix.
We generate the responses 𝑦𝑖 based on model (9) with
𝜷∗ = (1, −0.8, 0.6, 0, 0, −1.5, −0.5, 1.2, 0, … , 0)𝑇 . We define
the signal-to-noise ratio (SNR) as SNR = mean|𝜷(𝛾=1)|∕𝜎.
To generate settings with SNRs of 1, 5, and 10, we set 𝜎
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TABLE 1 Performance comparison on simulated data with sample size 𝑛 = 100 and 𝑝 = 1000 independent covariates

SNR Method PE L2 loss FP FN
10 lasso ref 0.003 (0.0001) 0.005 (0.0003) 4.39 (0.26) 0 (0)

lasso std 0.002 (0.0001) 0.004 (0.0002) 2.85 (0.28) 0 (0)
lasso comp 0.002 (0.0001) 0.004 (0.0002) 2.28 (0.21) 0 (0)
group lasso 0.021 (0.001) 0.05 (0.002) 0.29 (0.07) 0 (0)
Bayesian ALR 0.02 (0.001) 0.04 (0) 0.01 (0.01) 0 (0)
Bayesian CLR 0.01 (0.0003) 0.003 (0) 0 (0) 0 (0)
Bayesian general 0.01 (0.0004) 0.003 (0) 0.01 (0.01) 0 (0)

5 lasso ref 0.01 (0.0006) 0.02 (0.001) 4.55 (0.28) 0 (0)
lasso std 0.01 (0.0004) 0.01 (0.0007) 3.18 (0.28) 0 (0)
lasso comp 0.01 (0.0005) 0.01 (0.0008) 2.37 (0.23) 0 (0)
group lasso 0.024 (0.001) 0.05 (0.002) 0.70 (0.12) 0 (0)
Bayesian ALR 0.04 (0.002) 0.04 (0) 0.02 (0.01) 0 (0)
Bayesian CLR 0.03 (0.001) 0.005 (0) 0 (0) 0 (0)
Bayesian general 0.04 (0.004) 0.005 (0) 0 (0) 0 (0)

1 lasso ref 0.27 (0.02) 0.49 (0.06) 4.34 (0.23) 0.10 (0.07)
lasso std 0.23 (0.02) 0.40 (0.06) 2.92 (0.25) 0.08 (0.06)
lasso comp 0.23 (0.02) 0.38 (0.06) 2.21 (0.18) 0.07 (0.06)
group lasso 0.16 (0.008) 0.17 (0.007) 24.69 (0.87) 0 (0)
Bayesian ALR 0.87 (0.04) 0.09 (0.005) 0.05 (0.02) 0.01 (0.01)
Bayesian CLR 0.89 (0.03) 0.05 (0.001) 0.02 (0.01) 0 (0)
Bayesian general 0.82 (0.31) 0.04 (0.001) 0.01 (0.01) 0 (0)

as 0.933, 0.187, and 0.093. We set (𝑛, 𝑝) = (100, 1000), and
generated 100 simulated data sets for each setting.
For the lasso methods, penalty parameter selection was

performed using cross validation. For the group lasso,
the specified structure included two groups: one for the
true variables, and one for the noise variables. We now
describe the parameter choices used in applying the pro-
posed Bayesian methods. For this simulation, which is
focused on comparing the methods in a setting with inde-
pendent predictors, we set the prior parameter 𝑸 to be a
matrix consisting of 0s. The shrinkage parameter 𝒂 is cho-
sen to achieve a reasonable model size based on sensitiv-
ity analysis (shown in Supporting Information Section S6).
We set 𝒂 = −12 × 𝟏′𝑝 to select approximately six covari-
ates. The shrinkage constant 𝑐 in Equation (4) is set to be
100, and the scaling parameter 𝜏2 in Equation (6) is set
to be 1.
We rely on four performancemetrics for our comparison

of methods. We compute the prediction error, defined as
PE =

1

𝑛test
(𝒚test − 𝑿test𝜷train)

𝑇(𝒚test − 𝑿test𝜷train), using an
independent test sample of size 𝑛test. The accuracy of the
coefficient estimates is assessed by the 𝑙2 loss ||𝜷 − 𝜷∗||2.
To assess the accuracy of variable selection, we report the
number of false positives and the number of false nega-
tives, where positives and negatives refer to nonzero and

zero coefficients, respectively. The means and standard
errors of these performance measures across the 100 sim-
ulated data sets for the seven methods under consider-
ation are reported in Table 1. For each simulated data
set, we divide the data into 10-folds, to enable model
fitting on 90 samples, and evaluation on the held-out
set of 10 samples; we repeat this procedure 100 times
for each simulated data set. For simulation results with
different values of 𝑛 = 50 and 𝑝 = 30, and with 𝑛 =

100 and 𝑝 = 200, please refer to Supporting Information
Section S7.
The proposed methods perform much better than exist-

ing penalization-basedmethods in terms of prediction and
estimationwith low tomoderate dimensionality. Although
all of the methods achieve similar TPR, TNR, FPR, and
FNR (Figure 2A), the proposed methods have fewer false
positive selections (Figure 2C). As only 5 out of 1000
variables have truly nonzero effects, it is not surprising
to observe that TPRs and TNRs of all the methods are
approximately 1. This indicates that all methods perform
well in this simple scenario. As shown in Table 1, the
proposed methods achieve smaller estimation losses and
similar numbers of false negatives. Among the penalized
approaches, the group lasso identifies fewer false positives
than the other lasso variants in settings with higher signal,
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F IGURE 2 Bar plots of true positive rates (TPR), false positive rates (FPR), true negative rates (TNR), false negative rates (FNR), number
of false positives, and number of false negatives for predictions under different scenarios. The sample size 𝑛 is 100, and the number of
covariates 𝑝 is 1000. The SNR is 1 in the upper plots, and the bar heights of the lower plots reflect a transformation of log 2(𝑥 + 2), in order to
accommodate both large and small values

but its false positive rate increases sharply in the low signal
setting: as the group lasso jointly selects entire sets of vari-
ables, the false selection of a group results in a large num-
ber of false positive covariates. In addition, the standard
and group lasso estimators violate the zero-sum constraint
on the coefficients, which the proposed methods do not.
The variable selection performance of the Bayesian gener-
alized estimator is comparable to that of BayesianALR and
CLR, but it does not require choosing a reference or drop-
ping any of the observed variables.Moreover, our proposed
methods perform better than the lasso methods when the
compositional covariates are independent, demonstrating
that our modeling approach has advantages even without
the incorporation of the Ising prior.

4.2 Dependent covariates

This simulation is designed to mimic real microbiome
data, where the features have a complex dependence
structure. Our simulation setup resembles that of Li
and Zhang (2010). We first note that the expression
{𝑏0 + 𝑏1𝑙}

𝐿
𝑙=1

is used to represent the equally spaced
sequence from (𝑏0 + 𝑏1) to (𝑏0 + 𝑏1𝐿) with spacing 𝑏1. We
let the sample size be 𝑛 = 100 and number of variables
be 𝑝 = 1000. The true variables are those with 𝜸𝒋 set
to be 1, where 𝒋 = {160 + 20𝑙}12

𝑙=1
∪ {560 + 20𝑙}12

𝑙=1
. This

corresponds to 24 nonzero coefficients, which are set
to 𝜷∗

𝒋
= [0.88, −1.41, −1.39, −1.15, 1.04, 0.51, 1.21, −1.95,

−1.86, 1.93, −1.34, −0.85] for 𝒋 = {160 + 20𝑙}12
𝑙=1
, and
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TABLE 2 Performance comparison on simulated data with structured dependence, sample size 𝑛 = 100, and 𝑝 = 1000 covariates

SNR Method PE L2 loss FP FN
10 lasso ref 5.18 (0.38) 27.89 (0.42) 1.29 (0.09) 16.39 (0.29)

lasso std 4.52 (0.32) 26.57 (0.36) 0.20 (0.05) 15.50 (0.28)
lasso comp 4.89 (0.34) 27.17 (0.40) 0.42 (0.08) 15.95 (0.30)
group lasso 0.07 (0.003) 0.27 (0.008) 0 (0) 0 (0)
Bayesian ALR 0.04 (0.005) 0.11 (0.0008) 1.49 (0.46) 0 (0)
Bayesian CLR 0.03 (0.003) 0.11 (0.0002) 0.51 (0.27) 0 (0)
Bayesian general 0.05 (0.008) 0.11 (0.002) 1.15 (0.47) 0.01 (0.01)

5 lasso ref 5.15 (0.36) 28.09 (0.42) 1.24 (0.09) 16.42 (0.29)
lasso std 4.45 (0.31) 26.44 (0.34) 0.19 (0.05) 15.43 (0.27)
lasso comp 5.02 (0.36) 27.29 (0.42) 0.40 (0.08) 16.04 (0.31)
group lasso 0.08 (0.004) 0.28 (0.009) 0 (0) 0 (0)
Bayesian ALR 0.50 (0.18) 0.27 (0.03) 0.70 (0.31) 0.10 (0.06)
Bayesian CLR 0.33 (0.22) 0.18 (0.05) 0.67 (0.32) 0.15 (0.14)
Bayesian general 0.30 (0.13) 0.16 (0.02) 0.68 (0.39) 0.05 (0.03)

1 lasso ref 5.47 (0.39) 28.49 (0.47) 1.29 (0.11) 16.70 (0.34)
lasso std 4.81 (0.33) 27.00 (0.36) 0.13 (0.04) 15.80 (0.27)
lasso comp 5.20 (0.37) 27.68 (0.43) 0.45 (0.10) 16.30 (0.32)
group lasso 0.249 (0.013) 0.59 (0.023) 134.56 (31.57) 0 (0)
Bayesian ALR 2.85 (0.17) 0.60 (0.02) 1.11(0.45) 0.03 (0.02)
Bayesian CLR 2.71 (0.32) 0.58 (0.05) 1.14 (0.41) 0.19 (0.17)
Bayesian general 2.08 (0.14) 0.49 (0.01) 1.03 (0.38) 0.01 (0.01)

𝜷∗
𝒋
= [1.76, −1.66, −0.99, 1.48, 0.69, 1.87, −0.54, 0.72, 1.35,

0.67, −0.81, −0.16] for 𝒋 = {560 + 20𝑙}12
𝑙=1
. We let

𝜽𝒋 = log(0.5𝑝), when 𝒋 = {160 + 20𝑙}12
𝑙=1

∪ {560 + 20𝑙}12
𝑙=1
.

Among the true predictors, the covariance is assumed
to be Σ𝑖𝑗 = 0.75 − 0.0015|𝑖 − 𝑗|, that is, the correlation
between two covariates is negatively proportional to their
distance (with a maximum of 0.75). To make the scenario
more realistic and challenging, we let 𝜽𝒋 = log(0.25𝑝)

among the predictors 𝒋 = {444 + 𝑙}16
𝑙=1

∪ {944 + 𝑙}16
𝑙=1
,

which are not relevant to the response. The covari-
ance between those predictors is assumed to be
Σ𝑖𝑗 = 0.4 − 0.02|𝑖 − 𝑗|. The coefficients are set to be 0
for all the other covariates and the diagonals of 𝚺 are set to
be 1.
We now describe the parameter settings used in apply-

ing the Bayesian methods. In real microbiome data sets,
the abundances of closely related OTUs are typically cor-
related, while more distantly related OTUs can be con-
sidered to be independent. To capture this structure, the
prior parameter matrix 𝑸 should be sparse with block-
wise nonzero elements, corresponding to compact neigh-
borhoods in the phylogenetic tree𝑷.We construct𝑸 so that
it has nonzero entries for the true variables and, to avoid
giving advantage to the Bayesianmethods, also for the false
variables 𝒋 = {44 + 𝑙}16

𝑙=1
, {444 + 𝑙}16

𝑙=1
, and {944 + 𝑙}16

𝑙=1
. The

shrinkage parameter 𝒂 is chosen to achieve a reasonable

model size based on sensitivity analysis (shown in Support-
ing Information Section S6) with a range from−30 to 0.We
set 𝒂 = −11 × 𝟏′𝑝 to select approximately 24 covariates. All
the other parameters are fixed as before. In applying the
group lasso, we mimicked the blocks within the 𝑸 matrix
by specifying six groups, including two groups of correlated
covariates with nonzero coefficients corresponding to the
true signal, and four groups of noise covariates unrelated
to the response.
The means and standard errors of these performance

measures across the 100 simulated data sets for the seven
methods under consideration are reported in Table 2. The
proposed Bayesian methods generally outperform existing
methods in terms of prediction and estimation. As shown
in Figure 2B, the methods that account for the structure
among the covariates, including the proposedmethods and
the group lasso, achieve smaller FNRs and bigger TPRs.
As shown in Figure 2D, these methods also have fewer
false negatives. As shown in Table 2, the proposed meth-
ods give much smaller estimation losses and prediction
errors, and have a comparable number of false positives. As
in the simulation with independent predictors, the group
lasso has a high false positive rate in the low signal setting.
The proposed Ising prior allows a more flexible approach
to incorporate structural information, as it encourages,
but does not force, joint selection of “nearby” covariates.
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Therefore, our proposed methods perform better than the
lasso methods for data with a dependent covariate struc-
ture. Bayesian ALR and CLR have comparable perfor-
mance to the Bayesian generalizedmethod. The difference
between the BayesianALR, CLR, and generalizedmethods
is most obvious when the dimensionality is low to moder-
ate and the signal is weak.
In addition, we compare the performance of the pro-

posed Bayesian generalized method with the composi-
tional lasso (Lin et al., 2014) in scenarios with different
combinations of SNR and covariate dependence structure.
To assess the accuracy of variable selection across a range
of model sizes, we provide receiver operating characteris-
tic (ROC) curves in Figure 3 along with the area under the
curve (AUC), which were obtained by varying the penalty
term (for the compositional lasso method) or by chang-
ing the posterior threshold of inclusion (for the Bayesian
approach). Our results demonstrate that the two methods
both achieve almost perfect accuracy (AUC close to 1) for
the setting with independent covariates and SNR 1, but
that the Bayesian method enables improved selection for
themore difficult scenarios with dependent covariates and
lower SNR.

5 APPLICATION TO GUT
MICROBIOME DATA

The gut microbiome plays an important role in energy
extraction and obesity.We illustrate the effectiveness of our
proposedmethod by applying it to data from a study aimed
at linking long-term diet with the composition of the gut
microbiome (Wu et al., 2011, “COMBO” data), which was
also analyzed by Lin et al. (2014). As a part of this study,
16S rRNA data werr obtained via 454/Roche pyrosequenc-
ing from stool samples of 98 healthy subjects.
The OTU table, phylogenetic tree, and representative

sequences were provided to us by the authors of Wu
et al. (2011). We transformed the counts into relative abun-
dances after adding a small constant of 0.5 to replace exact
zero counts (Aitchison, 2003). We then used “mothur”
(Schloss et al., 2009) to obtain taxonomic information on
the 1763OTUs based on the reference Silva Release 128, and
obtained 112 genera.

5.1 Construction of prior parameter
matrix 𝑸

In order to apply our proposed Bayesian variable selec-
tion method, we need to determine the prior parame-
ter 𝑸 that characterizes the similarity of OTUs based on
their evolutionary history. Specifically, we define 𝑸 as the

inverse of the phylogeny-induced correlationmatrix, using
either Euclidean correlation or an exponential correlation.
Assume that we have𝑝OTUs that belong to a phylogenetic
tree 𝑷. We define the branch length from the leaf node 𝑘

to the root node as 𝑙𝑘𝑘, 𝑘 = 1,… , 𝑝, and 𝑙𝑖𝑗 as the shared
branch length between leaf nodes 𝑖 and 𝑗. As shown in Fig-
ure 4A, the shared distance between 𝑎 and 𝑒 is 𝑙𝑎𝑒, and the
distances to the root node for 𝑎 and 𝑒 are 𝑙𝑎𝑎 and 𝑙𝑒𝑒, respec-
tively. A phylogenetic variance-covariance matrix 𝑽 com-
putes the shared distance between all pairs of leaf nodes
within a phylogenetic tree, and is defined as 𝑽 = (𝑙𝑖𝑗)𝑝×𝑝.
Following de Vienne et al. (2011), the Euclidean correlation
matrix can be constructed as (𝑐𝑖𝑗 =

𝑙𝑖𝑗√
𝑙𝑖𝑖
√

𝑙𝑗𝑗
). This matrix

can be calculated using published R packages (Paradis,
2011).
The patristic distance between OTUs (ie, the length

of the shortest path linking OTU 𝑖 and 𝑗 in the tree)
is denoted as 𝑑𝑖𝑗 . It can be computed as 𝑑𝑖𝑗 = 𝑙𝑖𝑖 +

𝑙𝑗𝑗 − 2𝑙𝑖𝑗 . As seen in Figure 4A, the patristic distance
between 𝑎 and 𝑒 can be calculated as 𝑑𝑎𝑒 = 𝑙𝑎𝑎 + 𝑙𝑒𝑒 − 2𝑙𝑎𝑒.
Then the exponential correlation between OTUs 𝑖 and 𝑗

can be described using the evolutionary model 𝐶𝑖𝑗(𝜌) =

𝑒−2𝜌𝑑𝑖𝑗 , 𝑖, 𝑗 = 1, … , 𝑝 (Martins andHansen, 1997; Xiao et al.,
2018). The Euclidean correlation can be considered as a
special case of the exponential correlation (see Support-
ing Information Section S7), because larger values of 𝜌
(smaller 𝑐𝑖𝑗) group OTUs into clusters at a lower phyloge-
netic depth (where a cluster is defined as a group of highly
correlated OTUs). In this case study, we use the Euclidean
correlation structure for analysis.We include other options
in our code.
We plot the phylogenetic tree of the 1763 OTUs from

the COMBO 98 data in Figure 4B. Most OTUs belong to
two phyla: Firmicutes and Bacteroidetes. At the genus
level, Bacteroides contains the largest number of OTUs.
We plot the heatmap of the correlation and inverse corre-
lation matrix between the OTUs in Figure 4C and D. Com-
pared with the correlation matrix, its inverse (ie, the struc-
tural prior parameter𝑸) is sparser andmore focused on the
highly correlated regions. The phylogenetic tree structure
is consistentwith the correlation, as theOTUs belonging to
either Firmicutes or Bacteroidetes are clustered together.
The shrinkage parameter 𝒂 is set up as (−9, −9,… ,−9)

based on sensitivity analysis (Supporting Information Sec-
tion S6). All the other parameters are set the same as in the
simulation studies.

5.2 Selection results

As our simulations have demonstrated that the Bayesian
contrast approaches perform similarly to the Bayesian
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F IGURE 3 Receiver operating characteristic (ROC) curves of variable selection results for the compositional lasso (left) and the
Bayesian generalized method (right), along with the area under the curve (AUC), for progressively more difficult simulation settings:
independent covariates (top), dependent covariates with SNR 1 (middle), and dependent covariates with SNR 0.1 (bottom)
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F IGURE 4 Quantification procedures from phylogenetic tree to graphical structure to correlation/precision matrix

generalized method, in the case study, we focus on a com-
parison of the Bayesian generalized method to the compo-
sitional lasso of Lin et al. (2014). We randomly divide the
98 samples into a training set of 74 samples and a test set of
24 samples, and use the fitted model chosen based on the
training data to evaluate the prediction error on the test

set. We repeat this procedure 100 times. For the composi-
tional lasso method, the average prediction error is 45.86
with a standard error of 1.21. For the Bayesian generalized
method, the average prediction error is 21.23 with a stan-
dard error of 2.67. As shown in the fitted versus observed
plot (Figure 5), the predictions from the proposed Bayesian
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F IGURE 5 Fitted versus observed values of BMI

method are more tightly distributed around the diagonal
line representing perfect accuracy. These results show that
the proposedmethod can achieve improved predictive per-
formance over the compositional lasso approach.
To gain insight into aspects of themicrobiome associated

with BMI, we examined the features selected by the two
approaches on the training data: 27 OTUs were identified
using the compositional lasso, and 55 OTUs were identi-
fied using the Bayesian generalized model. At the phylum
level, both methods select Bacteroidetes and Firmicutes as
being associated with BMI. Thus, our method is consis-
tent with the previous findings by Lin et al. (2014). Fur-
thermore, our selection results at the genus level indicate
that obesity may be associated with the genera Alistipes,
Allisonella, Bacteroides, Roseburia, and Lachnoclostrid-
ium. These genera were identified by previous studies in
this area (Andoh et al., 2016; Verdam et al., 2013).

6 DISCUSSION

The proposed methodology makes two important
advances to regression modeling of microbiome data:
first, a novel approach to address the compositional
constraint in estimation of the regression coefficients;
and second, a structured prior that allows the phyloge-
netic relationships among the bacterial taxa to be taken
into account. Our proposed method obviates the need
to choose a specific reference variable and satisfies the
selection invariance property. We have demonstrated that
our proposed method outperforms existing penalized
methods in both simulation and an application to human
gut microbiome data. Finally, our highly efficient imple-

mentation allows model fitting within minutes in the
𝑝 = 1000 setting, and therefore offers appropriate scaling
for real data applications.
To analyze compositional data, the isometric log-ratio

(ILR) transformation has been proposed as an alterna-
tive to the ALR and CLR transformations (Egozcue et al.,
2003). As the ILR has multiple references, analysis of ILR-
transformed data is challenging, as the dependence among
the transformed covariates will deviate from the original
dependence structure. For this reason, in the currentwork,
we only consider the ALR and CLR transformations, as we
can use the original tree structure to define the prior asso-
ciations.
In future work, we would like to further explore

approaches for quantifying similarity among the predictors
to further improve selection and accommodate such alter-
native transformations.We are also interested in extending
the current model, which assumes a continuous response,
to handle binary or survival outcomes.
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