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The increasing omics data present a daunting informatics challenge. DrBioRight, a natural language-oriented
and artificial intelligence-driven analytics platform, enables the broad research community to perform anal-
ysis in an intuitive, efficient, transparent, and collaborative way. The emerging next-generation analytics will
maximize the utility of omics data and lead to a new paradigm for biomedical research.
The Challenge in Omics Data
Analysis
Over the last two decades, high-

throughput molecular profiling technolo-

gies have revolutionized biomedical sci-

ences. Various omics data (e.g., genomic,

transcriptomic, proteomic, epigenomic,

and metabolic data) generated from thou-

sands of patients, animal models, and

cell lines are accumulating at an increasing

speed,especially through largeconsortium

projects such as ENCODE (ENCODE Proj-

ect Consortium, 2012), Genotype-Tissue

Expression (GTEx) (GTEx Consortium,

2013), and The Cancer Genome Atlas

(TCGA) (Hutter and Zenklusen, 2018)

(Figure 1A). These rich omics data have

provided unprecedented opportunities

to systematically characterize molecular

mechanisms and develop related biomed-

ical applications. The data surge also pre-

sents a major challenge for researchers in

data analysis to obtainmeaningful insights.

Significant progresses have been made

over the years to overcome this challenge

(Figure 1A). Initially, omics data are usually

analyzed using in-house scripts written in

general-purpose programming languages,

such as Python, R, and Perl, by bio-

informaticians or computational biologists.

Several collections of specialized bio-

informatic programming modules, such

as Biopython (Chapman, 2000), BioPerl

(Stajich et al., 2002), Bioconductor (Gentle-

man et al., 2004), and ggplot (Wickham,

2009), allow easier analysis and visualiza-

tion of omics data. However, these tools

still require users to have some program-

ming expertise, which many experimental

researchers do not possess. Many web-

based or stand-alone bioinformatics tools
then enable users to perform various ana-

lyses or visualization of omics data without

extensive programming skills. These tools,

however, are of limited use, as they only

support a predefined set of analyses.

Recently, two types of more generalized

bioinformatics platforms for omics data

exploration have gained popularity. One

type is ‘‘module hubs,’’ such as Galaxy

(Giardine et al., 2005) and GenePattern

(Reich et al., 2006), which provide graphic

infrastructure for users to assemble

bioinformatics pipelines and perform

user-defined tasks. The other type is

‘‘interactive data portals,’’ such as

cBioPortal (Cerami et al., 2012) and GTEx

portal (GTEx Consortium, 2013), which

focus on easy analysis and visualization

of preloaded datasets. Despite these

impressive efforts, users still have to

spend considerable time identifying

appropriate tools and learning distinct

user interfaces and procedures, in addition

to keeping track of the status and updates

for the quickly evolving tools and datasets.

As a result, there is still a substantial barrier

preventing most researchers (especially

those with no or limited bioinformatics

and statistical expertise) from making full

use of omics data in a straightforward

manner.

DrBioRight, a Prototype Natural
Language-Oriented, Intelligent
Analytics
We hypothesized that most of the

commonly used standard analyses of

omics data could be conducted effectively

using natural languages. To test the

feasibility of this idea, we developed

‘‘DrBioRight,’’ a natural language-oriented,
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artificial intelligence (AI)-driven omics data

analysis platform (https://drbioright.org).

DrBioRight consists of two subsystems: a

user-friendly web interface and a backend

compute server. Compared to other bioin-

formatics tools, DrBioRight employs a sim-

ple online chat interfacewith only one input

area and one output area, and all the inter-

actionswithusersarebasedonhuman lan-

guages (Figure 1B). Users can simply type

anomicsdataanalysisquestion in the input

area. For example, a user can type

‘‘perform survival analysis in breast cancer

on TP53 gene expression’’ to test if there is

a correlation between TP53 gene expres-

sion level andoverall survival in breast can-

cer patients. After receiving an input text

(Figure 1C), DrBioRight will run its natural

language processing (NLP) module to tag

the recognized entities, and based on the

features identified in the input, thebackend

AI module will calculate scores to predict

the best-matched analytic task. The pro-

gram will then call the specific analytic

module, identify the related dataset, and

check whether all required parameters

are filled. Before submitting the compute

task,DrBioRightwill ask theuser toconfirm

if the detected task is indeed the intended

analysis. If confirmed, a job scheduler will

submit the task to a job queue and use

cloud-based compute nodes to process

it. Once the job is complete, DrBioRight

will call an appropriate visualization mod-

ule and send the results (usually an interac-

tive table or plot) to the user in the output

area. Last but not least, DrBioRight will

ask for a rating for each successfully

executed job. The feedback thus collected

will be used to further improve the

performance of the NLP and AI modules.
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Importantly, DrBioRight has a flexible

modularized framework, based on which

a new computational analysis can be

added with just two simple steps: adding

the necessary modules and training the

modules using natural human languages.

With the natural language-oriented

interactions and AI-driven modules,

DrBioRight has immense potential to in-

crease the efficiency and reproducibility

of omics data analysis. We have curated

and loaded some widely used cancer

omics datasets, including TCGA, Interna-

tional Cancer Genome Consortium

(ICGC/TCGA Pan-Cancer Analysis of

Whole Genomes Consortium, 2020), and

Cancer Cell Line Encyclopedia (Ghandi

et al., 2019) (>20,000 samples in total).

As an initial effort, we have built 10

analytic modules that cover the most

common omics analyses and the related

visualizations. Using these modules,

users can easily get answers to questions

like ‘‘What is the mRNA expression corre-

lation of gene x and gene y in liver can-

cer?’’ and ‘‘Is there a correlation between

TP53 mutations and the overall survival in

patients with lung cancer?’’ and visualize

the results using scatter, Kaplan-Meier,

or boxplots. Moreover, DrBioRight sup-

ports bioinformatics analysis from raw

next-generation sequencing reads. For

example, a user can start an analysis by

simply asking, ‘‘Could you do an RNA-

seq analysis?’’ and then provide the

source or location of the raw data

(e.g., an SRA ID). Through a dialog with

DrBioRight, the user can finish the entire

analysis step by step, including quality

control, read mapping, gene expression

quantification, differential expression

analysis, and gene set enrichment anal-

ysis. Finally, DrBioRight enables users to

conveniently check the reproducibility of

published results. To demonstrate this

aspect, we focus on a classic cancer ge-

nomics paper (Nik-Zainal et al., 2016) in

which the mutation patterns of 560 breast

cancer whole genomes were analyzed.

After loading the published dataset from

the paper, the key results in the main fig-

ures can easily be reproduced through a
Figure 1. The Next-Generation Analytics for Om
(A) A timeline showing the major omics data resource
(B) A snapshot of an online chat interface of DrBioRig
(C) An overview of the analytic flow of DrBioRight.
(D) Key features of the next-generation data analytics
(E) A new research paradigm in omics science.
quick dialog with DrBioRight (Figure S1).

This side-by-side comparison not only

validates the results using our platform

but also highlights its potential for

improving research reproducibility.

Key Features of the Next-
Generation Data Analytics
With the successful development of

DrBioRight, and having demonstrated its

capability and utility, we propose five

key features that next-generation data an-

alytics should possess that will empower

a board biomedical research community

to explore omics data in an intuitive, effi-

cient, reliable, and collaborative manner

(Figure 1D).

Natural Language

Understanding (NLU)

Human language is the most natural and

intuitive system for communication among

people. To serve the broadest research

community, it is essential to employ natural

human languages (text or voice) as the

direct input to bridge users’ thoughts with

next-generation analytics. By integrating

NLU, the analytics reduces the communi-

cation barrier for data analysis to a mini-

mum, including identifying and confirming

user intentions, translating them into

executable bioinformatics analysis tasks,

and interpreting and discussing the results

in the context of current literature.

Artificial Intelligence (AI)

The next-generation analytics should use

data-driven predictive models to correctly

translate users’ intention, identify appro-

priate datasets and algorithms, and select

informative visualization. Importantly,

with users’ preference and feedback, the

analytics system can, proverbially, ‘‘learn

on the job’’ and use those lessons to

improve its performance over time

through flexible adaption.

Transparency

Reproducibility is a major concern in

biomedical research nowadays. Instead

of being a ‘‘black box,’’ the next-genera-

tion analytics should be able to generate

detailed analysis reports in real time. The

analysis reports will contain detailed infor-

mation on the dataset, processing pro-
ics Data
s and bioinformatics tools in the last two decades.
ht,

.

cedures, and algorithms, ensuring that

the executed analyses are transparent

and that the obtained results are repro-

ducible. It is also important to provide

functionalities that allow users to check

the reproducibility of omics results from

published studies.

Mobile and Social Media

Friendliness

As the most convenient communication

tool, smartphones provide an excellent

platform for researchers to perform omics

data analysis without the restriction

of place and time. Mobile-friendly next-

generation analytics will allow greater

flexibility in performing data analysis and

visualization through smartphone de-

vices. Another desirable feature will be

to enable social media functions. Like

Facebook Messenger or Slack, through

an online chat interface, a user can not

only start a one-on-one conversation

with the analytics but can also invite col-

laborators to join a ‘‘group discussion’’

and explore the results together.

Crowdsourcing

To harness the wisdom of crowds, next-

generation analytics should actively sup-

port open development by the entire

research community, including inputs

from algorithm developers, data scien-

tists, biologists, and clinicians. This

requires building an open-development

user center that will allow software

dissemination and contributions to and

from other bioinformaticians and software

developers (e.g., through Docker and

GitHub), and a data-sharing system that

allows users to share their private data

for third-party use.

Toward a New Research Paradigm
in Omics Science
Armed with the aforementioned features,

next-generation analytics will essentially

become an intelligent partner, rather

than a tool, that works with human re-

searchers to explore, analyze, and inter-

pret omics data. In such an analytics plat-

form, the AI module is the agile and

powerful ‘‘brain’’ that is capable of various

cutting-edge bioinformatics analyses and
Cancer Cell 39, January 11, 2021 5
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is always kept informed of the latest

knowledge and resources; the NLU mod-

ule allows researchers to efficiently

communicate with the ‘‘brain’’ in the

convenient format of a dialog, akin to talk-

ing to a bioinformatics collaborator, and

the social media function promotes team-

work by facilitating the exchange of ideas,

tool and data sharing, and team manage-

ment. With these advances, we envision a

new and exciting research paradigm

(Figure 1E): a researcher can start a proj-

ect by directly ‘‘talking’’ to the data ana-

lytics and can obtain the desired omics

analyses in a timely manner; they can

then interpret the obtained results in the

context of available literature and even

conduct reproducibility checks on pub-

lished results; during the analysis pro-

cess, the analytics also helps leverage

various resources (data, tools, and exper-

tise) in the community to increase the

quality and impact of the researcher’s

findings; and finally, through possible

integration with lab automation and a

self-governing system, the analytics can

direct lab robots to generate new experi-

mental data that can be used by the ana-

lytics to perform further analyses and test

new hypotheses.

With continued advances in high-

throughput omics technologies, the

tremendous amount of omics data that

have and will be generated have ushered

in a golden era for biomedical research

while at the same time presenting us

with unprecedented challenges in digest-

ing these data and formulating new hy-

potheses. Powered by a self-improving
6 Cancer Cell 39, January 11, 2021
AI module, DrBioRight represents an

initial attempt at conducting bioinformat-

ics tasks directly through natural lan-

guages. Such an analytics platform with

the aforementioned features will generate

a new research paradigm that maximizes

the utility of omics data, accelerates

biomedical research, and ultimately leads

to better health for everyone.
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