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SUMMARY
Checkpoint inhibition immunotherapy has revolutionized cancer treatment, but many patients show resis-
tance. Here we perform integrative transcriptomic and proteomic analyses on emerging immuno-oncology
targets across multiple clinical cohorts of melanoma under anti-PD-1 treatment, on both bulk and single-
cell levels. We reveal a surprising role of tumor-intrinsic SIRPA in enhancing antitumor immunity, in contrast
to its well-established role as a major inhibitory immune modulator in macrophages. The loss of SIRPA
expression is a marker of melanoma dedifferentiation, a key phenotype linked to immunotherapy efficacy.
Inhibition of SIRPA in melanoma cells abrogates tumor killing by activated CD8+ T cells in a co-culture sys-
tem. Mice bearing SIRPA-deficient melanoma tumors show no response to anti-PD-L1 treatment, whereas
melanoma-specific SIRPA overexpression significantly enhances immunotherapy response. Mechanisti-
cally, SIRPA is regulated by its pseudogene, SIRPAP1. Our results suggest a complicated role of SIRPA
in the tumor ecosystem, highlighting cell-type-dependent antagonistic effects of the same target on
immunotherapy.
INTRODUCTION

Checkpoint inhibition immunotherapy has become one of the

most successful strategies for cancer treatment and functions

through the stimulation of the patient’s immune system (Ham-

merbacher and Snyder, 2017; Liu and Mardis, 2017). Many can-

cer patients, even those with advanced refractory cancers, show

beneficial clinical responses, sometimes long-lasting ones, to

checkpoint inhibitors targeting programmed death 1 (PD-1), pro-

grammed death-ligand 1 (PD-L1), and cytotoxic T lymphocyte

antigen 4 (CTLA-4) (Hodi et al., 2010; Postow et al., 2015; Topa-

lian et al., 2012). In particular, PD-1/PD-L1 blockades have

achieved the most success in clinical development (Tan et al.,

2020). However, the response rate varies by cancer type,

ranging from �10% to �60% (Ansell et al., 2015; Yarchoan

et al., 2017), and the average objective response rate is only

�26% across all cancer types (Shen et al., 2020). Combination

therapy is a promising approach to overcoming PD-1/PD-L1

resistance and increasing the response rate (Zhang et al.,

2020a). A recent study shows that �80% of active trials in PD-

1/PD-L1 blockades are testing combination regimens with other
1324 Cancer Cell 40, 1324–1340, November 14, 2022 ª 2022 Elsevie
cancer therapies, such as immuno-oncology agents (Upadhaya

et al., 2021). The daunting complexity of the human immune sys-

tem and increased toxicity associated with combination therapy,

however, necessitates the identification of key factors affecting

the immunotherapy response and elucidating synergistic/antag-

onistic effects of different agents in the context of the whole tu-

mor ecosystem (Bagaev et al., 2021; Ho et al., 2022; Newell

et al., 2022).

In recent years, several studies have generated transcriptomic

or proteomic profiles of clinical patient cohorts under anti-PD-1

treatment, which provide rich resources to characterize key reg-

ulators affecting immunotherapy response. However, it remains

challenging to digest these data to make translational impacts

for several reasons. First, owing to limited sample sizes of clinical

cohorts, the datasets obtained are often underpowered to detect

key changes, especially given the multiple-testing burden in a

genome-wide survey. To overcome this, it would be more

powerful to focus on a subset of clinically actionable targets

and assess the signal robustness across multiple cohorts.

Second, clinical samples have highly heterogeneous cell com-

positions that confer additional complexity in analysis (Zaitsev
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et al., 2022): bulk samples reflect the average ofmixed cell types,

while single-cell data usually have very limited patient represen-

tativeness. Therefore, it is essential to perform complementary

bulk sample and single-cell analyses and borrow the information

from each other (Davis-Marcisak et al., 2021). Last but not least,

pure clinical phenotype-driven association analyses often

generate statistically significant but biologically trivial hits. It is

also important to consider the pattern of potential targets in dis-

ease progression or lineage plasticity. The convergent hits of the

above two analyses would give more creditable hypotheses for

subsequent investigation. With these considerations in mind,

we focused on the anti-PD-1 treated patient cohorts of mela-

noma, the frontier of checkpoint inhibition immunotherapy, and

performed an integrative analysis of bulk and single-cell data

across multiple clinical cohorts to obtain insights that can maxi-

mize the benefits of immunotherapy.

RESULTS

HighSIRPA expression correlateswith response to PD-1
blockade in bulk samples
To identify effective therapies that can potentially overcome the

resistance to checkpoint inhibitors, we focused on a set of

emerging immuno-oncology target genes and performed an

integrative analysis across five melanoma patient cohorts under

anti-PD-1 treatment (four with available transcriptomic data and

one with proteomic data) (Figure 1A). We collected 60 immuno-

oncology target genes that have active agents tested in R10

active clinical trials (Table S1). Given these highly actionable

targets, for each of the five patient cohorts we performed two

parallel analyses: (1) differential expression analysis between re-

sponding and non-responding groups; and (2) patient survival

analysis between high-expression and low-expression groups

of each gene (Figure 1A). Through the differential expression

analysis, seven genes showed significant expression-response

correlations in multiple cohorts (p % 0.05, false discovery rate

[FDR] % 0.15, Figure 1B). Among these genes, SIRPA showed

themost consistent pattern in the differential expression analysis

across different patient cohorts (Figure 1C).

SIRPA is an emerging target in cancer immunotherapy (Uger

and Johnson, 2020; Xiang et al., 2021). The protein product of

SIRPA, signal regulatory protein a1 (SIRPa), also known as

CD172a or SHPS-1, is a multifunctional transmembrane glyco-

protein (Barclay and Brown, 2006). SIRPa was thought to be
Figure 1. An integrative immuno-oncology target analysis across anti-

(A) The overall procedure of our integrative immuno-oncology target analysis. Th

(B) Venn diagram showing the overlap of differentially expressed genes (DEGs) i

(C) A summarized plot showing seven DEGs identified in at least two cohorts; red

with one-sided p0 % 0.05; asterisks indicate their concordance with the results o

(D and E) Boxplots and Kaplan-Meier plots showing the associations between th

SIRPA, and anti-PD-1 responses or patient survival times in the anti-PD-1 respons

top of the box are the first and third quartiles, and the whiskers extend to the 1.53

the differences in SIRPA mRNA expression between anti-PD-1 responding (R)

DESeq2, edgeR, and limma, were used. All three tests yielded strongly significant

from the three is shown on the boxplot. Otherwise, one-sided p0 values are show

expression, theMann-Whitney U test was used, and the p value from a permutate

were split into two equal-sized groups with the median as the cutoff. Log-rank tes

groups.

See also Figure S1 and Table S1.
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selectively expressed on myeloid cells (e.g., macrophages, den-

dritic cells, and neutrophils) and neurons (Adams et al., 1998).

Recently, however, many tumor cell lines have been shown to ex-

press SIRPa on their surface (Yamasaki et al., 2007; Yanagita

et al., 2017). SIPRa exerts its effects through interaction with its

ligand CD47, a transmembrane glycoprotein, ubiquitously ex-

pressed in different cell types and often overexpressed in solid

and hematologic tumors.Our results revealed that tumor samples

with high SIRPA expression were significantly more sensitive to

PD-1 blockade not only at the RNA level (p = 0.01 and

FDR < 0.15 in the Hugo cohort [Hugo et al., 2016], and p = 0.05

in the Gide and Liu cohorts [Gide et al., 2019; Liu et al., 2019], Fig-

ure 1D) but also at the protein level (p = 0.01 and FDR < 0.15 in the

Harel cohort [Harel et al., 2019], Figure 1E). Furthermore, patient

survival analyses in multiple cohorts showed that the patient

group with high SIRPA expression had a better prognosis than

that with low SIRPA expression (log-rank test, p = 0.016 in the

Hugo cohort, Figure 1D; p = 0.026 in the Harel cohort, Figure 1E).

Among the five cohorts assessed, the Riaz cohort (Riaz et al.,

2017) is the only one that did not show any significant patterns

in tumor response or patient survival analyses, likely because

(1) this cohort has a small sample size and (2) the majority of

the patients underwent complicated treatments. To further eval-

uate its potential as an immunotherapy biomarker, we found

that SIRPA expression showed no correlation with response to

other therapies such as BRAF inhibitors (Figures S1A and S1B),

established immunotherapy biomarkers such as tumor mutation

burden (Figure S1C), or prognosis in the general patient popula-

tion (Figure S1D). These results suggest a positive and unique

role of SIRPA in tumors responding to anti-PD-1 immunotherapy.

High SIRPA expression in anti-PD-1-responding tumors
comes from tumor cells
SIRPa on macrophages, interacting with CD47 on tumor cells or

T cells, was recently established as the first macrophage check-

point (Chao et al., 2019; Jalil et al., 2020; Uger and Johnson,

2020). Since the interaction between SIRPa-bearing macro-

phages and CD47-positive tumor cells triggers a ‘‘do not eat

me’’ signaling cascade to inhibit the phagocytosis of tumor cells,

the blockade of such an interaction would lead to efficient

phagocytosis of tumor cells by macrophages. In light of this

mechanism, several clinical trials were launched to target the

SIRPa-CD47 interaction, alone or in combination with the anti-

PD-1 treatment (Jalil et al., 2020), for a number of cancer types,
PD-1 patient cohorts

e bar plot indicates the number of active clinical trials per target.

dentified in five anti-PD-1-treated melanoma patient cohorts.

and dark blue, strong significance with FDR% 0.15; pink, marginal significance

f survival analysis.

e mRNA-level (D) and protein-level (E) expressions of the top candidate gene,

e cohorts. For boxplots, the middle line in the box is the mean, the bottom and

interquartile range of the lower and the upper quartiles, respectively. To assess

and non-responding groups (NR) robustly, three differential expression tests,

results (p% 0.05 with FDR% 0.15), and the most significant two-sided p value

n to indicate marginal significance. To assess the difference in SIRPa protein

d random distribution is shown on the boxplot. For Kaplan-Meier plots, patients

ts were used to assess the difference in patient survival times between the two
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Figure 2. SIRPA expression in tumor cells and macrophages in melanoma patient samples

(A and B) Uniformmanifold approximation and projection (UMAP) plot visualizing cell-type annotations (A) and SIRPA expression (B) in single cells of a melanoma

patient cohort from Jerby-Arnon et al. (2018).

(C) Top: heatmap showing the proportion of cells positive for four melanoma gene markers in all melanoma cells of each patient. Middle: heatmap showing the

proportion of SIRPA+ cells in different cell types of each patient. Right: bar plot showing the proportion of SIRPA+ cells in different cell types where cells from all

patients are combined.

(legend continued on next page)
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including melanoma. However, this specific paradigm seemingly

contradicts the SIRPA-related favorable response to the anti-

PD-1 treatment we observed here.

To resolve this paradox, one key question is which cells

contribute to the high expression of SIRPA in anti-PD-1-re-

sponding tumors, since all the above analyses were based on

bulk samples consisting of a mixture of tumor cells and various

non-tumor cells. Since tumor cells constitute a substantial

proportion of a bulk tissue sample, as demonstrated by tumor

purity often >70% in both the surveyed melanoma dataset

(Hugo et al., 2016) and a larger pan-cancer cohort (Aran et al.,

2015), we hypothesized that the difference in SIRPA expression

level between patients with distinct clinical benefits could mainly

reflect a tumor-intrinsic SIRPA pattern. To validate this, we

collected multiple single-cell RNA sequencing (scRNA-seq) da-

tasets from melanoma patients with diverse clinical back-

grounds, where the expression patterns of SIRPA can be inves-

tigated in individual cell populations. First, we performed the

analysis based on two published scRNA-seq datasets of mela-

noma patients (Jerby-Arnon et al., 2018; Smalley et al., 2021).

In the Jerby-Arnon dataset, we found that SIRPAmRNA expres-

sion was comparably enriched in melanoma, macrophages, and

monocyte cells while completely depleted in stromal, endothe-

lial, and non-monocyte immune cells (Figures 2A–2C). We

observed the same phenomenon in another scRNA-seq dataset

of distant melanoma metastases (Smalley et al., 2021), suggest-

ing a stable and abundant expression of SIRPA in melanoma

cells even after developing a secondary malignant growth,

regardless of the metastatic site (Figures 2D–2F). Importantly,

although tumor cells were primarily clustered by patients, indi-

cating significant inter-patient transcriptomic heterogeneity,

considerable SIRPA expression was detected in most of the pa-

tients, demonstrating a ubiquitous presence of SIRPA in mela-

noma cells. Consistent with the findings in human patient sam-

ples, melanoma cell lines are among those with the highest

SIRPA expression at both RNA and protein levels across >20 lin-

eages (Figures S2A and S2B). Finally, we analyzed a single-cell

proteomics dataset of a melanoma cell line (WM989) and a

monocyte cell line (U937) (Leduc et al., 2022) and found that

SIRPA was expressed at a ubiquitously high level in both cell

types, indicating that SIRPA expression is constitutive of the

melanoma cell state (Figures 2G and 2H).

We next aimed to elucidate the exact contribution of tumor

cells and macrophages to high SIRPA signals in tumors re-
(D–F) Same as (A–C) but for another melanoma patient cohort from Smalley et a

(G) UMAP plot visualizing protein expression levels of six melanoma markers (top)

and a monocyte cell line (bottom), respectively.

(H) UMAP plot visualizing SIRPa protein expression level in the two cell lines as

(I) Left: workflow of deconvoluting bulk gene expression profiles into cell-type-s

expression by deconvolution between responding and non-responding groups in

therapy; NR, not responding to anti-PD-1 therapy.

(J and K) Violin plots showing differential SIRPA expression by scRNA-seq betwee

cells (J) or between responding and non-responding groups in macrophages (K)

In (B), (E), (G), and (H) the color key indicates normalized mRNA expression for a

cells. In (I), (J), and (K) each violin plot shows the data distribution using a kernel d

data points will take on the given value, and the top and bottom lines indicate the

first and third quartiles, and the whiskers extend to the 1.53 interquartile range of

used to caculate p values.

See also Figure S2.
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sponding to anti-PD-1 treatment. As there is no single-cell

profile of both cell types in the bulk sample cohorts surveyed,

we first applied a computational deconvolution algorithm,

CIBERSORTx (Newman et al., 2019) to the bulk RNA-seq data-

set of Hugo et al. (2016) to infer tumor- andmacrophage-specific

gene expression profiles for each sample, using the Tirosh

scRNA-seq dataset (Tirosh et al., 2016) as a cell signature refer-

ence (Figure 2I). We found that SIRPA was significantly upregu-

lated in melanoma cells of patients responding to anti-PD-1

treatment (p = 0.022, Figure 2I) but significantly downregulated

in macrophages for the responding group (p = 0.033, Figure 2I).

To further confirm this pattern, we obtained another two scRNA-

seq datasets that respectively surveyed tumor and macrophage

transcriptomes in melanoma patients receiving anti-PD-1 treat-

ment. With the first dataset (Jerby-Arnon et al., 2018), we

showed that SIRPA was expressed less abundantly in the mela-

noma cells of the post-treatment-resistant group compared with

the treatment-naive group (p = 8.53 10�4, Figure 2J). In the sec-

ond dataset (Sade-Feldman et al., 2018), we found that SIRPA

was significantly downregulated in macrophages responding

to anti-PD-1 therapy (p = 1.1 3 10�7, Figure 2K). Collectively,

these results from both deconvoluted bulk samples and single-

cell profiling data suggest that the high expression of SIRPA

correlated with anti-PD-1 treatment response is due to mela-

noma cells rather than macrophages.
SIRPA is a melanocytic marker that decreases during
melanoma progression
Having established the clinically relevant high expression of

SIRPA in melanoma cells, we sought to further explore its role

in melanoma biology. Because cellular dedifferentiation is a

key axis of themelanoma phenotype (Agaimy et al., 2016; Kohler

et al., 2017; Riesenberg et al., 2015), we asked whether the

SIRPA expression dynamics reside in a meaningful topology

along the melanoma dedifferentiation trajectory. To address

this question, we analyzed an RNA-seq dataset comprising a

panel of human melanoma cell lines spanning four consecutive

differentiation stages, namely, undifferentiated, neural crest-

like, transitory, and melanocytic (Tsoi et al., 2018). Intriguingly,

SIRPA expression appears to be a monotonically increasing

function of the melanoma differentiation status, as readily visual-

ized in the embedded principal component analysis (PCA)

space, with the most differentiated melanoma cells showing

the strongest expression of SIRPA (Figures 3A and 3B). We
l. (2021).

and six monocyte markers (bottom) in single cells of a melanoma cell line (top)

mentioned in (G).

pecific gene expression profiles. Right: violin plots showing differential SIRPA

melanoma cells and macrophages, respectively. R, responding to anti-PD-1

n anti-PD-1 treatment-naive and post-treatment resistant groups in melanoma

.

gene of interest. In (C) and (F) the color key indicates the proportion of positive

ensity estimation. The width of the violin plot represents a probability that the

maximal and minimal data values. The bottom and top of the inner box are the

the lower and the upper quartiles, respectively. The Mann-Whitney U test was
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Figure 3. SIRPA expression dynamics in melanocyte maturation and melanoma dedifferentiation

(A and B) PCA projection of human melanoma cell lines from Tsoi et al. (2018), based on gene expression profiles and colored by dedifferentiation stages (A) or

normalized SIRPA expression level (B).

(C–E) PCA projection of human melanoma cell lines from CCLE, based on gene expression profiles and colored by differentiation score (C), SIRPa protein

expression by RPPAs(D), or SIRPa protein expression by quantitative proteomics (E).

(F and G) PCA projection of in vitro differentiating human melanocytes from Mica et al. (2013), based on gene expression profiles and colored by differentiation

time (F) or normalized SIRPA expression level (G).

(legend continued on next page)
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further measured the SIRPa protein expression using reverse-

phase protein arrays (RPPAs) in an independent collection of

48 melanoma cell lines with parallel publicly available RNA-seq

and quantitative proteomics data. After scoring each cell line

for differentiation status using a signature derived from a

previous study (Tsoi et al., 2018), we found a very strong corre-

lation between SIRPa protein abundance and melanoma differ-

entiation (Figures 3C–3E). Melanocytes are known to be the

cell of origin of melanoma tumors (Gupta et al., 2005; Kohler

et al., 2017; Moon et al., 2017). Thus, we hypothesized that

SIRPA would show a similar pattern of expression on a melano-

cyte maturation trajectory. Indeed, based on an RNA-seq

dataset derived from cultured humanmelanocytes and their pro-

genitors (Mica et al., 2013), we showed that the high-expression

status of SIRPA is gradually instituted as melanocytes reach

maturity (Figures 3F and 3G).

Bridging the tumorigenic melanoma dedifferentiation process

and the physiological melanocytic differentiation process, we

next aimed to monitor SIRPA expression in a setting where me-

lanocyte-to-melanoma transformation is captured. A recent

study on the stepwise introduction of oncogenic mutations

into primary human melanocytes generated scRNA-seq data

on genetically distinct melanoma cellular models (Hodis et al.,

2022) (Figure S3A). This allowed us to query SIRPA expression

along a phylogenetically related trajectory of melanoma from its

normal cell of origin and associate SIRPA expression shifts with

key oncogenic events. Using well-established melanocytic

markers (e.g., PMEL, MLANA, MITF, and TYR) to form a

reference for the differentiation program, we observed that

this highly matched SIRPA expression changes between

the populations, including a drop when cells obtained replica-

tive immortality through a TERT promoter mutation and an

increase when a PTEN exon mutation led to MITF duplication

(Figure S3B).

Finally, to validate our findings on the in vitro SIRPA expres-

sion dynamics in melanocytes and melanoma cells in real-world

physiological and pathological contexts, we further performed

two analyses on data from human samples. First, we analyzed

an scRNA-seq dataset of human skin samples across three

developmental stages (Belote et al., 2021): fetal, neonatal, and

adult. Consistent with the in vitro data, we found a ubiquitous

expression pattern of SIRPA in melanocytes of all develop-

mental stages (Figures 3H–3J). Interestingly, SIRPA expression

was exclusive to melanocytes, emphasizing its important role in

establishing the identity of this cell type. A pseudo-time trajec-

tory-based analysis of fetal-stage melanocytes during the

establishment of their identity further characterized SIRPA as

a marker gene of melanocytic maturation (Figure S3C). Second,

we reanalyzed The Cancer Genome Atlas (TCGA) cutaneous

melanoma cohort (n = 472) with a specific focus on the associ-
(H–J) Two-dimensional t-SNE projection of human skin single cells from Belote

SIRPA expression level (J).

(K) Top: scatterplot of TCGA skin cutaneous melanoma (TCGA-SKCM) samples

clinical features of ordered TCGA-SKCM samples.

The color key indicates the normalized SIRPA expression (A, B, F, G, J), differe

expression by quantitative proteomics (E). The Kruskal-Wallis test was used to co

stages,mutational subtypes, and tumor sites. Spearman’s rank correlation was us

purity. See also Figure S3.
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ation between SIRPA expression and well-established patho-

logical/clinical features. We found that the expression level of

SIRPA was highly negatively correlated with melanoma tumor

dedifferentiation (Figure 3K), consistent with our observation

in the cell line data. Together, these results support that SIRPA

is a melanocytic marker whose loss is a hallmark of melanoma

progression.

SIRPA loss confers anti-PD-L1 resistance through the
interaction of tumor cells and CD8+ T cells
Melanoma dedifferentiation is a knownmechanism of resistance

to T cell-mediated immunotherapy through loss of melanocytic

antigens, which has been shown in both mice (Landsberg

et al., 2012) and humans (Mehta et al., 2018). Based on our ob-

servations that SIRPA, a previously understudied melanocytic

antigen gene, showed strong positive correlations with both

anti-PD-1 immunotherapy response and melanoma differentia-

tion status, we hypothesized that SIRPA is directly involved in

enhancing T cell-mediated immunotherapy, and its loss then

serves as a mediator of immunotherapy resistance that accom-

panies the attenuation of melanocytic identity.

To identify a possible molecular mechanism for this pheno-

type, we first focused on the canonical SIRPa-CD47 interaction

model. According to the current research paradigm, this inter-

action provides an antiphagocytic signal that modulates the

crosstalk between macrophages and tumor cells (Morrissey

et al., 2020; Takizawa and Manz, 2007; Willingham et al.,

2012). However, given our findings on SIRPA expression pre-

vailing in tumor cells and a widespread presence of CD47

in all major immune cell populations (Figures S4A–S4D),

SIRPa-CD47 interaction may contribute to the communication

among alternative cell-type combinations. To identify the donor

and receptor cell populations that host SIRPa and CD47 in the

melanoma ecosystem, we analyzed a melanoma spatial tran-

scriptome dataset (Thrane et al., 2018), where the localization

of the tumor, stromal, and immune cells was determined using

hematoxylin and eosin (H&E) staining —and was consistent

with our gene-expression-based deconvolution results (Figure

4A). The juxtaposition of slide-wide cell population distributions

and the expression patterns of SIRPA and CD47 showed

enrichment of SIRPA in melanoma cells and its co-localization

with CD47 in T cells (Figure 4A). Given that tumor-intrinsic

SIRPA overexpression in patient samples correlates with a

favorable response to PD-1 blockade therapy, we hypothe-

sized that such an effect is caused by an enhanced

SIRPa-CD47 communication between melanoma cells and

T cells. To test this hypothesis, we inferred a SIRPa-CD47 inter-

action score using CellPhoneDB (Efremova et al., 2020) based

on the co-expression patterns of SIRPA in melanoma cells and

CD47 in CD8+ T cells in the Tirosh scRNA-seq dataset
et al. (2021), colored by cell type (H), developmental stage (I), and normalized

ranked by SIRPA expression level. Bottom: heatmap showing biological and

ntiation score (C), SIRPa protein expression by RPPAs (D), or SIRPa protein

mpute p values for the association of SIRPA expression with dedifferentiation

ed to evaluate the association ofSIRPA expressionwith tumor stage and tumor
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(Tirosh et al., 2016). Indeed, we observed a significant SIR-

Pa-CD47 interaction score between melanoma cells and

CD8+ T cells (p = 0.008, permutation test, Figure 4B).

To directly examine the effect of SIRPA on T cell-dependent

tumor immune responses, we designed a co-culture system

and performed cytotoxic T cell killing assays (Figure 4C). We

established two stable cell lines with verified SIRPa knockdown

(KD) and overexpression (OE) (Figure 4D) and confirmed that

SIRPA perturbation in tumor cells had no impact on in vitro tu-

mor growth during the co-culture experiment (Figure S4E). We

then co-cultured these cells with activated cytotoxic CD8+

T cells for 24 h. We found that cytotoxic T cells killed tumor

cells with SIRPa overexpression more efficiently compared

with the non-targeting controls (NTCs), whereas tumor cells

with the loss of SIRPa were more resistant to T cell-mediated

killing (Figure 4E). This suggests a positive role of SIRPa on

the tumor cell surface in T cell-mediated tumor cytotoxicity.

To further confirm the role of SIRPA in the context of anti-

PD-1/PD-L1 treatment, we added a mouse PD-L1 (mPD-L1)

antibody into the co-culture system and observed that the dif-

ference in T cell killing effect was even more striking (Figure 4F)

than in the setting without the antibody (Figure 4E). The same

results were observed when adopting an additional SIRPA KD

cell line with an extended co-culture time of 96 h

(Figures S4F and S4G). To rule out the possibility that SIRPA

perturbation leads to expression changes of melanoma differ-

entiation antigens (MDAs), which directly mediate the immuno-

genicity of melanoma cells (Pitcovski et al., 2017), we profiled

the transcriptomes of SIRPA-KD and SIRPA-OE B16F10 cells

and found no significant expression changes of six well-estab-

lished MDA-encoding genes, PMEL, TYR, TYRP1, DCT,

MLANA, and MITF (Figure 4G). To provide more direct support

for the proposed immunostimulatory activity of SIRPA via

CD47-mediated interactions with CD8+ T cells, we utilized

two antibodies capable of blocking the SIRPa-CD47 interac-

tion, MIAP410 and MIAP430 (Han et al., 2000; Willingham

et al., 2012), to pre-treat the T cells before the co-culture and

tested whether this blockade would affect T cell-mediated

cytotoxicity. The results showed that the tumor-killing effect

was hampered in T cells with CD47 blocked, and the effect

was enhanced in the culture with SIRPA-overexpressing mela-

noma cells (Figure 4H). Taken together, these results suggest
Figure 4. Effect of SIRPa inhibition on T cell-mediated antitumor respo

(A) H&E-stained tissue image of amelanoma biopsy (left panel, adopted from Figur

scores (middle), and the expression patterns of SIRPA and CD47 (right). The col

(B) Histogram showing the distribution of receptor-ligand interaction scores for S

shuffling of cell-type labels. The red dotted line denotes the real score correspond

T cells of the Tirosh et al. (2016) cohort.

(C) A co-culture system quantifying tumor cell viability upon perturbations.

(D) Smoothed histograms showing cell surface SIRPa expression detected by flow

The knockdown cell lines were constructed bymultiple short hairpin RNAs (shRNA

downstream experiments. Isotype and B16F10 NTC are the negative and positiv

(E and F) Line charts showing relative survival rates of tumor cells at 24 h in co-cult

(F) the addition of a mouse PD-L1 antibody (mPD-L1).

(G) Bar plot showing gene expression levels of SIRPA along with six melanoma d

fold change >1 and adjusted p < 0.05 by DESeq2; ns, log2 fold change <1 or ad

(H) Bar plots showing relative survival rates of tumor cells at 24 h in co-cultures w

block CD47-SIRPa interaction.

In (E), (F), and (H) the results are based on three independent mouse experiments

based on Student’s t test: *p < 0.05; **p < 0.01; ***p < 0.001. See also Figure S4
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that melanoma-intrinsic SIRPA can effectively trigger T cell

immunogenicity through CD47 interaction in PD-1/PD-L1

blockade immunotherapy.
Tumor-intrinsic SIRPA enhances the antitumor
response of checkpoint blockade in mice
To investigate whether melanoma-intrinsic SIRPA affects the

efficacy of checkpoint inhibition immunotherapy in vivo, we

utilized the well-established B16F10 murine melanoma model.

We subcutaneously inoculated B16F10 cells with different

SIRPA perturbations —overexpression (mSIRPA-OE), knock-

down (mSIRPA-KD), and NTCs —into C57BL/6J mice. We im-

plemented a two-step randomization strategy to ensure homo-

geneous tumor volumes before treatment with anti-mPD-L1 or

isotype control (Figure 5A). Compared with tumors treated with

isotype control, tumors overexpressing SIRPA showed the

most remarkable response to anti-mPD-L1 treatment, both at

specific time points and across time points (p < 10�3); NTC tu-

mors showed a moderate but significant response to the treat-

ment (p < 10�2); whereas tumors bearing SIRPA KD essentially

exhibited no response (Figures 5B, 5C, and S5). We next exam-

ined the tumor volume changes from baseline (anti-mPD-L1

versus isotype control) at a single-mouse scale. At different

time points (days 10, 12, 14, and 16), the three mouse groups

showed distinct tumor volume change rates from each other:

all the mice in the mSIRPA-OE group consistently benefited

from anti-mPD-L1 treatment and showed considerable tumor

shrinkage, and in some cases tumors even disappeared

completely; most mice in the NTC group showed response to

the treatment, but in a small proportion of mice, the tumor size

increased; in sharp contrast to mSIRPA-OE, approximately half

of themice in themSIRPA-KD group suffered from tumor expan-

sion (Figures 5D and 5E). Finally, we examined the impact of

different SIRPA perturbations on animal survival. The mSIRPA-

OE mice treated with anti-mPD-L1 showed a much better prog-

nosis than those treated with isotype control (log-rank test,

p < 10�4), and the median survival time increased from

14 days to 20 days; NTC mice showed a marginally significant

survival benefit (log-rank test, p < 0.08); mSIRPA-KD mice

showed no difference at all (log-rank test, p < 0.8) (Figure 5F).

Collectively, these results provide strong evidence supporting
nse in melanoma cells

e 3A in Thrane et al. (2018) with the slide-wide distribution of cell-type signature

or key indicates signature score or normalized gene expression.

IRPA in melanoma cells and CD47 in CD8+ T cells computed from the random

ing to the co-expression pattern of SIRPA in melanoma cells andCD47 in CD8+

cytometry after SIRPA perturbation: knockdown (KD), or overexpression (OE).

s). The shRNA showing themost robust knockdown efficiency was selected for

e controls, respectively.

ures of different ratios of B16F10 and CD8+ T cells (Pmel-1) without (E) and with

ifferentiation antigens in B16F10 cells with SIRPA KD, OE, or control. sig., log2
justed p > 0.05 by DESeq2.

ith CD8+ T cells (Pmel-1) pretreated with MIAP410 or MIAP430 antibodies to

, each with three replicates, and the error bars indicate mean ± SEM p values
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a positive role of tumor-intrinsic SIRPA in PD-1/PD-L1 induced,

T cell-mediated antitumor immunity.

SIRPa expression is positively regulated by SIRPAP1 in
melanoma
To identify potential regulators that affect the heterogeneity of

SIRPa protein expression in melanoma patients, we quantified

SIRPa protein expression in 349 TCGAmelanoma samples using

RPPAs and then performed an association analysis with other

TCGA molecular profiling data, including DNA methylation,

somatic mutation, somatic copy-number alteration, and the

expression of its endogenous pseudogene, SIRPAP1. Among

the three cis-regulatory features, SIRPA gene amplification

showed a significant positive correlation, but the effect size

was limited (Figures 6A and 6B). In the Hugo cohort (Hugo

et al., 2016), SIRPA gene amplification showed no relation to

SIRPA expression (Figure S6A). Intriguingly, SIRPAP1 RNA

expression was strongly correlated with SIRPa expression

(Figures 6A and 6C). We further confirmed this pattern in CCLE

melanoma cancer cell lines (Figure S6B) based on quantitative

proteomics data. These results suggest that SIRPAP1 is a key

non-coding regulator of SIRPa.

To dissect the competitive relationship between SIRPA

and SIRPAP1, we conducted a microRNA (miRNA)-centered

analysis (Figure S6C). We adopted three common miRNA target

prediction tools, RNAhybrid (Kruger and Rehmsmeier, 2006),

miRDB (Wong and Wang, 2015), and TarPmiR (Ding et al.,

2016), to identify potential miRNAs and their corresponding

target sites shared by SIRPA and SIRPAP1. We then performed

an association analysis on the expression levels between the

miRNA candidates and SIRPA or SIRPAP1 using TCGA mela-

noma data. We identified three miRNAs, let-7a-2-3p, miR-149-

3p, and miR-3154, that targeted the homologous regions of

SIRPA andSIRPAP1 and exhibited a significantly negative corre-

lation with both of their expression levels (Figures 6D and S6D).

In particular, let-7a-2-3p showed the strongest anticorrelation

with SIRPA/SIRPAP1 expression (Figures 6E and 6F). These re-

sults suggest that the co-regulation of SIRPA and SIRPAP1 in

melanoma is mediated by a group of miRNAs.

To test whether SIRPAP1 can causally regulate SIRPa expres-

sion in melanoma cells and whether such regulation can affect

the protein abundance on the cell surface, we overexpressed

SIRPAP1 in A375 melanoma cells (Figure 6G) and measured
Figure 5. Effects of SIRPa expression levels on anti-mPD-L1 treatmen

(A) A graphic description of themouse experiment design. Left: the workflow; right

mSIRPA-OE, and mSIRPA-KD, were inoculated, followed by two treatments, is

compared.

(B and C) Curves showing the tumor growth in 16 days for each mouse group. A

universal comparison (B). The effects of themPD-L1 antibody on tumor volumes ar

to compare the mouse groups of different treatments at each time point. Paired S

tumor cell line based on the averaged tumor volumes. The error bars indicate m

(D) Waterfall plots visualizing the tumor volume changes from the baseline (isotyp

tumor cell lines on days 10, 12, 14, and 16. Student’s t tests (two-sided) were us

(E) Boxplots showing averaged changes from baseline of the four time points for e

of the box are the first and third quartiles, and the whiskers extend to the 1.53 in

groups were compared by using paired Student’s t tests (two-sided).

(F) Kaplan-Meier plots showing the survival rate of mice upon anti-PD-L1 treatm

rank tests.

In (C), (D), and (E), *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not sign
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the total and membrane-anchored SIRPa level by western blot

and flow cytometry, respectively (Figures 6H and 6I). Indeed,

we found that the SIRPAP1 overexpression greatly increased

the total and cell surface SIRPa level. To further confirm this

observation, we utilized the CRISPR-Cas9 synergistic activation

mediator (SAM) system to transcriptionally activate SIRPAP1 in

A375 cells (Figure 6J). We observed the same increased protein

expression after induced SIRPAP1 overexpression (Figures 6K

and 6L). Thus, we established SIRPAP1 as a positive regulator

of the SIRPa expression on the surface of melanoma cells.

Taken together, we propose a model of tumor-intrinsic

SIRPa-mediated immunotherapy response (Figure 7). Specif-

ically, multiple mechanisms contribute to SIRPa expression het-

erogeneity, including SIRPAP1 as a competing endogenous

RNA to upregulate SIRPA. The tumor cells with high SIRPa

expression on the surface then interact with CD47 on CD8+

T cells. Such interaction may enhance cell-cell adhesion be-

tween tumor cells and CD8+ T cells, thereby facilitating T cell

killing activity. As a result, patients whose tumors carry high

expression of SIRPA show favorable responses to anti-PD-1

immunotherapy.

DISCUSSION

Checkpoint inhibition immunotherapy has revolutionized cancer

treatment by leveraging the cytotoxic potential of the human im-

mune cells, especially cytotoxic T cells, yet we still have a very

limited ability to predict patients’ responses to immunotherapy.

In this study, focusing on emerging immune-oncology targets,

we developed an integrative analysis strategy to prioritize action-

able targets in combination with anti-PD-1/PD-L1 therapy.

Combining single-cell bulk and RNA-seq datasets from mela-

noma patients, we showed that high SIRPA expression correlated

with a favorable response to anti-PD-1 treatment and that it ismel-

anoma cells, rather than macrophages, that contribute to the

observed pattern. Through both in vivo and in vitro experiments,

we further demonstrated that tumor-intrinsic SIRPA promotes

T cell-mediated immunotherapy response. This is in sharp

contrast to the well-established role ofSIRPA as amajor inhibitory

immune modulator in macrophages.

Although the CD47-SIRPa signaling axis is an innate immune

checkpoint in cancer, durable antitumor responses require

adaptive immune cell stimulation (Sockolosky et al., 2016).
t response in mice

: the schedule of tumor inoculation and treatments. Three tumor cell lines, NTC,

otype control and anti-mPD-L1. In total, six mouse groups were tested and

veraged tumor volumes of the six mouse groups are shown in one plot for a

e shown in the three tumor cell lines (C). Student’s t tests (two-sided) were used

tudent’s t tests (two-sided) were used to compare the two curves within each

ean ± SEM.

e control) after mPD-L1 antibody treatment for every single mouse of the three

ed to compare the mouse groups of different cell lines.

ach tumor cell line. Themiddle line in the box is the median, the bottom and top

terquartile range of the lower and the upper quartiles, respectively. The three

ent for each tumor cell line. The difference between curves was tested by log-

ificant. See also Figure S5.
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Several studies suggest the synergistic effect of the anti-CD47-

SIRPa signaling axis and anti-PD-1/PD-L1 therapy in syngeneic

mouse models (Kuo et al., 2020; Sockolosky et al., 2016; Yana-

gita et al., 2017). Our results from the analysis of clinical patient

cohorts and functional assays reveal a positive role of tumor-

intrinsic SIRPA in the activated T cell-mediated cytotoxicity.

Interestingly, a recent study identified a functional subpopulation

of SIRPA+ CD8+ T cells in humans and mice during chronic im-

mune exhaustion, and showed that these T cells kill the CD47+

target more efficiently compared with the SIRPA� CD8+ T cells

both in vivo and in vitro (Myers et al., 2019). Similarly, our data

showed that tumor cells with SIRPA overexpression were sensi-

tive to cytotoxic T cell-mediated killing. One possiblemechanism

is that CD47-SIRPa interaction stabilizes cell-to-cell contacts

and cytolytic synapses. The strength of cell-to-cell interaction

is determined not only by the affinity between the receptor and

the ligand but also by their avidity. As the spanning distance of

the end-to-end bound CD47-SIRPa complex (�14 nm) is very

similar to TCR-MHC, CD28�CD86, and CD40�CD40L, tumor

cells or CD8+ T cells bearing more SIRPa could have stronger

and longer interactions with cells expressing CD47, leading to

a greater cytotoxicity effect (Myers et al., 2019). Furthermore,

another study shows that the interaction of SIRPa on dendritic

cells andCD47 on T cells is important for T cell activation (Seiffert

et al., 2001). Thus, these studies and ours collectively suggest

that any disruption to the interaction between SIRPa and CD47

may affect T cell activation and the related antitumor activity.

The CD47-SIRPa signaling axis is a hot topic in the field of

immunotherapy and has been under intensive clinical investiga-

tion. Results from multiple initial clinical trials show that mono-

therapy with anti-CD47 exhibited varied efficacy between

different cancer types (Huang et al., 2017; Zhang et al., 2020b).

The ubiquitous expression of CD47 on all cell types may

contribute to the low efficacy and side effects of the monother-

apy. Given the notion that SIRPA is predominately expressed

in neurons, dendritic cells, andmacrophages, some clinical trials

were initiated to evaluate the possibility of SIRPA as an alterna-

tive target. However, we found that many different types of

cancer cells expressed SIRPA. Some cancer cells, for example,

melanoma cells, express as much SIPRA as tumor-associated

macrophages. Given the dual role of SIRPA in immunotherapy

response, we would like to emphasize that it is the overall net ef-

fect that determines the clinical benefits.

Specifically, our study may have significant clinical implications

for SIRPa-related therapies (Figure 7). First, for indication selec-

tion, the effect of SIRPa blockade may depend on the relative

abundance of tumor-intrinsic SIRPa in a given cancer lineage. In
amplification and SIRPa protein expression. Patient samples with somatic copy n

non-amplified. The middle line in the box is the median, the bottom and top of

interquartile range of the lower and the upper quartiles, respectively. (C) Scatterp

correlation coefficient and p value are based on Spearman’s rank correlation.

(D) Correlation plot showing the miRNAs which are negatively correlated with SIR

rank correlation coefficient.

(E and F) Scatterplots showing the correlations between let-7a-2-3p and SIRPA

(G) Cartoon summary of SIRPAP1 overexpression by lentivirus transduction.

(H and I) Western blot (H) and flow cytometry (I) of SIRPa protein expression upo

(J) Cartoon summary of SIRPAP1 overexpression by CRISPR-Cas9 SAM system

(K and L) Western blot (K) and flow cytometry (L) of SIRPa protein expression up

See also Figure S6.
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cancer types such as melanoma, where tumor-intrinsic SIRPa

expression is high, the blockade may significantly dampen tumor

killing mediated by CD8+ T cells, whereas in other cancer types

such as breast cancer and lymphoma, where SIRPA expression

is much lower, the efficacy of SIRPa blockade in pre-clinical

models (Gauttier et al., 2020; Ring et al., 2017) likely reflects a

dominant role of macrophage-mediated phagocytosis of tumor

cells. Therefore, the relative abundance of SIRPA in tumor cells

must be considered when choosing suitable cancer types for

anti-SIRPa treatment. Second, to stratify patients for better immu-

notherapy response within a cancer type, tumor-specific SIRPA

expression may be a more effective biomarker than the bulk-level

SIRPA expression, as the latter would be confounded by signals

from different cell components within a tumor. Currently,

biomarker identification is largely based on the analysis of bulk-

level expression data, andmore efforts should bemade to assess

cell-type-specific gene expression signatures as potential bio-

markers. Finally, for drug development, we propose that anti-

bodies that specifically bind to SIRPa on the surface of macro-

phages would be more effective. For that purpose, it would be

of particular interest to designbispecific antibodies that can simul-

taneously bind to two different types of antigens, one to target

macrophage-specific antigens and the other to target SIRPa.

Our study highlights cell-type-dependent antagonistic effects

of the same target on immunotherapy, an issue largely ignored in

the field. Besides SIRPA, tumor-intrinsic PD-1 and CTLA-4 have

been reported (Wang et al., 2020; Zhang et al., 2019). The unex-

pected expression of these immune checkpoints on the surface

of tumor cells may antagonize or agonize the immune cells’ anti-

tumor activity (Kleffel et al., 2015; Zhang et al., 2019). Consid-

ering the high fraction of tumor cells in the tumor ecosystem, it

would be critical to systematically elucidate the effects of

immunotherapeutic targets in different cell types and take this

into account in the design of clinical studies.
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SIRPA by functioning as a competing endogenous

RNA; within the tumor microenvironment (TME),

SIRPa on the surface of tumor cells interacts with

CD47 on CD8+ T cells to enhance cell-cell adhesion

between these two cell types; and consequently,

the enhanced cell-cell interaction increases the

T cell killing effect, leading to a better response to

anti-PD-1/PD-L1 therapy. In contrast, on the right

side, tumor cells with low SIRPA expression have

moderate cell-cell adhesion with CD8+ T cells,
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Bioxcell MIAP410; RRID: AB_2687806

InVivoMAb mouse IgG1 isotype control, Bioxcell MOPC-21;RRID: AB_1107784
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jetPRIME� Versatile DNA/siRNA transfection

reagent(0.75 mL)

Polyplus 114-07

A 33 mm diameter sterile syringe filter with a

0.45 mm pore size hydrophilic PVDF membrane

EMD Millipore Corp SLHV033RS

Recombinant Mouse IL-2 Protein R&D System,lnc 402-ML

RIPA Lysis and Extraction Buffer Thermo Fisher 89901

Western Lightning� Plus-ECL, Enhanced

Chemiluminescence Substrate

PerkinElmer Inc. NEL103001EA

Pierce BCA Protein Assay Kit Thermo Fisher 23227

RPMI 1640 Fisher Scientific MT10040CV
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and Sodium Pyruvate

Fisher Scientific 10013CV

Penicillin-Streptomycin (10 ,000U/mL) Thermo Fisher 15140122

Trypsin-EDTA (0.05%), phenol red Thermo Fisher 25300120

InVivoPure pH 7.0 Dilution Buffer Bioxcell IP0070

InVivoPure pH 6.5 Dilution Buffer Bioxcell IP0065

GP100(25-33) ANASPEC AS-62589

Critical commercial assays

EasySep� Mouse CD8+ T Cell Isolation Kit Stemcell 19853

CountBright Absolute Counting Beads,

for flow cytometry

Thermo Fisher C36950

Dynabeads� Mouse T-Activator CD3/CD28

for T-Cell Expansion and Activation

Thermo Fisher 11456D

Deposited data

Immuno-oncology targets (Figure 1A) Immuno-Oncology Landscape,

Cancer Research Institute

(online published on Sep 18, 2020)

https://www.cancerresearch.org/

scientists/immuno-oncology-landscape

Bulk proteomics data from anti-PD-1-treatment-

responding and non-responding melanoma

patients (Figures 1A–1C and E)

Harel et al., 2019 https://www.sciencedirect.com/

science/article/pii/S0092867419309006
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Bulk RNA-seq data from anti-PD-1-treatment-

responding and non-responding melanoma

patients (Figures 1A–1D, 2I, and S6A)

Hugo et al., 2016 GEO: GSE78220

Bulk RNA-seq data from anti-PD-1-treatment-

responding and non-responding melanoma

patients (Figures 1A–1D)

Gide et al., 2019 ENA: PRJEB23709

Bulk RNA-seq data from anti-PD-1-treatment-

responding and non-responding melanoma

patients (Figures 1A–1D)

Riaz et al., 2017 GEO: GSE91061

Bulk RNA-seq data from anti-PD-1-treatment-

responding and non-responding melanoma

patients (Figures 1A–1D)

Liu et al., 2019 dbGaP: phs000452.v3.p1

Bulk RNA-seq data from BRAFi-treatment-

responding and non-responding melanoma

patients (Figures S1A and S1B)

Rizos et al., 2014 GEO: GSE50509

Bulk RNA-seq data from BRAFi-treatment-

responding and non-responding melanoma

patients (Figures S1A and S1B)

Kakavand et al., 2017 GEO: GSE99898

Tumor mutation burden in melanoma patients

(Figure S1C)

Wang et al., 2019 https://elifesciences.org/articles/49020

Survival data in TCGA melanoma patients

(Figure S1D)

The Cancer Genome

Atlas (TCGA)

https://gdc.cancer.gov/about-data/

publications/pancanatlas

Single-cell RNA-seq data from pre- and

post-anti-PD-1-treatment melanoma

patients (Figures 2A–2C and 2J)

Jerby-Arnon et al., 2018 GEO: GSE115978

Single-cell RNA-seq data from treatment-

naı̈ve melanoma patients (Figures 2I and 4B)

Tirosh et al., 2016 GEO: GSE70630

Single-cell RNA-seq data from metastatic

melanoma patients (Figures 2D–2F)

Smalley et al., 2021 GEO: GSE174401

Single-cell proteomics data from human

melanoma and monocyte cell lines

(Figures 2G and 2H)

Leduc et al., 2022 https://scp.slavovlab.net/

Leduc_et_al_2022

Single-cell RNA-seq data from anti-PD-1-

treatment-responding and -non-responding

melanoma patients (Figure 2K)

Sade-Feldman et al., 2018 GEO: GSE120575

CCLE quantitative mass spectrometry

data (Figures S2A and 3E)

Nusinow et al., 2020 https://www.sciencedirect.com/

science/article/pii/S0092867419313856

CCLE gene expression data

(Figures S2B and 3C)

Cancer Cell Line

Encyclopedia

https://portals.broadinstitute.org/ccle

SIRPa RPPA data in melanoma cell

lines (Figure 3D)

This study https://tcpaportal.org

Bulk RNA-seq data of patient-derived

melanoma cell lines (Figures 3A–3C)

Tsoi et al., 2018 GEO: GSE80829

Bulk RNA-seq data of in vitro differentiating

melanocytes derived from ESC/iPSC

(Figures 3F and 3G)

Mica et al., 2013 GEO: GSE45227

Single-cell RNA-seq data from human

normal skin samples of different

developmental stages (Figures 3H–3J and S3C)

Belote et al., 2021 GEO: GSE151091

Single-cell RNA-seq data from stepwise-

edited melanoma cell lines (Figures S3A

and S3B)

Hodis et al., 2022 Single Cell Portal: SCP1334

Spatial transcriptomics data from treatment-

naı̈ve melanoma patients (Figure 4A)

Thrane et al., 2018 http://www.spatialomics.org/

SpatialDB/download.php

DICE immune cell type gene expression

data (Figures S4A and S4B)

Schmiedel et al., 2018 https://dice-database.org
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Bulk proteomics data from human

hematopoietic cell populations sorted from

peripheral blood (Figures S4C and S4D)

Rieckmann et al., 2017 http://www.immprot.org

Bulk RNA-seq data of B16F10 cells with

SIRPA perturbations

This study GEO: GSE211226

SIRPa RPPA data in TCGA-SKCM samples

(Figures 6A–6C and S6B)

This study https://tcpaportal.org

TCGA-SKCM RNA-seq data (bam files;

Figures 3K, 6D–6F and S6B)

The Cancer Genome

Atlas (TCGA)

https://tcga-data.nci.nih.gov/docs/

publications/tcga

Processed TCGA SCNA data (Figures 6A and 6B) The Cancer Genome

Atlas (TCGA)

Synapse: syn5049520.1

Processed TCGA DNA methylation, mutation,

and miRNA expression data (Figures 6A, 6C–6G)

The Cancer Genome

Atlas (TCGA)

https://gdc.cancer.gov/about-data/

publications/pancanatlas

Whole-exome sequencing data from anti-PD-1-

treatment-responding and non-responding

melanoma patients (Figure S6A)

Hugo et al., 2016 SRA: SRP090294 and SRP067938

Experimental models: cell lines

HEK293T MD Anderson Characterized

Cell Line Core Facility

HEK293T

A375 MD Anderson Characterized

Cell Line Core Facility

A375M

A375-dCas9-SAM This study N/A

B16F10 ATCC CRL-6475

Experimental models: organisms/strains

Mouse:B6.Cg-Thy1a/Cy Tg(TcraTcrb)8Rest/J The Jackson Laboratory JAX:005023; RRID:IMSR_JAX:005023

Mouse:C57BL/6J The Jackson Laboratory JAX:000664; RRID:IMSR_JAX:005023

Oligonucleotides

Scramble gRNA-F:

50-CACCGGTATTACTGATATTGGTGGG-30
This study N/A

Scrambel gRNA-R:

50-AAACCCCACCAATATCAGTAATACC-30
This study N/A

SIRPAP1-1-F:

50-CACCGGTAGGGTCGCGAGACGGATG-30
This study N/A

SIRPAP1-1-R:

50-AAACCATCCGTCTCGCGACCCTACC-30
This study N/A

Recombinant DNA

pCMV-VSV-G Addgene 8454; RRID:Addgene_8454

pCMV-dR8.2 dvpr Addgene 8455; RRID:Addgene_8455

lenti sgRNA(MS2)_zeo backbone Addgene 61427; RRID:Addgene_61427

lenti dCAS-VP64_Blast Addgene 61425; RRID:Addgene_61425

lentiMPH v2 Addgene 89308; RRID:Addgene_89308

plenti-CMV-Puro-Dest Addgene 17452; RRID:Addgene_17452

pDONR221-Human SIRPAP1 Epoch Life Science GS65919

pDONR221-Mouse SIRPA Epoch Life Science GS68006

plenti-CMV-Puro-Human SIRPAP1 This study N/A

plenti-CMV-Puro-Mouse SIRPA This study N/A

MISSION� pLKO.1-puro Non-Target

shRNA Control Plasmid DNA

Sigma-Aldrich SHC016-1EA

SHCLNG MISSION shRNA-1 Sigma-Aldrich TRCN0000029914

SHCLNG MISSION shRNA-2 Sigma-Aldrich TRCN0000055053

SHCLNG MISSION shRNA-3 Sigma-Aldrich TRCN0000029915
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SHCLNG MISSION shRNA-4 Sigma-Aldrich TRCN0000029916

SHCLNG MISSION shRNA-5 Sigma-Aldrich TRCN0000029917

Software and algorithms

FlowJo10.0.7 FlowJo LLC https://www.flowjo.com;

RRID:SCR_008520

Salmon v1.4.0 Patro et al., 2017 https://combine-lab.github.io/salmon/

Subread v2.0.1 Liao et al., 2014 http://subread.sourceforge.net/;

RRID:SCR_009803

CIBERSORTx Newman et al., 2019 https://cibersortx.stanford.edu/index.php

GSVA H€anzelmann et al., 2013 https://pypi.org/project/GSVA/;

RRID:SCR_021058

RNAhybrid Kr€uger and Rehmsmeier, 2006 https://bibiserv.cebitec.uni-bielefeld.de/

rnahybrid; RRID:SCR_003252

miRDB Chen and Wang, 2020 http://www.mirdb.org/; RRID:SCR_010848

TarPmiR Ding et al., 2016 http://hulab.ucf.edu/research/projects/

miRNA/TarPmiR/

CellPhoneDB Efremova et al., 2020 https://www.cellphonedb.org/;

RRID:SCR_017054

Scanpy Wolf et al., 2018 https://scanpy.readthedocs.io/en/stable/;

RRID:SCR_018139

tSNE van der Maaten and Hinton, 2008 https://github.com/DmitryUlyanov/

Multicore-TSNE

Python v3.6 Python, 2015 https://python.org; RRID:SCR_008394

R v3.6 The R Foundation https://www.r-project.org;

RRID:SCR_001905

Prism 6 GraphPad https://www.graphpad.com/scientific-

software/prism/; RRID:SCR_002798

BioRender BioRender https://app.biorender.com/;

RRID:SCR_018361
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Han Liang

(hliang1@mdanderson.org).

Material availability
This study did not generate new unique reagents.

Data and code availability
The newly generated bulk RNA-seq data of B16F10 cells with SIRPA perturbations are available at Gene Expression Omnibus (GEO)

with an accession number GSE211226; and SIRPa RPPA data of TCGA-SKCM and CCLE samples are available at TCPA data portal

(https://tcpaportal.org). The source and accession numbers for previously published datasets used in this study are as follows: bulk

RNA-seq data from melanoma patients under anti-PD-1 treatment: GEO, GSE78220 and GSE91061, ENA, PRJEB23709, and

dbGaP, phs000452.v3.p1; whole-exome sequencing data of melanoma patients under anti-PD-1 treatment, SRA: SRP090294

and SRP067938; bulk proteomics data frommelanoma patients under anti-PD-1 treatment, Harel et al.; bulk RNA-seq data frommel-

anoma patients under BRAFi treatment, GEO, GSE50509 and GSE99898; TCGA genomic data and clinical data, NCI Genome Data

Commons; single-cell RNA-seq data of melanoma patients, GEO, GSE115978, GSE70630, GSE174401, GSE120575; single-cell

proteomics data from human melanoma and monocyte cell lines, Leduc et al. (2022); CCLE quantitative mass spectrometry data,-

Nusinow et al., 2020; CCLE gene expression data, CCLE data portal (https://portals.broadinstitute.org/ccle); bulk RNA-seq data of

patient-derived melanoma cell lines, GEO, GSE80829; bulk RNA-seq data of in vitro differentiating melanocytes derived from ESC/

iPSC, GEO: GSE45227; scRNA-seq data from human normal skin samples of different developmental stages, GEO: GSE151091;

scRNA-seq data from stepwise-edited melanoma cell lines, Single Cell Portal: SCP1334; spatial transcriptomics data from

treatment-naı̈ve melanoma patients, http://www.spatialomics.org/SpatialDB; DICE immune cell type gene expression data,
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https://dice-database.org; bulk proteomics data from human hematopoietic cell populations sorted from peripheral blood, http://

www.immprot.org. Code used for all processing and analysis is available upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
B16F10, A375, andHEK293T cells were cultured in complete DMEMmedia (10%FBS and 50U/mLPenicillin-Streptomycin). B16F10

cells withSIRPA perturbation and A375 cells stably expressingSIRPAP1were cultured in complete DMEMmedia supplementedwith

2 ug/mL puromycin. A375 cells stably integrated with synergistic activation mediator (SAM) dCas9 and effector components were

cultured as described previously (Konermann et al., 2015). CD8+ T cells isolated from Pmel-1 mice were cultured in complete

RPMI-164 media supplemented with 10% FBS, 20 mM HEPES, 1 mM sodium pyruvate, 0.05 mM 2-mercaptoethanol, and 2 mM

L-glutamine. All cell lines prepared at MD Anderson Cancer Center were confirmed by short tandem repeat analysis and were peri-

odically tested for mycobacterium contamination at the MD Anderson Characterized Cell Line Core.

Mice
We purchased 6-8 weeks old C57BL/6J (#000664) and B6.Cg-Thy1a/Cy Tg(TcraTcrb)8Rest/J (#005023) female mice from the Jack-

son Laboratory. All animal experiments and procedures were performed according to the protocol approved by the Institutional An-

imal Care and Use Committee at the University of Texas MD Anderson Cancer Center. Our sample size predetermination experi-

ments indicated that R15 mice were needed in each group to detect the expected effect. In the experiment, all the animals were

randomized before tumor inoculation; and three days after inoculation, mice with established tumors were randomized again before

the treatment.

METHOD DETAILS

Expression plasmids
The full-length human SIRPAP1 and mouse Sirpa were synthesized by Epoch Life Science and cloned into pDONR221. The

sequences of the two genes were verified by Sanger Sequencing. The expression clones were generated via the LR Clonase

Reaction between the Entry clone and the pLenti CMV Puro DEST (w118-1). The pLenti CMV Puro DEST was a gift from

Eric Campeau & Paul Kaufman (Addgene plasmid # 17452; http://n2t.net/addgene:17452; RRID: Addgene_17452) (Campeau

et al., 2009).

Generation of stable cell lines
HEK293T cells were co-transfected with lentiviral vectors encoding the gene of interest or shRNAs together with packaging

vectors pCMV-dR8.2 dvpr and pCMV-VSV-G using JetPRIME. At 48 h post-transfection, the supernatant was collected and filtered

using a sterile syringe filter with a 0.45 mm pore size hydrophilic PVDF membrane. The filtered supernatant was applied to infect the

target cells for 18 h. The infected cells were selected using the appropriate antibiotics for a week before the conduction of the

experiments.

Generation of CRISPR gene activation system
Lentivectors encoding dCAS9-VP64,MS2-P65-HSF1, and lenti-sgRNA(MS2) zeo backbonewere gifts from Feng Zhang (Konermann

et al., 2015). Human A375 cells stably expressing dCAS9-VP64, MS2-P65-HSF1 were infected with lentivirus expressing gRNA. We

designed gRNAs to target 700 bp upstream of SIRPAP1’s transcription start site.

Curation of immuno-oncology targets
We collected the immuno-oncology (IO) targets listed in Global Immuno-Ontology Drug Development Pipeline 2020, a pdf file down-

loaded by selecting ‘‘Specific sheets from this dashboard’’ and ‘‘2020’’). Then, we mapped the collected 508 IO targets (504 non-

redundant names) to HGNC-approved symbols by HGNC multi-symbol checker (https://www.genenames.org/tools/multi-

symbol-checker/). We manually reviewed the mapped gene symbols, filled blanks if a proper gene symbol could be found in

GeneCards (https://genecards.org), and then excluded IO targets without gene symbols. Next, we merged redundant target names

by summing the numbers of clinical trials from each record. Lastly, we focused on those IO targets with at least 10 active agents/

clinical trials and obtained 60 IO targets for the subsequent analyses.

Integrative analysis of bulk transcriptomic and proteomic data from anti-PD-1 treatment patient cohorts
To collect suitable datasets, we first reviewed all available anti-PD-1 trial studies in the literature and at the website of Tumor Immune

Dysfunction and Exclusion (TIDE; http://tide.dfci.harvard.edu). We collected the anti-PD1 treated melanoma patient cohorts with

available RNA-seq or proteomic data, leading to four transcriptomic datasets (Gide et al., 2019; Hugo et al., 2016; Liu et al., 2019;

Riaz et al., 2017) as well as one proteomic dataset (Harel et al., 2019) (see key resources table). We followed quality control of the

samples from each study and then removed samples collected from sites other than skin to exclude potential confounders in survival

analysis. In particular, seven non-skin samples were removed from the 41 anti-PD1 treated samples from the Gide dataset; two
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unqualified and 33 non-skin samples were removed from the 121 samples of the Liu dataset; 7 unqualified samples were removed

from the 74 samples of the Harel dataset. Next, to analyze RNA-seq data, we used gene annotation (version 37) from GENCODE.

Then, we adopted Salmon v1.4.0 to obtain read counts and TPMs for each dataset using the default parameter setting. We devel-

oped an integrative analytic procedure combining proteomic and transcriptomic data with the treatment response and survival in-

formation. Specifically, we computed expression-response and expression-survival associations in anti-PD-1-treatedmelanoma pa-

tients and then examined the concordance of the two associations to evaluate the combinational potential of an active IO target for

anti-PD-1 therapy in melanoma. First, we performed differential expression analysis. For transcriptomic data, we adopted three well-

established methods (DE-seq2/edgeR/limma) to detect differentially expressed (DE) genes between the responding and non-re-

sponding patients given anti-PD-1 treatment. To identify the most robust differentially expressed IO targets, we then constructed

a consensus set of DE features by overlapping the three DE lists (P % 0.05 and FDR % 0.15 among all three tests with two-sided

testing). To detect differential signals more sensitively, we also computed p values with one-sided testing (P’) to identify significant

associations. For proteomic data, we used the Mann-Whitney U test (MW test), incorporating a permutation procedure to identify DE

proteins. For each protein, we randomly shuffled the sample labels and calculated U scores of theMW test 10,000 times to obtain the

background distribution and re-computed a p-value. Proteins with a p-value < 0.05were defined asDE proteins. Second, we retained

the IO targets that were differentially expressed in at least two patient cohorts. Third, we adopted a log-rank test (by ggsurvplot with

the option log.rank.weights = "n" to identify early survival differences) for survival analysis. For each candidate IO target, the patients

in a cohort were divided into high- and low- expression groups based on the median expression. We then computed the association

between the overall survival rate and the expression groups. Lastly, we examined the concordance betweenDE and survival analyses

to identify the IO targets showing a consistent pattern in terms of tumor response and patient survival rate.

Analysis of single-cell RNA-seq data of melanoma and normal skin samples
We downloaded gene expression profiles of single cells in raw counts (UMIs for data generated with droplet-based platforms) along

with clustering annotations and clinical metadata from the Gene Expression Omnibus (GEO) and Single Cell Portal (SCP; see key

resources table). No quality control was further applied beyond what was already conducted by the original studies. We followed

the Scanpy workflow (Wolf et al., 2018) for downstream analyses. Specifically, we 1) applied the log1pCP10K normalization to the

raw counts, 2) selected highly variable genes, 3) regressed out the effects of the total count per cell and the percentage of mitochon-

drial gene count, 4) calculated the first 50 principal components, 5) applied Harmony (Korsunsky et al., 2019) to remove sample-level

batch effects, 6) reduced the data dimension through UniformManifold Approximation and Projection (UMAP), 7) clustered the single

cells using an unsupervised graph-based clustering algorithm (Leiden), 8) identified cluster-specific marker genes using Student’s

t-test, and 9) annotated the clusters based on the expression patterns of literature-derived marker genes along with referring to

the annotations from the original studies.

Pseudo-time trajectory analysis of melanocyte scRNA-seq data
We extracted the single-cell gene expression profiles of the human melanocytes at the fetal stage from the original dataset to build a

pseudo-time trajectory. The data were normalized and processed following the same scRNA-seq data analysis procedure described

above. Force Atlas was applied to generate a graph layout of the cells, upon which a differentiation progression was inferred by Diffu-

sion Pseudo-time with the root set to be the cells with the lowest expression levels of canonical melanocytic lineage gene markers,

including PMEL, MITF, and TYR. SIRPA expression was then visualized along the same trajectory to be compared against the dif-

ferentiation progression.

Analysis of single-cell proteomics data of human melanoma and monocyte cell lines
We downloaded protein expression profiles of single cells in log-normalized and batch-corrected units from the Single-cell Prote-

omics Data Repository (see key resources table). Data processing and analysis were conducted using the same procedure as in

scRNA-seq analysis.

In-silico inference of cell-type-specific gene expression from bulk samples
To computationally enumerate seven cell types, namely, tumor cells, T cells, B cells, macrophages, natural killer cells, fibroblasts,

and endothelial cells, from bulk melanoma RNA-seq samples from Hugo et al., we used CIBERSORTx to estimate their relative frac-

tions. Following estimations by the CIBERSORTx algorithm, we constructed gene expression signature matrices for the seven cell

types based on the scRNA-seq from Tirosh et al. Briefly, for each of the desired cell types, half of all the single cells were randomly

selected without replacement andmerged into amega cell with average TPM values. Such random combinations were conducted 10

times to generate replicates for each cell type and were used as an input for a DE gene analysis to identify cell-type signature genes.

Specifically, aggregated gene expression replicates of each cell type were compared against replicates of all other cell types using a

Mann-Whitney U test, and the top 200 geneswith an adjusted p-value < 0.01 and the highest log2FCwere defined as signature genes.

The average expression levels of these genes across all single cells were pooled into a final signature matrix for that cell type. We

excluded 671 genes involved in the cell cycle (GO:0007049), 108 genes involved in ribosome biogenesis (GO:0042254), 21 genes

involved in cell apoptosis (GO:0008637), and 37 genes mapped to the mitochondrial genome. With the signature matrices as a
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reference, we first ran the ‘‘Impute Cell Fractions’’ task in CIBERSORTx to estimate the relative fractions of the cell types within each

bulk RNA-seq sample and then the ‘‘Impute Cell Expression’’ task with the ‘‘High-Resolution’’ mode to obtain sample-specific

expression profiles of all cell types.

Analysis of melanoma spatial transcriptomic data
Spatial transcriptomic data of a stage III cutaneous malignant melanoma sample was downloaded from SpatialDB (http://www.

spatialomics.org/SpatialDB/). To decompose the spatial distribution of tumor cells and immune cells from the expression data,

we first queried the top 200 marker genes of each of the seven cell types (see above) surveyed in the scRNA-seq study by Tirosh

et al. We then used GSVA to compute cell-type signature scores for all the dots, which quantified the enrichment or depletion of

each of the cell populations at each position. Based on the concordance between transcriptome-deconvoluted and H&E staining-

informed cell type distributions, the cell type-specific expression patterns of SIRPA and CD47 were visualized across the slide.

Estimation of cell-cell communication using single-cell RNA-seq data
The melanoma patients’ scRNA-seq data from Tirosh et al. were used to evaluate the confidence in SIRPa-CD47-mediated cell-cell

communication between melanoma cells and CD8+ T cells based on their co-expression patterns. We ranked all T cells by the

expression level of CD4 and CD8 and extracted the gene expression profiles of the top 1,044 CD8+ T cells that were completely

depleted of CD4. These cells were then combined with all melanoma cells in the TPM scale as input to CellPhoneDB.

Generation and analysis of SIRPA-perturbed B16F10 RNA-seq data
For RNA-seq experiments, total RNA was extracted frommSIRPA KD, OE, or control B16F10 cells using the Qiagen RNeasy Mini kit

according to the manufacturer’s instructions and were subjected to mRNA paired-end sequencing at Novogene Co., LTD. Each cell

line had three biological repeats. We employed a similar processing pipeline to the integrative analysis of public datasets to analyze

the B16F10 data. Briefly, we (i) performed quality control of RNA-seq raw reads using MultiQC, (ii) pseudo-aligned reads to

GENCODEmm39mouse reference genome and obtained read counts and TPM using Salmon, (iii) identified differentially expressed

genes in each condition through log2 fold changes and adjusted p-values using DESeq2, and (iv) focused on the changes of six well-

established MDA-encoding genes, namely PMEL, TYR, TYRP1, DCT, MLANA, and MITF.

Profiling of SIRPa protein expression in TCGA melanoma and CCLE samples
We quantified SIRPa protein expression in 349 TCGA melanoma samples and 48 CCLE melanoma samples using a reverse phase

protein array at the RPPA core facility at MD Anderson. The SIRPa antibodies (Abcam, Cat # ab8120) were validated by comparison

with immunoblotting, as previously described (Hennessy et al., 2010; Li et al., 2017). Briefly, lysates were manually serial-diluted in 5

two-fold dilutions with lysis buffer and printed on nitrocellulose-coated slides using an Aushon Biosystems 2470 arrayer. Slides were

probed with validated primary antibodies. Signals were captured by Dako GenePoint Tyramide Signal Amplification System (Agilent,

Cat. # K0620). Stained RPPA slides were first quantified using ArrayPro (Media Cybernetics) to generate signal intensities. The raw

data were further normalized by SuperCurve, median polish, and replicate-based normalization (Akbani et al., 2014; Ju et al., 2015)

for downstream analyses.

Analysis of potential regulators of SIRPa protein expression
To identify potential regulators of SIRPa expression, we integrated the SIRPa protein expression of TCGA-SKCM samples with other

TCGA-SKCM molecular profiles (DNA methylation, mutation, somatic copy-number alteration, and pseudogene expression) that

were obtained from the TCGA Pan-Cancer Atlas website (https://gdc.cancer.gov/about-data/publications/pancanatlas), except

for pseudogene expression. For the pseudogene SIRPAP1, we downloaded TCGA-SKCM bam files from the GDC data portal

(https://portal.gdc.cancer.gov/), extracted uniquely mapped reads, and computed RPM by using featureCounts. Then, we used

multiple statistical methods to examine associations between SIRPa protein expression and other types of molecular data. For cat-

egorical variables such as wild-type versus mutant, we performed two-sample Wilcoxon tests (Mann-Whitney tests). For continuous

variables, including DNA methylation and SIRPAP1, we computed Spearman’s rank correlation. To understand whether copy-num-

ber alternation of SIRPA affects the gene expression in the Hugo anti-PD1-treated patient cohort, we downloaded the whole-exome

sequencing data of Hugo et al. and mapped them to human reference genome GRCh37 with the BWA-MEM algorithm (version

0.7.17). Picard (version 2.23.8) was used to mark duplications. The R package PureCN was used to estimate sample purity and

ploidy. All normal samples were combined to build a reference panel, against which each tumor sample was compared to infer

integer and categorical copy numbers using the cnvkit package (version 0.9.6).We categorized ‘‘Amp’’ for integer somatic copy num-

ber > 3, ‘‘Del’’ for integer somatic copy number < 1, and all others are considered somatic copy number neutral (‘‘N’’).

MicroRNA analysis
Weemployed threemiRNA-mRNA interaction prediction tools, RNAhybrid,miRDB, and TarPmiR,which use different methodologies to

infer miRNA targets, to search for miRNAs that potentially bind to the shared regions of SIRPA and SIRPAP1 transcripts. We first built a

union set ofmiRNAs combining the results fromall three tools and then used an additional filter that relied on the co-expression between

SIRPA/SIRPAP1 and the miRNAs across patient samples of the TCGA melanoma cohort. With these two filters, we identified the

miRNAs as potential mediators of the competitive endogenous mechanism that governed SIRPA-SIRPAP1 coordination (Figure S6C).
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Flow cytometry analysis
The surface expression of SIRPa on B16F10 and A375 cells was examined by flow cytometry as described previously (Motegi et al.,

2003). Briefly, cells were washed by PBS twice and then detached from the culture dishes by treatment with 0.05% Trypsin-EDTA.

13106 cells were resuspended in 100 ul staining buffer (pH 7.2 PBS, 0.5%bovine serum albumin (BSA), and 2mMEDTA). 10 ul FITC-

conjugated SIRPa antibody was added to the cell suspension. Cells were incubated with the antibody for 10 min in the dark in the

refrigerator (4�C), washed twice with PBS, and then analyzed by a BD FACSCelestaTM cytometer. Data were analyzed using the

Flowjo software (version 10.7 Flowjo).

T cell killing assay based on co-cultures of B16F10 and T cells
We performed T cell killing assays as described previously (Pan et al., 2018). Briefly, CD8+ T cells were isolated from the spleen of

Pmel-1 transgenic mice using the EasySepmouse CD8+ T cell isolation kit according to themanufacturer’s protocol. Freshly isolated

CD8+ T cells were then activated with anti-CD3/CD28 beads according to the manufacturer’s protocol. 20 ng/mL mouse IL-2 was

added to the culture medium. T cells were in vitro stimulated for at least 6 days before the co-culture with B16F10 cells. B16F10 cells

(13105) were plated into a well of 6-well plate. The next day, cells were pulsed with 1 mM gp10025�33 for 2 h. After that, the in vitro

activated Pmel-1 T cells were added into co-culture with tumor cells at 0, 50%, or 100% of the number of tumor cells. We added

10ug/mL anti-mPD-L1 to the co-culture system together with T cells. For CD47 blockade treatments, the indicated antibodies

(10ug/mL) were pre-incubated with T cells for 2 h. Then, the T cells were washed with PBS twice and added to the B16F10 cells.

Each condition had 3 replicates. At 24 h after co-culture, the tumor cells were washed with PBS and then detached from the culture

dishes by treatment with 0.05% Trypsin-EDTA. Before flow cytometry analysis, 10 ul of CountBright� absolute counting beads were

added to each sample. The samples were run through the flow cytometer and set to stop after 500 beads were acquired. The number

of tumor cells in each sample was computed based on the reference beads. The average cell number in each condition was normal-

ized to its corresponding no-T-cell control to get the relative cell viability proportion. The experiments were repeated three times us-

ing T cells from three separate mice. In each experiment, each condition was measured in triplicate. The relative cell survival in each

condition was normalized to its corresponding no-T-cell control of each cell type within the experiment. The controls’ relative cell

survival was set as 1. The error bar represents the standard error. For 96 h co-culture experiments, the B16F10 cells were not pulsed

with 1uM gp10025�33. The in vitro activated Pmel-1 T cells were added into co-culture with tumor cells at 0, 50%, or 100% of the

number of tumor cells. At 96 h after co-culture, the tumor cells were counted by flow cytometer as described previously.

Cell growth assay
On day 0, B16F10 cells (13104) with different SIPRA perturbations were seeded into one well of 6 well plates. At different time points,

cancer cells were detached from the plates by the treatment with 0.05% Trypsin-EDTA and counted using Cellometer Auto T4. Each

condition has 3 repeats. The error bar represents the standard deviation.

Immunoblotting
These experiments were performed as described previously (Xu et al., 2019). The cells were lysed in RIPA buffer. Protein concentra-

tions were measured using the Pierce BCA protein assay kit. Cell lysates were boiled and separated on a 10% SDS-PAGE gel. The

proteins were transferred to a PVDF membrane, which was then incubated with specific primary antibodies followed by horseradish

peroxidase-conjugated secondary antibodies. The protein expression was detected with an ECL western blot detection kit. The

membranes were imaged with the ChemiDoc MP Imaging System.

In vivo experiments using B16F10 cells
B16F10 syngeneic mouse melanomamodels were performed as described previously (Overwijk and Restifo, 2001; Pan et al., 2018).

Briefly, all the animals were randomized before tumor inoculation. Then 0.43106 control (non-targeting knockdown RNA), mSIRPA-

KD, or mSIRPA-OE B16F10 cells were subcutaneously injected into 7-8 weeks old female C57BL/6 mice (The Jackson Laboratory

#000664). Three days after inoculation, mice in each condition with established tumors were randomized again before the treatment.

For each condition of mice implanted with control, mSIRPA-KD or mSIRPA-OE B16F10 tumor cells, two treatments were performed:

anti-mPD-L1 and isotype control antibody. Specifically, aPD-L1 (clone B7-H1, #BP0101, 200 mg/mice) or isotype control antibodies

(clone LTF-2, #BP0090, 200 ug/mouse) mAbs were administered on days 3, 7, 10, 14, and 17. Accordingly, there were six groups:

control tumors treated with isotype antibody (n = 17); mSIRPA-KD tumors treated with isotype antibody (n = 15); mSIRPA-OE tumors

treated with isotype antibody (n = 17); control tumors treated with anti-mPD-L1 (n = 17); mSIRPA-KD tumors treated with anti-mPD-

L1 (n = 17); andmSIRPA-OE tumors treatedwith anti-mPD-L1 (n = 17). Tumorsweremeasured 3-6 times aweek, beginning on day 10

after inoculation, until either the survival endpoint (37 days) was reached or no palpable tumor remained. Tumor volumes were calcu-

lated using the formula for a hemiellipsoid (volume = length3width3height/2). Mice were sacrificed when tumors reached 20 mm in

diameter or 1500 mm3 in volume.

QUANTIFICATION AND STATISTICAL ANALYSIS

We performed quantification and statistical analysis using GraphPad Prism 6, R (version 3.4) and python (version 3.6). Detailed

descriptions of statistical tests are provided in the method details section and the respective figure legends.
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