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SUMMARY

Protein ubiquitination is a dynamic and reversible
process of adding single ubiquitin molecules or
various ubiquitin chains to target proteins. Here,
using multidimensional omic data of 9,125 tumor
samples across 33 cancer types from The Cancer
Genome Atlas, we perform comprehensive molecu-
lar characterization of 929 ubiquitin-related genes
and 95 deubiquitinase genes. Among them, we sys-
tematically identify top somatic driver candidates,
including mutated FBXW7 with cancer-type-specific
patterns and amplified MDM2 showing a mutually
exclusive pattern with BRAF mutations. Ubiquitin
pathway genes tend to be upregulated in cancer
mediated by diverse mechanisms. By integrating
pan-cancer multiomic data, we identify a group of
tumor samples that exhibit worse prognosis. These
samples are consistently associated with the upre-
gulation of cell-cycle andDNA repair pathways, char-
acterized by mutated TP53, MYC/TERT amplifica-
tion, and APC/PTEN deletion. Our analysis
highlights the importance of the ubiquitin pathway
in cancer development and lays a foundation for
developing relevant therapeutic strategies.
INTRODUCTION

The highly conserved ubiquitin pathway serves as a crucial regu-

lator, mediating a myriad of cellular events that underlie the
This is an open access article under the CC BY-N
development of an assortment of cancer types (Di Fiore et al.,

2003; Hoeller and Dikic, 2009; Nakayama and Nakayama,

2006). The ubiquitinmolecule is an 8.5-kDa, 76-amino-acid glob-

ular protein with a complex 3-dimensional surface topology that

is able to form various types of ubiquitin chains, thereby acting as

a robust, post-translational protein modifier (Weissman, 2001).

The canonical addition of ubiquitin to a protein substrate involves

the consecutive actions of three main families of ubiquitination

(UBQ) enzymes through a coordinated enzymatic cascade

(Fuchs, 2002; Gao et al., 2013). In the first step, a thiol-ester

bond is formed between a ubiquitin-activating enzyme (E1) and

the carboxy-terminal glycine of ubiquitin. The next step involves

the transfer of the activated ubiquitin from the E1 enzyme to a

ubiquitin-conjugating enzyme (E2) via a trans-thiolation reaction.

Finally, a ubiquitin ligase (E3), which functions as a scaffold pro-

tein binding both the E2 enzyme and the target protein, mediates

the transfer of ubiquitin from the E2-ubiquitin conjugate, most

commonly onto the ε-amino group of a lysine residue on the pro-

tein substrate, thus forming an isopeptide bond (Hoeller and

Dikic, 2009; Weissman, 2001). Because UBQ is a dynamic and

reversible process, deubiquitinating enzymes (DUBs) fulfill a

converse role in the pathway by deconjugating ubiquitin from

proteins entirely or trimming poly-ubiquitin chains, thereby

enhancing regulation in the ability to abrogate or modify ubiquitin

protein modifications (Komander et al., 2009; Weissman, 2001).

Recognition of distinct UBQ patterns by downstream effectors

elicits various cellular functions: it can mark proteins for degra-

dation via the proteasome, alter their subcellular localization,

affect their activity, and promote or prevent protein interactions.

In recent years, the role of the ubiquitin pathway in cancer has

gained attention for two main reasons. First, both basic and

translational studies have shown extensive evidence connecting

the malfunction of the ubiquitin pathway with tumor initiation and
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progression. For example, UBQs have been found to be tightly

associated with many cancer-related pathways, including cell-

cycle progress, p53 activation, DNA damage repair, apoptosis,

nuclear factor kB (NF-kB), and receptor tyrosine kinase path-

ways (Hoeller and Dikic, 2009; Li et al., 2003; Lind et al., 2006;

Massoumi et al., 2006; Meetei et al., 2003; Weissman, 2001);

DUBs are implicated in many of the same cancer pathways as

UBQs; in addition, they are associated with chromatin remodel-

ing, WNT signaling, and transforming growth factor b (TGF-b)

signaling (Dey et al., 2012; Dupont et al., 2009; Luise et al.,

2011; Tauriello et al., 2010; Wicks et al., 2005; Zhao et al.,

2009). Second, targeting the ubiquitin pathway for regulating

target protein levels, rather than for its biological activity, has

emerged as a promising therapeutic strategy for cancer patients.

Because many oncoproteins are subject to UBQ-dependent

degradation, enhancing UBQ or targeting certain DUBs may

lead to destabilization or functional inactivation of key oncopro-

teins, including some undruggable targets such as MYC and

b-catenin (Salami and Crews, 2017; Xiao et al., 2016). A few

drugs targeting the ubiquitin pathway have been approved by

the U.S. Food and Drug Administration (FDA) (Huang and Dixit,

2016; Swisher et al., 2017).

Given the pervasive impact and clinical utility of the ubiquitin

pathway across many cancer types, it is important to curate

genomic insights into the role of this pathway in cancer develop-

ment and treatment through a systematic, pan-cancer analysis.

The Cancer Genome Atlas (TCGA) has generated genomic, tran-

scriptomic, proteomic, epigenomic, and clinical data over large

patient cohorts, providing an unprecedented opportunity for

such an analysis (Cancer Genome Atlas Research Network

et al., 2013). We performed a molecular characterization of

UBQ andDUB genes across 9,125 patients from 33 cancer types

(Table S1). Tomaximize the chance of making scientific and clin-

ical findings, we compiled a comprehensive list of 929 UBQ-

related genes (including both validated and computationally

predicted E1 and E2 enzymes, as well as E3 ligases and their

associated adaptor genes, termed UBQ genes hereafter for

simplicity) and 95 DUB genes (see curation details in STAR

Methods, Figure S1, and Table S2). Our analysis will not only

further elucidate the role of the ubiquitin pathway in cancer

development but also directly inform researchers and clinicians

as to possible driver genes and eminently druggable targets for

future clinical trials and therapeutics.

RESULTS

Mutation Driver Candidates of UBQ and DUB Genes
Based on TCGA mutation data of whole-exome sequencing, we

examined the somatic mutation profiles of UBQ and DUB genes

in 33 cancer types. Overall, across 8,811 non-hypermutated

cancer samples, the mutation frequency was low for both

UBQ and DUB genes, with an average mutation number per

patient of 4.5 and 0.5, respectively. To identify potential cancer

drivers, we employed two complementary computational ap-

proaches. First, we used a ratiometric method for nominating

cancer driver genes based on the enrichment of hotspot or

loss-of-function (LoF) mutations among all mutations observed

in a gene (Figure 1A) (Vogelstein et al., 2013). In this pan-cancer
214 Cell Reports 23, 213–226, April 3, 2018
analysis, we identified 19 UBQ/DUB genes with >30% hotspot

mutations and 29 genes with >30% LoF mutations (FBXW7 was

identified by both criteria). Second, we used MutSigCV (Law-

rence et al., 2013) to pinpoint UBQ/DUB gene drivers whose

mutation rates were significantly higher than the background

expectation within each cancer type. Using a q value cutoff of

0.1, we identified 23 such genes in 23 cancer types (Figure 1B).

In total, these two methods identified 55 driver candidates, and

their overall mutation frequency ranged from 0.2% to 7.2% (Fig-

ure S2). We then mapped these 55 putative cancer drivers to

different gene categories in the ubiquitin pathway and found

no specific enrichment patterns (Figure 1C): there were no E1

enzyme driver genes of the driver genes detected, two were

E2 enzyme drivers, four were DUB drivers, and the rest (49)

were E3 ligases and associated adaptors. Among 15 driver

genes identified by both methods, SPOP, KEAP1, and CHD4

were enriched with hotspot mutations, while BAP1, CDH1,

CUL3, EP300, KDM5C, MAP3K1, NSD1, RNF43, TLE1, VHL,

and LZTR1 contained excessive LoF mutations. This analysis

provides a systematic view of potential mutation drivers among

UBQ and DUB genes.

Of particular interest, FBXW7 showed enrichment of both hot-

spot andLoFmutations (Figure 1A). TheFBXW7protein functions

as the substrate recognition component of the SKP1-CUL1-F-

box protein (SCF) ubiquitin ligase complex. As an established

tumor suppressor gene, it mediates the degradation of cell-cycle

promoters or oncoproteins, including cyclin E (Koeppet al., 2001;

Siu et al., 2012), c-Myc (Yadaet al., 2004), c-Jun (Wei et al., 2005),

Notch (Gupta-Rossi et al., 2001), Mcl1 (Ren et al., 2013), and

mTOR (Mao et al., 2008). To gain more insight into its mutational

profile, we examined the mutation distributions of FBXW7 in

different cancer types and found three distinct patterns (Fig-

ure 2A): (1) hotspotmutationswere enriched in twouterine cancer

types, uterine corpusendometrial carcinoma (UCEC), anduterine

carcinosarcoma (UCS); (2) LoF mutations were enriched in

skin cutaneous melanoma (SKCM), stomach adenocarcinoma

(STAD), lung squamous cell carcinoma (LUSC), lung adenocarci-

noma (LUAD), rectum adenocarcinoma (READ), and esophageal

carcinoma (ESCA); and (3) the proportions of both hotspot and

LoF mutations were high in head and neck squamous cell carci-

noma (HNSC), cervical squamous cell carcinoma and endo-

cervical adenocarcinoma (CESC), bladder urothelial carcinoma

(BLCA), andcolonadenocarcinoma (COAD).Consistentwithpre-

vious studies, FBXW7 contains three notable missense mutation

hotspots (R465, R479, and R505) in the second, third, and fourth

WD40 domains that recognize the consensus phospho-motif

located in its substrate (Figure 2B) (Hao et al., 2007). Figure 2C

shows the FBXW7 mutation distributions for the hotspot muta-

tion-enriched cancer types and the LoF mutation-enriched can-

cer types. The three missense hotspots accounted for 49% (38

of 77) of the FBXW7 mutations observed in UCEC and UCS.

The contrasting mutation patterns of FBXW7 mutations may

reflect tissue-specific roles of FBXW7 substrates or different

FBXW7-mediated oncogenic mechanisms in different tumor

contexts. We further assessed the occurrence of FBXW7 muta-

tions with those in clinically actionable cancer genes and re-

vealed that mutations in FBXW7 and PIK3CA showed mutual

exclusivity in three cancer types: CESC, BLCA, and LUSC



Figure 1. Frequently Mutated UBQ and DUB Genes as Potential Cancer Drivers
(A) UBQ and DUB genes are plotted as fractions of hotspot versus LoF mutations among all non-silent mutations across cancer types. Genes enriched with

hotspot mutations are shown in red, genes enriched with LoF mutations are in blue, and FBXW7 is shown in orange, because it is enriched with both hotspot and

LoF mutations. The circles represent UBQs, and the squares represent DUBs.

(B) Significantly mutated genes identified byMutSigCV in each cancer type are shown. The circles represent UBQs, and the squares represent DUBs; the circle or

square size is proportional to the significance level. The fraction of patients harboring non-silent mutations in each gene is shown by color scale.

(C) UBQ and DUB genes enriched with hotspot and LoF mutations are mapped to different gene categories in the ubiquitin pathway.

See also Figure S2.
(Figure 2D), suggesting that mutations in these two genes confer

similar functional consequences. Patients with FBXW7 or phos-

phatidylinositol 3-kinase (PI3K) pathway mutations (mutations

found in PIK3CA, PTEN, and STK11) had higher PI3K pathway

expression activity than patients without such mutations

(Figure 2E).

Somatic Copy-Number Alteration Patterns of UBQ and
DUB Genes
To infer somatic copy-number alteration (SCNA) drivers, we

used GISTIC2 (Mermel et al., 2011) to identify significant focal
deletion and amplification peaks in each of 33 cancer types.

UBQ and DUB genes showed similar overall SCNA profiles in

terms of the amplification and deletion gene fractions across

cancer types (Figures S3A and S3B). To more rigorously assess

the SCNA significance of UBQ and DUB genes against the can-

cer-type-specific background rate, we calculated the enrich-

ment of UBQ and DUB genes that reside in the amplification or

deletion peaks identified by GISTIC2 (q < 0.25) using Fisher’s

exact test (Figures 3A, S3C, and S3D). Four cancer types (kidney

renal clear cell carcinoma [KIRC], SKCM, cholangiocarcinoma

[CHOL], and pancreatic adenocarcinoma [PAAD]) showed
Cell Reports 23, 213–226, April 3, 2018 215



Figure 2. FBXW7 Is Enriched with Both Hotspot and Loss-of-Function Mutations

(A) Fractions of hotspot mutations versus LoF mutations among all non-silent mutations in FBXW7 are plotted for different cancer types. Cancer types enriched

with hotspot mutations are shown in red, those enriched with LoF mutations are in blue, and those enriched with both hotspot and LoF mutations are in gray.

(B)WD40 domain structure of FBXW7 protein in which three arginines (R465, R479, andR505) aremutation hotspots and located at the substrate binding surface.

(C) Distributions of FBXW7 non-silent mutations in cancer types enriched with hotspot mutations (UCEC and UCS) and cancer types enriched with LoFmutations

(ESCA, LUAD, LUSC, READ, SKCM, and STAD).

(legend continued on next page)
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significant deletion peak enrichments, while no cancer types

showed significant amplification peak enrichment (p < 0.01) (Fig-

ure 3A). Figure 3B shows the top 30 frequently detected UBQ

and DUB genes across different cancer types, including ARNT,

MDM2, and FAM63A (amplification) and PARK2, ING5, and

ING2 (deletion).

Among the top UBQ/DUB genes with frequent SCNAs,MDM2

was significantly amplified in 11 cancer types. The protein prod-

uct of this gene is a negative regulator of TP53 and a therapeutic

target under intensive clinical investigation. We therefore

focused on MDM2 to examine its mutually exclusive pattern

with (1) amplification of other UBQ/DUB genes and (2) somatic

mutations of clinically actionable genes. Among UBQ and DUB

genes, we found a mutually exclusive pattern of MDM2 and

SKP2 amplifications in LUAD (Figure S3E), suggesting conver-

gence of their functions on the same downstream effectors. In

agreement with this notion, previous studies have shown that

MDM2 prevents the binding of the E2F1 protein to its E3 ligase

SCFskp2, thus inhibiting E2F1 degradation (Zhang et al., 2005).

For clinically actionable genes, we found that MDM2 amplifica-

tions were mutually exclusive to BRAF and ATM mutations in

SKCM and BLCA, respectively (Figures 3C and S3F). BRAF ki-

nase domain mutations, such as V600E, result in a constitutively

activated form of the protein in around 50% of SKCM patients

(45.1% in this study), which then leads to stimulated mitogen-

activated protein kinase (MAPK) signaling and induces tumor

cell proliferation. The mechanism through which MDM2 antago-

nizes p53 functions is acting as the p53-specific E3 ligase and

promoting p53 degradation, which then leads to reduced cell

apoptosis. We observed MDM2 amplification in 4.1% of the

SKCM samples in this study, in which p53 protein levels were

significantly lower than in samples with BRAF mutations alone

or with neither BRAF mutations nor MDM2 amplifications. This

pattern was not observed at the mRNA expression level (Fig-

ure 3D). These results confirmed the function of MDM2 acting

as an E3 ligase targeting the p53 protein for degradation.

Furthermore, the mutually exclusive pattern ofMDM2 amplifica-

tion andBRAFmutation suggests that a reduced p53 pathway or

induced MAPK signaling can serve as an impetus for aberrant

tumor cell proliferation (Figure 3E). This intriguing pattern implies

that restoring p53 function and blocking the MAPK pathway at

the same time could be more beneficial to SKCM patients

than interfering with either pathway alone. Studies have

shown increased apoptosis and inhibition of melanoma growth

by combining a BRAF inhibitor and p53 reactivation (Lu et al.,

2013; Saiki et al., 2014).

Upregulated mRNA Expression of UBQ/DUB Genes in
Cancer
To investigate the patterns of dysregulation of UBQ and DUB

genes in cancer, we examined their gene expression using

mRNA expression data of paired tumor and normal samples

from 16 cancer types, because such paired-sample compari-
(D) FBXW7 mutations show mutually exclusive patterns with PIK3CA mutations

(E) Compared to tumors without mutations in FBXW7 or PI3K pathway genes, tu

pathway activity, with *, p < 0.05.

The bottom and top of the box are the first and third quartiles, and the whiskers
sons help reduce the effects of potential confounding factors.

We identified differentially expressed genes (Wilcoxon signed

rank test) between tumors and their matched normal samples

and performed gene enrichment using gene set enrichment anal-

ysis (GSEA) (Subramanian et al., 2005). The combined set of

UBQ and DUB genes showed significant enrichment in genes

that were upregulated in tumor tissues in 7 of the 16 cancer types

examined (CHOL, COAD, liver hepatocellular carcinoma [LIHC],

LUAD, LUSC, PRAD, and BLCA), and more genes were upregu-

lated than downregulated in these diseases (q < 0.1) (Figures 4A,

4B, and S4A). In contrast, only thyroid cancer (thyroid carcinoma

[THCA]) showed a significant opposite pattern (q < 0.1) (Figures

4A and 4B). We obtained similar results for UBQ and DUB genes

separately (Figure 4A).

To examine the molecular mechanisms underlying the UBQ/

DUB mRNA upregulation in the seven cancer types, we further

integrated SCNA, DNA methylation, and microRNA (miRNA)

expression data and compared the patterns of upregulated

UBQ/DUB genes to those of neutral ones (i.e., genes showing

no significant differential mRNA expression). First, in 6 of the 7

cancer types, upregulated genes showed a significantly higher

proportion of copy-number amplifications than did neutral genes

(chi-square test, q < 0.01) (Figure 4C, top), highlighting the signif-

icant role of somatic copy-number gain in increasing UBQ/DUB

gene expression in tumor samples. Second, for four cancer

types with miRNA expression data and sufficient matched tumor

and normal pairs (n > 20), compared to neutral genes, upregu-

lated genes showed a significantly higher proportion of their

reduced miRNA regulators in tumor samples of LIHC and

LUAD (chi-square test, q < 0.1) (Figure 4C, middle), suggesting

that miRNA-mediated gene repression contributes to the

increased UBQ/DUB mRNA expression. Third, for six cancer

types with DNA methylation data and sufficient matched tumor

and normal pairs (n > 20), compared to neutral genes, upregu-

lated genes showed a significantly higher proportion of reduced

methylation levels in tumor samples of COAD and LUAD (chi-

square test, q < 0.01) (Figure 4C, bottom), suggesting notable

contributions of methylation-mediated gene silencing in these

two cancer types. Finally, across cancer types,�71%of upregu-

lated UBQ/DUB genes were affected by these mechanisms

and�10%of themweremediated bymore than onemechanism

(Figures 4C, right, and S4B). These results provide a quantitative

view of how different mechanisms contribute to the dysregula-

tion of UBQ and DUB genes in tumor samples.

In addition, we performed an analysis to identify key miRNA

regulators of UBQ and DUB genes. We inferred coding gene tar-

gets of 1,855 miRNAs by integrating both sequence information

of target genes and the co-expression of the corresponding

mRNA-miRNA pairs (STAR Methods). Several master miRNA

regulators for UBQ and DUB genes emerged from this analysis

(Figure S5), including the mir-200 family (mir-200a, mir-200b,

mir-200c, mir-141, and mir-429), the mir-17/92 cluster (mir-17,

mir-18a, mir-19a, mir-20a, and mir-19b-1), and mir-7-1.
in BLCA, CESC, and LUSC.

mors with either FBXW7 or PI3K pathway mutations show elevated PI3K-Akt

extend to 1.5 IQR of the lower quartile and the upper quartile, respectively.
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Figure 3. Somatic Copy-Number Alterations of UBQ and DUB Genes

(A) Fractions of UBQ andDUBgenes residing in the amplification or deletion peaks (identified byGISTIC2, q < 0.25) compared to non-UBQ/DUBgenes in different

cancer types. Significant deletion enrichments are detected with *p < 0.01.

(B) Most frequently amplified or deleted UBQ and DUB genes in multiple cancer types. The circle size is proportional to the significance level of GISTIC2 results.

(C)MDM2 amplification shows a mutually exclusive pattern with BRAFmutations in SKCM. TP53mutations are shown for comparison. Each bar represents one

patient; significance was assessed by Fisher’s exact test.

(D) TP53 protein and mRNA expression of tumor samples withMDM2 amplification versus those with BRAF mutations or wild-type (WT) samples, with *p < 0.05.

The bottom and top of the box are the first and third quartiles, and the whiskers extend to 1.5 IQR of the lower quartile and the upper quartile, respectively.

(E) Graphical model showing the synergistic effect of MDM2 inhibitor and BRAF inhibitor.

See also Figure S3.

218 Cell Reports 23, 213–226, April 3, 2018



Figure 4. Multiple Mechanisms Contribute to Upregulation of UBQ and DUB Genes in Cancer

(A) UBQ and DUB genes showed upregulation in tumor samples in seven cancer types (GSEA, q < 0.1).

(B) Proportions of upregulated, neutral, and downregulated UBQ/DUB genes in the seven cancer types (Wilcoxon signed rank test, q < 0.1).

(C) Top: proportions of copy-number amplification, neutral level, and deletions in upregulated and neutral UBQ/DUB gene groups in each cancer type. Middle:

proportions of significantly decreased (paired t test, p < 0.05), decreased, and other expression of miRNA regulators in tumor samples relative to matched normal

samples in upregulated and neutral UBQ/DUB gene groups. Bottom: proportions of significantly decreased (paired t test, p < 0.05), decreased, and otherwise

DNA methylation level in tumor samples relative to matched normal samples in upregulated and neutral UBQ/DUB gene groups. The asterisks indicate the

significant proportion difference between the two groups (chi-square test, *q < 0.01). Right: Venn diagram showing the proportions of upregulated UBQ/DUB

genes affected by different regulatory mechanisms.

See also Figures S4 and S5.
Integrated Genomic Analysis of UBQ and DUB Genes
In addition to the preceding single-platform-oriented analysis,

we integrated the data from mRNA expression, SCNA profiles,

and DNA methylation to gain a more comprehensive picture

of UBQ/DUB molecular patterns. We first normalized mRNA

expression and DNA methylation data by Z scores within each

cancer type to minimize tissue effects and then clustered the
samples based on three data types separately. For each

data type, all samples were appropriately clustered into

four groups (Figure 5A–5C). Using the cluster-of-cluster assign-

ment (COCA) strategy (Hoadley et al., 2014), we then repre-

sented each platform-specific cluster as binary vectors and

re-clustered all samples across the three data types, which

revealed three robust clusters (COCA1, COCA2, and COCA3)
Cell Reports 23, 213–226, April 3, 2018 219



Figure 5. Integrative Genomic Clustering and Patient Survival Analysis

(A–C) Heatmaps of consensus clustering for three platforms: RNA sequencing (RNA-seq)-based mRNA expression (A), somatic copy-number alterations (B),

and DNA methylation (C).

(D) Consensus matrix of integrative clustering showing three robust clusters (COCA1, COCA2, and COCA3).

(E) COCA clusters correlate with patient overall survival and disease-specific survival times in 10 and 9 cancer types, respectively.

(F) Kaplan-Meier plots of nine cancer types showing overall survival curves for three clusters of patients with log-rank p values.

See also Figure S6.
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(Figures 5D and S6A). The samples were relatively evenly distrib-

uted among different cancers, and overall, 55%, 25%, and 20%

of the samples belonged to COCA1, COCA2, and COCA3,

respectively.

We next assessed the clinical relevance of these three clus-

ters. Because patient survival time generally reflects the pro-

gression of the disease and represents a key clinical variable,

we performed survival analysis within each cancer type (log-

rank test). The COCA clusters showed significant association

with overall survival for 10 of 30 cancer types with a sufficient

sample size and follow-up time (Figure 5E). In addition, the

COCA clusters showed similar significant associations with the

disease-specific survival times for nine cancer types (Figure 5E).

Strikingly, in all these cancer types, COCA2 was always associ-

ated with worse prognosis (Figures 5F, S6B, and S6C). In addi-

tion, we examined the correlations of COCA clusters with estab-

lished tumor subtypes and found significant correlations in

multiple cancer types (Figure S6D). Altogether, these results

highlight the potential clinical utility of this UBQ/DUB-driven

subtyping.

Biological Pathways and Molecular Drivers Associated
with COCA2
To gain biological insights into the intriguing subtype COCA2,

we first identified the most associated hallmark pathways by

GSEA based on mRNA expression data (q < 0.1). Across the

33 cancer types, upregulated genes in COCA2 (relative to

COCA1 and COCA3) showed consistently significant enrich-

ment in the G2M checkpoint and DNA repair pathways;

COCA2 correlated with other hallmark pathways but did so

less consistently (Figure 6A). To confirm the preceding strong

pathway associations, we further analyzed the pathway scores

of the cell-cycle and DNA damage pathways derived from

TCGA protein expression data for 19 major cancer types

with >100 samples (Akbani et al., 2014). COCA2 showed signif-

icantly higher cell-cycle and DNA damage response pathway

scores in 12 and 9 cancer types, respectively (p < 0.05)

(Figure 6B).

We next sought to identify somatic alternations that potentially

drive the COCA2 subtypes. We first focused on significantly

mutated genes (identified by MutSigCV) in each cancer type

and assessed whether their mutation rates were different be-

tween the COCA2 samples and the remaining samples (Fig-

ure 6C). TP53 was differentially mutated in 13 cancer types

(q < 0.1), including UCEC, LUAD, lower grade glioma (LGG),

HNSC, COAD, and LIHC, in which significant survival patterns

were observed (Figure 5F). Then we examined SCNA drivers

by focusing on known oncogenes and tumor suppressors

residing in amplification or deletion peaks (identified by GISTIC2)

in each cancer type (Mermel et al., 2011; Zack et al., 2013). We

found that COCA2 was associated with the amplifications of

MYC and TERT and the deletions of PTEN and APC in multiple

cancer types (q < 0.001) (Figure 6D). These potential SCNA

drivers also showed consistent gene expression patterns across

cancer types (Figure S7).

Low expression or mutated TP53 and MYC amplification are

well-established drivers of cell-cycle and DNA damage repair

response dysregulation (Campaner and Amati, 2012; Dang,
2012; Nakayama and Nakayama, 2006; Williams and Schu-

macher, 2016). Deletion or low expression of the tumor suppres-

sor PTEN has been shown to drive cell-cycle progression,

proliferation, and cell survival (Chalhoub and Baker, 2009; Min-

ami et al., 2014; Ming and He, 2012). High expression of TERT,

the catalytic subunit of telomerase, immortalizes cancer cells

by promoting cell-cycle progression and increased survival.

Furthermore, low expression of anaphase-promoting complex

(APC) drives uncontrolled cell-cycle progression and prolifera-

tion. Therefore, we put forward a model in which mutated

TP53 and amplified MYC are closely associated with primarily

an upregulation of key ubiquitin-related enzymes, leading to an

uncontrolled cell cycle, elevated DNA damage response, and

ultimately poor survival for COCA2 patients (Figure 7). For the

cell-cycle pathway, in addition to the upregulated core back-

bone components of SCF and the anaphase-promoting complex

(APC/C), substrate recognition components such as CDH1,

CDC20, and SKP2 showed upregulation, while FBXW7 and

BTRC were downregulated. This result is consistent with the

nature of the complexes’ substrates. For example, substrates

of FBXW7 are oncoproteins, such as cyclin E, c-Myc, and Notch,

while substrates of SKP2 are tumor suppressors, such as p21,

p27, and p57. For the DNA damage pathway, there was

increased mRNA expression of RNF8, RNF168, RAD18,

BRCA1, and UBE2N; the exception was HERC2. Increased

DNA damage response intimately integrates with the dysregula-

tion of cell-cycle progression and checkpoint control. This can

potentially create a deleterious feedback loop, in which dysregu-

lation of cell-cycle checkpoints, coupled with elevated DNA

damage repair, leads to cells with unrepaired DNA damage

entering replication, thereby amplifying the subsequent DNA

damage response.

DISCUSSION

Using the latest TCGAmultidimensional molecular profiling data,

we performed comprehensive molecular characterization of the

ubiquitin pathway of 1,024 genes across 9,125 samples of 33

cancer types. There are three key findings in our study. First,

we systematically cataloged driver candidates with significant

mutation and SCNA patterns. Compared with top SCNA drivers,

the profiles of mutation drivers are diverse across different can-

cer types. For example, BAP1 and VHL are frequently mutated in

mesothelioma (MESO) and KIRC, respectively, whereas FBXW7

is enriched with hotspot mutations in UCEC and UCS but en-

riched with LoF mutations in ESCA, LUAD, LUSC, READ,

SKCM, and STAD. These results suggest context-dependent

oncogenic mechanisms of UBQ/DUB mutation drivers, which

have been less appreciated in the field. Second, we show that

compared to matched normal tissues, genes in the ubiquitin

pathway tend to be overexpressed in a range of cancer types,

and collectively, 71% of the upregulated genes are contributed

by one of three mechanisms: somatic copy-number gain,

reduced methylation-mediated gene silencing, and reduced

miRNA-mediated gene regulation in tumors. Finally, the cross-

platform integrative analysis reveals a group of patients that is

consistently correlated with worse prognosis across nine cancer

types. These tumor samples are associated with differential
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Figure 6. Biological Pathways and Somatic Drivers Associated with the Poor Prognostic Tumor Subtypes (COCA2)

(A) Association of COCA2 with GSEA hallmark gene sets. Significant positive associations are shown in red, significant negative associations are shown in blue,

and non-significant ones are shown in gray.

(B) Reverse-phase protein array (RPPA)-based pathway scores of cell-cycle and DNA repair between COCA2 samples (red box) and other samples (blue box).

The bottom and top of the box are the first and third quartiles, and the whiskers extend to 1.5 IQR of the lower quartile and the upper quartile, respectively.

(C) Significantly mutated genes identified by MutSigCV, in which the mutations are significantly enriched (red) or depleted (blue) in COCA2 compared to COCA1

and COCA3 in different cancer types (q < 0.1).

(D) SCNA drivers identified by GISTIC2, in which amplifications (for oncogenes) and deletions (for tumor suppressors) are significantly enriched in COCA2

compared to COCA1 and COCA3 in different cancer types (q < 0.001).
UBQ/DUB expression underlying the perturbation of many

fundamental signaling pathways, notably cell-cycle progression

and DNA damage repair, likely resulting from key molecular

drivers such as TP53,MYC, TERT, PTEN, and APC. These strik-

ing and robust patterns highlight a unique value of the ubiquitin

pathway in patient classification, conferring potential prognostic

utility.

One major motivation for studying UBQs and DUBs is the po-

tential to develop drugs that target the ubiquitin system (Salami

and Crews, 2017). Thus far, the progress has been limited. This

could be largely due to the lack of systemic characterization of
222 Cell Reports 23, 213–226, April 3, 2018
significant driver mutations, SCNA patterns, and dysregulated

expression profiles in the ubiquitin pathway across cancer types

through an integrated genomic analysis that would provide clin-

ically relevant drug candidates to the pharmaceutical industry.

Another challenge is that unlike kinases, many components of

the ubiquitin pathway lack a well-defined catalytic pocket, which

makes them difficult to target by small molecules, although this

obstacle might be overcome by the development of inhibitors

that block specific protein-protein interaction. However, given

its widespread impact, the potential for targeting some key com-

ponents in the ubiquitin pathway for drug development through



Figure 7. Mechanistic Model Describing

the Biological Process Underlying COCA2

Subtypes

Somatic drivers identified for COCA2 subtypes

(top) cause the expression-level changes of key

UBQ and DUB genes in SCF complex, APC/C

complex, and DNA damage response that underlie

the aberrant activities of cell-cycle and DNA dam-

age pathways (middle), thereby leading to poor

patient survival of COCA2 subtypes (bottom). See

also Figure S7.
the controlled proteostasis mechanism is immense. Studies

have provided a proof of principle that certain E3 ligases and

DUBs are potential therapeutic targets that are amenable to inhi-

bition by small molecules. For instance, MDM2 and SKP2, two

oncogenic E3 ligases overexpressed in multiple cancer types,

can be inhibited by Nutlins and Compound 25, respectively;

these compounds have shown promising anti-tumor effects in

xenograft tumor models (Chan et al., 2013; Vassilev et al.,

2004). Moreover, the deubiquitinase USP7 has been shown to

deubiquitinate several key cancer proteins, and P5091, a highly

specific inhibitor of USP7, induced apoptosis in multiple

myeloma cells (Chauhan et al., 2012). Our study suggests that

targeting the ubiquitin pathway components involved in cell-cy-

cle progression and DNA damage response pathways may offer

promising opportunities for drug interventions, because these

two pathways tightly correlate with the prognostically relevant

tumor subtypes. In addition, mutually exclusive patterns be-

tween ubiquitin pathway genes and known actionable cancer

genes suggest potential combination therapeutic strategies.

This focused, systematic analysis of UBQ and DUB genes will
lay a critical foundation for understanding the dysregulation of

UBQ in cancer and provide unique insights into the development

of related therapeutic approaches.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

TCGA somatic copy number alteration

thresholded data

Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas

TCGA somatic copy number segmentation

data by Affymetrix SNP 6 array

Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas

TCGA somatic mutation data Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas

TCGA gene expression data Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas

TCGA reverse-phase protein array

(RPPA) data

Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas.

TCGA DNA methylation data Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas

TCGA miRNA-seq data Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas

TCGA patient clinic data Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas

Software and Algorithms

CoMEt (Leiserson et al., 2015) https://bioconductor.org/packages/release/bioc/html/coMET.html

MutSigCV (Lawrence et al., 2013) http://software.broadinstitute.org/cancer/software/genepattern/

modules/docs/MutSigCV

GISTIC2.0 (Mermel et al., 2011) https://software.broadinstitute.org/software/cprg/?q=node/31

Gene Set Enrichment Analysis (GSEA) (Mootha et al., 2003;

Subramanian et al., 2005)

http://software.broadinstitute.org/gsea/index.jsp

Cytoscape (Shannon et al., 2003) http://cytoscape.org
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to and will be fulfilled by the Lead Contact, Han Liang

(hliang1@mdanderson.org).

METHOD DETAILS

Curation of UBQ and DUB gene sets
Given the diverse and integrative nature of the ubiquitin pathway, it was difficult to properly curate a definitive UBQ gene list. After an

initial rigorous literature search, no established consensuswas observed in the field beyond E1 and E2 enzymes, and the discovery of

important E3 enzymes, adapters, and other E3-associated genes was both escalating and in high debate. We therefore started our

curation with a centralized, thorough database of UBQ and UBQ-associated genes, the Ubiquitin and Ubiquitin-like Conjugation

Database (UUCD, http://uucd.biocuckoo.org/), which is continually updated and optimized as well as themost detailed and compre-

hensive available (Gao et al., 2013).

The UUCD database uses a multi-fold process to curate its UBQ genes relying on a combination of manual and computational

methods. The first step in the process is a manual literature search using key words related to UBQ and UBQ-associated genes

that can covalently recognize and modify other molecules, such as ‘‘ubiquitin,’’ ‘‘ubiquitination,’’ etc. This substantial, amassed

list of genes was then distinguished into E1 gene (ThiF/MoeB), E2 gene (UBC, UEV), and E3 gene categories based on the classifi-

cation of their functional domains in the literature, thereby establishing a dual publication (PMID - Table S2) and UBQ domain cor-

relation criterion for curation (Gao et al., 2013). Since a significant number of integral proteins participate in the function of E3 ligase

complexes as adapters/receptors, UUCD further categorized the E3-associated genes into two classifications based on domain

sequence and associated function: E3 activity and E3 adaptor, where E3 activity refers to a functioning E3 enzyme in contrast to

E3 adapters (E3-complex adaptor, substrate receptor, etc.) integrally participating in E3 enzymatic function (Gao et al., 2013). After

properly categorizing the manually curated UBQ genes from the literature, UUCD applied a computational approach using UBQ pro-

tein sequences and hiddenMarkovmodels (HMM) to predict other possible UBQenzymes and adapters yet to be discovered (HMM–

Table S2). After aligning the protein sequences by MUSCLE, HMMER 3.0 was utilized to create hiddenMarkov model profiles of 1, 1,
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and 15 (http://uucd.biocuckoo.org/download/HMM) for E1, E2, and E3 UBQ genes, respectively. Moreover, these HMM models

were further utilized along with hmmsearch to search all protein sequences to identify unknown UBQ genes and adapters, thus

providing a much more expanded gene list of possible UBQ functionality (Eddy, 1998; Edgar, 2004; Gao et al., 2013). In this study,

we chose to cast a wide net for potential E3 adapters/receptors in order for the most comprehensive analysis available.

Our final UBQgene listwas basedon extracting theUBQgenes from theUUCDdatabase (downloaded inMarch2017) and then add-

ing a filtering step to remove ubiquitin-like genes (enzymes and adapters) not directly associated with UBQ pathway function, such as

sumoylation and ISGylation associated genes. As a result, our UBQ gene set included 929 genes in total, including pre-established

UUCD gene categories of E1 (8 genes, 1 predicted), E2 (39 genes, 2 predicted), and E3 (882 genes, 368 predicted). For E3 UBQ genes,

they were further divided into E3 activity (387 genes, 78 predicted) and E3 adaptor (495 genes, 290 predicted) (Figure S1A, Table S2).

In contrast to the complexity of the UBQ gene curation, DUB genes are far fewer in number and much easier to curate. A general

consensus has been reached on their classification, thus a simplemining of the literature detailing an inventory of DUB genes leads to

comprehensive gene coverage. In this study, we intersected 3 major DUB review articles and found a substantial overlap of DUB

genes, where 80 of 91 total DUB genes were found in all 3 articles (Fraile et al., 2012; Komander et al., 2009; Nijman et al., 2005) (Fig-

ure S1B, Table S2). Notably, 4 genes from the MCPIP family, originally reported as DUB genes in Fraile et al., 2012, were later shown

to exhibit no DUB activity and therefore filtered first before generating the final union of 91 DUB genes (Niu et al., 2013). In addition, we

included four DUB genes recently discovered (Abdul Rehman et al., 2016). As a result, we created a final list of 95 DUB genes

comprised of six major classes, including ubiquitin C-terminal hydrolase (UCH), ubiquitin-specific protease (USP), Machado-Joseph

domain (MJD), ovarian tumor (OTU), JAB1/MPN/Mov34 metalloprotease (JAMM), and motif interacting with Ub-containing DUB

family (MINDY) (Table S2).

Somatic mutation analysis
We obtained TCGA pan-cancer somatic mutation data from Genomic Data Commons. Further filtering steps were used to eliminate

artifacts and reduce false-positive calls. A) Only mutations with ‘‘PASS’’ in the ‘‘FILTER’’ column were retained for all cancer types

except for ovarian serous cystadenocarcinoma (OV) and acute myeloid leukemia (LAML), for which we allowed ‘‘wga.’’ B) Hypermu-

tated samples with > 1,000 somatic mutations were removed, resulting in somatic mutation data for 8,811 samples for further ana-

lyses. Only non-silent somatic mutations were used to calculate mutation frequency. For each cancer type, MutSigCV (v1.4) was

used to identify significantly mutated genes in each cancer cohort at a q value of 0.1. Across the pan-cancer cohort, hotspot muta-

tions were defined as missense or in-frame mutations at the same protein amino acid in > 2 patient samples. The fraction of hotspot

mutations per gene was calculated as the total number of hotspot mutations over the total number of non-silent mutations found in

that gene. The fraction of LoF mutations (defined as Frame_Shift_Ins, Frame_Shift_Del, Nonsense_Mutation, Nonstop_Mutation,

Splice_Site, and Tanslation_Start_Site) per gene was calculated as the total number of LoF mutations over the total number of

non-silent mutations in that gene. Genes with > 30% hotspot mutations, < 20% LoF mutations, and R 5 unique hotspot mutation

positions were identified as enriched with hotspot mutations, while genes containing > 30% LoF mutations, < 30% hotspot

mutations, and R 10 LoF mutations were identified as enriched with LoF mutations. Mutual exclusivity for FBXW7 mutations

and mutations in clinically actionable genes (annotated as in OncoKB, http://oncokb.org) was performed with the R package

‘‘cometExactTest.’’ To study the effects of FBXW7 mutations, PI3K pathway expression was calculated from protein levels of the

PI3K/Akt pathway components as measured by RPPA with the following formula where E means expression:

EPI3K=Akt pathway =EAKTP473 +EAKTPT308 +EGSK3ALPHABETAPS21S9 +EGSK3PS9 +EP27PT157

+EP27PT198 +EPRAS40PT246 +ETUBERINPT1462 � EINPP4B � EPTEN
Somatic copy-number alteration analysis
We obtained SCNA data of 9,125 patient samples from Genomic Data Commons and applied GISTIC2. For each cancer type, genes

were considered to be amplified or deleted if they were located in the amplification peak or deletion peak at a q value of 0.25. The

SCNA mutual exclusivity test was performed by employing the R package cometExactTest using the integer copy number data.

Mutual exclusivity for MDM2 amplification and non-silent mutations in clinically actionable genes was carried out using the R pack-

age ‘‘cometExactTest.’’ For the pan-cancer SCNA clustering analysis, the integer copy numbers of UBQ and DUB genes were used

with Ward’s method for consensus clustering.

RNA-seq analysis
We obtained normalized gene expression data from Genomic Data Commons. For the tumor-normal comparison, we performed a

differential expression analysis between tumor and their matched normal samples for each of 16 cancer types using the Wilcoxon

signed rank test and built the pre-ranked gene lists based on signed –log10 p values. For GSEA, the pre-ranked gene lists were

then run against the UBQ, DUB and UBQ/DUB gene sets using GSEA Java GUI (version 2.3.3), respectively. For the pan-cancer

expression-level clustering analysis, the normalized values from the root squared error methodwere log2-transformed and Z-normal-

ized within each cancer type. Then, Pearson’s correlation and hierarchical average linkage clustering were applied to the top 800

most variable UBQ/DUB genes for consensus clustering.
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MiRNA expression analysis
We obtained normalized miRNA expression data from Genomic Data Commons. To study the mechanisms underlying dysregulated

UBQ/DUB genes in cancer, based on the miRNA expression data of paired tumor–normal samples from 562 patients, a paired t test

was performed for each gene within each cancer type (5 cancer types with a sample size of > 20 pairs), where genes with significantly

high or low expression in tumor samples were determined using a p-value cutoff of 0.05. We identified master miRNA regulators

for UBQ and DUB genes based on two criteria. First, a miRNA has at least one seed region (2-8-mer) matched to the 30UTR of

any UBQ/DUB gene. Second, the Spearmen correlation of miRNA with the expression of the target gene was statistically significant

(q < 10�5 and rho < �0.5). Cytoscape was used to visualize miRNA and the UBQ/DUB gene network.

DNA methylation analysis
We obtained DNA methylation 450K data from Genomic Data Commons. For each gene, one DNA methylation probe was selected

based on the correlation with its mRNA expression level, and if multiple probes for a gene were available, the probe that had themost

negative correlation value was selected. To study themechanisms underlying dysregulated UBQ/DUB genes in cancer, based on the

DNA methylation data of paired tumor–normal samples from 624 patients, a paired t test was performed for each gene within each

cancer type (6 cancer types with a sample size of > 20 pairs), where genes significantly hypermethylated or hypomethylated were

determined using a p-value cutoff of 0.05. For the pan-cancer methylation-based clustering, consensus clustering was performed

for the top 1,000 most variable probes for the UBQ/DUB genes, using the Euclidean distance and partitioning around medoids

method.

Integrative clustering and patient survival analysis
Weobtained TCGA patient clinical data fromGenomic Data Commons. Clusters defined from individual platforms (SCNA,mRNA and

DNAmethylation) were coded into binary variables for each platform-specific cluster. The matrix of 0 s and 1 s was then used as the

input datamatrix in theConsensusClusterPlus R package to identify integrated relationships for the 9,125 patient samples. Pearson’s

correlation and hierarchical clustering were used. Overall survival or disease-specific survival curves were compared using log-rank

tests in the R package ‘‘survival.’’ To detect biological pathways associated with COCA clusters, for each cancer type, we performed

a differential expression analysis between COCA2 and COCA1/COCA3 samples using a t test and built the pre-ranked gene lists

based on signed –log10 p values. For GSEA, the pre-ranked gene lists were then run against the seven cancer hallmark gene sets

(MSigDB Collections: H) using GSEA Java GUI (version 2.3.3).

RPPA pathway score calculation
We obtained the normalized RPPA data fromGenomic Data Commons and Z-normalized the data within each cancer type. Pathway

scores for the cell cycle and DNA damage response pathways were calculated for each patient (total of 6,441 patients). To detect

biological pathways associated with COCA clusters, RPPA pathway scores were used to test the pathway perturbations between

COCA2 and COCA1/COCA3 samples using a t test.

QUANTIFICATION AND STATISTICAL ANALYSES

Somatic mutation, SCNA, and RNA-seq analyses were based on 9,125 tumor samples; and miRNA expression, DNA methylation,

and RPPA analyses were respectively based on 7,939, 8,058, and 6,441 tumor samples due to limited data availability. Definitions

of significance for various statistical tests are described and referenced in their respective sections in Methods.

DATA AND SOFTWARE AVAILABILITY

The raw data, processed data, and clinical data can be found at the legacy archive of the GDC (https://portal.gdc.cancer.gov/

legacy-archive/search/f) and the PancanAtlas publication page (https://gdc.cancer.gov/about-data/publications/pancanatlas).

The mutation data can be found here (https://gdc.cancer.gov/about-data/publications/mc3-2017). TCGA data can also be explored

through the Broad Institute FireBrowse portal (http://gdac.broadinstitute.org) and the Memorial Sloan Kettering Cancer Center

cBioPortal (http://www.cbioportal.org). Details for software availability are in the Key Resources Table.
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