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SUMMARY

We present a systematic analysis of the effects of
synchronizing a large-scale, deeply characterized,
multi-omic dataset to the current human reference
genome, using updated software, pipelines, and an-
notations. For each of 5 molecular data platforms in
The Cancer Genome Atlas (TCGA)—mRNA and
miRNA expression, single nucleotide variants, DNA
methylation and copy number alterations—compre-
hensive sample, gene, and probe-level studies were
performed, towards quantifying the degree of simi-
larity between the ‘legacy’ GRCh37 (hg19) TCGA
data and its GRCh38 (hg38) version as ‘harmonized’
by the Genomic Data Commons. We offer gene lists
to elucidate differences that remained after control-
ling for confounders, and strategies to mitigate their
24 Cell Systems 9, 24–34, July 24, 2019 ª 2019 The Authors. Publish
This is an open access article under the CC BY license (http://creative
impact on biological interpretation. Our results
demonstrate that the hg19 and hg38 TCGA datasets
are very highly concordant, promote informed use of
either legacy or harmonized omics data, and provide
a rubric that encourages similar comparisons as new
data emerge and reference data evolve.

INTRODUCTION

Over the course of a decade The Cancer Genome Atlas (TCGA)

helped usher in the era of extreme-scale team science, yielding

numerous biological insights andmany widely cited papers (Hut-

ter and Zenklusen, 2018). Underlying this progress in under-

standing the molecular bases of cancer is one of the broadest,

deepest, and most integratively characterized biological data-

sets ever assembled: on the order of 2 petabytes of primary

and secondary data, in the form of 84,000 data aliquots from
ed by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. miRNA-Seq Data Processing and Data Comparison in TCGA Legacy and the GDC

(A) Overview of processing steps (rows) and data sets (columns). GDC legacy data and PanCancer Atlas data were derived from the TCGA quantitation-level data.

GDC harmonized data were regenerated from TCGA sequence data, using an updated version of the TCGA sequence data processing pipeline. QC comparisons

(legend continued on next page)
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some 11,300 patients across 33 disease studies. Most TCGA

samples were originally aligned against the Genome Reference

Consortium build GRCh37 (hg19), with a small fraction (from

the pilot phase of TCGA) having been aligned against NCBI Build

36.1 (hg18). Since TCGA was initiated, however, the research

community has undergone tremendous evolution, not only in

the characterization machinery, due to the enormous drop in

sequencing costs, but also in the surrounding ecosystem of

reference data, sequence alignment methods, variant calling

tools, RNA quantification methods, quality controls used to

help distinguish signal from noise, and analysis software. For

this reason, the Genomic Data Commons (GDC, https://gdc.

cancer.gov/) was conceived by the National Cancer Institute

(NCI) as more than just a massive warehouse of digitized sam-

ples: instead, by harmonizing those samples to a uniform refer-

ence alignment and gene annotation, then characterizing sam-

ples with established tools in consistent workflows and

providing updates at regular intervals, the GDC also helps navi-

gate an orderly course through this sea of constant change. The

GDC thus offers promise as a force-multiplier for researchers,

who can now spend more time exploring their biological ques-

tions and less on resolving inconsistencies in data and software

versions.

In this paper, we examine the results of the first major harmo-

nization effort undertaken at the GDC: in which the corpus of

legacy TCGA data was either aligned or lifted over to the

GRCh38 build (hg38) with a GDC workflow assembled from up-

dated versions of bioinformatic tools and reference files used

by sequencing and characterization centers in TCGA. While

the mechanics of evaluation varied for each data platform,

owing largely to natural differences between them and/or how

their hg19 counterparts were harmonized to hg38 (e.g., re-

alignment of single nucleotide variants [SNVs] versus liftover

of SNP6 copy number arrays), in each case ‘‘the aim was to

categorize observed differences in analytic results as a function

of their sources and control for such to discern potential impact

upon biological interpretation.’’ The sources of variation are

given in a figure for each platform and include, among others:

(1) genome reference; (2) gene annotation: e.g. UCSC genes,

GENCODE, miRBase; (3) upstreammethods used in alignment,

variant calling and quantification, including: BWA (Li and Dur-

bin, 2009), STAR (Dobin et al., 2013), RSEM (Li and Dewey,

2011), FPKM-HTSeq (Anders et al., 2015), and MuTect (Cibul-

skis et al., 2013); (4) downstream methods used in clustering,

correlation, or significance analysis, such as GISTIC (Mermel

et al., 2011); (5) parameterizations such as: thresholds for

filtering, p-values or q-values; and (6) auxiliary data, such as:
were done between legacy TCGA hg19 andGDChg38 harmonized data. Library c

TR: Total RNA. Asterisks indicate that while the source data were generated usin

strands, in TCGA publications, may be from a more recent miRBase version; in c

(B–F) Results of QC comparisons for GDC miRNA-seq data. (B) Distribution of ra

abundance (RPMs) for stem-loops across all cancer types and miRNAs. (C) Co

highlight hsa-mir-21 and two hsa-mir-24 family members, see (D–F). (D–F) RPM c

mir-24-2. Dots represent samples, and are colored to indicate the sequencing ins

stem-loops and cytoband locations for hsa-mir-21, and for hsa-mir-24 family’s hs

whose reference sequence is identical in each family.

(G and H) Distributions of RPMs for legacy (GRCh37/hg19) and harmonized (G

TCGA muscle-invasive bladder cancer (BLCA) cohort (n = 409): (G) hsa-mir-21, (

also Table S1.

26 Cell Systems 9, 24–34, July 24, 2019
GISTIC marker files and CNV lists, or panels of normals used

to remove suspect SNVs. In the interest of reproducibility, the

supplement describes the software codes and parameteriza-

tions used to carry out these studies, and for each platform in-

cludes manifests of the input files upon which our analyses

were executed. In the remainder of the text we use the terms

‘‘legacy data’’ and ‘‘harmonized data’’ interchangeably with

‘‘hg19 data’’ and ‘‘hg38 data,’’ respectively.

RESULTS

miRNA Expression
TCGA miRNA-seq data were generated with a process in which

gel-based size selection enriched for library constructs contain-

ing �21-nt inserts, i.e., for 5p and 3p mature strands (Chu et al.,

2016). During TCGA, sequencing instruments changed from the

Illumina Genome Analyzer II (GAII) to the HiSeq, and sequencing

chemistry kits evolved. Each TCGAproject used one of two alter-

native miRNA-seq library construction protocols; the RNA was

either the flow-through following poly(A) mRNA purification, or

total RNA. For TCGA, sequencing ‘QCFail’ reads were retained,

BWA v0.5.7 aligned reads to the reference human genome

(Li and Durbin, 2009), and miRNA expression quantification

considered only exact-match aligned reads. All miRNA-seq

expression data were initially generated using miRBase v.16 an-

notations for stem-loops andmature strands; the sequence data

were later reprocessed with miRBase’s most mature hg19 anno-

tations, v20 (Griffiths-Jones et al., 2006). For GDC harmonized

data the reference genome changed to hg38 and the miRBase

annotations to v21, QCFail reads were removed prior to align-

ment (as of GDC data release v11.0), and reads were aligned

with BWA v0.7.15.

Figure 1A summarizes differences and similarities between

legacy (GRCh37/hg19) and harmonized (GRCh38/hg38)

normalized expression data (reads per million mapped reads,

RPM). For context, it includes data for TCGAResearch Network

publications and PanCancer Atlas publications (https://gdc.

cancer.gov/node/977). In Figure 1, panels B and C summarize

the stem-loop comparisons made in the current study, and

panels D through H show examples. All study data are available

from the GDC and for interactive querying using SQL from

BigQuery tables hosted by the ISB-CGC (Reynolds et al.,

2017). For additional details see Supplemental Methods. Our

analysis shows that the hg19 and hg38 versions of TCGA

miRNA expression quantifications are highly concordant: the

log2(RPM) values for 1,137 (83%) out of the 1,367 miRNA

mature strands detected in at least 1,000 samples have a
onstruction protocols: FT: the flow-through frompoly(A)mRNApurification, and

g v16 miRBase annotations, names reported for stem-loops and 5p/3p mature

ontrast to names, miRBase MI and MIMAT identifiers are stable.

nk correlation coefficients for hg19 versus hg38 reads-per-million normalized

mparison of hg19 versus hg38 median RPMs for stem-loops. The red circles

omparisons for mature strands: (D) hsa-mir-21, (E) hsa-mir-24-1, and (F) hsa-

trument (GAII or HiSeq). Schematics below the RPM scatterplots show miRNA

a-mir-24-1 and -2. Dashed lines highlight the 3pmature strand, MIMAT000080,

RCh38/hg38) mature strands and stem-loops, for primary tumors from the

H) hsa-mir-24-1 and -2. p values are from Wilcoxon test. ‘SL’: stem-loop. See

https://gdc.cancer.gov/
https://gdc.cancer.gov/
https://gdc.cancer.gov/node/977
https://gdc.cancer.gov/node/977


A

C

B Figure 2. Somatic Copy Number Processing

and Data Comparison in TCGA Legacy and the

GDC

(A) Affy SNP array copy number pipeline: other than

lifting probe loci over to hg38, the pipeline was iden-

tical for hg19 and hg38. Probesets used to create

Level 3 hg19 and hg38 data were not identical in that

14,811 (0.8%) probes that could not be uniquely

mapped in hg38 were not used in segmentation. (B)

Genes sorted by number of cancer types inwhich each

gene is ‘‘deviant’’ (as defined earlier). We observe a

very small subset of genes that are deviant in more

than a few cancer disease types.

(C) Distribution of SCNA disagreements for 20,616

genes between the hg19-aligned run and the hg38-

aligned run for 33 TCGA tumor types ordered by

increasing median fraction. Boxes are colored by

median number of recurrent SCNAs (listed in

parentheses) in each tumor type as determined by

GISTIC2.0 with the hg19 reference build. See also

Figure S1.
correlation coefficient greater than 0.98. We also found that the

log2(RPM) quantification values were highly comparable,

despite the removal of QCFail reads: the median absolute dif-

ference between hg19 and hg38 log2(RPM) expression values

was less than 0.05 for 1,290 (94%) out of the same 1,367miRNA

mature strands. For 124 (�5%) of the 2,577 miRBase v20 5p or

3p mature strands, reference sequences are identical across

members of a miRNA family (e.g., hsa-let-7-5p has the same

reference sequence in hsa-let-7a-1 [9q22.32], hsa-let-7a-2

[11q24.1] and hsa-let-7a-3 [22q13.31]). The short (�21-nt)

miRNA sequence reads for such mature strands will exact-

match align to two or more genomic miRNA locations

(Chu et al., 2016). Because the newer version of BWA

(v0.7.15) distributed reads more uniformly between such

multi-mapping locations than the older version (v0.57), leg-

acy-to-harmonized differences were larger for stem-loops

from miRNA families (Figures 1C–1H).

Given the data-generating process and our comparison of

the legacy and harmonized datasets, analyses that use overall

mature strand expression, e.g., differential expression, or miR-

gene targeting, should be insensitive to choosing legacy or

harmonized data, and to whether a strand can be expressed

from locations across a miRNA family. Consistent with this,

mature strand RPM expression values for primary tumors

from the muscle-invasive bladder cancer (BLCA) cohort were

similar in GDC legacy and harmonized data (Figures 1G and

1H). In contrast, other analyses that depend on specific

genomic locations, e.g., stem-loop expression, or where DNA
methylation or copy number alterations in-

fluence the expression of mature strands

and stem-loops, may be sensitive to which

dataset is used. Because the data-gener-

ating process is not able to quantify the

relative contributions of a miRNA family’s

members to a mature strand’s reads, in

the harmonized data shared mature strands

and stem-loops for miRNA family members

are assigned similar RPMs (Figure 1H), and
all location-based analyses should consider this when they

involve members of a miRNA family.

Somatic Copy Number Alterations
The copy number data studied here were generated from

Affymetrix (Santa Clara, California, United States of America)

Genome-Wide Human SNP6.0 arrays through probe intensity

normalization, tangent normalization, and circular binary seg-

mentation (Olshen et al., 2004), using identical pipelines for

both hg19 and hg38 (Figure 2A). Tumor samples were profiled

for each disease cohort, with corresponding normal samples

when available (blood or adjacent tissue), and germline-sub-

tracted as described by TCGA. We examined both individual

genes as well as driver events within peaks of significantly recur-

ring focal alterations [as determined by GISTIC2.0 (Mermel et al.,

2011)]. Pre-computed GISTIC analyses of the hg19-aligned data

are available at firebrowse.org, while both the legacy hg19-

aligned and the harmonized hg38-aligned copy number seg-

mentation profiles are available for download from the GDC

and FireBrowse.

To compare relative mean copy numbers, i.e., copy numbers

uncorrected for tumor purity and ploidy, we began by identifying

the set of genes annotated with the same HUGO name in both

hg19 and hg38. For each of these 20,616 genes, we computed

the average difference in relative copy number between the

hg19 and hg38 runs, over all samples in each TCGA cohort

(Data S2.3, excerpted in Figure S1A). We then filtered for deviant

genes, those with average differences exceeding 4 standard
Cell Systems 9, 24–34, July 24, 2019 27
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deviations from 0 in each disease type. Finally, we examined

which of these genes were recurrently deviant across multiple

cancer types (Data S2.4, Figure 2B). As described in Supple-

mental Methods, this analysis identified that from over 20,000

genes only 11 (0.04%) differ in copy number between the two

builds in more than 10 TCGA tumor types (NAA38, SNORD29,

SNORA44, MIR1255B1, SNORD79, SNORD44, SNORD22,

SNORD31, FAM230C, MIR1827, and SNORD30); and with the

notable exception of NAA38, none of these genes encodes pro-

teins. Deviant genes generally appeared with greater frequency

in cancer types having large numbers of copy number alterations

(LUSC, LUAD, ESCA, SARC, BLCA, and OV), whereas fewer dis-

agreements tended to occur within cancer types harboring fewer

copy number alterations (THCA, LAML, KIRP, UVM, THYM, and

KIRC) (Figure 2C).

Finally, we compared GISTIC 2.0 analysis utilizing hg19 and

hg38 data. To do this, we determined whether driver genes that

were previously reported in TCGA marker papers were located

within GISTIC peaks found in analyses of the entire TCGA cohort

using either genome build. Almost all (93%; 482/521) of these

driver alterations in both marker papers and hg19 GISTIC ana-

lyses were matched in the analysis of the hg38 data, meaning

they were either found in both hg19 and hg38 or not present in

either (Data S2.6). For 23 of 39 driver alterations that were found

in analyses utilizing only one of the builds, peaks were found

within 1.2 mb of the driver gene identified in the analysis utilizing

the other build. Significant changes in the location of some

SNP probes may account for differences in the boundary of

some GISTIC peaks regions. In addition, GISTIC analysis was

performed utilizing standard analysis for all tumor types, and so

optimizingGISTIC parameters for each disease cohort separately

may produce an even greater concordance between analysis

using hg19 and hg38 data.

DNA Methylation
The DNA methylation data in this study were derived from one of

two array-based platforms: the Infinium Human Methylation 27k

(HM27) or Infinium Human Methylation 450k (HM450). As

depicted in Figure 3A, the hg38datawere generated by (1) remap-

ping the array features (probes) from the hg19 to the hg38 refer-

ence genome sequence, then (2) re-annotating the associations

between features and genes using a newer gene annotation data-

base [GENCODE v22 (Harrow et al., 2012)]. Importantly, the pro-

cessing of raw data to Level 3 methylation (a.k.a. ‘‘beta’’) values

was not altered, and thus methylation beta values for individual

probes were identical between the hg19 and hg38 versions. The

major consequence of the probe remapping was the invalidating

of a relatively small number of probes that no longer had a

uniquely identifiable location in the hg38 genome (2.0% of probes

for the HM27 array and 1.1% of probes for the HM450 array).

In contrast to the relatively small number of changes intro-

duced by genome remapping, the gene reannotation step intro-

duced a large number of changes to probe-gene mappings.

While the majority of probes with a gene association in hg19 re-

mained associated to the same gene in hg38 (64% of HM27 and

67% of HM450 probes), a large number of probes (28% of HM27

and 25% of HM450 probes) became associated with one or

more new GENCODE v22 genes (Figure S2). Among them,

many were non-coding genes, which were largely absent from
28 Cell Systems 9, 24–34, July 24, 2019
the earlier annotations used for the hg19 data [RefSeq Gene v.

2010 (Pruitt et al., 2007)]. These included a large number of

new linkages to antisense and other lncRNA genes (Figure S2),

which have been shown to play important roles in cancer biology

(Chiu et al., 2018; Huarte, 2015; Wang et al., 2018) . We quanti-

fied the additional biological value of the new associations by

performing a global analysis to identify gene expression changes

associated with promoter epigenetic regulation (Figure 3B). We

identified many more associations using the hg38 annotations,

and these occurred across both protein coding (‘‘protein_cod-

ing’’) and the various non-coding (e.g., ‘‘antisense’’ and

‘‘lincRNA’’) gene categories (Figure 3C). We found about 75%

more protein coding associations in each cancer type in the

hg38 version than in the hg19 version (Figure 3C, left), whereas

antisense and lncRNA annotations were almost entirely new

(Figure 3C, right). Some of the new protein coding associations

involved alternative promoters of known cancer genes that

were not represented in the hg19 version, such as epigenetic

regulation of the PAX8 gene in a subset of CHOL tumors (Figures

3D and 3E). While PAX8 activity has been associated with can-

cers originating from the thyroid, M€ullerian, and renal tracts

(Ghannam-Shahbari et al., 2018; Laury et al., 2011), neither this

new isoform nor upregulation in cholangiocarcinoma have

been previously described. In Supplemental Methods, we

describe additional resources available at the GDC that can

aid users in analyzing TCGA methylation data: (1) improved

HM27/HM450 probe annotation (Zhou et al., 2017) and data gen-

eration pipelines (Zhou et al., 2018b), which are planned to

become the default processing version in a forthcoming GDC

data release; and Whole-Genome Bisulfite Sequence data for

47 TCGA samples (Zhou et al., 2018a), which can be used to

investigate whole-genome methylation patterns.

mRNA Expression
TCGARNA-seq datawere generated in a process in which polyA+

RNA were selected and sequenced. Similar to miRNA seq data,

during TCGA, both sequencing instruments (from the Illumina

Genome Analyzer GA to HiSeq) and sequencing chemistry kits

evolved. Asdescribed in SupplementalMethods, thebioinformatic

workflow for generating hg38 mRNA-Seq data at the GDC differs

substantially from that used to generate hg19 mRNA-seq data in

TCGA. These differences—in alignment, quantification, normaliza-

tion, and references (Figure 4A)—are expected to introduce bias

between thehg19andhg38abundanceestimates.Tocharacterize

that bias and evaluate concordance with prior results, we per-

formed a large-scale comparison of alignment and gene expres-

sion estimates. A total of 2,302sampleswere used from thebreast,

head and neck, and lung squamous cohorts (BRCA = 1205,

HNSC = 546, LUSC = 551), across which 19,744 protein-coding

genes were studied—all those which unambiguously mapped in

both the hg19 and hg38 data. Expression values for hg19 were

derived from upper-quartile normalized count estimates, while

FPKM estimates were used to derive hg38 expression values.

Genome annotation and alignment biases resulted in

increased reporting of rRNA alignments (legacy median =

0.12% of bases; current median = 1.0%; Figure S3), but did

not change total mRNA alignments (legacy median = 75.4% of

bases; current median = 75.8%). Correlation was performed to

assess the concordance of workflow results for each sample.



A

C

B

D

E

Figure 3. DNA Methylation Processing and Data Comparison in TCGA Legacy and the GDC
(A) Summary of HM27/HM450 processing differences between legacy (hg19, GDCv1-3) and current (hg38, GDCv4-12) versions, and an upcoming version

available for manual download in the GDC Community Tools repository (see Supplemental Information for details).

(B) Associating array features with genes in the hg19 and hg38 pipelines: hg19 used the RefSeq version 40 annotations from the Illumina HM450 manifest, and

only associated probes within 1,500 bp upstream of a transcript start site (‘‘TSS -1500’’); hg38 used GENCODE 22 annotations, and includes distance from the

nearest TSS, which can be used to associate probes both upstream or downstream from a TSS (‘‘TSS +/�1,500’’). GENCODE 22 often includes additional

alternative promoters for the same gene.

(C) Number of Strong Negative Correlations (SNCs) between DNAmethylation beta value and RNA expression, using different associations: ‘‘Legacy -1500’’ used

hg19 associations, ‘‘hg38-1500’’ used hg38 annotations but only upstream associations, and ‘‘hg38 +/�1500’’ used the same annotations but both upstream and

downstream associations. The number of SNCs increased for all transcript types (only three shown here).

(D) Example of a new alternative promoter for PAX8 present in hg38 annotations but not hg19, which also coincided with an SNC identified in the hg38 but not

hg19 version.

(E) Methylation versus expression for this SNC (cg07772999-PAX8) across all TCGA-CHOL samples—about 50% of tumors are demethylated at this alternative

promoter and overexpress PAX8. See also Figure S2, Tables S2–S5.
Spearman’s rank correlation was used because the expression

estimates are reported in different scales (estimated count by

RSEM versus FPKM). Results indicate that gene rank order is

generally preserved (mean Spearman’s rho = 0.943; range =

0.893–0.959) (Figure 4B).

Bias in differential expression estimates was evaluated by

comparing subtypes within the BRCA, HNSC, and LUSC

cohorts. Subtypes of each tumor type were assigned by sample
based on the published PAM50 subtypes for BRCA, and the

transcriptome subtypes for HNSC and LUSC. Differential gene

expression was estimated as the log ratio of counts between

two subtypes of the same disease. The log ratios were calcu-

lated independently for both workflows, and concordance was

estimated by the adjusted r2 of the two workflows for the same

pair of subtypes. The transcriptome-wide effects from the

BRCA luminal versus basal demonstrate excellent concordance
Cell Systems 9, 24–34, July 24, 2019 29



Figure 4. mRNA-Seq Processing and Data Comparison in TCGA Legacy and the GDC

(A) Outline of bioinformatic pipeline steps for TCGA Legacy (hg19) and current GDC (hg38) data. All aspects of sample processing differ including computational

methods, the reference genome, and reference transcriptome.

(B) The distribution of sample rank correlation coefficients between matched samples of the two data versions from the BRCA cohort (n = 1205). Correlation

estimates arise from comparing gene level counts of the Legacy RSEM output to gene level counts from the Current htseq-count workflow.

(C) Comparison of log ratios between Legacy and Current for the BRCA basal versus non-basal comparison. Each point represents the log ratio of subtypes

(basal/non-basal) from the Legacy (x axis) or Current (y axis) workflow. Genes exhibiting >1.5-fold change in either direction are highlighted in red. Log ratio

estimates were derived from upper quartile normalized gene level estimates for the Legacy workflow and FPKM transformed gene level estimates from the

Current workflow. Log (base 2) ratios between subtypes demonstrate large changes across many genes, while changes between workflows are far fewer in both

number and magnitude. See also Figure S3.
(adjusted r2 of 0.933) (Figure 4C) between the two workflows.

Further, the relative change between conditions is preserved

across all subtype comparisons attempted (mean R-square =

0.91; range 0.862–0.947; Figure S3). The bias in absolute counts

prevents direct comparison of abundance between these work-

flows, but we find relative abundance results to be highly concor-

dant when restricting to a single workflow.

From our analyses in BRCA, HNSC, and LUSC, we identified

319 genes with a mean absolute difference greater than 1, repre-

senting at least a 2-fold change in differential gene expression be-

tween the legacy and harmonized pipelines. Many of these genes

were from gene families with similar sequence homology such as

olfactory genes (Zozulya et al., 2001), keratin-associated proteins

(Shibuya et al., 2004), and antigens of the GAGE, PAGE, and

XAGE families (Brinkmann et al., 1999), among others.Manymap-

ped to regions that were previously not as well annotated in hg19,

including genes near centromeres (�20%) and those near the

ends of chromosomes (�30%) (Church et al., 2011; Genovese

et al., 2013). Therefore, genes with a significant expression

change were often homologs, which is a direct result of the differ-

ences in quantification approaches used in the two workflows.

Somatic Mutations
TCGA somatic mutation data were generated by whole-exome

sequencing in which exome capture was performed using the

Agilent (Santa Clara, California, United States of America) Sure-

Select Human All Exon kit. During TCGA, multiple sequencing

platforms (Illumina and SOLiD) were employed. As described in

Figure 5A, the analysis pipeline for calling hg38 somatic muta-

tions at the GDC differs substantially from that for calling hg19

somatic mutations in TCGA legacy version [i.e., multi-Center

Mutation Calling in Multiple Cancers; MC3 (Ellrott et al., 2018)].

Although both pipelines used a multiple-caller strategy, there
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are still some differences—in the processing of alignment files,

versions of mutation callers, mutation filters, and gene annota-

tions (Figure 5A)—between the MC3 (hg19) and GDC (hg38)

mutations. To characterize those differences and evaluate

concordance with prior results, we compared the public somatic

mutation calling of SNVs on multiple TCGA cohorts, using 2,069

samples from the breast, leukemia, colorectal, and ovarian can-

cer cohorts (BRCA, LAML, COAD, and OV). We also investigated

the ‘protected’ somatic mutation calls of the two groups, which

represented the pre-filtered calls. A protected call was excluded

from the public call set if it was considered low quality or poten-

tially germline by the filters. GDC protected calls collected all the

raw somatic mutation calls detected by all the callers, while MC3

counterpart excluded some low-confidence calls from the raw

somatic calls.

The overlap between GDC hg38 and MC3 hg19 mutation calls

was calculated by matching their genomic locations and tumor

alleles. Across 1,902 shared tumor samples, the mutation over-

lap between GDC and MC3 contained a total of 488,138 public

somatic SNV calls from 21,535 genes (Figure 5B). The two

groups shared 386,350 SNVs (79%), leaving 71,967GDC-unique

calls and 29,821 MC3-unique calls. We thought the protected

somatic calls of one group should represent the universe of all

confident somatic mutations; however, there were 45,773

GDC-unique calls and 7,419 MC3-unique calls that the other

group could not recover. Those unrecoverable unique calls

(21%) implied that the raw mutation calling from the two groups

have different characteristics, so those calls were only reported

by the mutation callers in one group (Figures S4A and S4B).

We then analyzed the recoverable unique calls to investigate

how different filtering strategies affected the generation of the

public calls from the protected calls. The GDC reported 26,194

recoverable unique calls (the dark red region in Figure 5B). The
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Figure 5. Somatic Mutation Processing and Data Comparison in TCGA Legacy and the GDC

(A) Outline of pipeline steps for TCGA MC3 (hg19) and current (v12) GDC release (hg38).

(B) Overlapping somatic mutation calls between GDC and MC3. Red and blue shaded regions represent the public somatic SNV calls unique in GDC and MC3,

respectively. The lighter red and blue shaded regions represent the unrecoverable calls that were available in the public call of one group but were not found in

neither public nor protected calls of the other group.

(C) The overlap of somatic mutation call per sample in four different cancer types. The X and Y axes represent the proportion of shared calls over the total calls

fromGDC andMC3, respectively. Each dot represents a sample, and the dot size indicates the numbers of somatic SNVs called. A sample hasmore GDC-unique

or MC3-unique calls is closer to the origin. The color indicates whether WGA sequencing was employed. See also Figure S4.
stringent one-caller mutation removal in MC3 contributed to the

majority of the recoverable GDC-unique calls (59.0%). Different

definitions of non-exonic mutations were the second major

source of the recoverable unique calls (36.2%). The gene annota-

tion changes can also alter the exonic definition (at least 2.1% of

all recoverable GDC-unique calls), such as genes CCDC168 and

EFCAB8 (Figures S4C and S4D). The change can be systemati-

cally detected by comparing the transcript ID versions between

two annotations. Different panel-of-normal (PoN) samples cho-

sen by the two groups was another decisive factor for the identi-

fication of somatic mutations (4.4%). Usage of validation

sequencing could also alter the somatic status of a variant call.

The GDC labels a mutation call ’public’ when it is also found in

the validation sequencing, regardless of the filter status, whereas

MC3 calling did not utilize validation status.

MC3 reported 22,402 recoverable unique (the dark blue region

in Figure 5B). By following the GDC documentation for somatic
MAF file generation, we were able to identify the specific filtering

stage where eachmutation call was ‘protected’. Amajority of the

recoverable MC3-unique calls (96.8%) were protected in GDC

since they were marked by multiple caller-specific filters in

filtering stage 3 of the GDC pipeline, whereas those filters were

not used to exclude mutations in MC3. We identified a few filters

frequently associated to those recoverable MC3-unique calls,

including ‘t_lod_fstar’ filter for MuTect2 calls of low quality

(41.8%), ‘bSeq’ filter for mutation calls with strand-biased read

support (30.3%), ‘oxog’ filter for 8-oxoguanine (OxoG) artifacts

(16.2%), all ‘Tier*’ filters for MUSE calls with poor evidence

(45.2%), and ‘clustered_events’ filter for MuTect2 calls located

at a reassembled haplotype with too many mutations (13.5%).

Tounderstandwhether theoverlapbetweenGDChg38andMC3

hg19 somatic mutation calls varies across different samples and

cancer types, we calculated the proportion of shared calls over all

GDC and MC3 somatic calls for every sample (Figure 5C). Overall,
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we observed that different cancer types exhibited very different

levels of concordance. COAD samples had the largest fraction of

concordant calls, where 243 out of the total 376 samples (88%)

had a higher shared call percentage than the median in both GDC

and MC3. In contrast, LAML samples exhibited the worst concor-

dance between the two groups, which may be due to this cohort

having incomplete demultiplexing, and using Whole Genome

Amplification (WGA) in library construction (Bodini et al., 2015).

From our analysis, we found that 79% of all the public somatic

mutation calls from two groups were concordant. When we

excluded LAML samples, 80% of all the public somatic calls

were concordant, and the average of the fraction of concordant

calls per sample improved from 72.5% to 75.9%. We were able

to explain the remaining non-concordant public mutation calls

by the three major sources of the differences (Data S5.3): for un-

recoverable unique calls, mutation caller; for recoverable unique

calls, filtering strategy, and gene annotation version.

DISCUSSION

The publication of the first human reference genome unleashed a

torrent of cancer research, in which the field witnessed a steady

transition from a largely qualitative andwet lab-based practice to

one that is farmore quantified anddigital.While TCGAhasplayed

important catalytic and leadership roles in this transformation,

the resulting increase in volume and complexity of data are push-

ing the limits of our capacity to store, process, andmake sense of

it. At the same time, characterization and software technologies,

analytic methods, and reference data continue to rapidly evolve.

The cumulative effect of these forces—size, complexity, and

accelerated change—mean researchers have to confront sub-

stantial technical and logistical challenges before they can begin

to ask basic biological questions.

This study helps address those challenges, and is important to

the research community in several ways: (1) scientifically,

because confidence in and usability of global resources like

TCGA must remain high even as the data they offer and fields

they serve experience enormous growth and change. Findings

published from such resources, which purport to describe funda-

mental biology, should remain evident nomatter how the primary

data are transformed after original collection; and any findings

refuted after such transformations should be revised or dis-

carded. By demonstrating significant concordance between

the legacy hg19 and GDC-harmonized hg38 versions of TCGA

data, our study girds the corpus of TCGA-related research and

suggests it will continue to play a valuable role into the foresee-

able future. (2) Technologically, because the GDC will play an

important role in the usability of many large data sets beyond

TCGA—e.g., TARGET and others which are currently generating

data—and in offering these data to the world the GDC has up-

dated or introduced new data models, ontologies, back-end

infrastructure as well as front-end portals and APIs. When com-

bined with the fact that many of the scientific algorithms and

knowledgebases used togenerate legacyTCGAdata haveeither

evolved or been superseded, thismeans that the number ofmov-

ingparts—and therefore the sourcesof potential variation—in the

harmonized hg38 data served by the GDC, is high. The work re-

ported here isolates confounding factors in the technology

stack for each platform, offers sets of outliers for each platform,
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and indicates that TCGA results should be relatively insensitive

to changes between legacy hg19 and harmonized hg38data pro-

cessing. (3) Efficiency and cost-effectiveness, because the

scope of the vetting effort reported here would be impractical

for many labs or academic departments to conduct themselves

prior to confidently utilizingGDCdata in theirwork.Our studypro-

vides a framework thatmayguide similar comparative analyses in

the future, online resources for follow-up exploration, and tools

that can be hardened, generalized, and deployed to form the

basis of future QC efforts in other large-scale projects.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

TCGA hg38 miRNA-seq data NCI Genomic Data

Commons (GDC)

https://portal.gdc.cancer.gov miRNA and Isoform

Expression Quantification

TCGA hg19 miRNA-seq data NCI GDC Legacy Archive https://portal.gdc.cancer.gov/legacy-archive miRNA gene

and isoform quantification

ISB-CGC TCGA data in BigQuery Reynolds et al. (2017) www.isb-cgc.org

TCGA hg38 somatic copy number

alteration data

NCI GDC https://portal.gdc.cancer.gov somatic copy number alteration

TCGA hg19 somatic copy number

alteration data

NCI GDC Legacy Archive https://portal.gdc.cancer.gov/legacy-archive somatic copy

number alteration

TCGA hg38 DNA methylation data (v. 12.0) NCI GDC https://portal.gdc.cancer.gov/ - Data release 12.0

TCGA hg19 DNA methylation legacy

gene mapping

Illumina https://support.illumina.com/downloads/infinium_human

methylation450_product_files.html

TCGA hg38 mRNA-seq data NCI GDC https://portal.gdc.cancer.gov

mRNA gene and isoform quantification

TCGA hg19 mRNA-seq data NCI GDC Legacy Archive https://portal.gdc.cancer.gov/legacy-archive mRNA gene

and isoform quantification

TCGA hg38 somatic mutation data NCI GDC https://portal.gdc.cancer.gov/ - Data release 12.0

TCGA hg19 somatic mutation data Ellrott et al. (2018) https://gdc.cancer.gov/about-data/publications/mc3-2017

SuppData-1.1 this study https://gdc.cancer.gov/about-data/publications/HG38QC

SuppData-1.2 this study https://gdc.cancer.gov/about-data/publications/HG38QC

SuppData-2.1 this study https://gdc.cancer.gov/about-data/publications/HG38QC

SuppData-2.2 this study https://gdc.cancer.gov/about-data/publications/HG38QC

SuppData-2.3 this study https://gdc.cancer.gov/about-data/publications/HG38QC

SuppData-2.4 this study https://gdc.cancer.gov/about-data/publications/HG38QC

SuppData-2.5 this study https://gdc.cancer.gov/about-data/publications/HG38QC

SuppData-2.6 this study https://gdc.cancer.gov/about-data/publications/HG38QC

SuppData-3.1 this study https://gdc.cancer.gov/about-data/publications/HG38QC

SuppData-3.2 this study https://gdc.cancer.gov/about-data/publications/HG38QC

SuppData-3.3 this study https://gdc.cancer.gov/about-data/publications/HG38QC

SuppData-3.4 this study https://gdc.cancer.gov/about-data/publications/HG38QC

SuppData-3.5 this study https://gdc.cancer.gov/about-data/publications/HG38QC

SuppData-4.1 this study https://gdc.cancer.gov/about-data/publications/HG38QC

SuppData-4.2 this study https://gdc.cancer.gov/about-data/publications/HG38QC

SuppData-5.1 this study https://gdc.cancer.gov/about-data/publications/HG38QC

SuppData-5.2 this study https://gdc.cancer.gov/about-data/publications/HG38QC

SuppData-5.3 this study https://gdc.cancer.gov/about-data/publications/HG38QC

Software and Algorithms

GISTIC2.0 Mermel et al. (2011) https://software.broadinstitute.org/software/cprg/?q=node/31

R 3.5.1 (DNA methylation, mRNA

expression, and somatic mutation)

R Development

Core Team

https://www.R-project.org

TCGAbiolinks v2.4.3 (DNA methylation) Colaprico et al. (2016) http://bioconductor.org/packages/TCGAbiolinks/

ELMER v.2.6.1 (DNA methylation) Silva et al. (2018) http://bioconductor.org/packages/ELMER/

Infinium probe-gene links R markdown

(DNA methylation)

this paper Supp. Data file methylation_R_code.tar.gz or https://github.com/

zwdzwd/GDC_DNA_methylation_QC

Methylation-expression associations

R markdown (DNA methylation)

this paper Supp. Data file methylation_R_code.tar.gz or https://github.com/

tiagochst/GDC_DNA_methylation_QC
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miRNA-seq QC analysis code

(Jupyter notebooks and R script)

this paper https://github.com/GDAC-miRNA/TCGA-hg19-hg38-QC

Snakemake v5.4.0 (somatic mutation) Köster et al. (2012) https://snakemake.readthedocs.io/

CrossMap v0.2.8 (somatic mutation) Zhao et al. (2013) http://crossmap.sourceforge.net

SQLite v3.22.0 (somatic mutation) SQLite Development

Team

https://sqlite.org/

Somatic mutation QC analysis code

(R notebooks and Snakemake workflow)

this paper https://github.com/ding-lab/gdc_qc_analysis
LEAD CONTACT AND MATERIALS AVAILABILITY

This study did not generate new unique reagents. Further information and requests for resources andmaterials should be directed to

and will be fulfilled by the Lead Contact, Han Liang (HLiang1@mdanderson.org).

METHOD DETAILS

Analyses of miRNA Expression
During the long-running TCGA project (2008-2018), the production and analysis of miRNA data transitioned from array-based assays

(used for only two tumor types: GBM and OV) to sequencing-based assays. In this study we focused only on the sequencing data

produced by the BCGSC. TCGAmiRNA-Seq data is available for 10,250 cases, and 11,022 samples. The data were primarily derived

from solid tumor samples (n=9729), but some data were derived from normal or adjacent tissue samples (n=675), metastatic samples

(n=379) or other sample types (n=239). Two primary data sources will be referenced: first and foremost, the GDC repositories, but

in addition we also make use of certain Google BigQuery tables made available by the ISB-CGC (ISB Cancer Genomics Cloud

(Reynolds et al., 2017) an NCI Cloud Resource), which allows the research community to use SQL to explore and compare the rele-

vant data and metadata.

As of this writing (and based on GDC data release 14.0, December 18, 2018), the data available from the GDC Data Portal

(https://portal.gdc.cancer.gov) are divided into two main archives: an "active" archive, and a "legacy" archive. The legacy archive

contains data which the GDC inherited from two previous data repositories: the TCGA DCC and CGHub. This legacy data is pri-

marily based on human genome reference hg19/GRCh37, with miRNA annotations initially from miRBase v16, prior to a transition

to miRBase v20 in early 2016. The active archive contains data which has been re-processed at the GDC, using updated refer-

ences, including hg38/GRCh38 and miRBase v21. Note that there are two separate "entry points" for these two data sets: the

main GDC Data Portal (https://portal.gdc.cancer.gov) for the hg38 data, and the Legacy Archive (https://portal.gdc.cancer.

gov/legacy-archive) portal for the older data.

Legacy Archive

The legacy archive repository can be queried for TCGA miRNA-Seq data interactively by selecting TCGA in the Cancer Program

section and miRNA-Seq as the Experimental Strategy. The result of this query is a list of 65,427 files:

d data Category counts: 19,081 raw sequencing data + 46,346 gene expression

d data Type counts: 19,081 aligned reads + 23,173 each miRNA isoform quantification and miRNA gene quantification

d Data Format counts: 19,081 BAM + 46,346 TXT

d Platform counts: 10,157 Illumina GA + 55,270 Illumina HiSeq

d Access Level counts: 19,081 controlled-access + 46,346 open-access

Considering BAM files alone (i.e. by selecting only BAM files in the Data Format section), these data are derived from 10,250 cases

(5357 female, 4853 male, and 40 cases with no clinical information available), and 11,022 samples. Most samples have more than one

BAM file in the legacy archive for a variety of reasons, including multiple aliquots per sample, or updates to reference sources and/or to

pipeline parameters: 4262 samples have only one BAM file, 5510 samples have two, 1203 samples have three, and 45 samples have

four, and 2 samples have five. When new BAM files were produced, older versions remained available because they may have been

referenced in publications. In addition, updated quantification files were released for many samples after the transition tomiRBase v20.

Active Archive

The active archive repository can also be queried for TCGA miRNA-Seq data interactively, by selecting the TCGA Program in the

Cases filter tab, and selecting miRNA-Seq as the Experimental Strategy in the Files filter tab. As of GDC data release 14.0, this yields

a total of 33,246 files, with 3 files typically given per sample (two TSV files for each BAM file):

d Data Category counts: 11,082 raw sequencing data + 22,164 transcriptome profiling

d Data Type counts: 11,082 each; aligned reads, isoform expression quantification, and miRNA expression quantification
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d Workflow Type counts: 11,082 BWA-aln + 22,164 BCGSC miRNA profiling

d Data Format counts: 11,082 BAM + 22,164 TSV

d Platform counts: all data are derived from the Illumina platform (note the loss of information about the specific platform used)

d Access Level counts: 11,082 controlled-access + 22,164 open-access

These data are derived from 10,250 cases (5357 female, 4853male, and 40 caseswith no clinical information available), and 11,020

samples (there are 15 cases with three samples each, 740 cases with two samples each, with the remaining 9495 cases having one

sample each; and there are 62 samples with two aliquots each).

hg19 to hg38 File Mapping

Each hg38 miRNA-Seq BAM file was created by running the GDC Alignment Workflow (https://docs.gdc.cancer.gov/Data/

Bioinformatics_Pipelines/miRNA_Pipeline/#alignment-workflow) which, in the case of miRNA data, runs BWA-aln2 on one of

the hg19 miRNA-Seq BAM files. Although the detailed information specifying which input file was used to create each hg38 file

is not currently available from the GDC APIs, the mapping between hg19 and hg38 BAM files is available in a BigQuery table

(tcga-qc:miRNA.legacy2active_BAMid_map).

Differences in Case, Sample, and File Counts

Based on the descriptions and counts above, there are someminor discrepancies between the hg19 and hg38 datasets with regards

to sample, aliquot, and file counts (Table S1, Data S1.1 and S1.2). The GDC has assigned UUIDs to each distinct entity referenced or

contained in its archives: files, cases, samples, etc. Each data file is associated with a single aliquot, which is uniquely identified by a

UUID and by a "TCGA barcode" of length 24.

The number of cases with miRNA-Seq data are identical between the two archives. There are two samples which were discarded

during the harmonization process (TCGA-AB-2888-03A and TCGA-AB-2990-03A) because for each sample a second ’B’ vial existed

and was retained (TCGA-AB-2888-03B and TCGA-AB-2990-03B). The difference in the number of aliquots is larger because one

objective of the harmonization process was to retain a single aliquot (and associated data) for each sample. Finally, the difference

in miRNA BAM file counts is large (7999) because, as described above, most samples have more than one BAM file in the legacy

archive. It is particularly important that miRNA BAMs derived from the older BCGSC adapter-trimming algorithm not be used. The

results of examining 19846 miRNA-Seq BAMs in the legacy archive to verify trim-length are available in the BigQuery table named

trim_length_test (tcga-qc:miRNA.reads_trim_length_test). These tests indicated that 13115 out of 19846 BAMs had the correct trim-

length (and are marked as "KEEP" in the table), derived from the newer adapter-trimming algorithm. We advise users to take careful

note of this when using hg19 miRNA-Seq BAM files from the legacy archive.

miRNA-Seq Pipeline

The miRNA-Seq pipeline implemented by the GDC (https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/miRNA_Pipeline/)

is largely identical to the pipeline used to generate data over the course of TCGA3. The main differences between the hg19 and

hg38 versions of the pipeline involve the versions of some software components, and the reference data files used (Figure 1A).

An additional change involves reads that had been flagged as ‘QCFail’ in sequencing. These had been retained in the original

hg19 TCGA BAMs, but were removed in the GDC hg38 BAMs (as of GDC data release 11.0). This new filtering influenced miRNA

expression measures as follows. In TCGA, legacy and harmonized GDC miRNA-seq data, only reads with exact-match alignments

contributed to expression quantification, i.e. to read counts and normalized RPMs for miRNA stem-loops and isoforms.While QCFail

filtering reduced miRNA read counts, relatively few QCFail reads will have exact-match miRNA alignments, and RPM is a normalized

abundance metric. Given these factors, we expected and found that RPM values were relatively insensitive to removing

QCFail reads.

We note that while the overall TCGA data set was influenced by batch effects related to platforms and/or protocols (Figure 1A), and

batch-corrected TCGAmiRNA-Seq data have recently been published, comparing batch-corrected to uncorrectedmiRNA-seq data

is outside of the scope of thework reported here. Platforms and protocols used to process each aliquot are also available in BigQuery

(tcga-qc:miRNA.protocol_platform_info).

Data Online in Cloud Resource

The ISB-CGC platform (Reynolds et al., 2017) provides BigQuery tables containing all available open-access TCGA molecular data,

as well as clinical, biospecimen, and other metadata for all of the TCGA cases, samples, and data files, and a variety of other genomic

reference sources. These tables, which can be queried using Standard SQL, provide an accessible environment for comparing hg19

and hg38 miRNA quantification data. There are four tables of miRNA expression counts: one table for each of the two outputs of the

miRNA-Seq pipeline, and one pair for each genome-reference:

d isb-cgc:TCGA_hg19_data_v0.miRNAseq_Isoform_Expression

d isb-cgc:TCGA_hg19_data_v0.miRNAseq_Expression

d isb-cgc:TCGA_hg38_data_v0.miRNAseq_Isoform_Expression

d isb-cgc:TCGA_hg38_data_v0.miRNAseq_Expression

Each table is in "tidy’’ format (Wickham, 2014) and contains several columns of metadata including the case, sample, and aliquot

barcodes, and the GDC file UUID. For the two isoform (isomiR) tables, the key data columns ("fields") are: aliquot_barcode, mirna_id,
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mirna_accession, mirna_transcript, chromosome, start_pos, end_pos, strand, read_count, reads_per_million_miRNA_mapped,

and cross_mapped. These and related data from this study can be further explored through the interactive BigQuery webUI

(https://cloud.google.com/bigquery/bigquery-web-ui).

Comparing hg19 and hg38 miRNA Expression Levels

Our analysis shows that the hg19 and hg38 versions of TCGAmiRNA expression quantifications are highly concordant: the log2(RPM)

values for 1137 (83%) out of the 1367 miRNAmature strands detected in at least 1000 samples have a correlation coefficient greater

than 0.98. We also found that the log2(RPM) quantification values were highly comparable, despite the removal of QCFail reads: the

median absolute difference between hg19 and hg38 log2(RPM) expression values was less than 0.05 for 1290 (94%) out of the same

1367 miRNA mature strands. For miR families that have identical mature sequences in multiple genomic loci, we noted that expres-

sion levels from hg19 BAM files were systematically higher for one member of the family, while expression from hg38 BAM files were

more evenly distributed between members, resulting in lower than expected correlation between the stem-loop and isoform quan-

tification values (Figure 1). Further investigation identified the cause of these differences to be associated with the BWA versions.

Specifically, the alignment algorithm in BWA v0.5.7 was used to produce the hg19 BAM files, whereas BWA v0.7 was used by the

BCGSC and GDC for newer hg38 alignments. When aligning reads which map identically to multiple loci in the genome, as in

the case of miR families, the former arbitrarily maps more reads to one location while the latter distributes reads evenly between

the locations, resulting in differences in normalized read counts used for isoform quantification.

Discordant miRs

Despite generally high correlations between the hg19 and hg38 miRNA expression quantifications across the entire TCGA dataset,

there are cases where the correlation for a particular miR, within a specific tumor type, may be significantly higher or lower than when

considering data across all tumor types. To help readers more easily identify these outlier miRs, we computed Pearson and

Spearman correlations for each high-confidence, mature-strandmiRNA, grouped by TCGA project (i.e. tumor-type), andmade these

available in a BigQuery table (tcga-qc:miRNA.mirna_corrs_by_project). In general, such "discordant miRs" have very low expression

levels in one or more tumor types.

Analyses of Somatic Copy Number Alterations
As described in the main text, copy number alterations were identified from TCGA Level 3 segmented copy number profiles, gener-

ated from the same pipeline for both hg19 and hg38. In TCGA Level 1 and Level 2 genotype and copy number data are at the probe

level, and thus agnostic to genome build. Therefore Levels 1 and 2 data at the GDC are identical for hg19 and hg38; only Level 3 data

and above show differences. Individual Affymetrix SNP6 probes were mapped to genomic locations in either hg19 or hg38, and copy

number values from the final Level 2 datawere used to generate copy number segments. The probesets used for hg19 and hg38were

not identical, however, in that 14811 (0.8%) probes that could not be uniquelymapped to hg38were not used in segmentation. A total

of 10,705 tumor samples across 33 TCGA disease types were used here, with colon and rectal adenocarcinomas combined into a

single COADREAD cohort (file manifests for these data are given as Data S2.1 and S2.2). Two evaluations of concordance were

performed: between gene-level copy number calls as well as gene membership within significant focal alterations as called by

GISTIC2.0. For hg19 samples significance analysis of focal amplifications and deletions was taken from the pre-computed GISTIC

results in firebrowse.org, while custom analysis was performed in FireCloud for hg38 samples, by running GISTIC2.0.23

(Mermel et al., 2011) with the parameters:

Broad Length Cutoff = 0.7

Cap Values = 1.5

Confidence Level = 0.99

Amplification Threshold = 0.1

Deletion Threshold = 0.1

Do Gene GISTIC = 1

Gene Collapse Method = ‘‘extreme’’

Join Segment Size = 4

Maximum Sample Segments = 2000

Q-value threshold: 0.25

Remove X-Chromosome = 0

Gene Level Copy Number Calls

The average difference in relative copy number between the hg19 and hg38 samples in each TCGA cohort is given in Data S2.3, with

an excerpt from one cancer cohort plotted in Figure S1A. The list of ‘‘deviant’’ genes is given in Data S2.4 and summarized in Fig-

ure 2B. In addition to raw relative copy number values, GISTIC2.0 also assigns to each gene of every sample a thresholded copy

number level that reflects the magnitude of its deletion or amplification. These are integer values ranging from -2 to 2, where 0 means

no amplification or deletion of magnitude greater than the threshold parameters described above. Amplifications are represented
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by positive numbers: 1 means amplification above the amplification threshold; 2 means amplification larger than the arm level

amplifications observed in the sample. Deletions are represented by negative numbers: -1 means deletion beyond the threshold;

-2 means deletions greater than the minimum arm-level deletion observed in the sample. To compare these thresholded calls for

each of the 20,616 genes, we simply counted the number of samples with a disagreement in thresholded calls between the hg19-

aligned and hg38-aligned GISTIC2.0 runs for each gene; i.e. all samples off the diagonal of the 535 confusion matrix that compares

thresholded calls for each gene between the hg19-aligned and the hg38-aligned GISTIC2.0 runs (examples given in Figures S1B and

S1C). 624655 of 680328 (tumor type, gene) pairs retained the same thresholded copy number call in over 90% of all samples in both

hg19-aligned and hg38-aligned GISTIC2.0 runs. However, the same set of 11 recurrently deviant genes mentioned previously again

showed a high proportion of samples in each TCGA disease type with differing thresholded copy number calls: each with >35%

disagreement when averaged over all cancer types.

Significantly Altered Focal Peaks

To assess concordance of focal amplification and deletion peaks identified as significant, we tallied the genes called within focal

peaks in either the hg19-aligned or hg38-aligned analyses and examined the concordance between these two gene lists

(Data S2.5). Out of 131,894 unique gene-tumor type pairs called in significant peaks in hg19 and 132,390 in hg38, only 84,540

were found in the intersection between the two runs (Figures S1D and S1E). As an example, among focal amplifications in READ,

only 375 genes were called in both runs’ peaks compared to 240 and 1396 genes found only in the hg19-aligned and hg38-aligned

GISTIC2.0 amplification peaks, respectively. Similarly, among focal deletions in COAD, only 1519 genes were called in both runs’

peaks compared to 938 and 809 genes found only in the hg19-aligned and hg38-aligned GISTIC2.0 deletion peaks, respectively.

Overall, the majority of genes present in focal peaks, especially those near the peak boundaries, are likely passengers as opposed

to drivers, and so this abundance of passengers may explain much of the relatively low conservation of genes in these peaks.

To test this hypothesis, we reanalyzed cervical endometrial squamous carcinomas (CESC) as a representative tumor type using

GISTIC2.0, this time lowering the confidence level parameter from 99% to 25%, thereby narrowing the called peaks to their regions

of highest likelihood density. The genes encompassed by these narrow (25% confidence) peaks show better overlap with those in

their corresponding wide (99%confidence) peaks. Of 119 genes in narrow amplification peaks aligned to hg19, only 3 were not found

in the hg38 wide amplification peaks, and all of the 35 genes in narrow amplification hg38 peaks were found in the hg19 wide ampli-

fication peaks.

Finally, we performed a more biologically grounded assessment of conservation of significant copy number driver events between

GISTIC2.0 runs. Using the body of published TCGA tissue-specific marker papers, we compiled a comprehensive list of 521 key

copy-number-driven oncogenes and tumor suppressors in each of 26 tumor types. Five out of the 33 total TCGA tumor types

were excluded as they lack many common, significant copy number driver events (DLBC, KICH, MESO, THYM, and UVM), while

COAD and READ were analyzed as a combined COADREAD cohort. 482 out of 521 putative disease driver events mentioned in

the marker papers were either explicitly found in both hg19 and hg38 runs or were absent from both runs (Data S2.6). Forty drivers

were absent from both hg19 and hg38 GISTIC2.0 runs and likely stem from multiple causes: the marker papers often used smaller

sets of TCGA samples to discover these drivers, utilized manual inspection and rescue of drivers proximal to identified copy number

peaks but not explicitly called within these peaks, and used earlier versions of GISTIC running on hg18-aligned copy number data.

Only 20 drivers were explicitly found in the hg19-aligned GISTIC2.0 run but were absent from the hg38-aligned GISTIC2.0 run.

Conversely, only 19 drivers were explicitly found in the hg38-aligned GISTIC2.0 run but not in the hg19-aligned GISTIC2.0 run.

Analyses of DNA Methylation
DNA methylation data in TCGA is based on Illumina’s Infinium DNA methylation BeadChips (Cancer Genome Atlas Research

Network, 2011). In total, data from 11,172 primary tumor samples from 33 cancer types were generated as part of TCGA, initially

using the HM27 platform but then switching to HM450 during the project. 194 acutemyeloid leukemia (LAML) samples were assayed

on both platforms. In addition, 1,109 matched adjacent normal samples were profiled, of which five were later determined to reflect

occult tumors. The data were generated in 281 batches. Each batch contains a quality control sample from a lymphoblastoid cell line

(Coriell’s GMO6990), expanded either at the Nationwide Children’s Hospital (NCH, those having the sample code TCGA-07-0227) or

at the International Genomics Consortium (IGC, those having the sample code TCGA-AV-A03D). In brief, the HM27 platform contains

ca. 27 thousand individual CpG features, all within 1,500 bp of an annotated gene promoter; while the HM450 platform contains ca.

480 thousand features, adding many from a number of other selected genomic contexts. Over 90% of the CpG features present on

the HM27 array are also present in the HM450 array (Zhou et al., 2017).

DNA Methylation Pipeline for Array-Based Data

The files generated by the array scanner contain raw fluorescence intensities, one for each of the two channels (red/green). These

‘‘Raw intensity’’ (.idat) files are labeled Level 1 data in the TCGA data type hierarchy, and are identical between GDC data release

versions (although individual samples may be added or removed). IDAT files are processed to control for dye bias and signal back-

ground, to generate Level 2 ‘‘Normalized intensity’’ files, in a tab-delimited (.txt) format. Finally, red and green intensities are

compared to compute a single beta value for each probe, defined as the percentage of methylated DNA molecules. These results

are stored as Level 3 ‘‘Methylation beta value’’ files, which are tab-delimited (.txt) and contain one beta value per feature. Some

CpG features present on the array are omitted (‘‘masked’’) from the Level 3 data files, because they are considered unreliable

due to likely cross-hybridization and/or the presence of polymorphic sequences. Additional details about this ‘‘experiment-indepen-

dent’’ probe masking can be found below in our study (Zhou et al., 2017). In addition, ‘‘experiment-specific’’ probe masking is
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performed, based on weak signal or high background due to array quality, experimental failure, or genomic deletions in the sample.

These probes are present in Level 3 data, but given a value of ‘‘N/A’’. More details about experiment-dependent masking can also be

found Zhou et al., 2018b.

All processing steps are summarized in Figure 3A, along with the specific methods used for the GDC hg19 Legacy and hg38 ver-

sions. UCSCRefSeq (Gene, 2010) (Pruitt et al., 2007) and dbSNP version 13 (Sherry et al., 2001) were used to create the original gene

associations and SNP overlaps in Illumina’s manifest file, which was used in the hg19 Legacy version. We used Repeatmasker

(Smit, 1996) to perform repeat-based masking, and the Methylumi pipeline to perform signal processing steps, using the standard

dye bias correction and ‘‘Noob’’ background correction described in the Methylumi publication (Triche et al., 2013). Note that while

additional normalization methods have been proposed and used by other groups (including normalization that explicitly quantile

normalize beta value distribution of Type-I and Type-II probes (Maksimovic et al., 2012; Teschendorff et al., 2013) or ones that

made use of internal control measurements (Fortin et al., 2014), these methods may introduce artifacts due to internal assumption

on the data distribution (Liu and Siegmund, 2016). Hence we employed only minimal reliable background subtraction and did not use

any additional normalization.

Overview of DNA Methylation Data at the GDC

For each TCGA sample, there are two Level 1 idat files (‘‘Raw intensities’’, one for each color channel) and two tab-separated files: the

Level 2 file containing normalized probe intensities and other low-level information (‘‘Normalized intensities’’), and the Level 3 file

containing final methylation ‘‘beta’’ values, genomic coordinates, and gene context (‘‘Methylation beta value’’). The hg19-derived

(Legacy) data is reflected in GDC versions 1.0 through 3.0, while hg38-derived data are reflected in versions 4.0 onward

(Table S2). The number of samples processed for each platform is shown in Table S3, and reflects that: (i) a small number of samples

were run on both the HM27 and HM450 platforms (as noted above); and (ii) multiple tissues may be collected per patient/case (such

as primary and/or metastatic tumor, and normal), thus yielding multiple aliquots for the same patient.

GDC data release versions 4.0 through 12.0 were generated with a newer pipeline, which not only introduced hg38 but also

improved probe mapping and annotation (detailed below). These later releases contain only Methylation beta values (Level 3), to

reflect the fact that Levels 1 and 2 data (respectively the raw IDAT and Methylation Intensity files) were not modified by the pipeline

and thus remained identical. Users wishing to access the Levels 1 or 2 methylation data should thus retrieve them from the Legacy

archive at the GDC. Note that 59 tumor samples with Level 1 & 2 data in the legacy archive do not have harmonized hg38 data in the

GDC portal (Table S3): 3 are from the HM27 platform, 2 are from HM450, with the remaining 54 being dual-platform LAML cases.

Three adjacent normal samples were also excluded (two HM27 and one HM450). Sample manifests for both hg19 and hg38 versions

are available as Data S3.1–S3.4.

Differences between Level 3 hg19 and hg38 DNA Methylation Data at the GDC

As of GDC version 4.0, probe sequences were re-mapped to hg38 (GRCh38) coordinates, resulting in a small number of additional

probes that were quality-masked (i.e. flagged) due to poor mapping to the new genome assembly: specifically, in GDC data release

14.0 we flagged 5,120 (HM450) and 544 (HM27) probes by removing genomic coordinates from the Level 3 data file. In addition, gene

annotations were substantially updated, resulting in a number of new probe-gene associations. The updated processing steps are

outlined in Figure 3 and described below.

Differences in Probe Remapping and Masking

While the GDC hg38 pipeline for methylation is called ‘‘Liftover’’, all probe sequences were re-mapped to hg38 as described in

(Zhou et al., 2017). In addition to the 88,058 probes masked with N/A values in the hg19 Legacy version, another 5,120 HM450

and 544 HM27 probes were invalidated because they either had amapping quality of <10, or were Type-I probes for which the meth-

ylated and unmethylated probes mapped to different locations in the genome (Zhou et al., 2017). These probes and beta values were

retained in the hg38 level 3 data files, but genomic coordinates were removed (changed to NA or chr=*, start=-1, end=-1) to indicate

poor mapping. The vast majority of probes remained validly mapped without mismatches in hg38 (98.0% of HM27 and 98.9% of

HM450, Table S4). 86% of probes were mapped with the highest quality (=60) in both genome builds (Table S4, left). 23 HM450

probes have been moved from the primary reference assembly to ‘‘decoy’’ (unmapped) sequences in the new hg38 version

(Table S4, right).

Differences in Genomic Annotations

In the hg19 data files a single Gene_Symbol column was present, which contained a semicolon-delimited list of associated gene

symbols or an empty value if the probe did not overlap any gene annotation. The annotations were from Illumina’s manifest file

for the HM450 platform (and based on RefSeq Gene v. 2010), and an association was only included if the probe overlapped

the body of an annotated gene, i.e. the interval from the Transcription Start Site (TSS) to the Transcription Termination Site (TTS)

(Bibikova et al., 2011). In contrast, GENCODE v22 (Harrow et al., 2012) was used for gene annotation of the hg38 data, and as shown

in Table S5, the format and content of hg38 data files is considerably different: (i) the probe overlapping criterion was changed so that

Gene_Symbol would reflect an association between a probe and transcript if it was located within the range from 1500-bp upstream

of the TSS to the TTS, (ii) the Transcript_ID, Gene_Type and CGI_coordinate columns were added to describe the associated tran-

script, its functional type, and overlapping CpG Islands; (iii) the relative distance of the interrogated CpG to the TSS (Position_to_TSS

column) is provided to allow more flexible thresholding. Because the gene symbol and type are listed once for each transcript desig-

nated by the transcript ID, the same symbol/type may appear repeatedly. Likewise, multiple genes can be associated if they overlap

the same interrogated CpG.
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Most probes (64%HM27 and 67%HM450 probes) were completely concordant between hg19 and hg38,meaning that the gene(s)

annotated were completely identical between the two releases (Figures S2A and S2B). 25% (HM450) and 28% (HM27) of probes

retained the hg19 association(s) but were associated with additional genes in hg38. A substantial fraction of these augmented asso-

ciations was due to the expanded non-coding gene annotation in GENCODE v22, with the three most frequently augmented gene

categories being protein coding, antisense, and lncRNA (Figures S2A and S2B). Gene name changes also contributed to these dif-

ferences: for roughly 25k probes (23,508 HM450 and 1,467 HM27), the probe was associated with the same gene in both hg19 and

hg38 releases, but the gene symbol was updated in hg38.While this might be considered a trivial change, it could affect analyses that

rely on symbol matching, and we thus recommend always using ENSEMBL identifiers included in the new hg38 version. However,

remapping to canonical gene names reduces the level of discordant gene associations to 2.1% for HM450 and 1.2% for HM27

(Figures S2C and S2D).

To better understand how these gene annotation changes could affect discovery in a real-world scenario, we performed a search

for genes with expression that was significantly correlated with methylation of the gene’s promoter. This approach was commonly

used in TCGA to infer epigenetic silencing of genes such as BRCA1 in ovarian cancer (Cancer Genome Atlas Research Network,

2011). Following the methodology used in (Wang et al., 2018), we searched for strongly negatively correlated probe-gene pairs

(SNCs) in all TCGA cancer types by calculating a Spearman correlation for each HM450 probe within 1,500bp of each annotated

TSS, using RNA-seq expression values obtained from GDC data release 12. We then calculated an FDR based on all pairwise com-

parisons, and considered any pair with FDR<=0.05 and Rho<=-0.5 to be an SNC.

Because the newer gene associations contained more genes and alternative transcripts, and associated CpG probes both up-

stream and downstream of the TSS (illustrated in Figure 3B), we were able to identify substantially more significant associations

in the hg38 methylation data than in its hg19 predecessor (Figure 3C). For protein-coding genes, the number of SNCs was almost

2-fold higher, whereas non-coding RNAswere almost completely restricted to hg38 sincemost were not included in the early RefSeq

version used for hg19. An example of a new protein coding association is PAX8, an important cancer-associated gene in ovarian

cancer and other cancer types (Bowen et al., 2007; Nonaka et al., 2008), for which a novel SNC was identified for an alternative pro-

moter that was annotated only in the hg38 data (Figure 3D). De-methylation of the associated promoter CpG is associated with

increased expression in a subset of TCGA-CHOL tumors (Figure 3E).

Additional GDC Resources for DNA Methylation

While the analysis here uses data from the most recent (v.12) GDC release of hg38, our group has already begun to implement

improved methods that may be incorporated into future GDC pipelines. We have made some of these methods and tools available

on the GDC Community Tools webpage (https://gdc.cancer.gov/access-data/gdc-community-tools), including the following.

Improved DNA Methylation Array Probe Annotation provides a set of probe annotation sets for the different Infinium methylation

arrays that provide improved experiment-independent quality masking methodology described in our previous study (Zhou et al.,

2017). SeSAMe (SEnsible Step-wise Analysis of Methylation data) provides a Bioconductor R package that can be used for improved

signal processing and experiment-specific probe masking of Infinium methylation array data (Zhou et al., 2018b). Whole-Genome

Bisulfite Sequence (WGBS) data for 47 TCGA samples (Zhou et al., 2018a) used to validate these new methods is available at

GDC only in the Legacy hg19 archive (Data S3.5). Users wishing to obtain hg38 alignments for this dataset can find them at the sup-

plemental data website: http://zwdzwd.github.io/pmd.html.

Analyses of mRNA Expression
TCGA samples that were assayed by RNAwere largely tumor tissue samples, but somewere derived from normal or adjacent tissue.

As described in the main text, we obtained the RNA-seq data available from the GDC Data Portal (based on GDC data release 10),

which is divided into two main archives: the ‘‘current’’ archive, and a "legacy" archive. The legacy archive contains data which the

GDC inherited from two previous data repositories: the TCGA DCC and CGHub. This is primarily hg19 data. The current archive con-

tains data which has been re-processed at theGDC, using updated references, including hg38 andGencode v22. (Note that there are

two separate "entry points" for these two data sets: themain GDCData Portal for the hg38 data, and the Legacy Archive portal for the

older data) A complete set of files used during this evaluation is provided in Data S4.1.

Legacy Archive

The legacy archive repository can be queried for TCGA mRNA-Seq data interactively. The results indicate:

d Data Category counts:
B 82,256 Gene Expression

B 25,968 Raw sequencing data

B 3,817 simple nucleotide variation

B 3,147 structural rearrangement

d Data Type counts:

B 11,373 Unaligned reads

B 14,533 Aligned reads

B 22,566 Isoform expression quantification

B 27,460 Gene Expression quantification

d Data Format counts:
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B 82,318 TXT

B 14,533 BAM

B 10,113 FASTQ

B 5,395 VCF

B 1,569 FA

B 1,260 TAR

d Platform counts:

B 104,253 Illumina HiSeq

B 10,935 Illumina GA

d Access Level counts:

B 82,318 open

B 32,870 controlled

The legacy data were submitted from two different source sites with separate processing platforms. This explains the small

subsets for some data types such as simple nucleotide variation, and data formats such as VCF, FA, and TAR.

Current Archive

The current archive repository can be queried for TCGA mRNA-Seq data interactively. The results indicate:

d Data Category counts:
B 34,713 Transcriptome profiling

B 11,604 Raw Sequencing Data

d Data Type counts:

B 34,713 gene expression quantification

B 11,604 Aligned Reads

d Workflow Type counts:

B 11,604 STAR 2-Pass. HTSeq-Counts

B 11,604 STAR 2-Pass. HTSeq-Counts

B 11,604 HTSeq-FPKM

B 11,604 HTSeq-FPKM-UQ

d Data Format counts:

B 11,604 BAM

B 34,713 TXT

d Platform counts:

B 11,096 Illumina

d Access Level counts:

B 34,713 open

B 11,096 controlled

Workflows

Methods for accurate alignment of RNA-seq and estimation of transcript abundance were under rapid development during TCGA.

Initial methods utilized transcriptome alignment, but improvedmethods quickly followed that permitted genome alignment and trans-

lation back to the transcriptome space. These tools have merged and matured resulting in a simplified alignment workflow that pro-

vides accurate alignments for use by an arbitrary quantification algorithm. The procedure for quantification was also simplified to

facilitate interrogation and interpretation.

The legacy workflow aligned fastqs to the hg19 genome usingMapSplice (Wang et al., 2010), translated the genome coordinates to

the transcriptome based on adaptation of UCSC knownGene, and performed quantification of this transcriptome with RSEM. The

resulting count estimates were normalized to fixed upper quartile values (500 for isoform estimates and 1000 for gene estimates)

and formatted for dissemination. The complete set of commands and references to replicate a bam file or abundance estimate

are provided here: https://webshare.bioinf.unc.edu/public/mRNAseq_TCGA/.

The current workflow begins with legacy bam files which are reformatted as fastqs using biobambam. These are then aligned to the

hg38 genome using the STAR 2-pass approach (Dobin and Gingeras, 2015). The Gencode v22 transcriptome definition is then quan-

tified using htseq-count procedure within samtools. Raw counts, FPKM, and upper quartile normalized FPKM estimates are pro-

vided: https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/.

Comparative Analysis

The data used for this comparison were RNA-seq legacy Genomic Data commons data based on hg19 annotation (‘‘legacy’’; Legacy

Data) and current GDC (current data) data based on hg38 annotation. Data were extracted for all samples in the BRCA, HNSC, and

LUSC cohorts. The legacy data annotation for each sample used Entrez geneid and gene symbol which wasmapped to ENSEMBL id

then merged with the current workflow ENSEMBL id. A total of 2302 samples (BRCA=1205, HNSC=546, LUSC=551) and 19,744

genes could be unambiguously mapped between the legacy and current data. Subtype labels for each sample were retrieved
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from the supplemental information of the primary publications and merged by TCGA barcode. Legacy expression data were repre-

sented by the upper-quartile normalized count estimates, and FPKM estimates were used to represent results from the current

cohort. For paired samples, we calculated the Spearman correlation of count values for all mRNA between the legacy and current

quantification values. Differential expression among subtypes was assessed using the log ratio of mean normalized count between

groups. We used the r-squared estimate to represent the difference between log ratios of group comparisons by legacy and current

dataset. A summary of gene wise absolute differences across workflows is provided in Data S4.2.

We first assessed the differences at the level of sequence alignment and abundance estimation. The results of sequencing align-

ment indicate a higher proportion of bases aligned in the current workflow relative to legacy (Figure S3A). In contrast, little difference

was observed in alignments to mRNA (Figure S3B). Instead, the increase in total alignment is explained by a substantial increase in

rRNA annotated alignments (Figure S3C).

A very high concordance between the legacy and current quantification values was found based on computing the Spearman cor-

relation of count values for all mRNAs. A mean Spearman’s rho of 0.943 is observed with range of 0.893–0.959 across all cohorts.

Similarly, the median abundance estimate by gene was observed to be highly concordant (adjusted r^2 of 0.866) despite the differ-

ence in measurement scale (upper quartile normalized counts versus FPKM) (Figure S3D). Similar results are observed for the LUSC

and HNSC cohorts, or when utilizing the upper quartile normalized form of the Current workflow.

We expected that treating the data as relative abundance, as when comparing experimental groups, the scale bias would be

removed. The published subtypes of BRCA, HNSC, and LUSC cohorts were used as experimental groups, and differential expres-

sion was assessed using the log ratio of mean normalized count between groups. Indeed, when comparing BRCA luminal to basal

and then comparing differential abundance we find excellent concordance (adjusted r^2 of 0.933). Only 3% (517 of 18556) of genes

are observed to exceed a 0.5-fold change between the estimates.

These same experiments were repeated within the LUSC andHNSC cohorts. In all cases high correlation of samplemeasurements

are observed when comparing each sample across the two protocols, and more annotated genes are detected in the current data.

Most importantly, as evident by a mean R-square of 0.91 with range 0.862-0.947, the relative change between conditions is

preserved across every comparison that was attempted (Figures S3E and S3H).

While the overall evidence for differential expression between groups generally agrees, a relatively small number of genes

consistently demonstrated discordant results. These genes, characterized by more than 0.5-fold change in relative expression

(jcurrent log2(A/B) - legacy log2(A/B) > 1), constitute 3.9% of estimates on average (range 3.1% - 5.1%). A complete list of genes

and their concordance across these experiments is provided in the table of discordance measures (Data S4.2).

The transcriptome definitions were compared to assess if the concordant and discordant genes showed differences in annotation.

We observed a large magnitude of difference in the legacy transcriptome (primarily built from the UCSC knownGene definitions in

2010) defined in hg19 versus the current Gencode v22 definitions defined for hg38. A total of 3573 Gencode transcripts could be

perfectly matched to their definitions in the legacy annotation. The remainder were split into 131,457Gencode transcripts with imper-

fect matches, and 12,308 Gencode transcripts that could not be matched to any legacy transcript. The discrepant annotations were

not associated with discordant genes. Further, when considered with previous results, we find that the large magnitude of change at

the level of transcript annotation does not greatly affect gene level abundance estimates.

Users are advised that alignments or expression should not be compared directly between legacy and current workflows.

Comparisons should be restricted to samples originating from the same workflow. Under this recommendation, we find relative

abundance results to be generally concordant across both workflows.

Analyses of Somatic Mutations
Throughout the decade that spanned the TCGA project, somatic mutation calling has been constantly improved and all the accumu-

lated knowledge was recently applied to a harmonized set of mutation calls across all TCGA samples: the Multi-Center Mutation

Calling in Multiple Cancers (MC3) project, as a part of the TCGA Pan-Cancer Atlas effort. The unified MC3 somatic mutations

were called using standardized protocols and annotated with various filters to detect potential sequencing artifacts and label low

quality variant calls. Two centers, DNAnexus and FIREHOSE, generated somatic mutation calls for each pipeline (7 tools) on each

sample (>10,000 tumor-normal pairs), from 33 cancer types (Ellrott et al., 2018). The tool developers supplied the identification of

tool-specific, sample-specific, and mutation-specific filters. The filter flags were present in a comma separated column which

were carried through to the mutation annotation file (MAF). These mutation calls supply the basis for many PanCancer Atlas analysis

working groups.

Despite the uniformity, the MC3 pipeline was designed for the human genome reference hg19. On the other hand, GDC has

developed a different somatic mutation calling pipeline for a newer human genome reference version, hg38. The GDC pipeline

was designed to be fully automatic. Therefore, whenever an algorithm of variant calling or filtering gets improved, GDC can generate

an updated set of uniform variant calls across all samples by updating the data release version.

Data Source

GDCMAFs in hg38 were obtained through the GDC Data Portal. GDC version 12.0 was used, which was released in June 2018. The

query for the file retrieval was: cases.project.project_id in ["TCGA-LAML", "TCGA-BRCA", "TCGA-COAD", "TCGA-OV"] and files.-

data_format = "MAF". The query returned both somatic and protected MAFs, totaling 32 files and covering 2,069 tumor and paired

normal samples. Note that protected somatic mutation calls did not reflect the full pool of germline variants. Protected MAFs

contained the raw mutation calls from all somatic mutation callers. Each protected MAF underwent various filters to remove calls
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of low quality or potential germline variants reported in the germline variant databases like dbSNP (Sherry et al., 2001) and Exome

Aggregation Consortium (ExAC) (Lek et al., 2016). Germline variant calling used a different algorithm, thus not all the germline variants

would be captured in the protect MAFs, which is beyond the scope of our study.

TCGAMC3MAFs were obtained from Synapse (somatic: syn7214402; protected: syn5917256). The genomic coordinates of MC3

variant calls were lifted over from hg19 to hg38 using CrossMap v0.2.7 and chain files from University of California, Santa Cruz

(UCSC). Variant calls that could not be lifted over were dropped and excluded from our analysis. Among the four cancer types,

1,902 samples that had somatic mutation calls from both MC3 and GDC were used for the rest of the comparison.

Mutational Calling Pipelines

The GDC variant calling pipeline of release 12.0 was described as follows: the pipeline started with genome re-alignment to

GRCh38.d1.vd1 by extracting sequencing reads from a sample’s BAM files using Biobambam. The re-aligned BAM files were

merged and cleaned up using Picard and GATK. Four tools were used for the variant calling: MuSE, MuTect2, VarScan2, and Soma-

ticSniper. MuTect employed a ‘‘Panel of Normals’’ (PoN) to reduce the rate of germline variant call and, more often, recurrent

sequencing artifacts. The PoN was selected from the TCGA blood normal genomes curated to be cancer-free. VarScan and MuTect

are also able to generate indel calls, which were collected together with the single nucleotide variant (SNV) calls. Variant calls were

annotated using Variant Effect Predictor (VEP) version 84, which was based on GENCODE version 22. Various filters were added to

bothMAF and Variant Call Format (VCF) files during the annotation. Please refer to the followingGDCdocumentation for more details:

d File Format: MAF: https://docs.gdc.cancer.gov/Data/File_Formats/MAF_Format/

d File Format: VCF: https://docs.gdc.cancer.gov/Data/File_Formats/VCF_Format/

d Bioinformatics Pipeline: DNA-Seq Workflow—Somatic Variant Calling Workflow: https://docs.gdc.cancer.gov/Data/

Bioinformatics_Pipelines/DNA_Seq_Variant_Calling_Pipeline/#somatic-variant-calling-workflow

Complete details of the MC3 variant calling pipeline were provided in the MC3 publication (Ellrott et al., 2018), with the key aspects

as follows. Non hg19 aligned samples were excluded from the pipeline. Implementation of these tools were performed by DNAnexus

including SomaticSniper (Larson et al., 2012), MuSE (Fan et al., 2016), Pindel (Ye et al., 2016), Radia (Radenbaugh et al., 2014), and

Varscan (Koboldt et al., 2012) and by Broad Institute including MuTect (Cibulskis et al., 2013) and Indelocator. Filtering for each tool

was provided by the tool developers. Filtered VCFs were merged and converted to MAF. During the conversion, annotations were

provided by many databases such as Ensembl version 75, GENCODE v19 using Variant Effect Predictor (VEP) version 82. A Panel of

Normals (filter flag: broad_PoN_v2) was also used. Sample level annotations were also added to the MAF, including additional filters:

gapfillter, contest, badseq, nonpreferredpair, and wga. The MAF file was then split to 2 MAFs. A flagged MAF available to the public,

and a protected MAF harboring all mutations that were merged after flagging potential artifacts.

Comparative Analysis

The variant call overlap between GDC and MC3 was done by matching their genomic location and tumor allele 2. To identify the po-

tential causes for the unique calls in the two groups, we investigate the overlap result in the following subsets: unique calls in each

group, sample-wise overlap, and recoverable unique calls in each group. To understand whether the overlap between GDC andMC3

calls varies across different samples and cancer types, we calculated the proportion of shared calls over total GDC andMC3 calls for

every sample.

DATA AND CODE AVAILABILITY

Supplemental Data provide key information for reproducing the results reported here, such as the index files for the NCI GDC raw

data files used in this study. They are available at https://gdc.cancer.gov/about-data/publications/HG38QC.

ADDITIONAL RESOURCES

GDC Community Tools Webpage: https://gdc.cancer.gov/access-data/gdc-community-tools.
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