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SUMMARY

Recent genomic analyses of pathologically defined
tumor types identify ‘‘within-a-tissue’’ disease sub-
types. However, the extent to which genomic sig-
natures are shared across tissues is still unclear.
We performed an integrative analysis using five
genome-wide platforms and one proteomic platform
on 3,527 specimens from12 cancer types, revealing a
unified classification into 11 major subtypes. Five
subtypes were nearly identical to their tissue-of-
origin counterparts, but several distinct cancer types
were found to converge into common subtypes.
Lung squamous, head and neck, and a subset of
bladder cancers coalesced into one subtype typified
by TP53 alterations, TP63 amplifications, and high
expression of immune and proliferation pathway
genes. Of note, bladder cancers split into three pan-
cancer subtypes. The multiplatform classification,
while correlated with tissue-of-origin, provides inde-
pendent information for predicting clinical outcomes.
All data sets are available for data-mining from a uni-
fied resource to support further biological discov-
eries and insights into novel therapeutic strategies.
INTRODUCTION

Cancers are typically classified using pathologic criteria that

rely heavily on the tissue site of origin. However, large-scale

genomics projects are now producing detailed molecular char-

acterizations of thousands of tumors, making a systematic

molecular-based taxonomy of cancer possible. Indeed, The
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Cancer Genome Atlas (TCGA) Research Network has reported

integrated genome-wide studies of ten distinct malignancies:

glioblastomamultiforme (GBM) (Cancer GenomeAtlas Research

Network, 2008), serous ovarian carcinoma (OV) (Cancer Genome

Atlas Research Network, 2011), colon (COAD) and rectal (READ)

adenocarcinomas (Cancer Genome Atlas Research Network,

2012b), lung squamous cell carcinoma (LUSC) (Cancer Genome

Atlas Research Network, 2012a), breast cancer (BRCA) (Cancer

Genome Atlas Research Network, 2012c), acute myelogenous

leukemia (AML) (Cancer Genome Atlas Research Network,

2013b), endometrial cancer (UCEC) (Kandoth et al., 2013b),

renal cell carcinoma (KIRC) (Cancer Genome Atlas Research

Network, 2013a), and bladder urothelial adenocarcinoma (Can-

cer Genome Atlas Research Network, 2014). Those studies

have shown that each single-tissue cancer type can be further

divided into three to four molecular subtypes. The subclassifi-

cation is based on recurrent genetic and epigenetic alterations

that converge on common pathways (e.g., p53 and/or Rb

checkpoint loss; RTK/RAS/MEK or RTK/PI3K/AKT activation).

Meaningful differences in clinical behavior are often correlated

with the single-tissue tumor types and, in a few cases, single-tis-

sue subtype identification has led to therapies that target the

driving subtype-specific molecular alteration(s). EGFR mutant

lung adenocarcinomas and ERBB2-amplified breast cancer

are two well-established examples.

To move toward a molecular taxonomy, we investigated

whether tissue-of-origin categories split into subtypes based

upon multiplatform genomic analyses and also extend the

analysis in the other direction to look for possible convergence.

We looked to see what molecular alterations are shared across

cancers arising from different tissues and if previously recog-

nized disease subtypes in fact span multiple tissues of origin.

With those questions in mind, we performed a multiplatform

integrative analysis of thousands of cancers from 12 tumor types

in The Cancer Genome Atlas (TCGA) project. Using data from

multiple assay platforms, we tested the hypothesis that mole-

cular signatures provide a distinct taxonomy relative to the

currently used tissue-of-origin-based classification. At the cen-

ter of our results is the identification of 11 ‘‘integrated subtypes.’’

Consistent with the histological classification, tissue-of-origin

features provided the dominant signal(s) for identification of

most subtypes, irrespective of genomic analysis platform or

combination thereof. However, approximately 10% of cases

were reclassified by the molecular taxonomy, with the newly

defined integrated subtypes providing a significant increase in

the accuracy for the prediction of clinical outcomes.

RESULTS

Samples, Data Types, and Genomic Platforms
To identify a multitissue, molecular signature-based classifi-

cation of cancer objectively, we first characterized each of the

individual tumor types using six different ‘‘omic’’ platforms. The

diverse tumor set called ‘‘Pan-Cancer-12,’’ is composed of 12

different malignancies. It comprises 3,527 cases assayed by at

least four of the six possible data types routinely generated by

TCGA: whole-exome DNA sequence (Illumina HiSeq and GAII),

DNA copy-number variation (Affymetrix 6.0 microarrays), DNA
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methylation (Illumina 450,000-feature microarrays), genome-

wide mRNA levels (Illumina mRNA-seq), microRNA levels

(Illumina microRNA-seq), and protein levels for 131 proteins

and/or phosphorylated proteins (Reverse Phase Protein Arrays;

RPPA). The 12 tumor types include the ten TCGA Network pub-

lished data sets listed above and two additional tumor types for

which manuscripts have been submitted: lung adenocarcinoma

(LUAD) and head and neck squamous cell carcinoma (HNSC).

This is the most comprehensive and diverse collection of tumors

analyzed by systematic genomic methods to date.

We performed sample-wise clustering to derive subtypes

based on six different data types separately: DNA copy number,

DNA methylation, mRNA expression, microRNA expression,

protein expression, and somatic point mutation (see Extended

Experimental Procedures, Section 1). The classification results

from each single-platform analysis produced sets of 8 to 20

groups of samples that each showed high correlation with tissue

of origin (Figures S1A–S1F available online) and were highly

comparable with each other (Figure S2A). For example, patterns

of copy-number change varied across tissue types, and sub-

typing of the tumors based on copy-number alterations revealed

a significant correlation with tissue (p < 6x10�6, Chi-square test).

Integrated Platform Analysis—Cluster-of-Cluster
Assignments
To identify disease subtypes on a more comprehensive basis

than could be done using any single type of data, we developed

an integrated subtype classification for all of the tumor samples

in the Pan-Cancer-12 collection based on five of the data types,

excluding somatic mutations. To do so, the results of the single-

platform analyses were provided as input to a second-level

cluster analysis using a method we refer to as cluster-of-cluster

assignments (COCA), which was originally developed to define

subclasses in the TCGA breast cancer cohort (Cancer Genome

Atlas Research Network, 2012c). The algorithm takes as input

the binary vectors that represent each of the platform-specific

cluster groups and reclusters the samples according to those

vectors (see Extended Experimental Procedures, Section 2).

One advantage of the method is that data across platforms are

combined without the need for normalization steps prior to

clustering. In addition, each platform influences the final inte-

grated result with weight proportional to the number of distinct

subtypes reproducibly found by consensus clustering. Thus,

‘‘large’’ platforms (e.g., 450,000 DNA methylation probes) with

orders of magnitude more features than ‘‘small’’ platforms

(e.g., 131 RPPA antibodies) do not dominate the solution.

In addition to the COCA classification, we used two additional,

independent methods to derive Pan-Cancer-12 subtypes based

on integrated data: (1) an algorithm called SuperCluster

(Kandoth et al., 2013b) (Figure S2B) and (2) clustering based

on inferred pathway activities from PARADIGM (Vaske et al.,

2010), which integrates gene expression and DNA copy-number

data with a set of predefined pathways to infer the degree of

activity of 17,365 pathway features such as proteins, complexes,

and cellular processes (Figure S2C). Both SuperCluster and

PARADIGM produced classifications that were highly concor-

dant with the COCA subtypes (Figure S2D). Given recent prom-

ising results that use gene networks (as opposed to the sparsely



Table 1. The 12 Pathological Disease Types, Rows, and Their Relationship to the 13 Integrated Subtypes Defined by the Cluster-of-

Cluster-Assignments Method

Handle

C1-LUAD-

Enriched

C2-Squamous-

like

C3-BRCA/

Luminal

C4-BRCA/

Basal

C5-

KIRC

C6-

UCEC

C7-COAD/

READ

C8-

BLCA C9-OV

C10-

GBM

C11-

Small-

Various

C12-

Small-

Various

C13-

AML Total

BLCA 10 31 0 0 1 0 0 74 0 1 1 2 0 120

BRCA 2 1 688 135 5 0 0 2 0 0 0 0 1 834

COAD 0 0 0 0 0 0 182 0 0 0 0 0 0 182

GBM 3 0 0 0 2 0 0 0 0 190 0 0 0 195

HNSC 1 302 0 0 0 0 0 1 0 1 0 0 0 305

KIRC 1 0 0 0 470 0 0 0 0 2 0 2 0 475

LAML 0 0 0 0 0 0 0 0 0 0 0 0 161 161

LUAD 258 6 0 1 0 1 0 1 0 1 0 2 0 270

LUSC 28 206 0 1 0 0 0 1 0 2 0 0 0 238

OV 1 0 0 0 1 0 0 0 327 0 0 0 0 329

READ 0 0 0 0 0 0 73 0 0 0 0 0 0 73

UCEC 2 0 0 0 0 340 1 0 0 0 2 0 0 345

Totals 306 546 688 137 479 341 256 79 327 197 3 6 162 3527

The name of each COCA subtype (top row) includes a cluster number (1 to 13) and a text designation for mnemonic purposes. Two of the subtypes

(numbers 11 and 12) were eliminated from further analysis because they included < 10 samples (3 and 6 samples, respectively). Hence, the text focuses

on 11 subtypes, not 13.

See also Table S1.
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populated single-mutation space) to cluster samples based

on somatic DNA variants (Hofree et al., 2013), we calculated a

mutation-based clustering after first associating genes with

pathways and then identifying clusters based on mutated

pathways (Figure S1F and Data S1). Including those clusters in

the identification of COCA subtypes produced highly similar

results to COCA subtypes that did not use the mutation-based

clusters (Figure S2D). Thus, we focus here on the COCA results

obtained without the mutations, as those five other platform-

based classifications required no prior biological knowledge.

The COCA algorithm identified thirteen clusters of samples,

11 of which included more than ten samples (Table S1). The

two small clusters (n = 3 and 6) are noted (Table 1) but were

excluded from further analyses. We refer to the remaining

sample groups by cluster number and a short descriptive

mnemonic (Table 1). Of the 11 COCA-integrated subtypes, five

show simple, near one-to-one relationships with tissue site of

origin: C5-KIRC, C6-UCEC, C9-OV, C10-GBM, and C13-LAML

(Figure 1A). A sixth COCA type, C1-LUAD-enriched, is predom-

inantly composed (258/306) of non-small cell lung (NSCLC)

adenocarcinoma samples (LUAD). The secondmajor constituent

of the C1-LUAD-enriched group is a set of NSCLC squamous

samples (28/306). Upon re-review of the frozen or formalin fixed

sections, 11/28 lung squamous samples that cluster with the

C1-LUAD-enriched group did not have squamous features and

were reclassified as lung adenocarcinoma (Travis et al., 2011).

NSCLCs are often difficult to classify based on histology alone

(Grilley-Olson et al., 2013). That difficulty poses an important

clinical challenge since histology is used to guide the selection

of chemotherapy (Scagliotti et al., 2008) and to select patients

for further mutational analysis (e.g., EGFR mutation and ALK

fusion testing in nonsquamous NSCLC). However, the challenge
can be addressed by genomic analysis based on distinct differ-

ences in mutation spectrum (Table S2A) and distinct gene

expression patterns (Figure S1A). Two clear subtypes of NSCLC

(C1-LUAD-enriched and C2-squamous-like, see discussion

below) are identified by COCA.

For the other five tissue types, the patterns are more complex.

Either a given tissue splits into multiple COCA groups (diver-

gence) or multiple tissue types coalesce into a single COCA

group (convergence). A simple example of convergence previ-

ously described for TCGA data are the merging of colon

(COAD) and rectal (READ) tumors into a single COCA group

(Cancer Genome Atlas Research Network, 2012b). The expres-

sion features shared by colon and rectal samples were noted

in the TCGA Network paper on the two cancer types, but we

extend those findings through use of the multiplatform clustering

approach (Figure 1A and Table 1).

Breast cancers (BRCA) exhibit a pattern of divergence in

which two main groups of samples are distinctly identifiable.

One group (C3-BRCA/Luminal) contains essentially all of the

luminal (estrogen receptor-positive) (594/597) and HER2-posi-

tive tumors (66/66), whereas the other (C4-BRCA/basal) contains

131/139 of the breast basal-like tumors. Although it has previ-

ously been appreciated that basal-like breast cancers (the

majority subset of triple-negative breast cancers) form a distinct

subtype (Prat et al., 2013; Cancer Genome Atlas Research

Network, 2012c), the findings here provide a more refined,

quantitative picture of the extent of difference from luminal and

basal-like breast cancers. Whereas tissue of origin is the domi-

nant signal for combined data on almost all of the other cancer

types in the Pan-Cancer-12 collection, breast basal-like cancers

are as different from luminal/ER+ breast cancers as they are from

cancers of the lung (Figure 1A). The data from the present study
Cell 158, 1–16, August 14, 2014 ª2014 Elsevier Inc. 3



(legend on next page)

4 Cell 158, 1–16, August 14, 2014 ª2014 Elsevier Inc.

Please cite this article in press as: Hoadley et al., Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across
Tissues of Origin, Cell (2014), http://dx.doi.org/10.1016/j.cell.2014.06.049



Please cite this article in press as: Hoadley et al., Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across
Tissues of Origin, Cell (2014), http://dx.doi.org/10.1016/j.cell.2014.06.049
strongly reinforce the idea that basal-like breast cancers consti-

tute a unique disease entity.

The remaining three tissue types (HNSC, LUSC, and BLCA)

provide examples of both divergence and convergence in

COCA subtyping (Figure 1A and Table 1). The strongest pattern

of convergence is observed for the vast majority of HNSC (301/

304), LUSC (206/238), and some of the BLCA (31/120)

tumors; they cluster together in a large COCA group (C2-squa-

mous-like), perhaps reflecting similar cell type of origin or

smoking as an etiologic factor. BLCA tumors also exhibit a

divergence pattern, distributing predominantly into three distinct

groups: 31 BLCA in the C2-squamous-like group, 10 in the

C1-LUAD-enriched group, and 74 in the bladder-only group,

C8-BLCA. Five other BLCA samples cluster in four different

COCA groups.

Clinical Importance of the COCA Subtypes
To investigate the clinical relevance of the COCA subtypes, we

performed Kaplan-Meier Survival analysis on the Pan-Cancer-

12 data set. The results indicate that tissue-of-origin (Figure S3A)

and COCA subtype (Figure 1D) are both prognostic, and each

provides independent information (Figure 1E). Additionally, the

two most commonly mutated genes in the overall data set,

TP53 (41%) and PIK3CA (20%), are prognostic, even across

different tumor types, as are previously defined genomic signa-

tures of cell proliferation rate (Nielsen et al., 2010) and mutated

TP53 gene-expression-based signature (Troester et al., 2006)

(Figures S3B–S3F).

We next asked whether prognostic information is provided

by the COCA subtypes after accounting for known clinical

and tissue-of-origin features. We performed a multivariate

Cox proportional hazards analysis to predict outcomes across

the data set. The analysis was limited to the COCA subtypes

that did not have a one-to-one relationship with tissue-of-

origin tumor type (COCA1-LUAD enriched, COCA2-squamous,

COCA3-Breast/luminal, COCA4-breast/basal, COCA7-COAD/

READ, and COCA8-BLCA). In the model we included clinical

features such as tumor size, node status, metastasis status,

and age at diagnosis, as well as tissue of origin. We performed

a likelihood ratio test conditioning first on the clinical variables;

when either tissue-of-origin or COCA subtype was added to
Figure 1. Integrated Cluster-Of-Cluster Assignments Analysis Reveals

(A) Integration of subtype classifications from 5 ‘‘omic’’ platforms resulted in the id

types. The groups are identified by number and color in the second bar, with the t

type classification/subtype schemeswas clustered, and each data type is represe

blue; mRNA, red; and RPPA, green.

(B) Mutation status for each of ten significantly mutated genes coded as: wild-ty

(C) Copy-number status for each of nine important genes: amplified, red; deleted

schema is shown to the right.

(D) Overall survival (OS) of COCA subtypes by Kaplan-Meier plot. COCA subtype

(E) The log-likelihood ratio (LR) statistic was estimated as we added clinical varia

model. Clinical variables included age at diagnosis, tumor size, node status, and

model was assessed for significance by chi-square analysis. The set of samples w

with a COCA subtype: BLCA, BRCA, COAD, HNSC, LUAD, LUSC, and READ in

luminal, COCA4-BRCA/basal-like, COCA7-COAD/READ, and COCA8-BLCA. Lef

themodel, followed by a variable representing the COCA subtyping; right bar show

is added. In each case the increase in the ability to predict OS was in terms of th

See also Figures S1, S2, S3 and Data S1, S2, and S3.
the model, a large increase in the predictive fit of the model

was observed, beyond what one would get with the clinical infor-

mation alone (Figure 1E). That observation supports the classical

model in which tissues of origin provides strong predictions

of outcome. Next, we asked whether the COCA subtypes add

additional independent information for predicting survival

beyond the combination of tissue-of-origin and clinical features.

Indeed, we observed a significant increase in statistical likeli-

hood when COCA is added to a multivariate model that already

includes the clinical and tissue-based information (p < 0.0002;

Chi-square test; Figure 1E). Thus, while the COCA classification

differs from tissue-of-origin-based classification in only �10%

of all samples, the difference does provide important molecular

information that reflects tumor biology and is associated with

clinical outcome.

Genomic Determinants of the Integrated COCA
Subtypes
We next identified the major genomic determinants of the

COCA subtypes, including somatic mutations and DNA copy-

number changes (Figures 1B and 1C). For single-nucleotide

variants, we analyzed a Pan-Cancer-12 list of 127 significantly

mutated genes (SMGs) obtained by MuSiC analysis (Kandoth

et al., 2013a). Only three of the genes are mutated at a fre-

quency R10% (TP53, PIK3CA and PTEN), and 11 additional

are mutated at R5% frequency (Table S2A). We also include

a list of 291 high-confidence cancer drivers (HCDs) from

Pan-Cancer-12 analysis (Tamborero et al., 2013) and identified

by a combination of five complementary methods to identify

signals of positive selection in the mutational pattern of genes

across tumors.

A large number of correlations between COCA subtypes and

somatic mutations were found (Figure 2A, Figure S4D, Data

S2). Somatic mutations clearly distinguish the C1-LUAD-

enriched group from the C2-squamous-like group. KEAP1

and STK11 are preferentially mutated in C1-LUAD-enriched tu-

mors, whereas CDKN2A, NOTCH1, MLL2, and NFE2L2, among

others, are preferentially mutated in C2-squamous-like (Fig-

ure 2A). A similarly distinct set of SMGs was seen for the C3-

BRCA/luminal and C4-BRCA/basal groups; only two genes

are shared (TP53 and PIK3CA), and they show different
11 Major Subtypes

entification of 11major groups/subtypes from 12 pathologically defined cancer

issue of origin specified in the top bar. The matrix of individual ‘‘omic’’ platform

nted by a different color: copy number, black; DNAmethylation, purple; miRNA,

pe, white; mutant, red; missing data, gray.

, blue; copy-number neutral, white; and missing data, gray. The color-coding

s are highly correlated with overall survival outcomes.

bles, COCA subtype, or tissue-type information to a cox proportional hazards

metastasis status. The change in LR statistic as features were added to the

as limited to the set of tumor types that did not have a one-to-one relationship

COCA clusters COCA1-LUAD-enriched, COCA2-squamous, COCA3-BRCA/

t bar shows results of adding tissue-of-origin to clinical variables already part of

s results whenCOCA is first added on to clinical variables, and then tissue-type

e LR.
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Figure 2. Genomic Determinants of the Integrative COCA Subtypes

(A) Genes from the high-confidence list of drivers (Tamborero et al., 2013) found to be mutated at a different rate within one COCA subtype compared outside it

based on a two-tailed Fisher’s exact test. Mutation frequency enrichment, red to orange; genes with mutations equaling the background rate, yellow; genes with

no observedmutations in a subtype, white. Displayed are top-ranked genes in terms of significant mutation enrichment (FDR < 1%) in at least one COCA subtype.

(B) Somatic copy-number alterations (SCNAs) in integrative clusters. SCNAs in tumors (horizontal axis) are plotted along chromosomal locations (vertical axis).

The heatmap shows the presence of amplifications (red) and deletions (blue) throughout the genome. The color strip along the top indicates integrative COCA

cluster membership; the number in parentheses indicates percentage of samples in a COCA subtype with TP53 mutation. COCA subtypes are ordered from

highest TP53 mutant percentage to lowest.

(C) Range of copy-number segments in tumors within each integrative cluster. The box and whisker plots show the middle quartiles and the minimum and

maximum number of segments in each cluster group.

See also Figure S4 and Tables S2 and S3.
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mutation frequencies (Table S2A). Since the somatic mutation

results were not used in any way to determine the COCA sub-

types, they provide independent evidence that distinctly
6 Cell 158, 1–16, August 14, 2014 ª2014 Elsevier Inc.
different genetic events underlie the subtypes. A protein-

protein interaction network analysis of mutations associated

with the COCA subtypes obtained using a new version of



C
1−

LU
A

D
−e

nr
ic

he
d

C
2−

S
qu

am
ou

s−
lik

e

C
3−

B
R

C
A

/L
um

in
al

C
4−

B
R

C
A

/B
as

al

C
5−

K
IR

C

C
6−

U
C

E
C

C
7−

C
O

A
D

/R
E

A
D

C
8−

B
LC

A

C
9−

O
V

C
10

−G
B

M

C
13

−A
M

L

GP4_MES/ECM
GP13_Neural signaling
GP3_Tumor suppressing miRNA targets
GP8_FOXO/stemness/ALK
GP7_Estrogen signaling
GP19_1Q amplicon
GP14_Plasma membrane cell−cell signaling
GP21_Anti−apoptosis/DNA stability
GP1_Proliferation/DNA repair
GP5_Myc targets/TERT
GP9_Cell−cell adhesion
GP18_Vesicle/EPR membrane coat
GP2_Immune−T cell/B cell
GP11_Immune−IFN
GP15_EGF signaling
GP16_Protein kinase signaling (MAPKs)
GP6_Squamous differentiation/development
GP17_Basal signaling
GP10_Fatty acid oxidation
GP12_Hypoxia/Glycolosis
GP20_TAL1−leukemia/erythropoiesis
GP22_16Q22−24 amplicon

HER2_AMPLIFIED
MYC_AMPLIFIED
CASPASE_CASCADE (APOPTOSIS)
P53_MUTATED
PROLIFERATION/CELL CYCLE
RB_PATHWAY
BRCA1/2_ATR_PATHWAY
VEGF_PATHWAY
MTOR_PATHWAY
RAS_PATHWAY
RESPONSE_TO_ANDROGEN
ALK_PATHWAY
PI3K_CASCADE
AKT_PATHWAY
IGF1R_PATHWAY
PTEN_PATHWAY
RETINOL_METABOLISM
HDAC_TARGETS_DN
CTLA4_PATHWAY
PD1_SIGNALING

G
en

e 
Pr

og
ra

m
s 

Se
le

ct
ed

 P
at

hw
ay

s 

Integrated Subtypes 

−1.5 0 1.5
Expression value

Color Key

Figure 3. Subtype-Specific Patterns of

Gene-Program and Selected Pathway Ex-

pression Characterizing Each Pan-Cancer-

12 COCA Subtype

The heat map shows integrative subtypes in nu-

merical order. Gene programs (top) and pathway

signatures from a compendium (Table S4) con-

taining signatures for drug targets and canonical

pathways (bottom) were clustered separately from

each other. Red-blue intensities reflect the means

of the scores (red = high, white = average, blue =

low). See also Figures S5 and S6, and Data S5.
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the HotNet algorithm (Vandin et al., 2012) provides an overview

of the genomic determinants of the COCA subtypes

(Figure S4E).

The degree of genomic instability was a major determinant of

subtype, as revealed in copy-number variation (CNV) data (Fig-

ure 2B). The C9-OV, C4-BRCA/basal, and C1-LUAD-enriched

subtypes showed the most marked genomic instability, as

assessed by average number of copy-number segments per

subtype (Figure 2C), whereas AML and UCEC showed the least.

Numerous COCA subtype-associated alterations implicated

specific regions, arm-level copy-number changes (Figure S4A)

and/or focal regions of copy-number alteration (Figure S4B).

Of note were a number of previously described tissue-type-spe-

cific and subtype-specific alterations, including Chr7 gain and

Chr10 loss in GBM (Cancer Genome Atlas Research Network,

2008), 3p loss and 5q gain in kidney (Cancer Genome Atlas

Research Network, 2013a), 4q and 5q loss in breast basal-like

cancers (Cancer Genome Atlas Research Network, 2012c),

and 3p loss and 3q gain in lung squamous tumors (Cancer

Genome Atlas Research Network, 2012a). Of note, the latter

were seen in most C2-squamous-like tumors, regardless of tis-

sue of origin.
Cell 158, 1
Expression-Based Determinants of
the Integrated Subtypes
We next sought to identify gene ex-

pression modules characteristic of each

COCA subtype. First, we started with

6,898 sets of gene signatures docu-

mented to be coexpressed, coamplified,

or to function together. From these, we

identified gene programs as those whose

genes have mRNA-seq signatures of

high mutual correlation across the Pan-

Cancer-12 data set. After applying a

bimodality filter and weighted gene cor-

relation network-based clustering, 22

nonredundant gene programs were iden-

tified (Table S4A, Figure S5A, Extended

Experimental Procedures, Section 5, and

Data S5). Linear classification with the

22 gene programs reconstituted the 11

integrated subtypes with 90% accuracy

(Figure S5A and Table S4B). To view

the expression-based determinants of

the integrated subtypes, we plotted the
average expression level of each gene program within each

COCA cluster (Figure 3). As expected, the gene programs

GP6-squamous differentiation/development, GP13-neural sig-

naling and GP20-TAL-1-leukemia/erythropoiesis were the most

highly expressed in the C2-squamous-like, C10-GBM, and

C13-LAML subtypes, respectively. As well, GP7_Estrogen

signaling was highest in the C3-BRCA/luminal cases, whereas

GP17_basal signaling had its highest levels in the C4-BRCA/

basal cases. Activated pathway characteristics found by enrich-

ment and subnetwork analyses based on PARADIGM infer-

ences, many of which were consistent with the gene program

analysis, are summarized in Table S4A (see Extended Experi-

mental Procedures).

Gene expression programs and PARADIGM pathways carry

clinically relevant information beyond tissue of origin as evi-

denced by a multivariate Cox model of survival with COCA

subtype as a covariate (see Table S4E). Squamous differen-

tiation/development (GP6), proliferation/cell cycle, and estrogen

signaling (GP7) were significant predictors in the model. Intri-

guingly, GP7, along with fatty acid oxidation (GP10), tumor

suppressing miRNA targets (GP3), and the PTEN/MTOR sig-

naling program, were found to be significantly associated with
–16, August 14, 2014 ª2014 Elsevier Inc. 7
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patient outcome in kidney cancer using a Cox proportional

hazards survival analysis (Figure S5D and Table S4F). In com-

mon with the C3-BRCA/luminal subtype cases, higher levels

of estrogen signaling (GP7) were also associated with better

prognosis for C5-KIRC cancers. Consistent with the higher

frequency of elevated HER2 protein levels in bladder, colorectal,

and serous endometrial cancers (Akbani et al., 2014), the HER2-

amplified gene signature appeared elevated in the C8-BLCA,

C7-COAD/READ, and C6-UCEC subtypes, as well as the C3-

BRCA/luminal subtype which contains all HER2-positive breast

cancers. Predictors independent of disease stage included

basal signaling (GP17), associated with decreased overall

survival, and the immune-related PARADIGM pathways PD1_

signaling and CTLA4_pathway, both of which were associated

with increased overall survival. These immune-related signa-

tures may reflect varying amounts of lymphocyte infiltrate in

the tumors as has been estimated by DNA methylation-based

analysis of the Pan-Cancer-12 data set (Figure S5E). In any

case, these immune cell-associated gene programs may be

pertinent to emerging treatment strategies based on immune

modulation. Overall, despite uneven clinical information and

follow-up across the many different Pan-Cancer types, ex-

pression-based determinants of the integrated subtypes were

sufficiently informative to identify pathway-based features of

prognostic value that transcend tissue-of-origin cancer types.

Multiple-Platform Determinants of the Integrated
Subtypes
To gain insight into the genetic and epigenetic determinants

that characterize each of the COCA subtypes, we calculated

differential gene scores derived from each of the separate six

platforms (see Extended Experimental Procedures, Section 4)

as well as PARADIGM pathway features. All differential activities

were mapped to individual genes so that thematic pathways

could be identified (see Data S2). Copy-number data were sum-

marized at the gene level using GISTIC 2.0 and t tests for every

gene were performed for each COCA subtype. DNAMethylation

probes were associated with any gene that fell in the ±1,500 bp

region surrounding gene transcriptional start sites. Genes with

differential mRNA expression were identified using a SAM anal-

ysis on the RSEM values. Genes with differentially expressed

protein products were determined by running a t test on the

131 protein forms represented on the RPPA data. For mutations,

a Fisher’s exact test on the frequency within a COCA subtype

compared to outside the subtype was performed for all of a set

of 291 high-confidence driver genes (Tamborero et al., 2013).

Differentially expressed miRNAs for each COCA subtype were

identified using a Wilcoxon rank-sum test based on the

miRNA-Seq data. Genes were then identified as those predicted

to be targeted by a differentially expressed miRNA that was also

anticorrelated across the Pan-Cancer-12 data set.

Three approaches were used to summarize the unique fea-

tures of the COCA subtypes. First, gene set enrichment analysis

(GSEA) was run on the single-platform gene-based results

and then clustered for visual inspection to elucidate distinctive

pathways (Figure S6A). Second, a supervised Elastic Net

approach was used to classify the COCA subtypes with 95%

accuracy in cross-validation and the predictive features were
8 Cell 158, 1–16, August 14, 2014 ª2014 Elsevier Inc.
collected (Figure S6B; Data S3). Third, ‘‘regulatory hubs’’ from

PARADIGM with more than 15 downstream targets and found

to be differentially activated within a COCA subtype relative to

other subtypes were collected (Table S5A). All three approaches

revealed that each platform detects different pathways and

features with respect to both COCA subtypes and data plat-

forms. The identified discriminating features of the COCA

subtypes confirm several expectations: (1) C3-BRCA/luminal

was defined by protein and gene signatures for ER and GATA3

determined by the Elastic Net model as well as by PIK3CA-

related signaling revealed by copy-number variation-based

and mutation-based GSEA, (2) C5-KIRC was defined by multiple

features of hypoxia found by mutation- and mRNA-Seq-based

GSEA as well as predictive Elastic Net features, and (3) C7-

COAD/READ was in part defined by APC mutations.

Convergence of the Squamous-like Subtype
A striking finding of the integrative subtype analysis was the

coalescence of four distinct tumor types (LUSC, HNSC, some

BLCA, and a very few LUAD) into the single C2-squamous-like

subtype. We investigated the genomic- and pathway-based de-

terminants of the subtype. The three main tumor types included

shared loss of 3p and increased TP63, PIK3CA, and SOX2 gene

copies within a characteristic 3q amplicon (Figure 4A). Those re-

gions are well known in LUSC (Cancer Genome Atlas Research

Network, 2012a) and HNSC (Bhattacharya et al., 2011; Walter

et al., 2013), and the results here extend that observation to

include a subgroup of BLCA cases. In addition, the C2-squa-

mous-like subtype tends to show amplification of MYC and

loss of CDKN2A, RB1, and TP53. TP53 mutation is frequent

(72%), followed by a dramatic drop-off in mutation frequency

to MLL2 (20%), PIK3CA (19%), CDKN2A (18%), NOTCH1

(16%), NFE2L2 (10%), and MALAT1 (6%), the only other genes

mutated at R10% frequency (Table S2A). Of potential interest

in the C2-squamous-like group, tumors without TP53 mutations

show a higher density of PIK3CAmutations (Figure 1), consistent

with recent evidence linking PI3K activation and wild-type TP53

inactivation in HNSC (Herzog et al., 2013). Putative driver

analysis identified several genes (PIK3CA, MLL3, and KEAP1)

frequently mutated in the C2-squamous-like group but also

in other COCA subtypes (Figure 4B). Of these, FRG1B and

CASP8 were found to be significantly more associated with

HNSC by Fisher’s exact test. Putative driver analysis also re-

vealed a number of genes with higher mutation frequencies

in the C2-squamous-like subtype than in any other subtype:

TP53, SYNE1, MLL2, CDKN2A, NOTCH1, NFE2L2, and EP300,

among others (Figure 4C; Figure S7A).

An extension of the HotNet algorithm (Vandin et al., 2012)

was run on all genes mutated in R2% of any one subtype in

conjunction with the HINT physical protein-protein interaction

network (Extended Experimental Procedures, Section 4; Table

S3). HotNet identified four subnetworks of mutated genes

characteristic of the C2-squamous-like subtype (Table S3B).

The largest, most frequently mutated subnetwork (91.7% of

C2-squamous-like samples) includes many well-known cancer

genes and tumor suppressors, including TP53, CDKN2A, and

PTEN. The second most mutated subnetwork (59.9%) consists

of NFE2L2, CUL3, and KEAP1, CCNE1, FBXW7, and NOTCH1.



Figure 4. Genomic Determinants of the C2-Squamous-like COCA Subtype

(A) SCNAs for the C2-squamous-like subtype are shown, highlighting the importance of 3q26 gains across the different tissue-of-origin samples.

(B) Selected genes from 291 high-confidence driver (HCD) genes (Tamborero et al., 2013) mutated in >5% of C2-squamous-like samples and comparable in

frequency in other subtypes. Samples with protein-affecting mutations in those genes are shown in green.

(C) HCD genes (as in B) with mutation frequency significantly higher in C2-squamous-like tumors relative to others (stated at p < 0.01 according to Fisher’s exact

test with FDR correction). The method used corrections for imbalance in the number of samples from different tissues (see Extended Experimental Procedures,

section 8).

(D) Two subnetworks of mutated pathways identified by an updated HotNet algorithm analysis using HINT interactions (see Extended Experimental Procedures)

as mutated in at least 20% of the samples of the C2-squamous-like subtype. Links between pie charts indicate interactions among the proteins in each sub-

network. Each gene (node) is colored by wedges whose size indicates the relative proportion of the gene’s mutations that are in samples from each integrated

subtype. To the right of the pie charts is a gene-by-sample mutation matrix representing the mutation status of each gene across all squamous-like samples. Full

ticks represent SNVs, lower ticks represent deletions and upper ticks represent amplifications. The color of each tick indicates tissue-of-origin type, with gray

indicating no mutation in the corresponding sample.

See also Figure S7 and Table S5.
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NFE2L2, CUL3, and KEAP1 are well-known regulators of oxida-

tive stress. The third most mutated subnetwork (37.1% of squa-

mous samples) includes the ASCOM complex (MLL2 and MLL3)

and the putative ASCOM-interacting protein KDM6A. These pro-

teins are involved in histone modifications that promote tran-

scription. In addition, consistent with previous reports on collec-

tive motility in squamous cell carcinomas (Friedl and Gilmour,

2009), RAC and RHO signaling are also elevated in the C2-squa-
mous-like subtype based on PARADIGManalysis (Table S4Aand

Figure S7B).

Molecular Features Common to the Squamous, Breast
Basal, and Ovarian Subtypes
Past work highlighted transcriptional similarities between the

breast basal-like subtype and LUSC (Chung et al., 2002), as

well as breast basal-like and serous ovarian cancers (Cancer
Cell 158, 1–16, August 14, 2014 ª2014 Elsevier Inc. 9
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Figure 5. Comparison ofMolecular Characteristics of C2-Squamous-like, C4-BRCA/Basal, andC9-OVSubtypes Reveals Differences in TP63

and TP53 Signaling

(A) Relative significance of TP63 network activation within the C2-squamous-like and C4-BRCA/basal subtypes. The network neighbors surrounding the TAp63g

and DNp63a tetramer complexes that show significant activation (or inactivation) within the C2-squamous-like and/or C4-BRCA/basal subtypes relative to all

other cases were visualized using Cytoscape (Shannon et al., 2003). Node shape reflects relative significance in the one-versus-all comparison (square: more

significant in C2-squamous-like, triangle: more significant in C4-BRCA/basal). Node color indicates relative activity (red: activated in C2 and C4, blue: inactivated

in C2 and C4, purple: activated in C2 but inactivated in C4, white: activated or inactivated in only one subtype).

(B) Box plot of isoform-specific levels of TP63 and TP73 within three of the TP53-frequently mutated COCA subtypes (C2-squamous-like, C4-BRCA/basal, and

C9-OV).

(C) CircleMap of PARADIGM-Shift differences associated with TP53 mutations within the C2, C4, and C9 COCA subtypes. Samples were ordered first by

integrative subtype membership (innermost ring), then by TP53 mutation status (second ring), and finally by P-Shift (outer ring, indicating TP53 activity). The

GISTIC score (indicating CNV), mRNA expression level, PARADIGM upstream and downstream activities are shown in the third, fourth, fifth and sixth rings,

respectively. Red-blue color intensity reflects magnitude (red: positive, blue: negative). TP53-truncating mutants are highlighted (black outlined wedge), and the

mean P-shift scores of the truncating mutants are shown. Negative P-Shift scores (outer ring blue) predict loss of function (LOF).

(legend continued on next page)
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Genome Atlas Research Network, 2012c). We therefore asked

if those subtypes share additional characteristics. The C9-OV

(94%), C4-BRCA/basal (80%) and C2-squamous-like (72%)

subtypes have the highest frequencies of TP53 mutation. All

three show a very high frequency of copy-number changes (Fig-

ure 2C), and all are significantly enriched with amplifications of

3q26 and 8q24/cMYC and losses of chromosomes 4q, 5q, 8p,

and 18q (Figure 2B). The COCA subtypes share features com-

mon to a pan-cancer cluster identified by a parallel analysis of

the transcriptional profiles of these same tumors (Martinez

et al., 2014), which was found to be associated with genomic

loss of CDKN2A (p16ARF), increased numbers of DNA double-

strand breaks, high expression of cyclin B1, and upregulation

of proliferation genes.

Consistent with our previous TCGA report noting the similar-

ities between breast basal-like and serous ovarian cancers

(Cancer Genome Atlas Research Network, 2012c), the copy-

number profiles of the integrative subtypes place the C4-

BRCA/basal subtype closest to the C9-OV subtype (Figure S4C);

both are also near a cluster tree branch that contains C2-

squamous-like and C8-BLCA. All six of those subtypes show

TP53 mutation and large-scale copy-number changes.

Pathway commonalities between the C4-BRCA/basal and

C9-OV subtypes (Table S5B) largely recapitulate previous find-

ing using PARADIGM analysis that both subtypes show acti-

vation of cMYC and FOXM1/proliferation signaling (Cancer

Genome Atlas Research Network, 2012c). However, HIF1A

signaling in those subtypes, despite previously being reported

as high, appears less active in this pan-cancer context, probably

due to the presence of other cancer types with clearly elevated

HIF1A signaling (e.g., C5-KIRC). In terms of gene programs,

C2-squamous-like tumors show high expression of the basal

signaling gene program (GP17), at levels comparable with those

in the C4-BRCA/basal tumors (Figure 3). In addition, both sub-

types show upregulation of the proliferation/DNA synthesis

gene program (GP1), as well as signatures of TP53 mutation,

MYC targets/TERT, VEGF signaling, and activation of the PD1

and CTLA4 immune costimulatory pathways (Table S4A, Fig-

ure 3). Indeed, principal components analysis showed that

C2-squamous-like and C4-BRCA/basal tumors are the most

similar COCA subtypes with regard to gene program/drug path-

way expression (Figure S5B).

In line with those findings, a systematic search for PARADIGM

pathway commonalities between the C2-squamous-like and

C4-BRCA/basal tumors through the definition of a ‘‘basalness

score’’ (Cancer Genome Atlas Research Network, 2012c) re-

veals shared activation of proliferation- and immune-related

pathways. TP63 network dysregulation is apparent in HNSC

and LUSC (Figure S7C, Table S5), as found previously (Cancer

Genome Atlas Research Network, 2012a; Walter et al., 2013).

It has also been associated with normal basal stem/progenitor

cell function in other organs (e.g., breast, urogenital tract)
(D) Unsupervised clustering of C2-squamous-like, C4-BRCA/basal, and C9-OV

signatures. Sample subtype assignment (pink, C2-squamous-like, blue: C4-BRCA

black; missense, gray) are indicated in the column color bar. Heatmap red-blue c

Three main clusters of correlated signatures were identified (denoted I, II, and III

See also Figure S7 and Table S5.
(Crum and McKeon, 2010). However, closer scrutiny of the

network neighborhood surrounding the TAp63 g and dNp63a

complexes reveals that TP63 activation is more significant in

the C2-squamous-like tumors than it is in the C4-BRCA/basals,

and it involves a larger number of TP63 network targets (Fig-

ure 5A). Indeed, TP63 expression levels, in particular expression

of the oncogenic DNp63 isoform, are significantly higher in the

C2-squamous-like subtype than in the C4-BRCA/basal tumors

(Figure 5B). Notably, we did not see TP63 network activity or

increased expression in the C9-OV subtype (Table S4A and

Figure 6B).

High TP53 mutation rates characterize several tumor types

including those represented by the COCA subtypes C4-BRCA/

basal, C9-OV, and C2-squamous-like (Table S2A). Surprisingly,

our pathway and gene program analysis reveal a pattern of

TP53 compensation in the C2-squamous-like tumors that

distinguishes them from these other subtypes with high TP53

mutation rates. First, the C2-squamous-like tumors do not

exhibit significant loss of PARADIGM-inferred TP53 activity

(Table S4A) and PARADIGM-SHIFT analysis (Ng et al., 2012) pre-

dicts loss-of-function of TP53-truncating mutations (observed

in 43% of C4-BRCA/basal, 38% of C9-OV, and 30% of C2-

squamous-like cases) at a significantly higher degree in the

C4-BRCA/basal and C9-OV subtypes compared to the C2-

squamous-like subtype (Figure 5C). Second, the copy-number

data when aligned with TP53missense and truncating mutations

reveals more loss of heterozygosity (LOH) in the C9-OV and

C4-BRCA/basal than in the C2-squamous-like samples. The

apparent higher TP53-pathway activity in C2-squamous-like

tumors may be related to the expression of isoforms of related

family members TP63 and/or TP73 (Figure 5B), which may

compensate for TP53 mutation in the C2-squamous-like tumors

as revealed by PARADIGM-Shift analysis (Figure 5C), and

as supported by functional experimental data in HNSC lines

and tumors (Lu et al., 2011). In HNSC, the function of TP63/73

in growth of HNSC is modulated in the presence of inflammatory

factor TNF-a and cREL. Third, the transcriptional targets of TP53

shared with TP63/73 appear to be more highly expressed in the

C2-squamous-like subtype than in the C9-OV or C4-BRCA/

basal subtype (Figure S7D). Indeed, hierarchical clustering of

33 TP53-related gene signatures subsets the C2-squamous-

like, C4-BRCA/basal and C9-OV tumors predominantly by sub-

type (left side dendrogram subtree: 99% C4-BRCA/basal/

C9-OV; right-side dendrogram subtree: 98% C2-squamous-

like) (Figure 5D). However, with the exception of the C4-BRCA/

basal-like subtype, the levels of TP53 activity were not predictive

of overall survival when restricted to the analysis within a

subtype. For the C4-BRCA/basal case, the PARADIGM-Shift

scores do provide a moderate predictive degree when only the

TP53 truncating mutants are considered (p < 0.05). Interestingly,

TP63/73 compensatory function has been linked to cisplatin

chemo-sensitivity and survival in BRCA1-related triple-negative
cancers based on the expression patterns of 33 published TP53-related gene

/basal; purple, C9-OV) and TP53 mutation status (wild-type, white; truncating,

olor intensity reflects magnitude (red, positive; white, average; blue, negative).

); see Data S4 (syn2491513) for complete list of signatures in each cluster.
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Figure 6. Divergence of the Bladder Cancer Samples across Multiple COCA Subtypes

(A) Kaplan-Meier survival analysis of bladder cancers within the C1-LUAD-enriched, C2-squamous-like, and C8-BLCA subtypes.

(B) Heatmap of 17 proteins expressed at significantly different levels within the C2-squamous-like relative to the C8-BLCA bladder cancer samples. Samples are

arranged along the column by subtype (pink, C2; light blue, C8); and protein data are ordered along the rows by clustering. Rainbow color scale reflects

magnitude (red, high; green, average; blue, low).

(C) HCD genes with differential mutation frequencies among the bladder samples clustered in COCA subtypes C1, C2, and C8. Differential frequencies reflect

frequencies within, relative to frequencies outside of, the COCA subtype.

(D) Heatmap of 11 gene programs showing significant differential expression between the C2 andC8 bladder cancers. Samples are arranged along the column by

subtype (pink, C2; light blue, C8), and gene programs are ordered along the rows by clustering. Red-blue color scale reflects magnitude (red, high; blue, low).

(E) PARADIGM subnetwork of immune-related pathway biomarkers activated in C2 bladder cancers relative to the C8 subtype. Red-blue color scale represents

relative activation (red, higher in C2; blue, higher in C8). Node size reflects relative significance, and node shape denotes feature type (diamond, multiprotein

complex; v-shaped, cellular process; circle, genes; square, gene family). Color of an edge reflects type of interaction within the PARADIGMSuperPathway (purple

arrows, activation; green T, inhibition).

See also Figure S8 and Table S6.
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breast cancers (Leong et al., 2007). These studies show the

potential for p63/73 compensatory function for mutated or sup-

pressed p53 in HNSCC and breast cancer, which has potential

implications for targeted and standard therapy across these
12 Cell 158, 1–16, August 14, 2014 ª2014 Elsevier Inc.
malignancies. These data indicate that TP53/63/73 downstream

activities are of potentially broader significance among the

C2-squamous-like, C9-OV and C4-BRCA/basal subtypes, with

similarly high TP53 mutation rates.
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Divergence of Bladder Cancer Subtypes
Despite a relatively small sample size (n = 120), bladder cancer

was one of the most diverse of the tumor types, with samples

clustering into 7 of the 11 major COCA subtypes (Table S6).

The majority of the samples fell into three main COCA groups:

10 in C1–LUAD-enriched, 31 in C2-squamous-like, and 74 in

C8–BLCA. Correlation with histology showed that the bladder

samples in the C2-squamous-like group did, indeed, have evi-

dence of squamous features, although most in that subtype

had less than 50% squamous differentiation upon review by a

team of five urological pathologists. The genomic classifications

are consistent with evidence for diverse squamous, adenocarci-

noma and other variant histologies in bladder carcinoma (Willis

et al., 2013). Because it is one of themost diverse tissue-of-origin

tumor types in the Pan-Cancer-12 set, we looked at survival

differences among the three main COCA groups of bladder can-

cers. Samples in the C2-squamous-like and C1-LUAD-enriched

groups showed significantly worse overall survival than those in

the C8-BLCA group (Figure 6A; Figure S8B). The same distinc-

tion held in proteomics-only analyses (Akbani et al., 2014),

consistent with the worse overall survival of the other tumor

types (LUAD, LUSC, and HNSC) that predominate in the C1-

LUAD-enriched and C2-squamous-like subtypes.

We focused on the two larger subsets (C2-squamous-like and

C8-BLCA) of bladder cancers, performing single-platform and

integrated-platform comparisons. There are significant differ-

ences in copy number (Figure S4A), protein expression (Fig-

ure 6B), mutations (Figure 6C), gene programs (Figure 6D), and

PARADIGM pathway networks (Figure 6E; Figure S8A). There

is also a significant difference in 3p arm-level events; the C2-

squamous-like subset shows the characteristic squamous-like

pattern of 3p loss, whereas the C8-BLCA subtype does not

(Figure 2B). Consistent with findings from the Pan-Cancer prote-

omics analysis (Akbani et al., 2014), higher HER2 and Rab25

protein levels are observed in the majority of the C8-BLCA cases

relative to the C2-squamous-like bladder cases (Figure 6B).

Conversely, markers of epithelial-to-mesenchymal transition

(EMT) such as low E-cadherin, high fibronectin, and high N-cad-

herin expression are apparent in the C2-squamous-like bladder

cancers (Figure 6B). Both gene program and PARADIGM ana-

lyses reveal differences in immune cell signatures; the bladder

C2-squamous-like samples show higher levels of immune cell-

associated signatures (Figure 6D and 6E). That difference, which

has also been noted for lung squamous (Cancer Genome Atlas

Research Network, 2012a) and breast basal-like cancers (Prat

et al., 2010), could contribute to differences in outcome and

suggest therapeutic targets.

DISCUSSION

This integrated multiplatform analysis of 12 cancer types pro-

vides independent and clinically relevant prognostic information

above and beyond tumor stage and primary tissue-of-origin.

Based on this study, one in ten cancer patients would be

classified differently by this new molecular taxonomy versus

our current tissue-of-origin tumor classification system. With

respect to its therapeutic relevance, this proportion of poten-

tially misclassified tumors is comparable to the rate of EGFR
mutations in unselected non-small cell lung cancers (Lynch

et al., 2004; Paez et al., 2004) and ERBB2 amplifications among

all breast cancers (Cancer Genome Atlas Research Network,

2012c). If used to guide therapeutic decisions, this reclassifi-

cation would affect a significant number of patients to be con-

sidered for nonstandard treatment regimens. In addition to

identifying several new genomic and pathway insights between

and within tissue-of-origin tumor types, this TCGA study pro-

vides a public resource compendium of individual and integrated

data sets from six different ‘‘omic’’ platforms, comprehensively

characterizing >3,500 tumors and enabling researchers to

explore new questions and analytical approaches that will

perpetuate this discovery process.

It is possible that each COCA subtype reflects tumors arising

from distinct cell types. In this new taxonomy, cancers of none-

pithelial origin (e.g., neural, muscle, connective tissue) appear

most different from epithelial tumors based on virtually all molec-

ular platforms. The next most marked difference is apparent

between epithelial cancers arising from basal layer-like cells

(C2-squamous-like and C4-BRCA/basal) and those with secre-

tory functions (C1-LUAD-enriched and C3-BRCA/Luminal).

Molecular commonalities within a COCA subtype suggest com-

mon oncogenic pathways. The C2-squamous-like cancers likely

arise from a cellular subtype shared between environmentally

exposed epithelial surfaces (e.g., oral cavity, lungs, and bladder);

and malignancies from this cellular subtype possess a charac-

teristic set of dysregulated genomic features, including SOX2

and DNp63 high expression (by 3q26-29 amplification) with

TP53 mutation. Although some of these pathway features have

previously been reported for normal squamous tissue develop-

ment and homeostasis (Crum and McKeon, 2010) and in

squamous cell carcinomas of specific organ sites (Maier et al.,

2011; Yang et al., 2011), they have not previously emerged

collectively as a broad subtype-defining phenotype from an

integrated genomic analysis of thousands of different tumors.

Cancers in the C2-squamous-like subtype appear most similar

to those in the C4-BRCA/basal subtype, which in turn show

pathway similarities to those in the C9-ovarian. While all three

COCA subtypes exhibit comparably high TP53 mutation fre-

quencies and expression of the GP17_Basal signaling gene

program, the C2-squamous-like cancers are distinguished

from all others by their significantly higher TP63 and TP73 ex-

pression, both short (DNp63, DNp73) and long (TAp63, TAp73)

isoforms, which may partially compensate TP53 mutation in

this COCA subtype.

In this integrated analysis, bladder cancers (BLCA) emerged

as the most heterogeneous of all Pan-Cancer-12 malignancies,

with multiple samples falling into primarily three different

integrated subtypes (C1-LUAD-enriched-like, C2-squamous-

like and C8-BLCA). The clinical relevance of Pan-Cancer inte-

grated subtyping is apparent in this divergent cohort of tumors.

Survival is dependent on subtype membership, with the C2-

squamous-like BLCA cases showing earlier mortality than the

more common C8-BLCA cases (Figure 6A). Those BLCA cases

in the C2-squamous-like subtype display immune features

common to the C2-squamous-like subtype, that are pertinent

to two areas of current interest among bladder cancer re-

searchers: (1) epidemiologic and experimental evidence that
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chronic cystitis and recurrent bladder inflections (or other phys-

ical irritants) capable of inducing squamous metaplasia can

predispose to squamous cancer of the bladder; and (2) the

observation that early-stage bladder cancers are often respon-

sive to intravesicular T cell induction by Bacillus-Calmette-Gue-

rin (BCG) anti-TB vaccination. These findings strongly support a

COCA subtype specific approach to postresection surveillance,

adjuvant therapy and management of metastatic disease for

bladder cancer patients.

Our results suggest that ‘‘cell-of-origin’’ rather than pathway-

based features dominate the molecular taxonomy of diverse

tumor types. There are several possible explanations for this

observation. First and foremost, there are hundreds to thou-

sands of features (mRNAs, proteins, microRNAs) with cell-type

specific expression patterns, whereas pathways tend to regulate

a much smaller subset of components—tens to hundreds of

genes and their products. Second, pathways are often used

in a cell-type-specific manner (e.g., APC-pathway in colon/

rectum); therefore, pathway-based features are likely subsumed

by a cell-of-origin-based classification. Further research is

needed to uncover pathway dependencies within a cell-of-origin

context, of which many such relationships already exist (i.e.,

EGFR in LUAD, BRAF in Melanoma, etc.).

In closing, the refined molecular taxonomy we describe builds

on centuries of pathology and genetic research. The data sets

and results have been collected into a unified resource on

Synapse to support integrative bioinformatics analysis. To sup-

port navigation through these findings, the results have been

made available through several portals including the UCSC

Genome Browser, Gitools, and MD Anderson’s Next Generation

Heatmaps (see the Extended Experimental Procedures). New

methods to mine these data will enable ‘‘subtracting away’’ the

dominant cell-of-origin signals to reveal information about

pathway signaling and tumor microenvironments (e.g., stromal

and immune components). This new taxonomy provides inde-

pendent prognostic information above and beyond stage and

tissue of origin, and further investigations may provide novel

pathway-based insights with clues for personalizing therapy.

Follow-up studies are needed to validate the findings reported

here, and additional samples and tumor types will extend the

integrated analysis. However, this initial PanCancer-12 analysis

lays the groundwork for a richer classification of tumors into

molecularly defined subtypes unlike all prior cancer classifica-

tion systems.

EXPERIMENTAL PROCEDURES

Data for the complete set of 5,074 TCGA samples were obtained for the

December 22, 2012 Pan-Cancer-12 data freeze from the Sage Bionetworks

repository, Synapse. All data are made available through the Synapse website

(https://www.synapse.org) and referenced with Synapse identifiers denoted

as synN, where N provides a unique identifier within the Synapse system. All

result files relevant for subtyping and downstream analyses are available

from syn2468297.

Mutation Data and Predicted Driver Genes

Single-nucleotide variant calls for all samples in each of the 12 different tumor

types were obtained from the official data freeze for each individual data type.

Briefly, mutation calls were obtained from the separate TCGA working groups

and processed to de-duplicate and re-annotate them using the ENSEMBLE
14 Cell 158, 1–16, August 14, 2014 ª2014 Elsevier Inc.
version 69 transcript database. The combined mutation annotation format

(MAF) file is available from the Synapse resource.

One hundred and twenty-seven significantly mutated genes (SMGs) were

identified in the entire sample set as those mutated more frequently than the

background model according to MuSiC analysis as described in (Kandoth

et al., 2013a). The SMG analysis was also performed by running MuSiC

restricted to each COCA subtype. Lastly, genes whose mutations predomi-

nantly occur within a given COCA subtype were identified by using the list of

high-confidence drivers retrieved by the combined analysis of several signals

of positive selection, as described in (Tamborero et al., 2013).

Cluster-of-Cluster Assignments

Subtypes derived from each of the six platforms—mRNA-Seq, miRNA-Seq,

reverse-phase protein arrays (RPPA), structural copy-number alterations

(SCNA), DNA methylation, and somatic mutations—were calculated as

described in the Extended Experimental Procedures section. Subtype calls

for each of the six platforms were used to identify relationships among the

different COCA subtypes and coded into a series of indicator variables for

each subtype. The binary matrix was then used in the ConsensusClusterPlus

R-package (Wilkerson and Hayes, 2010) to identify patterns of relationship

among the samples. ConsensusClusterPlus was run with 80% sample resam-

pling and 1,000 iterations of hierarchical clustering based on a Pearson

correlation distancemetric. More information on integrative subtyping analysis

can be found in Extended Experimental Procedures, Section 2. The integrated

COCA subtypes are available on the Synapse resource.

Survival Analysis for Pan-Cancer-12 and Squamous

Bladder Samples

Overall survival was calculated for samples using information from the enroll-

ment and follow-up forms available at the DCC and downloaded on June 17,

2013. Kaplan-Meier survival plots were generated with the package Survival in

R. A log-rank test was used to assess significance.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, eight

figures, seven tables, and five data files and can be found with this article

online at http://dx.doi.org/10.1016/j.cell.2014.06.049.
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