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A protein expression atlas on tissue samples 
and cell lines from cancer patients provides 
insights into tumor heterogeneity and 
dependencies

Jun Li    1, Wei Liu1, Kamalika Mojumdar    1, Hong Kim1, Zhicheng Zhou1, 
Zhenlin Ju1, Shwetha V. Kumar1, Patrick Kwok-Shing Ng2,8,9, Han Chen1, 
Michael A. Davies    3, Yiling Lu4, Rehan Akbani    1  , Gordon B. Mills    5   & 
Han Liang    1,6,7 

The Cancer Genome Atlas (TCGA) and the Cancer Cell Line Encyclopedia 
(CCLE) are foundational resources in cancer research, providing extensive 
molecular and phenotypic data. However, large-scale proteomic data 
across various cancer types for these cohorts remain limited. Here, 
we expand upon our previous work to generate high-quality protein 
expression data for approximately 8,000 TCGA patient samples and around 
900 CCLE cell line samples, covering 447 clinically relevant proteins, 
using reverse-phase protein arrays. These protein expression profiles offer 
profound insights into intertumor heterogeneity and cancer dependency 
and serve as sensitive functional readouts for somatic alterations. We 
develop a systematic protein-centered strategy for identifying synthetic 
lethality pairs and experimentally validate an interaction between protein 
kinase A subunit α and epidermal growth factor receptor. We also identify 
metastasis-related protein markers with clinical relevance. This dataset 
represents a valuable resource for advancing our understanding of cancer 
mechanisms, discovering protein biomarkers and developing innovative 
therapeutic strategies.

Molecularly characterized patient tumors and cancer cell lines lay a 
critical foundation for modern cancer research, enabling the study 
of intertumor heterogeneity and oncogenic mechanisms, as well as 
the development of therapeutic strategies and biomarkers. Over 
the last decade, the cancer research community has made tremen-
dous efforts to systematically characterize cancer samples through 
high-throughput molecular profiling data. Among these efforts, The 
Cancer Genome Atlas (TCGA) and the Cancer Cell Line Encyclopedia 
(CCLE) are the most widely used and deeply characterized resources, 
providing a comprehensive molecular portrait for ~11,000 patient 

samples across 33 cancer types1,2 and ~1,000 cancer cell lines of diverse 
lineages3–9. Although DNA and RNA data from these resources have been 
extensively characterized, the parallel large-scale protein expression 
data remain limited. Because proteins are the basic functional units in 
various biological processes and are the direct drug targets, this limita-
tion represents a notable knowledge gap in gaining a full understanding 
of the molecular bases of human cancers and developing more effective 
strategies for precision cancer medicine10.

Reverse-phase protein arrays (RPPAs) are a quantitative antibody- 
based approach to assess the expression of selected proteins in a large 
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showed no significant differences, suggesting that the data quality is 
consistent between the two phases (Extended Data Fig. 1e). Lineage- 
specific correlation analysis of RPPA total proteins with mRNA or MS 
data resulted in an average correlation of ~0.4 for both (Extended Data 
Fig. 1f), largely because of the reduced sample size in each lineage 
(Extended Data Fig. 1g). For PTM proteins, the average correlations 
were much lower: 0.23 and 0.24 for mRNA and MS-based total pro-
teins22, respectively, indicating that PTM protein levels could not be 
accurately imputed by expression levels of mRNA and total proteins 
(Fig. 1e). We also analyzed the expression of phosphorylated proteins 
in NCI60 cell lines29. The average correlation between RPPA and MS data 
was 0.44, consistent with our observation for total proteins (Extended 
Data Fig. 1h). For example, a phosphorylated heat-shock protein (HSP27 
pS82), exhibited a Pearson’s correlation of 0.7 between the two datasets 
(P = 2.3 × 10−6; Extended Data Fig. 1i). Overall, our thorough, multilay-
ered quality control (QC) analyses indicate the high quality of RPPA data 
and the consistency across various platforms and phases.

RPPA protein expression patterns in TCGA samples
On the basis of TCGA RPPA500 data, we performed an unsupervised 
clustering analysis and identified ten clusters across 32 cancer types 
(Fig. 2a). Most clusters were dominated by individual cancer types 
or cancer types from the same tissue of origin. Furthermore, tumors 
from different tissue sites but similar organ systems tended to cluster 
together (for example, pan-GYN, encompassing breast cancer and 
gynecological malignancies, and pan-GI, encompassing malignancies 
occurring throughout the gastrointestinal tract; Fig. 2b). These pat-
terns are generally consistent with the clustering patterns based on 
gene expression data, highlighting that lineage effects are dominant 
in protein expression30.

For individual proteins, those from the same pathways tended to 
cluster together (Fig. 2a). For example, the phosphatidylinositol 3-OH 
kinase (PI3K) signaling pathway formed a cluster in which phosphoryl-
ated protein kinase B (AKT pS473 and pT308) and phosphorylated 
glycogen synthase kinase 3 (GSK3 pS9 and pS21S9) were strongly upreg-
ulated in K5 and phosphorylated ribosomal protein S6 (pS235S236 and 
pS240S244) was strongly upregulated in K1. Protein kinase C (PKC) 
formed a cluster and showed a strong signal in K5 (PKCα, PKCα pS657 
and PKCABII pT638T641). Immune-related markers also formed a 
cluster, with granzyme B, cleaved caspase 7, cluster of differentiation 
4 (CD4) and spleen tyrosine kinase being downregulated in K5 but 
upregulated in other clusters.

Interestingly, some cancer types were split into multiple clus-
ters, showing distinct overall survival patterns. For example, KIRC 
samples in cluster K7 showed a worse prognosis than in K10 (log-rank 
test, P = 6.6 × 10−4; Fig. 2c), while cervical squamous cell carcinoma 
(CESC) samples in K7 showed a worse prognosis than in K1 (log-rank 
test, P = 1.3 × 10−2; Fig. 2d and Extended Data Fig. 2a,b). Pathway analy-
sis showed a higher epithelial–mesenchymal transition (EMT) score 
in K7 than K10 in KIRC and K1 in CESC (Extended Data Fig. 2c) and a 
lower IFNα score in K7 than K10 in KIRC and K1 in CESC (Extended Data 
Fig. 2d). Downregulation of IFNα in K7 suggests a potential suppression 
of the immune response. These findings suggest EMT upregulation 
and IFNα downregulation as features of the K7 cluster, which may 
explain the worse prognosis associated with patients in the K7 cluster. 
We further analyzed molecular drivers associated with RPPA clusters 
(Extended Data Fig. 2e,f). Accounting for cancer type as a covariate, 
we identified several significant gene–cluster pairs. Interestingly, K1 
and K8 were associated with multiple driver gene alterations (TP53 and 
PIK3CA mutations; PTEN loss) but with reversed patterns. These results 
indicate that RPPA data provide a unique perspective to characterize 
intertumor heterogeneity and identify related clinical patterns and 
cancer drivers.

Protein profiling data represent a more direct readout of pro-
tein activity than mRNA expression; therefore, it is critical to assess 

number of samples in a high-throughput, cost-effective and sensitive 
manner11. Using this platform, we previously generated high-quality 
protein expression data for TCGA patient tumors12 and CCLE cell 
lines (including both baseline and perturbed protein expression pro-
files)3,13,14. These datasets provide deep insights into tumor subtype 
classification, cancer signaling rewiring in diverse tumor contexts, 
drug resistance mechanisms, novel biomarkers and therapeutic strat-
egies1,15–18. Importantly, we developed user-friendly data portals to 
facilitate a broad community in analyzing and visualizing these data19,20. 
However, one major drawback of these earlier efforts (phase I) is the rel-
atively small number of protein markers assessed (~200), leaving many 
cancer-related pathways uncovered or insufficiently characterized.

To increase the utility of TCGA and CCLE cohorts, we finished a 
phase II characterization of ~8,000 TCGA tumor samples and ~900 
CCLE cell lines using an updated RPPA platform. This effort sub-
stantially increases the number of proteins profiled to ~500 (that is, 
RPPA500), which covers almost all known cancer hallmarks and a large 
portion of clinical markers and therapeutic targets. We then performed 
integrated analyses of this dataset with other pre-existing molecular 
and phenotypic data to demonstrate the unique value of RPPA-based 
protein expression profiling in translational research.

Results
Upgraded RPPA resource for TCGA and CCLE samples
We generated quantitative protein expression data from ~8,000 TCGA 
patient tumor samples and ~900 CCLE cell line samples using our 
updated RPPA platform (Fig. 1a), now covering ~500 high-quality pro-
tein markers (240 more protein markers than in phase I). We validated 
antibody candidates through a comprehensive workflow (Extended 
Data Fig. 1a). Following the established guidelines11 and the phase I 
processing pipeline12,21, we quantified and normalized the RPPA data 
through four steps, from raw images to batch-effect-corrected data 
(Extended Data Fig. 1b). After rigorous sample-wise and protein-wise 
correlation analyses to ensure data quality, the upgraded RPPA500 
dataset is available on The Cancer Proteome Atlas (TCPA; https://tcpa-
portal.org)20.

The final RPPA500 dataset (Supplementary Table 1) covers 7,828 
TCGA patient samples across 32 cancer types, with the largest cohorts 
in breast invasive carcinoma (BRCA, n = 881), kidney renal clear cell 
(KIRC, n = 478) and uterine cancers (UCEC, n = 440) (Fig. 1b). In parallel, 
it contains 878 CCLE cell line samples of 24 lineages (Supplementary 
Table 2), primarily used in cancer research and characterized by various 
molecular profiling methods3,4,22 and phenotypic assays8,23–26 (Fig. 1c). 
The updated dataset contains 447 protein markers (357 total and 90 
post-translationally modified (PTM) proteins; Supplementary Table 3), 
targeting crucial oncogenic pathways and therapeutic biomarkers. 
Compared to phase I (refs. 12,20,27), the phase II protein set covers 15 
new hallmark sets (30%) with ≥5 protein markers; furthermore, for 60% 
of the hallmark sets covered by both phases, RPPA500 has, on aver-
age, an 80% increase in the protein numbers assessed per set (Fig. 1d, 
Extended Data Fig. 1c and Supplementary Table 4). This expansion, 
thus, greatly increases our ability to interpret cancer mechanisms and 
generate clinically relevant hypotheses. For example, by comparing 
different RPPA-based interferon-γ (IFNγ) response pathway scores to 
those from the literature28, we found that the pathway score based on 
RPPA500 (phases I and II) showed significantly higher correlations than 
that based on phase I data, consistently across cancer types (Extended 
Data Fig. 1d).

To further evaluate the RPPA500 data quality, we compared RPPA 
protein levels with corresponding mRNA expression (mean Pearson’s 
R = 0.51) and mass spectrometry (MS)-based protein expression 
(mean Pearson’s R = 0.52) for total proteins3. Compared to correla-
tions between MS-based protein and mRNA expression (mean Person’s 
R = 0.54), our data showed overall good correlation and consistency 
(Fig. 1e). In addition, cross-platform analyses for both phase I and II 
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whether protein expression is more informative in inferring biological 
interactions. We performed a coexpression analysis and identified 
potential interaction pairs using RPPA and mRNA data (false discovery 
rate (FDR) < 0.1). These pairs were further mapped to the annotated 

physical protein–protein interactions (PPIs) in the STRING database31. 
In total, we identified 136,832 PPIs: 59,695 were identified by both 
RPPA and mRNA, whereas 50,269 were identified by RPPA only (that 
is, twofold higher than the 26,868 identified solely by mRNA; Fig. 2e), 
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Fig. 1 | Overview of the upgraded RPPA resource of TCGA and CCLE samples. 
a, The pipeline of RPPA data generation and data sharing for ~8,000 patient 
samples and ~900 cancer cell lines across ~500 protein markers. The raw data 
were normalized through four levels (from L1 to L4; Methods). The full list of 
cancer classifications can be found on TCGA (https://portal.gdc.cancer.gov/).  
b, The cancer type distribution of TCGA patient samples (n = 7,828). Each number 
represents the sample size of each cancer type. c, The lineage distribution of 
CCLE samples (n = 878) and their parallel molecular and phenotypic data. The 
number for each column represents the sample size of each cell line lineage with 
available RPPA data and the number for each row represents the total sample 
size for each data type. d, The distribution of protein markers in different cancer 

hallmark gene sets, with newly covered pathways (with at least five protein 
markers) highlighted in purple. The new total proteins and PTM proteins are 
shown in blue and red, respectively, and the phase I total proteins and PTM 
proteins are shown in green and orange, respectively. The pie chart shows the 
distribution of hallmark sets covered in the different phases. e, The distributions 
of the expression correlations of RPPA-based proteins with RNA-seq-based mRNA 
(top) and MS-based total proteins (middle) and correlations between MS-based 
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provided in Supplementary Table 1.
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indicating that RPPA data are more sensitive to detecting PPIs. We 
further found that RPPA-inferred PPIs occurred in more cancer types 
(median n = 19) than mRNA-inferred PPIs (median n = 14; Fig. 2f), 
indicating that RPPA-based PPIs are more robust. For example, the 
MLH1–PMS2 complex, a well-known PPI, forms a heterodimer that 
is essential in DNA mismatch repair, which was identified in all 32 

cancer types by RPPA but only detected in five cancer types by mRNA 
(P = 4.7 × 10−10; Fig. 2g).

Our RPPA data also provide a unique opportunity to assess how 
driver events affect protein–mRNA coupling. Given the copy-number 
alterations of driver genes, we confirmed that amplification increased 
its cis protein–mRNA coupling (P = 3.9 × 10−2; Extended Data Fig. 2g), 
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while deletion decreased its cis coupling (P = 1.8 × 10−2; Extended  
Data Fig. 2h). We next focused on trans effects and identified 22 signifi-
cant somatic driver events (Fig. 2h). Intriguingly, most driver events 
decreased protein–mRNA coupling in the altered group relative to the 
wild-type group. These results emphasize the importance of expression 
profiling of protein in addition to mRNA.

RPPA protein expression patterns in CCLE cell line samples
Using CCLE RPPA500 data, we performed an unsupervised cluster-
ing analysis and identified ten RPPA clusters (Fig. 3a). Similar to TCGA 
RPPA clusters, the CCLE RPPA clusters were also largely driven by cancer 
lineages (Extended Data Fig. 3a,b). To investigate the observed lineage 
effects, we further performed a supervised analysis and identified 39 
lineage-specific proteins (Fig. 3b,c). Interestingly, differentiating powers 
of these proteins varied; some proteins showed high expression levels 
across a subset of lineages (for example, caveolin), some were specific 
to individual lineages (for example, MELANA; Extended Data Fig. 3c,d) 
and some could further distinguish lineage subtypes (for example, Bcl-2; 
Extended Data Fig. 3e). Proteins in the same pathway showed consist-
ent signature patterns (for example, cell-cycle pathway; Extended Data 
Fig. 3f). In addition, compared to mRNA data, RPPA proteins showed a 
higher dynamic range (fold change) than the corresponding mRNA for 
each lineage-specific marker (Extended Data Fig. 3g)3. These findings 
highlight the superiority of RPPA500 protein markers in characterizing 
intrinsic tumor-specific contexts, suggesting their potential value in 
subtype classification and biomarker identification.

RPPA data reveal deep mechanistic insights in cancer 
dependency
Cancer dependency is defined as the fitness effect on the growth or sur-
vival of cancer cells when an individual gene is knocked out or down32, 
providing essential information for developing treatments and reduc-
ing toxicity. To assess the value of RPPA expression in elucidating gene 
dependency, we performed a comparative analysis using both RPPA 
and mRNA expressions with the gene dependency scores obtained 
from the DepMap project7,33,34. Overall, the correlations between gene 
dependency and its protein and mRNA levels were aligned tightly on the 
diagonal line, indicating good, consensus genotype–phenotype rela-
tionships (Fig. 3d). However, five proteins exhibited much higher abso-
lute correlations than their mRNA counterparts (|ΔR| > 0.25, FDR < 0.1). 
Among them, phosphatase SHP2 (pY542), rather than the mRNA, has 

been reported as a sensitive marker for receptor tyrosine kinase activa-
tion3; therefore, we focused on the remaining four proteins to dissect 
the difference in correlation between RPPA protein and mRNA levels.

The first case, TP53, is the most frequently mutated tumor sup-
pressor gene in human cancers. We performed a differential expres-
sion analysis between TP53 wild-type and mutant cell lines (Fig. 3e). 
Although TP53 mRNA showed no difference (Wilcoxon test, P = 0.96), 
the P53 protein level was significantly higher in mutant cell lines (Wil-
coxon test, P < 2.2 × 10−16), suggesting that protein level, rather than 
mRNA level, captures the mutational effects. This was also confirmed by 
TCGA data (paired Wilcoxon test, P = 1.4 × 10−5; Extended Data Fig. 3h). 
Focusing on different P53 domains, we found that only samples with a 
mutation in the DNA-binding domain (Wilcoxon test, P = 3.9 × 10−39) 
or the tetramerization domain (Wilcoxon test, P = 3.6 × 10−2) showed 
significantly higher RPPA levels than wild-type samples (Extended Data 
Fig. 3i). As the DNA-binding domain is the most important functional 
domain in TP53, we further investigated this pattern with mRNA data 
but observed no differences (Extended Data Fig. 3j). In addition, P53 
protein expression showed a significantly higher log2 fold change 
than mRNA between cell lines harboring TP53 missense mutations and 
wild-type samples (Fig. 3f). We also confirmed a significantly lower P53 
RPPA expression for nonsense mutants compared to the wild type, sug-
gesting that RPPA can effectively distinguish mutations in terms of their 
functional domains and variant classifications (Extended Data Fig. 3k). 
Lastly, we observed that the gene dependency of TP53 mutants was 
closer to zero, suggesting a loss of function (P < 2.2 × 10−16; Extended 
Data Fig. 3l). These findings highlight the superior power of RPPA over 
mRNA for elucidating mutation functional effects.

In the second case, both total and phosphoproteins of tyrosine 
kinase c-ABL (c-ABL and c-ABL pY412) showed high correlations with 
gene dependency (c-ABL Pearson’s R = −0.38, P = 1.3 × 10−21; c-ABL 
pY412 Pearson’s R = −0.38, P = 8.4 × 10−22) while mRNA did not (Pear-
son’s R = −0.04, P = 0.34). The ABL1 gene frequently fuses with BCR in 
leukemia, forming an active kinase that promotes cellular proliferation 
and suppresses apoptosis35 and is commonly used to diagnose blood 
cancers. We, thus, assessed whether RPPA expression more effectively 
captures this fusion event. Indeed, compared to c-ABL mRNA changes, 
both total and phosphoproteins exhibited significantly higher fold 
changes in cell lines with BCR–ABL1 fusions relative to the wild type 
(Fig. 3g), suggesting that RPPA-based protein markers more sensitively 
detect the functional consequences of fusion events.

Fig. 2 | Global patterns of RPPA protein expression in different TCGA cancer 
types. a, Clustering heat map of TCGA samples based on the expression of 447 
proteins. b, Sankey diagram showing the relationship among cancer types, RPPA 
clusters and organ systems. c,d, Kaplan–Meier plots showing differential survival 
patterns between corresponding clusters. The P values are based on a log-rank 
test. Shaded areas denote the 95% confidence intervals. The numbers represent 
the patient count in each group (KIRC: K10, n = 432; K7, n = 34; CESC: K1, n = 95; 
K7, n = 57). e, Venn diagram showing the number of PPIs identified by RPPA 
protein and/or mRNA coexpression patterns (RPPA only, n = 50,269; mRNA only, 
n = 26,868; both, n = 59,695). f, The distribution of the number of cancer types 
in which a specific PPI was identified by RPPA or mRNA data. The dotted lines 
indicate the median values (RPPA, n = 19; mRNA, n = 14). The P value is based on a 

Wilcoxon test. g, Box plot showing that the RPPA-based Mlh1–PMS2 correlation 
is much higher than the mRNA-based correlation across cancer types (n = 32). 
The P value is based on a paired Wilcoxon test. The middle lines in the boxes are 
the median, the upper and lower boundaries of the boxes are the first and third 
quartiles and the whiskers extend to 1.5× the interquartile range of the lower and 
the upper quartiles; n represents the number of cancer types. h, The effects of 
driver events on global protein–mRNA coupling, including mutation, copy-
number amplification and deletion. The signed adjusted P value is based on an 
ANOVA with cancer type as a covariate. The sign was determined by the median 
of differences indicating the direction of change in protein–mRNA coupling. 
Increases and decreases in protein–mRNA coupling are shown in orange and 
blue, respectively.

Fig. 3 | Global patterns of RPPA protein expression in different CCLE cancer 
lineages. a, Clustering patterns of CCLE samples based on the expression of  
447 proteins. b, Lineage-specific protein expression in CCLE samples. c, Network 
view of differentially expressed proteins associated with each cancer lineage 
(phase I, n = 14; phase II, n = 25). The P values are based on a two-sided Wilcoxon 
test. d, A scatter plot of protein–dependency correlation versus mRNA–
dependency correlation. Each dot represents a Pearson correlation colored on 
the basis of whether the correlation is significant in RPPA, mRNA or both. e, Box 
plots of TP53 mRNA expression or protein expression between TP53 wild-type 
(n = 159) and TP53 mutant (n = 364) CCLE samples. The P values are based on 

a two-sided Wilcoxon test. f, Box plots showing differential fold changes of 
TP53 mRNA expression and protein expression between TP53 missense mutant 
(n = 235) and wild-type CCLE samples. The P value is based on a paired Wilcoxon 
test. g, Box plots showing differential fold changes of c-ABL mRNA and protein 
expression between CCLE BCR–ABL1 fusion (n = 14) and wild-type blood CCLE 
samples. The P values are based on a Wilcoxon test. e–g, The middle line in the 
box is the median, the upper and lower boundaries of the box are the first and 
third quartiles and the whiskers extend to 1.5× the interquartile range of the lower 
and the upper quartiles; n represents the sample size in each group.
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Lastly, protein kinase A subunit α (PKAA, encoded by PRKAR1A) 
showed a significant negative correlation with gene dependency at the 
protein level across cell lines, unlike with mRNA. We assessed whether 
such correlations persisted within each lineage. While no lineage 

showed significant mRNA correlation, seven lineages had significant 
negative correlations between PKAA protein levels and dependency 
(Extended Data Fig. 3m), highlighting the robustness of RPPA signals. 
In addition, lineage-specific analyses revealed many protein markers 
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with significant correlations across multiple lineages but not with 
mRNA (Extended Data Fig. 3n), suggesting that protein levels provide 
deeper phenotypic insights.

Phosphorylated mitogen-activated protein kinase (MAPK) 
kinase (MEK) is a sensitive functional readout of BRAF 
mutations
Somatic mutations are a major source of driver events in cancer 
development and clinical markers36. However, distinguishing driver 
mutations from passenger mutations remains challenging, even in 
the best-studied cancer genes37,38. To further demonstrate the power 
of RPPA-based protein signaling in interpreting the functional effects 
of somatic mutations, we performed a differential expression analysis 
of oncogene mutations between wild-type and mutant cell lines and 
identified the most prominent pair BRAF mutations and phosphoryl-
ated MEK protein level (Fig. 4a). BRAF, a key player in regulating the 
MAPK–ERK (extracellular signal-regulated kinase signaling) pathway39, 
is frequently mutated in certain cancers such as melanoma (~50%). 
The most common BRAF mutation is V600. Clinically, treating per-
sons with melanoma harboring non-V600 BRAF mutations with B-Raf 
inhibitors remains controversial40. MEK1/2 pS217S221 was the most 
significantly upregulated protein in BRAF-mutated samples because of 
the increased kinase activity caused by BRAF mutations41. Focusing on 
the Ras–Raf signaling pathway (Fig. 4b), we observed that both pMEK 
(MEK1/2 pS217S221) and pERK (MAPK pT202Y204) were significantly 
upregulated in BRAF mutant cell lines, but not at the levels of B-Raf, 
MEK and ERK total proteins, implying that BRAF mutations mainly alter 
the phosphorylation of its downstream MEK and ERK targets but not 
their total proteins. Furthermore, because ERK is a negative regulator 
of Ras through feedback inhibition42, N-Ras showed a significantly 
lower protein expression in BRAF mutant cell lines (Wilcoxon test, 
P = 3.4 × 10−3). We next examined the correlation with gene dependency 
scores and found that MEK1/2 pS217S221 negatively correlated with 
BRAF dependency in mutant cell lines (Pearson’s R = −0.71, P < 2.2 × 10−16; 
Fig. 4c) but not in the wild-type samples (Pearson’s R = −0.04, 
P = 0.4; Fig. 4d), highlighting the oncogenic addiction effect of  
BRAF mutations.

Given the high enrichment of BRAF mutations in melanoma, we 
confirmed the negative correlation between MEK1/2 pS217S221 and 
BRAF dependency (Extended Data Fig. 4a). This suggests that MEK1/2 
pS217S221 not only distinguishes BRAF mutational effects from the 
wild type but also represents a sensitive marker for the functional 
impact of BRAF mutations on cell viability. To test this hypothesis, we 
performed cell viability assays to evaluate the effects of various BRAF 
mutations using two informer cell models38 (Fig. 4e). By assessing the 
effect of overexpressing a mutant BRAF relative to that of overexpress-
ing a wild-type BRAF, we evaluated 138 mutations and classified them 
into five functional types (that is, strong activating, moderate or weak 
activating, inactivating, inhibitory, no effect and inconclusive). Focus-
ing on cell lines carrying different types of BRAF mutations, MEK1/2 
pS217S221 exhibited a clear decreasing trend in the order activating, 
inactivating, wild-type, silent and inhibitory (Fig. 4f); moreover, pMEK 
could distinguish strong activating from moderate ot weak activating 
(Wilcoxon test, P = 0.028). In contrast, such a trend was not observed at 
the mRNA level (Extended Data Fig. 4b,c). Additionally, in TCGA mela-
noma samples, MEK1/2 pS217S221 RPPA levels were higher in tumors 
with activating BRAF mutations than in the wild type (Extended Data 
Fig. 4d). Particularly, BRAFV600E mutations were enriched in the high and 
median MEK1/2 pS217S221 groups (Extended Data Fig. 4e). Interest-
ingly, five BRAF mutations (V600D, N581Y, V600K, 487_492VTAPTP>A 
and T599_599>TT) in the high group were not included in our func-
tional assays but all these mutations have been previously identified as 
oncogenic in the literature43–46. This independent validation strongly 
demonstrates the power of RPPA analysis, especially of PTMs, in inter-
preting the functional effects of somatic mutations.

To further explore the clinical utility of pMEK, we assessed the 
power of MEK1/2 pS217S221 and B-Raf in predicting the sensitivity to 
dabrafenib, a US Food and Drug Administration (FDA)-approved B-Raf 
inhibitor in melanoma. The MEK1/2 pS217S221 level, but not BRAF 
protein expression, showed a significant correlation with the drug’s 
sensitivity in BRAF mutant cell lines (Fig. 4g,h). We further confirmed 
that this correlation was retained in melanoma cell lines (Pearson’s 
R = −0.63, P = 0.022; Fig. 4i). In contrast, BRAF, MEK1 and MEK2 mRNA 
expressions did not exhibit predictive power (Pearson’s P = 0.38, 0.39 
and 0.57, respectively; Fig. 4i). These results suggest the potential 
of pMEK as a predictive marker of dabrafenib sensitivity to stratify 
patients with BRAF mutations.

Systematic identification of RPPA-based synthetic lethality
Synthetic lethality is an important cancer therapeutic strategy where 
two perturbations are not lethal when acting independently but become 
lethal when combined47. It has attracted wide attention following the 
success of poly(ADP-ribose) polymerase (PARP) inhibitors as synthetic 
lethal with BRCA1/2 mutations48. Because proteins are the functional 
products of gene activities, we hypothesized that a protein-centered 
analysis could effectively identify synthetic lethality. We developed an 
RPPA-based approach to identify synthetic lethality pairs by incorporat-
ing both CCLE and TCGA samples (Fig. 5a). We first identified protein 
pairs where cell lines with a lower expression of protein A were more 
dependent on protein B (that is, with significantly lower dependency 
scores) and then confirmed that patients with low expression levels 
of both correlated with better prognosis. Through this framework, we 
identified 1,131 potential synthetic lethality pairs.

To validate our predictions, we assessed the efficacy of 2,025 clini-
cally relevant two-drug combinations across 125 cancer cell lines49. By 
mapping our predictions onto this dataset, among 52 synthetic lethality 
pairs (Fig. 5b), 48 were synergistic and 4 were nonsynergistic, leading to 
a ratio of 12, which was fivefold higher than the background expectation 
(Fisher’s exact test, P = 8.6 × 10−5; Fig. 5c). To further test whether our 
predictions were enriched in drug combinations showing synergy in 
more cell lines, we calculated the synergy rate, defined as the number of 
synergistic cell lines divided by the total number of tested cell lines, and 
found that our predictions had significantly higher synergy rates than 
other combination pairs (Wilcoxon test, P = 9.9 × 10−4) (Fig. 5d). These 
results suggest that our RPPA protein-centered strategy has substantial 
power in nominating synthetic lethality interactions.

We selected a synthetic lethality pair PKAA–EGFR (epidermal 
growth factor receptor) for experimental validation because (1) this 
pair had not been validated by the above drug screen data; (2) EGFR is 
a major therapeutic target with many FDA-approved inhibitors; and (3) 
PKAA RPPA, but not mRNA, showed significant associations with gene 
dependency (Fig. 3d). We first confirmed this association of PKAA pro-
tein level with EGFR gene dependency and their significant correlation 
with patient survival (Fig. 5e and Extended Data Fig. 5a–c). To evaluate 
the PKAA–drug association, we performed a correlation analysis of 
PKAA protein level with drug sensitivity data from four major datasets 
(that is, Cancer Target Discovery and Development, Genomics of Drug 
Sensitivity in Cancer (GDSC) and PRISM). Intriguingly, a high expres-
sion of PKAA level was dominantly associated with resistance to EGFR 
inhibitors (EGFRis) (Fig. 5f and Extended Data Fig. 5d; Fisher’s exact 
test, P = 2.7 × 10−69). In total, we identified 33 EGFRis, including afatinib, 
lapatinib, gefitinib and erlotinib (eight FDA-approved EGFRis)50.

For experimental validation, we selected two EGFR-resistant 
lung cancer cell lines, H226 and A549, and established correspond-
ing PKAA-knockdown (KD) stable cell lines using short hairpin RNAs 
(shRNAs) (Extended Data Fig. 5e,f). We performed drug response 
assays using four EGFRi drugs at different concentrations (that is, 
DMSO and nine EGFRi concentrations). Indeed, PKAA-KD cell lines were 
much more sensitive to the EGFRi (Fig. 5g and Extended Data Fig. 5g–l). 
Across all four EGFRis, the relative cell viabilities of PKAA-KD cells were 
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samples. b, Network view of synthetic lethality pairs validated by independent 
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proportional to the number of linked edges. c, Odds ratio of predicted synthetic 
lethality pairs and background expectation. The true synthetic lethality pairs 
were defined by Jin et al., who systematically assayed single drugs and their drug 
combinations. The P value is based on a Fisher’s exact test. The density curve was 
generated on the basis of random samplings (n = 1,000) from all the tested drug 
combinations. d, A box plot showing differential proportions of synergistic cell 
lines between predicted synthetic lethality pairs and others. The P value is based 
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number of tests performed. g, Drug response assays at 72 h for H226 or A549 
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group. i, Box plots showing the differential pCREB expression in both PKAA low 
and high LUAD patient samples (PKAA low, n = 177; PKAA high, n = 177) or cell 
lines (PKAA low, n = 34; PKAA high, n = 33). The P values are based on one-tailed 
t-tests; n represents the number of samples in each group. j, Bar plots showing 
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extend to 1.5× the interquartile range of the lower and the upper quartiles. 
Predicted synthetic lethality pairs are provided in Supplementary Table 5.
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greatly reduced compared to the control cell lines for both H226 and 
A549, indicating that low PKAA indeed sensitized EGFR-resistant cells 
(Fig. 5h). After confirming the causal effects between PKAA loss and 
increased EGFRi sensitivity, we next sought to elucidate the underly-
ing mechanism. A major phosphorylation substrate of PKAA protein 
is the cAMP response element-binding protein (CREB); EGFR signaling 
is also upstream of CREB and phosphorylated CREB is responsible for 
activating diverse cellular responses, including proliferation, survival 
and cell-cycle progression51–54. Thus, PKAA and EGFR may provide 
complementary effects on CREB signaling. To test this hypothesis, we 
assessed how PKAA protein levels were associated with pCREB in lung 
adenocarcinoma (LUAD) and observed that high PKAA was associated 
with high pCREB level (normalized by total CREB protein) in patient and 
cell line samples for LUAD (one-tailed t-test, TCGA, P = 1.4 × 10−4; CCLE, 
P = 5 × 10−2; Fig. 5i). We further confirmed that PKA activity decreased 
in PKAA-KD cells compared to the controls (Fig. 5j). Thus, we proposed 
a mechanistic model (Fig. 5k). Two distinct signaling pathways (EGFR 
and PKAA) can activate CREB; cancer cells with a higher level of PKAA 
protein expression are less dependent on the EGFR signaling, becoming 
more resistant to EGFRis.

Characterization of metastasis potential based on RPPA data
Metastasis is a hallmark of cancer and a major contributor to cancer- 
related deaths. A recent study generated a metastasis map of human 
cancer cell lines, MetMap, where the metastatic potential of cancer 
cell lines was determined in mouse xenografts at a large scale26. To 
gain a better understanding of metastasis from the perspective of 
RPPA-based protein expression, we examined the correlation of RPPA 
protein markers with MetMap metastasis potential scores. In total, we 
identified 35 positively and 37 negatively correlated proteins with over-
all metastasis potential scores (FDR < 0.1). We also evaluated correla-
tions for each target organ, confirming that organ-specific correlations 
were consistent with overall correlations but with variations (Fig. 6a). 
Among prometastasis protein markers, mammalian target of rapamy-
cin (MTOR) and its regulatory protein (RAPTOR) are the main protein 
components of mTORC1, PI3Ks (p110α and p85) are major players in 
PI3K–AKT signaling and pMEK (MEK1/2 pS217S221) is a key member 
in the Ras–Raf–MEK–ERK pathway. As reported by previous studies55, 
high levels of mTORC1, PI3K–AKT and MEK are responsible for the 
reactivation of metastatic cancer cells. Among antimetastasis mark-
ers, we identified multiple proteins related to the apoptosis signaling 
pathway, including cleaved caspases 3 and 8. Caspases act as metas-
tasis suppressors by inducing programmed cell death56. We further 
confirmed that prometastasis and antimetastasis markers exhibited 
significantly divergent expression between metastatic and primary cell 
lines (Wilcoxon test, P = 2 × 10−9; Extended Data Fig. 6a). Specifically, 
prometastasis RPPA markers demonstrated elevated expression in 
metastatic cell lines, while antimetastasis markers showed reduced 
expression in these cells when compared to primary cell lines. To further 
validate our prediction, we chose cyclin-dependent kinase 9 (CDK9), 

an inferred prometastasis RPPA marker, to assess the differences in 
cell migration and wound-healing capabilities between wild-type and 
CDK9 small interfering RNA (siRNA) KD cells (Extended Data Fig. 6b,c). 
Indeed, both MDA-MB-231 and A549 cells with CDK9 KD exhibited a 
significant reduction in their cell migration and wound-healing abili-
ties (Fig. 6b,c), strongly suggesting a critical role of CDK9 in promoting 
these essential aspects of metastasis.

Because metastasis is the major cause of death in cancer patients, 
we next performed patient survival analysis on these identified pro-
tein markers using TCGA RPPA500 dataset. Among the significant 
hits (FDR < 0.1), we found that the hazard ratios of the prometastasis 
proteins were significantly higher than those of antimetastasis ones 
(Wilcoxon test, P = 5.9 × 10−3; Fig. 6d). The median log hazard ratio of 
prometastasis proteins was positive (0.5) and that of antimetastasis 
proteins was negative (−1.0), indicating that the patients would have 
an increased risk of death if their tumors exhibited higher levels of 
prometastasis protein markers or lower levels of antimetastasis protein 
markers. For example, two outliers in the prometastasis and antime-
tastasis groups were glutamate-cysteine ligase regulatory subunit 
(GCLM) in adrenocortical carcinoma (ACC) and checkpoint kinase 1 
(CHK1) in sarcoma (SARC), respectively. Patients with worse survival 
showed a lower level of GCLM in ACC and a higher level of CHK1 in SARC 
(Fig. 6e,f). These patterns remained significant even after adjusting 
for other potential confounding factors (Cox P < 0.05; Fig. 6g,h). To 
further validate the findings, we extracted the metastasis status for 
ACC and SARC patients from their clinical annotations and found that 
lower protein levels of GCLM and a higher level of CHK1 indeed could 
predict the metastasis status of patients identified at their diagnosis 
(Extended Data Fig. 6d,e; GCLM, area under the curve (AUC) = 0.75, 
P = 0.023; CHK1, AUC = 0.70, P = 3.4 × 10−5).

Lastly, we examined the clinical development stage for targeting 
prometastasis markers using the Pharos database57. Notably, >50% of 
the markers were categorized as Tchem (38%) and Tclin (18%), includ-
ing our validated marker CDK9 (Tchem), highlighting the potential 
clinical utility of our findings (Extended Data Fig. 6f). Collectively, 
these results provide a comprehensive view of the key proteins and 
pathways underlying the metastatic potential in human cancers, lay-
ing a foundation for predicting metastasis in patients and developing 
antimetastasis therapeutics.

Discussion
Here, we generated an expanded protein expression atlas based on 
TCGA and CCLE cohorts with several major advantages. First, we pro-
filed ~9,000 samples across all major cancer types and lineages, fea-
turing a large sample size and wide cancer diversity. RPPA500, thus, 
facilitates both conventional analyses and advanced data mining, such 
as deep learning, on a pan-cancer scale. Unlike other proteomics stud-
ies limited by cancer type and technical issues58–60, RPPA500 enables 
direct comparisons across cancer types. Second, RPPA500 covers 
two complementary cohorts, enhancing translational research with 

Fig. 6 | Characterization of tumor metastasis potential based on RPPA 
protein expression. a, Heat maps showing the correlations between metastasis 
potential and protein markers in cell lines. Positive and negative contributors 
are shown in orange and blue, respectively. The P values are based on Spearman’s 
rank correlation coefficient test; n represents the number of protein markers 
(phase I, n = 40; phase II, n = 32). b, Cell migration assays for MDA-MB-231 or 
A549 CDK9 siRNA KD and control cells. The P values are based on a Wilcoxon test; 
n represents the number of samples tested for each condition (MDA-MB-231, 
n = 18, 18 and 11 for negative control (NC), siRNA 1 and siRNA 2, respectively; A549, 
n = 16, 16 and 18 for NC, siRNA 1 and siRNA 2, respectively). c, Wound-healing 
assays for MDA-MB-231 (from 0 h to 24 h) or A549 (from 0 h to 48 h) CDK9 siRNA 
KD and control cells. Data are shown as the mean ± s.d. The P values are based 
on an ANOVA; n represents the number of samples tested for each condition 
(MDA-MB-231, n = 5, 4 and 5 for NC, siRNA 1 and siRNA 2, respectively; A549, n = 5, 
3 and 4 for NC, siRNA 1 and siRNA 2, respectively). d, Box plot showing the effects 

(log hazard ratios) of negative and positive contributors to patient survival based 
on TCGA patient cohorts. The P value is based on a Wilcoxon test; n represents 
the number of significant protein–cancer pairs in each group (antimetastasis 
RPPA markers, n = 17; prometastasis RPPA markers, n = 21). e,f, Kaplan–Meier 
plots showing differential survival patterns of ACC patients by GCLM protein 
expression (GCLM low, n = 22; GCLM high, n = 22) (e) and SARC patients by CHK1 
protein expression (CHK1 low, n = 112; CHK1 high, n = 111) (f). P values are based 
on log-rank tests; n represents the number of patients in each group. g,h, Forest 
plots of hazard ratios for GCLM (g) or CHK1 (h) and clinical variables. The P values 
are based on a multivariate Cox proportional hazards model. The center point of 
each horizontal bar represents the estimated hazard ratio. b,d, The middle lines 
in the boxes are the medians, the lower and upper boundaries of the box are the 
first and third quartiles and the whiskers extend to 1.5× the interquartile range of 
the lower and the upper quartiles.
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extensive molecular, clinical and phenotypic data. It bridges TCGA’s 
patient-derived insights with CCLE’s detailed cell line data, fostering 
the generation of actionable hypotheses and potential treatment strate-
gies. Third, compared to phase I (refs. 12,20,27), our expanded RPPA500 
substantially increased the protein set, which covers all hallmark gene 
sets, major biomarkers and therapeutic targets under clinical investiga-
tion. Taken together, the RPPA500 dataset provides a valuable resource 
for the cancer research community to translate big cancer omics data 
into the clinical practice of precision medicine.

Through our integrative analyses, we showcased a few exciting 
cases with potential translational impact. For example, RPPA effec-
tively identifies the functional effects of driver somatic alterations (for 
example, TP53 mutations and BCR–ABL1 fusions). Specifically, pMEK 
expression can distinguish mutational effects from both the wild-type 
background and different types of mutations, as validated by our cell 
viability assays. This would help address an unmet clinical need on how 
to stratify melanoma patients with non-V600 BRAF mutations for more 
effective treatments. Through the protein-centered integrated analysis 
of TCGA and CCLE samples, we identified numerous synthetic lethality 
pairs, validated by independent drug combination data. The example 
of PKAA and EGFR suggests a strategy for treating LUAD patients with 
low PKAA levels using EGFRis. Because LUAD patients usually develop 
resistance to EGFR inhibitors in ~1–2 years, this strategy may represent 
an exciting opportunity to improve clinical outcomes for a sizable 
portion of patients. Further efforts are warranted to investigate the 
clinical importance of these findings using independent cohorts, 
animal models and clinical studies.

Of note, our results indicate that, in many cases, meaningful 
patterns can only be detected at the RPPA protein level rather than 
the mRNA level, highlighting a need to generate proteomics data for 
clinical sample characterization. While RPPA500’s protein markers are 
fewer than those of MS-based methods, RPPA offers increased sensitiv-
ity (particularly for some key phosphoproteins) and cost-effectiveness, 
complementing MS’s scopes and focuses. Moreover, we acknowledge 
the intricate challenges associated with the analysis of bulk tumor 
samples, primarily because of their heterogeneous cellular composi-
tion. To mitigate such effects, we meticulously integrated CCLE and 
TCGA data, aiming to identify consistent patterns across cohorts, and 
further reinforced them through rigorous experimental validation.

While our approach offers significant advantages, we advocate 
for continuous advancements in techniques that enable more pre-
cise analyses of specific cellular subpopulations within tumors. Such 
advancements are crucial for deepening our understanding of complex 
interactions among various cellular populations and their roles in can-
cer biology. It is of paramount importance to fully harness the capabili-
ties of our RPPA platform alongside other protein profiling techniques 
and comprehensive tumor microenvironment data. This integrated 
approach stands poised to expedite the development and implementa-
tion of protein-centric diagnostics and therapeutic strategies, marking 
a substantial stride forward in the field of precision oncology.

Methods
Patient sample and cell line cohorts for RPPA profiling
The research complies with all relevant ethical regulations. We obtained 
patient samples from the National Institutes of Health (NIH) TCGA 
project and CCLE samples from the Broad Institute. The details of these 
samples were described in our previous studies1–3. Ethics oversight 
and written informed consent were obtained through TCGA project.

RPPA quantification and normalization. Overview. We collected and 
prepared cell line and patient tumor samples obtained from CCLE and 
TCGA. The antibodies were validated following the standard RPPA 
pipeline as documented in the previous publications12,61,62. All the RPPA 
protein expression data were generated by the RPPA core facility at the 
MD Anderson Cancer Center. CCLE samples were profiled on a single 

RPPA slide and TCGA samples were profiled on eight slides. RPPA slides 
were scanned and quantified using ArrayPro (Meda Cybernetics) to 
obtain the protein signal intensities as the raw level 1 (L1) RPPA data. 
We then performed curve-fitting analysis to generate L2 RPPA data 
by estimating protein expression levels using SuperCurve63. L2 data 
were then median-polished to obtain normalized L3 RPPA data. From 
the L3 data, the batch effects were removed using a replicate-based 
normalization method to generate L4 data, which were used in the 
downstream analyses12,21.

Sample preparation. The frozen tumors or cell pellets were lysed and 
proteins were extracted using RPPA lysis buffer (containing 1% Triton 
X‐100, 50 mM HEPES pH 7.4, 150 mM NaCl, 1.5 mM MgCl2, 1 mM EGTA, 
100 mM NaF, 10 mM Na pyrophosphate, 1 mM Na3VO4, 10% glycerol 
and freshly incorporated protease and phosphatase inhibitors from 
Roche Applied Science (cat. nos. 05056489001 and 04906837001, 
respectively))61.

These lysates were adjusted for protein concentration and then 
serially diluted into five twofold dilutions using the same lysis buffer, 
followed by printing on nitrocellulose-coated slides using an Aushon 
Biosystems 2470 arrayer. The slides were then probed with ~500 prevali-
dated primary antibodies and detected with suitable biotinylated 
secondary antibodies: goat anti-rabbit IgG (Invitrogen, cat. no. 31822, 
lot no. XC3537505; dilution: 1:1,000), goat anti-mouse IgG (Vector 
Laboratories, cat. no. BA-9200, lot. no. ZD0801; dilution: 1:10,000) 
or rabbit anti-goat IgG (Fisher Scientific, cat. no. NC9376096, lot. no. 
ZB0923; dilution: 1:10,000).

Data quantification. The signal was amplified using streptavidin- 
conjugated horseradish peroxidase (HRP), which binds to the second-
ary antibody and catalyzes biotinylated tyramide to form insoluble 
biotinylated phenols. The signals were then made visible by a secondary 
streptavidin-conjugated HRP and DAB colorimetric reaction. Subse-
quently, the slides were scanned and analyzed and their quantification 
was performed using ArrayPro Analyzer software (MediaCybernetics) 
to generate spot intensity (L1 data)63.

Data normalization. Our previously developed SuperCurve GUI tool 
was used to estimate relative protein levels (in log2 scale). A fitted 
curve or ‘supercurve’ was generated with signal intensities on the y axis 
and relative log2 quantities of each protein on the x axis using a non-
parametric, increasing B-spline model63. Before model fitting, raw spot 
intensity data were adjusted to correct spatial bias using ‘control spots’ 
spread across slides64. Each slide generated a QC metric to determine 
its quality and only slides with a score greater than 0.8 on a 0–1 scale 
were considered for further processing65. For duplicate slides, the one 
with the highest QC score was chosen for analysis (L2 data). Protein 
measurements were then corrected for loading as detailed63,66 using 
bidirectional median centering across samples and antibodies (L3 
data). They were also debatched using technically replicated control 
samples for normalization across RPPA core sets (L4 data)12.

RPPA QC. Following our standard data processing pipeline12,21 
(Extended Data Fig. 1b), we quantified and normalized the RPPA data 
of ~500 proteins for ~8,000 TCGA patient samples and ~900 CCLE cell 
line samples. We had QC metrics at each step to ensure a high quality 
of the data.

Slide-level QC. Using the 96 replicates of mixed lysates, we generated 
QC metrics to determine the quality of each RPPA slide following stain-
ing. Importantly, we printed additional slides for each sample run to 
replace slides that failed QC and to have slides to assess newly validated 
antibodies. The replicate slide can be used with the same antibody or, 
if necessary, with another antibody validated for the same protein or 
phosphoprotein. Thus, high QC metrics serve to remove ‘bad’ data, 
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as well as indicate slides that need to be replaced with a newly stained 
replicate slide.

Sample-level QC. We assessed the total protein content in each sample 
by computing the median value across all stained proteins. That median 
served as an estimator for the total protein content in the sample. If 
the total protein content was too low, we considered it as an ‘outlier’ 
sample and discarded it from the report. From prior experience with 
TCGA data (~8,000 samples), a median value less than −3 (log2) signi-
fies a low-quality outlier.

RPPA protein expression clustering analysis. We performed an 
unsupervised clustering analysis for TCGA and CCLE RPPA data using 
ConsensusClusterPlus67. The dendrogram was generated by the R pack-
age Circlize68. Protein markers showing significant lineage-specific 
differential expression were identified as lineage-specific RPPA mark-
ers. The supervised clustering heat map was generated using Com-
plexHeatmap69. The network view was generated using Cytoscape70. 
Each node represents an RPPA marker or cell line lineage. The node 
size was determined on the basis of the number of edges linking to it. 
For survival analysis, we used a log-rank test to assess the differential 
survival probability between RPPA clusters within each cancer under 
FDR < 0.1. For each cancer–cluster pair (for example, KIRC, RPPA_K10 
versus RPPA_K7), we further performed differential expression analysis 
to identify significant protein markers on the basis of Wilcoxon test  
P values and mean fold changes. To assess the associations between 
RPPA clusters and gene-level somatic alterations, we performed enrich-
ment analysis (chi-squared test) for each gene–cluster pair under 
FDR < 0.1. To further adjust for covariates, we added the cancer types 
as the strata and performed Cochran–Mantel–Haenszel chi-squared 
tests with FDR < 0.1 to identify significant gene–cluster pairs.

PPI and protein–mRNA coupling. To identify PPIs using both mRNA 
and RPPA data, we first calculated protein–protein correlations using 
RPPA500 protein and RNA sequencing (RNA-seq) mRNA data in each 
cancer type. The significant correlations (FDR < 0.1) were further 
mapped to the physical interactions obtained from the STRING data-
base (https://string-db.org). The matched interactions were used to 
generate the Venn diagram and density curves shown in Fig. 2e,f. To 
assess the protein–mRNA coupling across cancer types, we first cat-
egorized samples in each cancer type into the altered and unaltered 
groups on the basis of alterations of each driver gene. Driver event 
status was obtained from a TCGA pan-cancer study on genetic altera-
tions in oncogenic signaling pathways71. Within each group, we further 
performed analysis to assess the correlations between the expression 
of each protein and its corresponding mRNA expression. For each 
driver event, the changes in the global protein–mRNA coupling were 
evaluated by examining the difference in protein–mRNA correlations 
between the altered and wild-type groups. P values were determined 
using an analysis of variance (ANOVA) to consider both the effects of 
cancer type and the changes in protein–mRNA correlations.

Cancer dependency analysis. The correlation analysis between gene 
dependency and RPPA or mRNA was performed by Pearson’s correlations, 
with FDR < 0.1. The CCLE mutation data were used to group cell lines into 
the wild type and TP53 mutants. The residue position of each mutation 
was used to map each cell line onto the P53 protein domains. To test TP53 
differential expression in TCGA, we first calculated log2 fold changes of 
TP53 mRNA and RPPA between TP53 wild-type and mutant tumor samples 
in each cancer type, followed by differential analysis between mRNA and 
RPPA using the Wilcoxon test. To evaluate the differential expression pat-
tern of c-ABL in fusion and wild-type cell lines, we first quantified log2 fold 
changes between BCR–ABL1 fusion and wild-type blood cancer cell lines, 
after which we performed pairwise Wilcoxon tests among c-ABL mRNA, 
total protein and phosphorylated protein expressions.

Mutant construction and cell viability assays. The BRAF mutation 
candidates were obtained from CCLE and TCGA mutation data. We 
constructed the lentivirus vector of wild types, mutations and con-
trols with pHAGE-EF1α-GFP or pHAGE-EF1α-PURO backbone using 
the high-throughput mutagenesis and molecular barcoding (HiTM-
MoB) technique, as described previously72,73. Cell viability assays 
were performed as previously described37,38. Briefly, we used two 
growth factor-dependent cell models, Ba/F3 and MCF10A. Both cell 
types die in the absence of the required factor(s). Mutations and 
their corresponding wild-type counterparts were assessed in paral-
lel in the same experiment, the latter of which determined the basal 
activity of the genes in the cell models. For each experiment, pHAGE 
constructs of mutants and wild-type genes were freshly prepared 
from a single colony and used for generating lentivirus for Ba/F3 and 
MCF10A transductions. The cell viability of Ba/F3 and MCF10A cells 
was measured at four time points (at intervals of 3 or 4 days) during 
the 3-week assay period. The functional annotations of mutations were 
based on a comparison to the corresponding wild-type clones. The 
final annotation was made on the basis of consensus calls of the two 
cell lines. To further classify BRAF mutations into different ‘activating’ 
groups, the calls were based on comparison to PIK3CA mutations of 
known activity that were run in each experiment. Strong activating 
ones were equal or greater in activity compared to a strongly activat-
ing PIK3CA mutation (K1047R). Moderate activating ones were equal 
to or greater than a moderate activating PIK3CA mutation (M1043I). 
Weak activating ones were greater than the wild type but less than a 
moderate activating PIK3CA mutation.

Analysis of synthetic lethality pairs. To predict synthetic lethality 
pairs, we first performed a differential analysis on gene dependencies 
of a protein between two sample groups defined by the median RPPA 
expression of another protein. P values were calculated by the Wilcoxon 
test. We selected the protein pairs by considering both the direction 
of the difference Δ and the FDR, where Δ is the difference between 
the mean values of gene dependency scores in cell lines with high and 
low RPPA expressions. The selected protein pairs were further tested 
against patient survival and predicted as synthetic lethality pairs if 
they (1) showed significance for both log-rank and Cox proportional 
hazard tests and (2) the patient group with low RPPA of both proteins 
had better survival than others. To validate the predictions, we matched 
the synthetic lethality pairs to the targets of the drug combination set 
obtained from the GDSC drug combination data portal. A protein pair 
was marked as synergistic if it showed synergy in at least one combina-
tion and cell line pair. To generate the background set, we randomly 
sampled the same number of drug pairs from the combination set and 
counted the number of synergistic pairs. For each synergistic pair, we 
further defined the synergy rate as the number of cell lines showing 
synergy divided by the number of tested cell lines. The synergy rates of 
the predicted synthetic lethality pairs and all the other nonoverlapped 
synergy pairs in the drug combination set were used to evaluate differ-
ential synergy rates between predicted and other synergistic pairs by 
the Wilcoxon test. Validated synergistic pairs were then used to gener-
ate a synthetic lethality network using Cytoscape70, in which each node 
represented a protein and each edge linked a synthetic lethality pair. To 
assess the association between EGFR gene dependency and PKAA pro-
tein expression, we performed Wilcoxon tests between three groups of 
cell lines (low, medium and high) defined by the terciles of PKAA RPPA 
levels. To identify PKAA-associated drugs, we performed a correlation 
analysis between drug sensitivity data and PKAA RPPA expression by 
Pearson’s correlation test under FDR < 0.1. Fisher’s exact test was used 
to evaluate the enrichment of EGFR inhibitors in drugs resistant to high 
PKAA RPPA levels. To assess whether high PKAA was associated with 
high pCREB in LUAD samples from TCGA and CCLE, we normalized 
pCREB by its total protein expression by calculating log2 fold changes 
and performed differential analysis using a one-tailed t-test.
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In vitro validation of synthetic lethality. Cell lines. LentiX-293T cells 
(Clontech) used to generate lentivirus were cultured in complete DMEM 
(10% FBS and 50 U per ml penicillin–streptomycin), the human LUAD 
cell lines A549 and H226 cells were cultured in complete RPMI medium. 
All cell lines were propagated at 37 °C and 5% CO2 in a humidified atmos-
phere. All cell lines were authenticated by short tandem repeat analysis 
at the MD Anderson Cancer Center and all cells were periodically moni-
tored for Mycoplasma contamination using the universal mycoplasma 
detection kit (American Type Culture Collection).

shRNA KD. The pKLO.1 shRNA plasmids for PKAA KD were pur-
chased from Sigma-Aldrich (shRNA 3: TRCN0000018369, shRNA 4: 
TRCN0000039939, shRNA 5: TRCN0000039942). Lentivirus pro-
duction and transduction of A549 and H226 cells were described 
previously38. Briefly, LentiX-293T cells were transfected with the 
pKLO.1-PKAA shRNA and packaging plasmids (psPAX2 and pMD2.G) 
using Lipofectamine 3000 (Invitrogen). Lentivirus was collected 3 days 
after transfection and used to transduce the respective cells by spin-
oculation at 1,000g for 3 h in the presence of 8 μg ml−1 polybrene. The 
transduced cells were selected in a puromycin-supplemented medium 
(1–2 μg ml−1) for 7 days, as described previously74,75.

Drug response and PKA activity assays. To test the effect of PKAA  
expression on EGFRi sensitivity, control and PKAA-KD A549 and H226 
cells were seeded in 96-well plates (2,500 cells per well) overnight and 
then treated with DMSO or four different inhibitors (afatinib, gefitinib, 
erlotinib and osimertinib) at nine threefold serial dilutions for 72 h. The 
cell viability was determined using the CellTiter-Glo 2.0 cell viability 
assay (Promega). All inhibitors were purchased from Selleck Chemicals. 
To assess the PKA activity level in PKAA-KD and control A549 and H226 
cells, the PKA colorimetric activity kit (Invitrogen) was used according 
to the manufacturer’s instructions.

Analysis of proteins associated with metastatic potential. The 
metastasis potential scores were obtained from MetMap. We assessed 
the Spearman’s rank correlations between the total metastasis poten-
tial scores ‘all5’ with CCLE RPPA500 and identified significant pro-
tein markers with FDR < 0.1. The proteins with positive or negative 
correlations were defined as prometastasis or antimetastasis pro-
tein markers, respectively. The two heat maps show the detailed cor-
relations between protein makers and the metastasis potential of 
each specific target organ (that is, lung, liver, kidney, brain and bone; 
Fig. 6a). To evaluate the correlations between the identified protein 
markers and patient survival data in TCGA cohorts, we used the Cox 
proportional hazard model to select the significant protein–cancer 
pairs with FDR < 0.1 and obtained the hazard ratio for each significant 
pair. A Wilcoxon test was then performed to evaluate the significance 
of the difference between the log hazard ratio of prometastasis and 
antimetastasis RPPA markers. The metastatic status of both ACC and 
SARC patients was extracted from TCGA clinical data to assess the 
predictive power of GCLM and CHK1 RPPA expression. For survival 
analysis, to control potential clinical confounding factors, we further 
performed a multivariate Cox regression analysis by including available 
clinical variables (that is, age, sex and stage) in the regression model 
and generated forest plots for visualization.

In vitro validation of a metastasis-related protein. Cell lines and 
siRNA transfections. A549 and MDA-MB-231 cells (3.5 × 105) were seeded 
on six-well plates overnight. Gene KD was achieved by transiently trans-
fecting the cells with two CDK9-specific siRNAs (25 nM; Sigma, siRNA 
1: SASI_Hs01_00112405, siRNA 2: SASI_Hs01_00112407) using Lipo-
fectamine 3000 (Thermo Fisher Scientific). Universal negative control 
1 (Sigma, SIC001) was used as control. Then, 48 h after transfection, KD 
efficiencies were confirmed by real-time qPCR and cells were seeded 
for further experiments. CDK9 primer sequences were as follows: 

forward, GAAGCTGGCAGACTTTGGGC; reverse, ACCAGAGTGTCA 
CCACACGG.

Migration assays. For migration assays, control and CDK9 siRNA- 
transfected cells (5 × 104) were seeded onto transwell inserts (Corning; 
8.0 μm, 24-well) in serum-free medium. Serum-supplemented medium 
in the bottom chamber was used as a chemoattractant. Cells were allowed 
to migrate in response to the chemoattractant for 24 h, at which time the 
cells on the lower side of the transwell were fixed and stained with crystal 
violet. A total of 10–15 cell-containing fields were imaged for each siRNA 
and ImageJ76 software was used to count migrated cells.

Wound-healing assays. For wound-healing assays, cells were seeded 
onto 96-well plates (7 × 104) and grown as a confluent monolayer. Cell 
monolayers were manually scratched using sterile pipette tips to gen-
erate wounds. Cell layers were washed with PBS to remove debris, 
supplemented with 2% FBS-containing medium and imaged every 2 h 
to monitor wound closure. ImageJ76 was used for analysis.

Statistical analysis and data visualization. The sample collection 
for RPPA profiling was obtained from TCGA and CCLE projects and 
the data were not randomized. For in vitro assays, cell lines were ran-
domly assigned to different treatment or control groups to ensure 
an unbiased assessment of drug responses and gene KD effects. No 
statistical methods were used to predetermine sample sizes but our 
sample sizes are similar to those reported in previous publications. 
Data collection and analysis were not performed blind to the condi-
tions of the experiments. Samples that did not meet the QC metrics 
were excluded from the analysis. All differential analyses were tested 
by the Wilcoxon test or t-test. Multiple tests were corrected by FDR. 
Pearson’s or Spearman’s rank correlation analyses were performed to 
test the associations between continuous variables. Survival analyses 
were performed using the survival package in R; the significance was 
assessed by either the Cox proportional hazards regression model or 
the log-rank test, as determined by the type of the tested variables. The 
multivariate Cox proportional hazards model was used to assess the 
potential bias introduced by confounding factors. Data distribution 
was assumed to be normal but was not formally tested; nonparametric 
tests were used wherever possible. Detailed descriptions of the statisti-
cal tests are provided in the Methods and the respective figure legends.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The RPPA dataset generated in this study is accessible through TCPA 
data portal (https://tcpaportal.org). This portal includes one subplat-
form for TCGA patient tumor samples and another for CCLE cell lines. 
The ‘dataset summary’ module provides detailed information about the 
number of samples for each type of cancer or cell line lineage (related 
to Fig. 1). In TCGA patient subplatform, several analysis modules are 
available, including protein–protein correlation analysis, differential 
analysis and survival analysis (related to Fig. 2). Data related to the 
CCLE cell lines are hosted at the MD Anderson Cell Lines Project, a 
subplatform under TCPA. The analyses include protein–protein cor-
relation analysis, protein–drug correlation analysis, protein–mutation 
correlation analysis and protein–dependency correlation analysis 
(related to Figs. 3–5). Furthermore, the comprehensive annotation 
for each antibody is available in the ‘my protein’ module on both sub-
platforms. Each entry in this module corresponds to a protein marker, 
showing relevant gene information, as well as the validation status of 
the antibody and its origin, source, catalog number and RRID.

We obtained CCLE-related data from DepMap (https://depmap.
org/portal/), including the genomic (mutations, copy number and 
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DNA methylation), transcriptomic (RNA-seq and microRNA), MS, drug 
sensitivity, gene dependency and metabolomics data. Additional drug 
sensitivity data were downloaded from GDSC (https://www.cancerrx-
gene.org), PRISM (https://depmap.org/repurposing/) and GDSC drug 
combinations (https://gdsc-combinations.depmap.sanger.ac.uk). The 
metastatic potential data were downloaded from MetMap (https://
depmap.org/metmap/). For TCGA samples, we downloaded molecular, 
tumor purity and clinical data from TCGA PanCanAtlas (https://gdc.
cancer.gov/about- data/publications/pancanatlas). The annotations 
of hallmark gene sets were downloaded from Gene Set Enrichment 
Analysis (http://www.gsea-msigdb.org).

All other data supporting the findings of this study are available 
from the corresponding author on reasonable request. Source data 
are provided with this paper.

Code availability
All the software tools used for analysis in this study are accessible in 
public repositories. We used R to process the data and perform the com-
putational analysis. SuperCurve can be found at https://bioinformatics.
mdanderson.org/public-software/supercurve/. Cytoscape is available 
at https://cytoscape.org. ComplexHeatmap69 and ConsensusCluster-
Plus67 are R packages available on Bioconductor. We used BioRender 
(https://www.biorender.com) to generate the schematic diagrams and 
ggplot2 (ref. 77) to generate the data analysis plots. No custom code 
was generated in the course of this analysis.
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Extended Data Fig. 1 | Quality control of RPPA data. (a) Summary of antibody 
selection and validation process. (b) Overview of RPPA data normalization, with 
rigorous QC parameters or controls at each step. (c) Comparison of protein 
markers in Phase I and Phase I & II. (d) Boxplots showing differential correlations 
of RPPA-based IFN-gamma response pathway score and that reported by 
literature in Phase I and Phase I & II. N = 32 represents the number of cancer 
types. (e) Comparison of correlations between RPPA and MS/RNA-seq in Phase I 
(N = 204) and Phase II (N = 243). (c-e) P-values are based on paired Wilcoxon tests. 
N represents the number of protein markers. (f) The distributions of the lineage-
specific expression correlations of RPPA-based proteins with RNA-seq-based 
mRNA (top panel), MS-based total proteins (middle panel), and correlations 
between MS-based total proteins and RNA-seq-based mRNA (bottom panel).  

The distributions are shown for total proteins and PTM proteins, respectively.  
(g) A scatter plot showing the correlation between the sample sizes and the mean 
correlations across different lineages. N = 49 represents the number of mean 
correlations. (h) The distribution of expression correlations between RPPA-based 
and MS-based phosphorylated proteins in NCI60 cell lines. (i) A scatter plot 
showing a representative example of the phosphoprotein, HSP27_pS82, between 
the RPPA and the MS data. N = 38 represents the number of cell line samples.  
(c-e) The middle line in the box is the median, the bottom and top of the box are 
the first and third quartiles, and the whiskers extend to the 1.5× interquartile 
range of the lower and the upper quartiles, respectively. (g, i) Shaded areas 
denote the 95% confidence intervals. The p-values are based on Spearman’s 
correlation coefficient test.

http://www.nature.com/natcancer


Nature Cancer

Resource https://doi.org/10.1038/s43018-024-00817-x

Extended Data Fig. 2 | Pan-cancer analysis of TCGA samples. (a) Forest plots 
of hazard ratios for cluster RPPA_K7 and clinical variables. The p-values are based 
on a multivariate Cox proportional hazards model. The center point of each 
horizontal bar represents the estimated hazard ratio. The p-values are based 
on a multivariate Cox proportional hazards model. (b) Volcano plots showing 
differentially expressed protein markers between the corresponding cluster 
pairs identified from the patient survival analysis. The p-values are based on 
the Wilcoxon test. N represents the number of significant positive or negative 
protein markers (KIRC: N = 131, and 136 for significantly positive and negative 
protein markers respectively; CESC: N = 143, and 192 for significantly positive and 
negative protein markers respectively). (c, d) Significantly up and downregulated 
pathways, EMT (c) and IFN-α (d), identified by pathway analysis for K7 (N = 16) 
vs. K10 (N = 237) in KIRC and K7 (N = 60) vs. K1 (N = 100) in CESC. The p-values 

are based on the Wilcoxon test. N represents the number of patient samples in 
each group. (e, f) Associations of RPPA clusters with driver mutations (e) and 
copy number alterations (f). Co-occurrence and mutual exclusivity are shown 
in different colors. The p-values are based on the Chi-squared test. Significant 
hits with adjustments for cancer types are shaded. N represents the number 
of significant hits. (g, h) Boxplots showing differential patterns of protein-
mRNA coupling across TCGA patient cohorts by copy number alteration of 
cis-cancer driver genes (copy number amplification: N = 59; and copy number 
deletion: N = 24). The p-values are based on the one-sided paired Wilcoxon test. 
N represents the number of protein-alteration pairs. (c, d, g, h) The middle line 
in the box is the median, the bottom and top of the box are the first and third 
quartiles, and the whiskers extend to the 1.5× interquartile range of the lower and 
the upper quartiles, respectively.
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Extended Data Fig. 3 | Pan-cancer analysis of CCLE samples. (a, b) Sample 
distributions of different cell lineages (a) and cancer types (b) in RPPA-based 
clusters. (c, d) Box plots of MELANA (c) and SGK1 (d) in skin cancer (N = 49) and 
other cell lines (N = 829). (e) Box plot of BCL2 expression in luminal (N = 11) and 
other subtypes (N = 37) of breast cancer. (f) Box plot of expression of the proteins 
involved in the cell cycle in fibroblasts (N = 17) and other cell lines (N = 861). (c-f) N 
represents the number of cell line samples. (g) Box plots showing the comparison 
of mRNA-based |log2(FC)| vs. protein-based |log2(FC)| between lineages for the 
lineage-specific markers. N = 2,312 represents the number of protein-lineage 
pairs. (c-g) The p-values are based on the two-sided Wilcoxon test. (h) Box plots 
showing differential fold changes of TP53 mRNA and protein expression between 
TP53 mutant and wild-type TCGA tumor samples. The p-value is based on the 
paired Wilcoxon test. N = 30 represents the number of cancer types. (i) Effect 
of mutations in different P53 domains on P53 protein expression. The p-values 
are based on Wilcoxon test. (j) Box plots showing differential TP53 mRNA 

(left) and P53 protein (right) expression in TP53 wild-type samples (N = 159) 
and those harboring mutations in P53 DNA binding domain (DBD domain; 
N = 267). (k) Box plots showing differential RPPA expression of P53 between 
TP53 nonsense mutant (N = 40) and wild-type samples (N = 159). (l) Box plots 
showing differential gene dependency of TP53 between TP53 mutant (N = 364) 
and wild-type samples (N = 159). (i-l) N represents the number of cell line samples 
in each group. (m) A bar plot showing the correlation of gene dependency with 
PKAA protein and mRNA expression in different cell line lineages. Significant 
correlations (FDR < 0.1) are marked by an asterisk. (n) A bar plot summarizing the 
number of lineages in which each protein marker is significantly associated with 
their gene dependency but not with mRNA (FDR < 0.1). N represents the number 
of protein markers (phase I: N = 21; phase II: N = 25). (c-l) The middle line in the 
box is the median, the bottom and top of the box are the first and third quartiles, 
and the whiskers extend to the 1.5× interquartile range of the lower and the upper 
quartiles, respectively.

http://www.nature.com/natcancer


Nature Cancer

Resource https://doi.org/10.1038/s43018-024-00817-x

Extended Data Fig. 4 | Differential effects of BRAF mutations on MEK1/2 
mRNA and protein expression. (a) A scatter plot showing the correlation 
between MEK1/2_pS217S221 RPPA and BRAF gene dependency in melanoma cell 
lines (N = 36). Shaded areas denote the 95% confidence intervals. (b-c) Box plots 
showing differential expression of MEK1 mRNA (b), MEK2 mRNA (c) based on the 
functional effects of BRAF mutations characterized by the cell viability assays. 
(a-c) N represents the number of cell line samples. (d) Box plots showing the 
differential expression of MEK1/2_pS217S221 RPPA between the patient samples 

with an activating BRAF mutation (N = 119) and those with wild-type BRAF 
(N = 60). (b-d) The p-values are based on Wilcoxon test. N represents the number 
of patient samples. (e) A heatmap showing detailed information on the BRAF 
mutations, their functional effects, and the corresponding MEK1/2_pS217S221 
RPPA expression pattern. (b-d) The middle line in the box is the median, the 
bottom and top of the box are the first and third quartiles, and the whiskers 
extend to the 1.5× interquartile range of the lower and the upper quartiles, 
respectively.
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Extended Data Fig. 5 | In vitro validation of PKAA-EGFR synthetic lethal 
interaction. (a) A Kaplan-Meier plot showing distinct survival probabilities of 
bladder cancer patients with both low PKAA and EGFR protein levels. The p-value 
is based on a log-rank test. Shaded areas denote the 95% confidence intervals.  
N represents the number of patients in each group (both low: N = 77; and others: 
N = 257). (b) A forest plot of hazard ratios for PKAA protein and clinical variables. 
The p-values are based on a multivariate Cox proportional hazards model. 
The center point of each horizontal bar represents the estimated hazard ratio. 
N represents the number of patients. (c) Box plots showing the differential 
gene dependency of PKAA between samples with EGFR deletion (N = 125) and 
amplification (N = 463). The middle line in the box is the median, the bottom and 

top of the box are the first and third quartiles, and the whiskers extend to  
the 1.5× interquartile range of the lower and the upper quartiles, respectively.  
N represents the number of cell line samples. (d) Enrichment of EGFR inhibitors 
in drugs resistant to high PKAA levels. The p-value is based on Fisher’s exact 
test. (e, f) Relative mRNA level of PKAA in PKAA-KD A549 or H226 cells. N = 2 
independent replicates were examined for each condition. (g-l) Drug response 
assays at 72 h for A549 (g-i) or H226 (j-l) PKAA-KD and control cells treated with 
three EGFR inhibitors, Afatinib, Erlotinib, and Osimertinib (DMSO and 9 drug 
concentrations). N = 3 independent replicates were examined for each  
treatment and perturbation. Data are shown as mean ± SEM. The p-values  
are based on ANOVA.
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Extended Data Fig. 6 | Evaluation of metastasis markers in cancer cell lines 
and patient samples. (a) Box plots showing the log2(FC) between metastatic 
and primary cell lines of anti- (N = 37) and pro-metastasis (N = 35) marker RPPA 
expression. The p-value is based on the Wilcoxon test. The middle line in the box 
is the median, the bottom and top of the box are the first and third quartiles, and 
the whiskers extend to the 1.5× interquartile range of the lower and the upper 
quartiles, respectively. N represents the number of protein markers in each 
group. (b, c) Relative mRNA level of CDK9 in CDK9-KD and control MD-MB-231 or 
A549 cells. N = 3 independent replicates were examined for each perturbation. 

Data are shown as mean ± SEM. (d, e) ROC curves showing predictive powers 
of GCLM expression in ACC patients (N = 44) (d) and CHK1 in SARC patients 
(N = 223) (e) between metastatic and non-metastatic primary tumor samples. 
N represents the number of patients. (f) A pie chart showing the distribution of 
drug development levels for all the identified pro-metastasis protein markers. 
The annotation data was obtained from the Pharos database. N represents the 
number of protein markers in each group (Tclin: N = 6; Tchem: N = 13; and  
Tbio: N = 15).
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