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and cell lines from cancer patients provides
insights into tumor heterogeneity and
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The Cancer Genome Atlas (TCGA) and the Cancer Cell Line Encyclopedia
(CCLE) are foundational resources in cancer research, providing extensive
molecular and phenotypic data. However, large-scale proteomic data
across various cancer types for these cohorts remain limited. Here,

we expand upon our previous work to generate high-quality protein
expression data for approximately 8,000 TCGA patient samples and around
900 CCLE cellline samples, covering 447 clinically relevant proteins,
using reverse-phase protein arrays. These protein expression profiles offer
profound insights into intertumor heterogeneity and cancer dependency
and serve as sensitive functional readouts for somatic alterations. We
develop a systematic protein-centered strategy for identifying synthetic
lethality pairs and experimentally validate an interaction between protein
kinase A subunit o and epidermal growth factor receptor. We also identify
metastasis-related protein markers with clinical relevance. This dataset
represents a valuable resource for advancing our understanding of cancer
mechanisms, discovering protein biomarkers and developing innovative
therapeutic strategies.

Molecularly characterized patient tumors and cancer cell lines lay a
critical foundation for modern cancer research, enabling the study
of intertumor heterogeneity and oncogenic mechanisms, as well as
the development of therapeutic strategies and biomarkers. Over
the last decade, the cancer research community has made tremen-
dous efforts to systematically characterize cancer samples through
high-throughput molecular profiling data. Among these efforts, The
Cancer Genome Atlas (TCGA) and the Cancer Cell Line Encyclopedia
(CCLE) are the most widely used and deeply characterized resources,
providing a comprehensive molecular portrait for 11,000 patient

samples across 33 cancer types"?and -1,000 cancer cell lines of diverse
lineages® . Although DNA and RNA data from these resources have been
extensively characterized, the parallel large-scale protein expression
dataremainlimited. Because proteins are the basic functional unitsin
various biological processes and are the direct drug targets, this limita-
tionrepresents anotable knowledge gap ingaining afullunderstanding
ofthe molecular bases of human cancers and developing more effective
strategies for precision cancer medicine’°.

Reverse-phase protein arrays (RPPAs) are a quantitative antibody-
based approachto assessthe expression of selected proteinsinalarge
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number of samplesin a high-throughput, cost-effective and sensitive
manner". Using this platform, we previously generated high-quality
protein expression data for TCGA patient tumors' and CCLE cell
lines (including both baseline and perturbed protein expression pro-
files)*"*". These datasets provide deep insights into tumor subtype
classification, cancer signaling rewiring in diverse tumor contexts,
drugresistance mechanisms, novel biomarkers and therapeutic strat-
egies" 8, Importantly, we developed user-friendly data portals to
facilitate abroad community in analyzing and visualizing these data'**.
However, one major drawback of these earlier efforts (phasel) istherel-
atively smallnumber of protein markers assessed (-200), leaving many
cancer-related pathways uncovered or insufficiently characterized.

To increase the utility of TCGA and CCLE cohorts, we finished a
phase Il characterization of ~-8,000 TCGA tumor samples and ~-900
CCLE cell lines using an updated RPPA platform. This effort sub-
stantially increases the number of proteins profiled to ~-500 (that is,
RPPA500), which covers almost allknown cancer hallmarks and alarge
portion of clinical markers and therapeutic targets. We then performed
integrated analyses of this dataset with other pre-existing molecular
and phenotypic data to demonstrate the unique value of RPPA-based
protein expression profiling in translational research.

Results

Upgraded RPPA resource for TCGA and CCLE samples

We generated quantitative protein expression datafrom-8,000 TCGA
patient tumor samples and ~900 CCLE cell line samples using our
updated RPPA platform (Fig. 1a), now covering ~-500 high-quality pro-
tein markers (240 more protein markers thanin phasel). We validated
antibody candidates through a comprehensive workflow (Extended
Data Fig. 1a). Following the established guidelines" and the phase |
processing pipeline>”, we quantified and normalized the RPPA data
through four steps, from raw images to batch-effect-corrected data
(Extended Data Fig. 1b). After rigorous sample-wise and protein-wise
correlation analyses to ensure data quality, the upgraded RPPAS00
datasetisavailable on The Cancer Proteome Atlas (TCPA; https://tcpa-
portal.org)®.

The final RPPA5S00 dataset (Supplementary Table 1) covers 7,828
TCGA patient samples across 32 cancer types, with the largest cohorts
in breast invasive carcinoma (BRCA, n = 881), kidney renal clear cell
(KIRC, n=478) and uterine cancers (UCEC, n = 440) (Fig. 1b). In parallel,
it contains 878 CCLE cell line samples of 24 lineages (Supplementary
Table2), primarily usedin cancer research and characterized by various
molecular profiling methods****and phenotypic assays®* 2 (Fig. 1c).
The updated dataset contains 447 protein markers (357 total and 90
post-translationally modified (PTM) proteins; Supplementary Table 3),
targeting crucial oncogenic pathways and therapeutic biomarkers.
Comparedto phasel (refs.12,20,27), the phase Il protein set covers 15
new hallmark sets (30%) with >5 protein markers; furthermore, for 60%
of the hallmark sets covered by both phases, RPPA5S00 has, on aver-
age, an 80% increase in the protein numbers assessed per set (Fig. 1d,
Extended Data Fig. 1c and Supplementary Table 4). This expansion,
thus, greatly increases our ability to interpret cancer mechanisms and
generate clinically relevant hypotheses. For example, by comparing
different RPPA-based interferon-y (IFNy) response pathway scores to
those from the literature”®, we found that the pathway score based on
RPPA500 (phaseslandIl) showed significantly higher correlations than
thatbased on phaseldata, consistently across cancer types (Extended
DataFig.1d).

To further evaluate the RPPA500 data quality, we compared RPPA
proteinlevels with corresponding mRNA expression (mean Pearson’s
R =0.51) and mass spectrometry (MS)-based protein expression
(mean Pearson’s R = 0.52) for total proteins®. Compared to correla-
tions between MS-based protein and mRNA expression (mean Person’s
R =0.54), our data showed overall good correlation and consistency
(Fig. 1e). In addition, cross-platform analyses for both phase I and Il

showed no significant differences, suggesting that the data quality is
consistent between the two phases (Extended Data Fig. 1e). Lineage-
specific correlation analysis of RPPA total proteins with mRNA or MS
dataresultedinanaverage correlation of ~0.4 for both (Extended Data
Fig. 1f), largely because of the reduced sample size in each lineage
(Extended Data Fig. 1g). For PTM proteins, the average correlations
were much lower: 0.23 and 0.24 for mRNA and MS-based total pro-
teins?, respectively, indicating that PTM protein levels could not be
accurately imputed by expression levels of mRNA and total proteins
(Fig.1e). We also analyzed the expression of phosphorylated proteins
inNCI60 cell lines”. The average correlation between RPPA and MS data
was 0.44, consistent with our observation for total proteins (Extended
DataFig.1h).Forexample,aphosphorylated heat-shock protein (HSP27
pS82), exhibited a Pearson’s correlation of 0.7 between the two datasets
(P=2.3x107% Extended Data Fig. 1i). Overall, our thorough, multilay-
ered quality control (QC) analysesindicate the high quality of RPPA data
and the consistency across various platforms and phases.

RPPA protein expression patterns in TCGA samples

On the basis of TCGA RPPA500 data, we performed an unsupervised
clustering analysis and identified ten clusters across 32 cancer types
(Fig. 2a). Most clusters were dominated by individual cancer types
or cancer types from the same tissue of origin. Furthermore, tumors
fromdifferent tissue sites but similar organ systems tended to cluster
together (for example, pan-GYN, encompassing breast cancer and
gynecological malignancies, and pan-Gl, encompassing malignancies
occurring throughout the gastrointestinal tract; Fig. 2b). These pat-
terns are generally consistent with the clustering patterns based on
gene expression data, highlighting that lineage effects are dominant
in protein expression®.

Forindividual proteins, those from the same pathways tended to
cluster together (Fig. 2a). For example, the phosphatidylinositol 3-OH
kinase (PI3K) signaling pathway formed a cluster in which phosphoryl-
ated protein kinase B (AKT pS473 and pT308) and phosphorylated
glycogensynthasekinase 3 (GSK3 pS9 and pS21S9) were strongly upreg-
ulated inK5and phosphorylated ribosomal protein S6 (pS2355236 and
pS240S244) was strongly upregulated in K1. Protein kinase C (PKC)
formed a cluster and showed a strong signal in K5 (PKCa, PKCa pS657
and PKCABII pT638T641). Immune-related markers also formed a
cluster, with granzyme B, cleaved caspase 7, cluster of differentiation
4 (CD4) and spleen tyrosine kinase being downregulated in K5 but
upregulated in other clusters.

Interestingly, some cancer types were split into multiple clus-
ters, showing distinct overall survival patterns. For example, KIRC
samples in cluster K7 showed aworse prognosis thanin K10 (log-rank
test, P=6.6 x1074; Fig. 2c), while cervical squamous cell carcinoma
(CESC) samples in K7 showed a worse prognosis than in K1 (log-rank
test, P=1.3 x10% Fig.2d and Extended DataFig. 2a,b). Pathway analy-
sis showed a higher epithelial-mesenchymal transition (EMT) score
in K7 than K10 in KIRC and K1 in CESC (Extended Data Fig. 2c) and a
lower IFNa scorein K7 than K10 in KIRC and K1in CESC (Extended Data
Fig.2d). Downregulation of IFNa in K7 suggests a potential suppression
of the immune response. These findings suggest EMT upregulation
and IFNa downregulation as features of the K7 cluster, which may
explainthe worse prognosis associated with patientsin the K7 cluster.
We further analyzed molecular drivers associated with RPPA clusters
(Extended Data Fig. 2e,f). Accounting for cancer type as a covariate,
we identified several significant gene-cluster pairs. Interestingly, K1
and K8 were associated with multiple driver gene alterations (TP53and
PIK3CA mutations; PTEN loss) but with reversed patterns. These results
indicate that RPPA data provide a unique perspective to characterize
intertumor heterogeneity and identify related clinical patterns and
cancer drivers.

Protein profiling data represent a more direct readout of pro-
tein activity than mRNA expression; therefore, it is critical to assess
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Fig.1|Overview of the upgraded RPPA resource of TCGA and CCLE samples.
a, The pipeline of RPPA data generation and data sharing for -8,000 patient
samples and ~-900 cancer cell lines across ~500 protein markers. The raw data
were normalized through four levels (from L1to L4; Methods). The full list of
cancer classifications can be found on TCGA (https://portal.gdc.cancer.gov/).

b, The cancer type distribution of TCGA patient samples (n = 7,828). Each number
represents the sample size of each cancer type. ¢, The lineage distribution of
CCLE samples (n = 878) and their parallel molecular and phenotypic data. The
number for each column represents the sample size of each cell line lineage with
available RPPA data and the number for each row represents the total sample
size for each data type. d, The distribution of protein markers in different cancer

Total RPPA versus RNAseq Total RPPA versus Total mass spectrometry
== PTM RPPA versus RNAseq == PTM RPPA versus Total mass spectrometry
== Total mass spectrometry versus RNAseq

hallmark gene sets, with newly covered pathways (with at least five protein
markers) highlighted in purple. The new total proteins and PTM proteins are
showninblue andred, respectively, and the phase I total proteins and PTM
proteins are shownin green and orange, respectively. The pie chart shows the
distribution of hallmark sets covered in the different phases. e, The distributions
of the expression correlations of RPPA-based proteins with RNA-seq-based mRNA
(top) and MS-based total proteins (middle) and correlations between MS-based
total proteins and RNA-seq-based mRNA (bottom). The distributions are shown
for total proteins and PTM proteins. TCGA cancer type abbreviation codes are
provided in Supplementary Table 1.

whether protein expressionis more informative ininferring biological
interactions. We performed a coexpression analysis and identified
potential interaction pairs using RPPA and mRNA data (false discovery
rate (FDR) < 0.1). These pairs were further mapped to the annotated

physical protein-protein interactions (PPIs) in the STRING database™.
In total, we identified 136,832 PPIs: 59,695 were identified by both
RPPA and mRNA, whereas 50,269 were identified by RPPA only (that
is, twofold higher than the 26,868 identified solely by mRNA; Fig. 2e),
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indicating that RPPA data are more sensitive to detecting PPIs. We
further found that RPPA-inferred PPIs occurred in more cancer types
(median n=19) than mRNA-inferred PPIs (median n =14; Fig. 2f),
indicating that RPPA-based PPIs are more robust. For example, the
MLH1-PMS2 complex, a well-known PPI, forms a heterodimer that
is essential in DNA mismatch repair, which was identified in all 32

M Decreased coupling
Increased coupling

cancer types by RPPA but only detected in five cancer types by mRNA
(P=4.7x107°; Fig. 2g).

Our RPPA data also provide a unique opportunity to assess how
driver events affect protein—-mRNA coupling. Given the copy-number
alterations of driver genes, we confirmed that amplification increased
its cis protein-mRNA coupling (P=3.9 x 10"%; Extended Data Fig. 2g),
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Fig.2|Global patterns of RPPA protein expression in different TCGA cancer
types. a, Clustering heat map of TCGA samples based on the expression of 447
proteins. b, Sankey diagram showing the relationship among cancer types, RPPA
clusters and organ systems. c¢,d, Kaplan-Meier plots showing differential survival
patterns between corresponding clusters. The Pvalues are based on alog-rank
test.Shaded areas denote the 95% confidence intervals. The numbers represent
the patient countin each group (KIRC: K10, n =432;K7,n =34; CESC:K1,n =95;
K7,n=57).e,Venn diagram showing the number of PPIs identified by RPPA
protein and/or mRNA coexpression patterns (RPPA only, n=50,269; mRNA only,
n=26,868;both, n=59,695).f, The distribution of the number of cancer types
inwhich a specific PPl was identified by RPPA or mRNA data. The dotted lines
indicate the median values (RPPA, n=19; mRNA, n=14). The Pvalueis based ona

Wilcoxon test. g, Box plot showing that the RPPA-based MlIh1-PMS2 correlation
is much higher than the mRNA-based correlation across cancer types (n =32).
The Pvalueis based on a paired Wilcoxon test. The middle lines in the boxes are
the median, the upper and lower boundaries of the boxes are the first and third
quartiles and the whiskers extend to 1.5x the interquartile range of the lower and
the upper quartiles; nrepresents the number of cancer types. h, The effects of
driver events on global protein-mRNA coupling, including mutation, copy-
number amplification and deletion. The signed adjusted Pvalue is based on an
ANOVA with cancer type as a covariate. The sign was determined by the median
of differences indicating the direction of change in protein-mRNA coupling.
Increases and decreases in protein-mRNA coupling are shown in orange and
blue, respectively.

while deletion decreased its cis coupling (P=1.8 x 107%; Extended
DataFig. 2h). We next focused on trans effects and identified 22 signifi-
cant somatic driver events (Fig. 2h). Intriguingly, most driver events
decreased protein-mRNA couplingin the altered group relative to the
wild-type group. These results emphasize theimportance of expression
profiling of proteinin addition to mRNA.

RPPA protein expression patterns in CCLE cell line samples
Using CCLE RPPA500 data, we performed an unsupervised cluster-
ing analysis and identified ten RPPA clusters (Fig. 3a). Similar to TCGA
RPPA clusters, the CCLERPPA clusters were also largely driven by cancer
lineages (Extended Data Fig.3a,b). Toinvestigate the observed lineage
effects, we further performed a supervised analysis and identified 39
lineage-specific proteins (Fig. 3b,c). Interestingly, differentiating powers
ofthese proteins varied; some proteins showed high expression levels
across asubset of lineages (for example, caveolin), some were specific
toindividual lineages (for example, MELANA; Extended Data Fig. 3¢,d)
and some could further distinguish lineage subtypes (for example, Bcl-2;
Extended DataFig. 3e). Proteins in the same pathway showed consist-
entsignature patterns (for example, cell-cycle pathway; Extended Data
Fig. 3f).Inaddition, compared to mRNA data, RPPA proteins showed a
higher dynamic range (fold change) than the corresponding mRNA for
each lineage-specific marker (Extended Data Fig. 3g)*. These findings
highlight the superiority of RPPAS00 protein markersin characterizing
intrinsic tumor-specific contexts, suggesting their potential value in
subtype classification and biomarker identification.

RPPA datareveal deep mechanisticinsightsin cancer
dependency

Cancer dependency is defined as the fitness effect on the growth or sur-
vival of cancer cells when anindividual gene is knocked out or down*,
providing essential information for developing treatments and reduc-
ing toxicity. To assess the value of RPPA expressionin elucidating gene
dependency, we performed a comparative analysis using both RPPA
and mRNA expressions with the gene dependency scores obtained
from the DepMap project’****. Overall, the correlations between gene
dependency and its proteinand mRNA levels were aligned tightly on the
diagonal line, indicating good, consensus genotype-phenotype rela-
tionships (Fig. 3d). However, five proteins exhibited much higher abso-
lute correlations than their mRNA counterparts (JAR| > 0.25,FDR < 0.1).
Among them, phosphatase SHP2 (pY542), rather than the mRNA, has

beenreported asasensitive marker for receptor tyrosine kinase activa-
tion?; therefore, we focused on the remaining four proteins to dissect
the difference in correlation between RPPA protein and mRNA levels.

The first case, TP53, is the most frequently mutated tumor sup-
pressor gene in human cancers. We performed a differential expres-
sion analysis between TP53 wild-type and mutant cell lines (Fig. 3e).
Although TP53 mRNA showed no difference (Wilcoxon test, P= 0.96),
the P53 protein level was significantly higher in mutant cell lines (Wil-
coxon test, P<2.2 x107%), suggesting that protein level, rather than
mRNA level, captures the mutational effects. This was also confirmed by
TCGA data (paired Wilcoxon test, P=1.4 x10°5; Extended Data Fig. 3h).
Focusing on different P53 domains, we found that only samples with a
mutation in the DNA-binding domain (Wilcoxon test, P=3.9 x10739)
or the tetramerization domain (Wilcoxon test, P=3.6 x 1072) showed
significantly higher RPPA levels than wild-type samples (Extended Data
Fig. 3i). As the DNA-binding domain is the most important functional
domain in TP53, we further investigated this pattern with mRNA data
but observed no differences (Extended Data Fig. 3j). In addition, P53
protein expression showed a significantly higher log, fold change
than mRNA between cell lines harboring 7P53 missense mutations and
wild-type samples (Fig. 3f). We also confirmed a significantly lower P53
RPPA expression for nonsense mutants compared to the wild type, sug-
gesting that RPPA caneffectively distinguish mutationsin terms of their
functional domains and variant classifications (Extended Data Fig. 3k).
Lastly, we observed that the gene dependency of TP53 mutants was
closer to zero, suggesting a loss of function (P < 2.2 x 10716; Extended
DataFig.3l). These findings highlight the superior power of RPPA over
mRNA for elucidating mutation functional effects.

In the second case, both total and phosphoproteins of tyrosine
kinase c-ABL (c-ABL and c-ABL pY412) showed high correlations with
gene dependency (c-ABL Pearson’s R =-0.38, P=1.3 x10721; c-ABL
pY412 Pearson’s R=-0.38, P= 8.4 x 10722) while mRNA did not (Pear-
son’s R=-0.04, P=0.34). The ABLI gene frequently fuses with BCR in
leukemia, forming an active kinase that promotes cellular proliferation
and suppresses apoptosis® and is commonly used to diagnose blood
cancers. We, thus, assessed whether RPPA expression more effectively
captures this fusion event.Indeed, compared to c-ABL mRNA changes,
both total and phosphoproteins exhibited significantly higher fold
changes in cell lines with BCR-ABL1 fusions relative to the wild type
(Fig.3g), suggesting that RPPA-based protein markers more sensitively
detect the functional consequences of fusion events.

Fig.3 | Global patterns of RPPA protein expression in different CCLE cancer
lineages. a, Clustering patterns of CCLE samples based on the expression of

447 proteins. b, Lineage-specific protein expression in CCLE samples. ¢, Network
view of differentially expressed proteins associated with each cancer lineage
(phasel, n=14; phasell, n = 25). The Pvalues are based on a two-sided Wilcoxon
test.d, Ascatter plot of protein-dependency correlation versus mRNA-
dependency correlation. Each dot represents a Pearson correlation colored on
the basis of whether the correlation is significant in RPPA, mRNA or both. e, Box
plots of TP53 mRNA expression or protein expression between TP53 wild-type
(n=159) and TP53mutant (n = 364) CCLE samples. The Pvalues are based on

atwo-sided Wilcoxon test. f, Box plots showing differential fold changes of

TP53 mRNA expression and protein expression between 7P53 missense mutant
(n=235) and wild-type CCLE samples. The Pvalue is based on a paired Wilcoxon
test. g, Box plots showing differential fold changes of c-ABL mRNA and protein
expression between CCLE BCR-ABLI fusion (n =14) and wild-type blood CCLE
samples. The Pvalues are based on a Wilcoxon test. e-g, The middlelinein the
box is the median, the upper and lower boundaries of the box are the first and
third quartiles and the whiskers extend to 1.5x the interquartile range of the lower
and the upper quartiles; nrepresents the sample size in each group.
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Lastly, protein kinase A subunit o (PKAA, encoded by PRKARIA)
showed asignificant negative correlation with gene dependency at the
proteinlevelacross cell lines, unlike with mRNA. We assessed whether
such correlations persisted within each lineage. While no lineage
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with significant correlations across multiple lineages but not with
mRNA (Extended DataFig. 3n), suggesting that protein levels provide
deeper phenotypicinsights.

Phosphorylated mitogen-activated protein kinase (MAPK)
kinase (MEK) is a sensitive functional readout of BRAF
mutations

Somatic mutations are a major source of driver events in cancer
development and clinical markers®®. However, distinguishing driver
mutations from passenger mutations remains challenging, evenin
the best-studied cancer genes**®, To further demonstrate the power
of RPPA-based protein signaling ininterpreting the functional effects
of somatic mutations, we performed a differential expression analysis
of oncogene mutations between wild-type and mutant cell lines and
identified the most prominent pair BRAF mutations and phosphoryl-
ated MEK protein level (Fig. 4a). BRAF, a key player in regulating the
MAPK-ERK (extracellular signal-regulated kinase signaling) pathway*,
is frequently mutated in certain cancers such as melanoma (-50%).
The most common BRAF mutation is V60O. Clinically, treating per-
sons with melanoma harboring non-V600 BRAF mutations with B-Raf
inhibitors remains controversial*°. MEK1/2 pS2175221 was the most
significantly upregulated proteinin BRAF-mutated samples because of
theincreased kinase activity caused by BRAF mutations*. Focusing on
the Ras-Raf signaling pathway (Fig. 4b), we observed that both pMEK
(MEK1/2 pS217S221) and pERK (MAPK pT202Y204) were significantly
upregulated in BRAF mutant cell lines, but not at the levels of B-Raf,
MEK and ERK total proteins, implying that BRAF mutations mainly alter
the phosphorylation of its downstream MEK and ERK targets but not
their total proteins. Furthermore, because ERK is a negative regulator
of Ras through feedback inhibition*’, N-Ras showed a significantly
lower protein expression in BRAF mutant cell lines (Wilcoxon test,
P=3.4x107%). We next examined the correlation with gene dependency
scores and found that MEK1/2 pS217S221 negatively correlated with
BRAF dependency inmutantcell lines (Pearson’sR=-0.71,P < 2.2 x107';
Fig. 4c) but not in the wild-type samples (Pearson’s R =-0.04,
P=0.4; Fig. 4d), highlighting the oncogenic addiction effect of
BRAF mutations.

Given the high enrichment of BRAF mutations in melanoma, we
confirmed the negative correlation between MEK1/2 pS217S221 and
BRAF dependency (Extended Data Fig. 4a). This suggests that MEK1/2
pS217S221 not only distinguishes BRAF mutational effects from the
wild type but also represents a sensitive marker for the functional
impact of BRAF mutations on cell viability. To test this hypothesis, we
performed cell viability assays to evaluate the effects of various BRAF
mutations using two informer cell models™ (Fig. 4¢). By assessing the
effect of overexpressing amutant BRAF relative to that of overexpress-
ing awild-type BRAF, we evaluated 138 mutations and classified them
into five functional types (thatis, strongactivating, moderate or weak
activating, inactivating, inhibitory, no effect and inconclusive). Focus-
ing on cell lines carrying different types of BRAF mutations, MEK1/2
pS2175221 exhibited a clear decreasing trend in the order activating,
inactivating, wild-type, silent and inhibitory (Fig. 4f); moreover, pMEK
coulddistinguish strong activating from moderate ot weak activating
(Wilcoxontest, P=0.028). In contrast, such atrend was not observed at
the mRNA level (Extended DataFig. 4b,c). Additionally, in TCGA mela-
noma samples, MEK1/2 pS2175221 RPPA levels were higher in tumors
with activating BRAF mutations than in the wild type (Extended Data
Fig.4d). Particularly, BRAF'*°°*® mutations were enriched in the high and
median MEK1/2 pS217S221 groups (Extended Data Fig. 4e). Interest-
ingly, five BRAF mutations (V600D, N581Y, V600K, 487_492VTAPTP>A
and T599_599>TT) in the high group were not included in our func-
tional assays but all these mutations have been previously identified as
oncogenicin the literature**¢, This independent validation strongly
demonstrates the power of RPPA analysis, especially of PTMs, ininter-
preting the functional effects of somatic mutations.

To further explore the clinical utility of pMEK, we assessed the
power of MEK1/2 pS217S221 and B-Raf in predicting the sensitivity to
dabrafenib, a US Food and Drug Administration (FDA)-approved B-Raf
inhibitor in melanoma. The MEK1/2 pS217S221 level, but not BRAF
protein expression, showed a significant correlation with the drug’s
sensitivity in BRAF mutant cell lines (Fig. 4g,h). We further confirmed
that this correlation was retained in melanoma cell lines (Pearson’s
R=-0.63,P=0.022; Fig. 4i).In contrast, BRAF, MEK1 and MEK2 mRNA
expressions did not exhibit predictive power (Pearson’s P=0.38,0.39
and 0.57, respectively; Fig. 4i). These results suggest the potential
of pMEK as a predictive marker of dabrafenib sensitivity to stratify
patients with BRAF mutations.

Systematicidentification of RPPA-based synthetic lethality
Synthetic lethality is animportant cancer therapeutic strategy where
two perturbations are not lethalwhenactingindependently but become
lethal when combined®. It has attracted wide attention following the
success of poly(ADP-ribose) polymerase (PARP) inhibitors as synthetic
lethal with BRCA1/2 mutations*®. Because proteins are the functional
products of gene activities, we hypothesized that a protein-centered
analysis could effectively identify synthetic lethality. We developed an
RPPA-based approach toidentify synthetic lethality pairs by incorporat-
ing both CCLE and TCGA samples (Fig. 5a). We first identified protein
pairs where cell lines with a lower expression of protein A were more
dependent on protein B (that is, with significantly lower dependency
scores) and then confirmed that patients with low expression levels
of both correlated with better prognosis. Through this framework, we
identified 1,131 potential synthetic lethality pairs.

Tovalidate our predictions, we assessed the efficacy of 2,025 clini-
cally relevant two-drug combinations across 125 cancer cell lines*. By
mapping our predictions onto this dataset, among 52 synthetic lethality
pairs (Fig.5b), 48 were synergistic and 4 were nonsynergistic, leading to
aratio of 12, which wasfivefold higher than the background expectation
(Fisher’s exact test, P= 8.6 x 107%; Fig. 5¢). To further test whether our
predictions were enriched in drug combinations showing synergy in
more celllines, we calculated the synergy rate, defined as the number of
synergistic cell lines divided by the total number of tested cell lines, and
found that our predictions had significantly higher synergy rates than
other combination pairs (Wilcoxon test, P= 9.9 x 107*) (Fig. 5d). These
results suggest that our RPPA protein-centered strategy has substantial
power in nominating synthetic lethality interactions.

We selected a synthetic lethality pair PKAA-EGFR (epidermal
growth factor receptor) for experimental validation because (1) this
pair had notbeen validated by the above drug screen data; (2) EGFRis
amajor therapeutic target with many FDA-approved inhibitors; and (3)
PKAARPPA, but not mRNA, showed significant associations with gene
dependency (Fig.3d). We first confirmed this association of PKAA pro-
teinlevel with EGFR gene dependency and their significant correlation
with patientsurvival (Fig. 5e and Extended Data Fig. 5a-c). To evaluate
the PKAA-drug association, we performed a correlation analysis of
PKAA proteinlevel with drugsensitivity datafrom four major datasets
(thatis, Cancer Target Discovery and Development, Genomics of Drug
Sensitivity in Cancer (GDSC) and PRISM). Intriguingly, a high expres-
sion of PKAA level was dominantly associated with resistance to EGFR
inhibitors (EGFRis) (Fig. 5f and Extended Data Fig. 5d; Fisher’s exact
test, P=2.7 x10"%). Intotal, we identified 33 EGFRis, including afatinib,
lapatinib, gefitinib and erlotinib (eight FDA-approved EGFRis)*°.

For experimental validation, we selected two EGFR-resistant
lung cancer cell lines, H226 and A549, and established correspond-
ing PKAA-knockdown (KD) stable cell lines using short hairpin RNAs
(shRNAs) (Extended Data Fig. 5e,f). We performed drug response
assays using four EGFRi drugs at different concentrations (that is,
DMSO and nine EGFRi concentrations). Indeed, PKAA-KD cell lines were
much more sensitive to the EGFRi (Fig. 5g and Extended Data Fig. 5g-1).
Acrossall four EGFRis, the relative cell viabilities of PKAA-KD cells were
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Fig. 4 | Effects of BRAF mutations on RPPA-based protein signaling.

a, Avolcano plot showing the differential expression of RPPA proteins between
oncogene mutation-containing and wild-type cell lines; n = 2,682 represents

the total number of comparisons. Significant proteins are shown in blue and

red (FDR < 0.1), with the most significant one, MEK1/2 pS217S221:BRAF_MUT,
highlighted. The Pvalues are based on a Wilcoxon test. b, Differential expression
of key proteins in the Ras-Raf pathway between BRAF mutant (n = 126) and wild-
type (n=751) samples. The Pvalues are based on a Wilcoxon test. c,d, A scatter
plot of MEK1/2 pS217S221 protein versus BRAF gene dependency in BRAF mutant
(n=99; c) and wild-type (n =493; d) samples; nrepresents the sample size in

each group. e, Cartoon summary showing a functional genomics approach to
characterize the effects of BRAF mutations (n = 138) on cell viability, based on the
readout of two ‘informer’ cell lines; n represents the number of mutations in each
category. f, Abox plot showing the differential expression of MEK1/2 pS217S221
based on the classified functional effects of BRAF mutations characterized by the

cell viability assays (strong activating, n = 46; moderate or weak activating, n = 6;
inactivating, n = 3; wild-type, n = 493; silent, n = 6; inhibitory, n =5). The Pvalues
arebased ona Wilcoxon test; n represents the number of samples in each group.
g h, The correlations of MEK1/2 pS217S221 (n represents the number of mutant
(inred; n = 64) or wild-type (in black; n = 308) samples; g) and B-Raf protein (h)
with dabrafenib (B-Raf inhibitor) sensitivity. The correlations are shown for
BRAF mutant and wild-type cell lines. i, The correlations of MEK1/2 pS217S221
protein expression, BRAF mRNA, MEKI mRNA and MEK2 mRNA with dabrafenib
sensitivity in melanoma cell lines. Pvalues are based on Pearson’s correlations;
n=13represents the number of samplesin each scatter plot. b,f, The middle line
inthe box is the median, the lower and upper boundaries of the box are the first
and third quartiles and the whiskers extend to 1.5x the interquartile range of the
lower and the upper quartiles. ¢,d,g-i, Shaded areas denote the 95% confidence
intervals.
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Fig. 5|Systematic identification of synthetic lethality based on RPPA500
data of CCLE and TCGA samples. a, Acomputational strategy to identify
synthetic lethality pairs by integrating RPPA expression and gene dependency

in CCLE samples and RPPA expression and patient survival patternsin TCGA
samples. b, Network view of synthetic lethality pairs validated by independent
drugscreening data (phasel, n=32; phasell,n=9). Thesize ofanodeis
proportional to the number of linked edges. ¢, Odds ratio of predicted synthetic
lethality pairs and background expectation. The true synthetic lethality pairs
were defined by Jin et al., who systematically assayed single drugs and their drug
combinations. The Pvalue is based on a Fisher’s exact test. The density curve was
generated on the basis of random samplings (n =1,000) from all the tested drug
combinations. d, A box plot showing differential proportions of synergistic cell
lines between predicted synthetic lethality pairs and others. The Pvalue is based
on aWilcoxon test; n represents the number of drug combinations assessed
(predicted, n =124; others, n = 947). e, Box plot showing differential patterns of
EGFR dependency between PKAA low (n=198), medium (n =197) and high groups
(n=197). The Pvalues are based on a Wilcoxon test; n represents the sample
sizeineach group.f, A volcano plot showing the correlations between PKAA
protein and drug sensitivity. Significantly positive and negative correlations
(FDR <0.1) are highlighted in red and blue, respectively. P values were obtained

from a Pearson’s correlation coefficient test; n = 5,794 represents the total
number of tests performed. g, Drug response assays at 72 h for H226 or A549
PKAA-KD and control cells treated with gefitinib (DMSO and nine gefitinib drug
concentrations; n =3 independent replicates were examined for each treatment
and perturbation). Data are shown as the mean + s.e.m. The Pvalues are based
onanANOVA. h, Box plots showing differential relative cell viabilities at 72 h for
H226 or A549 PKAA-KD and control cells treated with 10 pM each of four
EGFRinhibitors (that s, afatinib, erlotinib, gefitinib and osimertinib). The
Pvalues are based onan ANOVA; n =12 represents the number of samples in each
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were examined for each perturbation. k, A graphic summary showing that PKA
and EGFR pathways provide complementary signals to activate CREB-mediated
downstream signaling. c,e,h,i, The middle line in the box is the median, the lower
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Predicted synthetic lethality pairs are provided in Supplementary Table 5.

Nature Cancer


http://www.nature.com/natcancer

Resource

https://doi.org/10.1038/s43018-024-00817-x

a Lung
Liver ~log(P)
e 3
Kidney @ 6
Brain @ °
Bone EDR
—— T T T T <01
O PRF I PFRSLLES AN TS E ORI P S P PSP S PP -
K S & I X W & N ¥ N O VAR SIS g s S ) >0.1
SRS @ EENE T T 0 NES 0@ T T T EE LSS ;
& X Q@ M Q ,\\Q‘O q\.\o Qg» &R < . O
& » O RRINA Spearman's rho
& I
N
“\4\5“ 0.2
~® 0.1
Prometastasis RPPA markers
ling{@/e[e]e]e ° olefe . ’:"i“’(P)
Liver{o|@ ® ® o o @ o000 [ JK) [ [ [ ) oo ®6
Kidney °oe0 . ° ° ° @9
Brain | @ [ FDR
Bone{ @ ® @ <0.1
T T T T T T T T T T T T T T ,\\ T T T T T T T T T T T T T T T T T T T T T 20'1
& DO DR OO O SR I\ ) O @ o™ D b & & qr &> DS :
ngb*&u cf@“v&aoo & Q}«\ M) S v“‘v *q;\k% 6\\2‘3'@ & \@@u{gb 3 (P«OQ & %@ Q&Q\a v@ N Ry {'\\AOC?\ Qé X
Qnéqg‘z R ) @ O@Y@\S & R nglqu X @- Sl Q@o wﬁ’o o [Cde) N \Qe Spearman's tho
RS & 3 (ch 6‘3, QV‘QQ‘Y S (o@ < %Q% o @Sbgg@ \g@oq_(\ OO\A [ o
ézV \}v %Qv &\ %w Il Phase | (n = 40) -01
<8 o 0(5\ & [ Phase Il (n=32) I_og
) i -0.3
Antimetastasis RPPA markers
b CDK9
NC SiIRNA1 SiRNA2
B

MDA-MB-231

bl bl
2 g 40
&= &=
o =
[ [9]
Q Q 30
2 2
] ]
o o 20
el el
2 2
© @
i) 5"
= =
0
NC siRNA 1 siRNA 2 NC siRNA1 siRNA 2
(n=18) (n=18) (n=11) (n=16) (n=16) (n=18)
MDA-MB-231 A549
P=59x107
PERK
2 . (Go)
HYP27PS82
ACETYLATUBULINLYS40 (L.GG) 0D2
(LIHC) LGG)
HSP27PS82  ACETYLATUBULINLYS40
— 01 (SARC), (SARC)
i) CABLPY412 -
I GARC) . 3902« gim
o ~ tsKet
T SHP2PY542 BACT\T\I .
S o (KIRC) (UCEC) S zl;‘gﬂ
£ e
= (SARC) . (LGG)
CASPASE8CLEAVED
(KIRC}
P7OSGKPT3.89
—41 (ACC)
-6 - GCLM
6 (ACC) °

(]
Oh 24 h Oh 48h
NC- - --

CDK 9
SiIRNA1

Antimetastasis
RPPA markers
(n=17)

T

Prometastasis

RPPA markers
(n=21)

CDK9
siRNA2
MDA-MB-231 A549
—--NC(n=5 =
T SRAT ) P =13 10 507 T IRNAT (=) P=6.4x 107
S —~+siRNA2(n=5) P=3.7x10" S ~+«siRNA2 (n=4) P=5.0x107®
o °
:g 100 £ 100
@ ‘s
5 5
° 50 5 50
< 2
o 3
= £
O—T T 1T T 1T 1T T 1 T 1 *%* O T T T T T T T T T T T T T T T T T T
CNTe®oEILRRAI ONTOPONTOPNILRBTTBRITTISS
Time (h) Time (h)
MDA-MB-231 A549
e ACC GCLM RPPA f SARC CHK1 RPPA
- Low (n=22) = Low (n=112)
1.00 High (n =22) 1.00 High (n=111)
2z Z
2 o7 3 075
@ @
3 8
g 050 g 050
3 S
2 025 Z 025
3 3
o {log-rank P=1.1x 107 o0 log-rank P=2.9x107°
3 T T T T T S
N
Time (day) Time (day)
9 Hazard ratio (95% Cl) P-value h Hazard ratio (95% CI)  P-value
| |
LM 1
(Pflg:P A (69 6 o7y 1| ey gs;( ; @seT0m : 0001
1
Tumor 024417 | '
B X104 =} 0682 |
purity (2.9 x10-% - 206.886) 1 Tumor (0.32'—%,0)}—4—1 olom
153649 I purity |
Sex (3.0~ 7466) >—:'—< CESs :
! Sex 061257 ke 0.801
Age (o x‘igra*ﬁ:.ioss) |' o161 :
1 |
.02
Stage (55100 4s08) = om Age (0110) b opos*
|
#Events: 13 (N = 44) : #Events: 77 (N = 223) ]
Global P-value: 1.9 x 104 105 10% 011 10100 Global P-value: 8.7 x 105 051 2 5 10 20 50 100

AIC: 67.62
Concordance index: 0.87

AIC: 702.48
Concordance index: 0.65

Nature Cancer


http://www.nature.com/natcancer

Resource

https://doi.org/10.1038/s43018-024-00817-x

greatly reduced compared to the control cell lines for both H226 and
A549,indicating thatlow PKAA indeed sensitized EGFR-resistant cells
(Fig. 5h). After confirming the causal effects between PKAA loss and
increased EGFRi sensitivity, we next sought to elucidate the underly-
ing mechanism. A major phosphorylation substrate of PKAA protein
isthe cAMP response element-binding protein (CREB); EGFR signaling
isalsoupstream of CREB and phosphorylated CREB is responsible for
activating diverse cellular responses, including proliferation, survival
and cell-cycle progression®**, Thus, PKAA and EGFR may provide
complementary effects on CREB signaling. To test this hypothesis, we
assessed how PKAA protein levels were associated with pCREBin lung
adenocarcinoma (LUAD) and observed that high PKAA was associated
with high pCREB level (normalized by total CREB protein) in patient and
celllinesamples for LUAD (one-tailed t-test, TCGA, P=1.4 x10™; CCLE,
P=5x107%Fig. 5i). We further confirmed that PKA activity decreased
in PKAA-KD cells compared to the controls (Fig. 5j). Thus, we proposed
amechanistic model (Fig. 5k). Two distinct signaling pathways (EGFR
and PKAA) can activate CREB; cancer cells with a higher level of PKAA
proteinexpression areless dependent on the EGFR signaling, becoming
moreresistant to EGFRis.

Characterization of metastasis potential based on RPPA data

Metastasis is a hallmark of cancer and a major contributor to cancer-
related deaths. A recent study generated a metastasis map of human
cancer cell lines, MetMap, where the metastatic potential of cancer
cell lines was determined in mouse xenografts at a large scale’®. To
gain a better understanding of metastasis from the perspective of
RPPA-based protein expression, we examined the correlation of RPPA
protein markers with MetMap metastasis potential scores. In total, we
identified 35 positively and 37 negatively correlated proteins with over-
all metastasis potential scores (FDR < 0.1). We also evaluated correla-
tions for each target organ, confirming that organ-specific correlations
were consistent with overall correlations but with variations (Fig. 6a).
Among prometastasis protein markers, mammalian target of rapamy-
cin (MTOR) and its regulatory protein (RAPTOR) are the main protein
components of mMTORCI, PI3Ks (p110a and p85) are major playersin
PI3K-AKT signaling and pMEK (MEK1/2 pS2175221) is a key member
inthe Ras—-Raf-MEK-ERK pathway. As reported by previous studies®,
high levels of mMTORCI, PI3K-AKT and MEK are responsible for the
reactivation of metastatic cancer cells. Among antimetastasis mark-
ers, we identified multiple proteins related to the apoptosis signaling
pathway, including cleaved caspases 3 and 8. Caspases act as metas-
tasis suppressors by inducing programmed cell death®. We further
confirmed that prometastasis and antimetastasis markers exhibited
significantly divergent expression between metastatic and primary cell
lines (Wilcoxon test, P=2 x 10™%; Extended Data Fig. 6a). Specifically,
prometastasis RPPA markers demonstrated elevated expression in
metastatic cell lines, while antimetastasis markers showed reduced
expressioninthese cells when compared to primary cell lines. To further
validate our prediction, we chose cyclin-dependent kinase 9 (CDK9),

an inferred prometastasis RPPA marker, to assess the differences in
cellmigration and wound-healing capabilities between wild-type and
CDK9smallinterfering RNA (siRNA) KD cells (Extended Data Fig. 6b,c).
Indeed, both MDA-MB-231 and A549 cells with CDK9 KD exhibited a
significant reduction in their cell migration and wound-healing abili-
ties (Fig. 6b,c), strongly suggesting a critical role of CDK9 in promoting
these essential aspects of metastasis.

Because metastasisis the major cause of deathin cancer patients,
we next performed patient survival analysis on these identified pro-
tein markers using TCGA RPPA500 dataset. Among the significant
hits (FDR < 0.1), we found that the hazard ratios of the prometastasis
proteins were significantly higher than those of antimetastasis ones
(Wilcoxon test, P=5.9 x 107, Fig. 6d). The median log hazard ratio of
prometastasis proteins was positive (0.5) and that of antimetastasis
proteins was negative (-1.0), indicating that the patients would have
an increased risk of death if their tumors exhibited higher levels of
prometastasis protein markers or lower levels of antimetastasis protein
markers. For example, two outliers in the prometastasis and antime-
tastasis groups were glutamate-cysteine ligase regulatory subunit
(GCLM) in adrenocortical carcinoma (ACC) and checkpoint kinase 1
(CHK1) in sarcoma (SARC), respectively. Patients with worse survival
showed alowerlevel of GCLMin ACC and a higher level of CHK1in SARC
(Fig. 6e,f). These patterns remained significant even after adjusting
for other potential confounding factors (Cox P < 0.05; Fig. 6g,h). To
further validate the findings, we extracted the metastasis status for
ACCand SARC patients from their clinical annotations and found that
lower protein levels of GCLM and a higher level of CHK1indeed could
predict the metastasis status of patients identified at their diagnosis
(Extended Data Fig. 6d,e; GCLM, area under the curve (AUC) = 0.75,
P=0.023; CHK1,AUC=0.70,P=3.4x107).

Lastly, we examined the clinical development stage for targeting
prometastasis markers using the Pharos database”. Notably, >50% of
the markers were categorized as Tchem (38%) and Tclin (18%), includ-
ing our validated marker CDK9 (Tchem), highlighting the potential
clinical utility of our findings (Extended Data Fig. 6f). Collectively,
these results provide a comprehensive view of the key proteins and
pathways underlying the metastatic potential in human cancers, lay-
ingafoundation for predicting metastasisin patients and developing
antimetastasis therapeutics.

Discussion

Here, we generated an expanded protein expression atlas based on
TCGA and CCLE cohorts with several major advantages. First, we pro-
filed 9,000 samples across all major cancer types and lineages, fea-
turing a large sample size and wide cancer diversity. RPPA500, thus,
facilitates both conventional analyses and advanced data mining, such
asdeeplearning, onapan-cancer scale. Unlike other proteomics stud-
ies limited by cancer type and technical issues™*°, RPPA500 enables
direct comparisons across cancer types. Second, RPPA5S00 covers
two complementary cohorts, enhancing translational research with

Fig. 6 | Characterization of tumor metastasis potential based on RPPA
protein expression. a, Heat maps showing the correlations between metastasis
potential and protein markers in cell lines. Positive and negative contributors
areshownin orange and blue, respectively. The Pvalues are based on Spearman’s
rank correlation coefficient test; n represents the number of protein markers
(phasel, n=40;phasell, n=32).b, Cell migration assays for MDA-MB-231 or
A549 CDK9 siRNA KD and control cells. The Pvalues are based on a Wilcoxon test;
nrepresents the number of samples tested for each condition (MDA-MB-231,
n=18,18 and 11 for negative control (NC), siRNA 1and siRNA 2, respectively; A549,
n=16,16 and 18 for NC, siRNA1and siRNA 2, respectively). c, Wound-healing
assays for MDA-MB-231 (from 0 h to 24 h) or A549 (from 0 h to 48 h) CDK9siRNA
KD and control cells. Data are shown as the mean + s.d. The Pvalues are based
onan ANOVA; nrepresents the number of samples tested for each condition
(MDA-MB-231,n=5,4and 5for NC, siRNA1and siRNA 2, respectively; A549,n =5,
3and 4 for NC,siRNA1and siRNA 2, respectively). d, Box plot showing the effects

(log hazard ratios) of negative and positive contributors to patient survival based
on TCGA patient cohorts. The Pvalue is based on a Wilcoxon test; n represents
the number of significant protein-cancer pairsin each group (antimetastasis
RPPA markers, n=17; prometastasis RPPA markers, n = 21). e, f, Kaplan-Meier
plots showing differential survival patterns of ACC patients by GCLM protein
expression (GCLM low, n=22; GCLM high, n = 22) (e) and SARC patients by CHK1
protein expression (CHK1low, n =112; CHK1 high, n =111) (f). P values are based
onlog-rank tests; n represents the number of patients in each group. g,h, Forest
plots of hazard ratios for GCLM (g) or CHK1 (h) and clinical variables. The Pvalues
are based on a multivariate Cox proportional hazards model. The center point of
each horizontal bar represents the estimated hazard ratio. b,d, The middle lines
inthe boxes are the medians, the lower and upper boundaries of the box are the
firstand third quartiles and the whiskers extend to 1.5x the interquartile range of
the lower and the upper quartiles.
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extensive molecular, clinical and phenotypic data. It bridges TCGA’s
patient-derived insights with CCLE’s detailed cell line data, fostering
the generation of actionable hypotheses and potential treatment strate-
gies. Third, compared tophasel (refs.12,20,27), our expanded RPPAS00
substantially increased the protein set, which covers all hallmark gene
sets, major biomarkers and therapeutic targets under clinical investiga-
tion. Taken together, the RPPAS0O0 dataset provides a valuableresource
for the cancer research community to translate big cancer omics data
into the clinical practice of precision medicine.

Through our integrative analyses, we showcased a few exciting
cases with potential translational impact. For example, RPPA effec-
tively identifies the functional effects of driver somatic alterations (for
example, TP53 mutations and BCR-ABLI fusions). Specifically, pMEK
expression can distinguish mutational effects from both the wild-type
background and different types of mutations, as validated by our cell
viability assays. This would help address anunmet clinical need on how
tostratify melanoma patients with non-V600 BRAF mutations for more
effective treatments. Through the protein-centered integrated analysis
of TCGA and CCLE samples, we identified numerous synthetic lethality
pairs, validated by independent drug combination data. The example
of PKAA and EGFR suggests a strategy for treating LUAD patients with
low PKAA levels using EGFRis. Because LUAD patients usually develop
resistance to EGFRinhibitorsin~1-2 years, this strategy may represent
an exciting opportunity to improve clinical outcomes for a sizable
portion of patients. Further efforts are warranted to investigate the
clinical importance of these findings using independent cohorts,
animal models and clinical studies.

Of note, our results indicate that, in many cases, meaningful
patterns can only be detected at the RPPA protein level rather than
the mRNA level, highlighting a need to generate proteomics data for
clinical sample characterization. While RPPA500’s protein markers are
fewer than those of MS-based methods, RPPA offers increased sensitiv-
ity (particularly for some key phosphoproteins) and cost-effectiveness,
complementing MS’s scopes and focuses. Moreover, we acknowledge
the intricate challenges associated with the analysis of bulk tumor
samples, primarily because of their heterogeneous cellular composi-
tion. To mitigate such effects, we meticulously integrated CCLE and
TCGA data, aiming toidentify consistent patterns across cohorts, and
further reinforced them through rigorous experimental validation.

While our approach offers significant advantages, we advocate
for continuous advancements in techniques that enable more pre-
cise analyses of specific cellular subpopulations within tumors. Such
advancements are crucial for deepening our understanding of complex
interactions among various cellular populations and their rolesin can-
cerbiology. Itis of paramount importance to fully harness the capabili-
ties of our RPPA platform alongside other protein profiling techniques
and comprehensive tumor microenvironment data. This integrated
approach stands poised to expedite the development and implementa-
tion of protein-centric diagnostics and therapeutic strategies, marking
asubstantial stride forward in the field of precision oncology.

Methods

Patient sample and cell line cohorts for RPPA profiling
Theresearch complies with all relevant ethical regulations. We obtained
patient samples from the National Institutes of Health (NIH) TCGA
projectand CCLE samples from the Broad Institute. The details of these
samples were described in our previous studies' . Ethics oversight
and written informed consent were obtained through TCGA project.

RPPA quantification and normalization. Overview. We collected and
prepared cell line and patient tumor samples obtained from CCLE and
TCGA. The antibodies were validated following the standard RPPA
pipeline as documented in the previous publications'"“*, All the RPPA
protein expression data were generated by the RPPA core facility at the
MD Anderson Cancer Center. CCLE samples were profiled on a single

RPPAslide and TCGA samples were profiled on eight slides. RPPA slides
were scanned and quantified using ArrayPro (Meda Cybernetics) to
obtain the protein signal intensities as the raw level 1 (L1) RPPA data.
We then performed curve-fitting analysis to generate L2 RPPA data
by estimating protein expression levels using SuperCurve®. L2 data
were then median-polished to obtain normalized L3 RPPA data. From
the L3 data, the batch effects were removed using a replicate-based
normalization method to generate L4 data, which were used in the
downstream analyses'>?,

Sample preparation. The frozen tumors or cell pellets were lysed and
proteins were extracted using RPPA lysis buffer (containing 1% Triton
X-100,50 mM HEPES pH 7.4,150 mM NacCl, 1.5 mM MgCl,,1 mMEGTA,
100 mM NaF, 10 mM Na pyrophosphate, 1 mM Na,VO,, 10% glycerol
and freshly incorporated protease and phosphatase inhibitors from
Roche Applied Science (cat. nos. 05056489001 and 04906837001,
respectively))®.

These lysates were adjusted for protein concentration and then
serially diluted into five twofold dilutions using the same lysis buffer,
followed by printing on nitrocellulose-coated slides using an Aushon
Biosystems 2470 arrayer. The slides were then probed with~-500 prevali-
dated primary antibodies and detected with suitable biotinylated
secondary antibodies: goat anti-rabbit IgG (Invitrogen, cat. no. 31822,
lot no. XC3537505; dilution: 1:1,000), goat anti-mouse IgG (Vector
Laboratories, cat. no. BA-9200, lot. no. ZD0801; dilution: 1:10,000)
or rabbit anti-goat IgG (Fisher Scientific, cat. no. NC9376096, lot. no.
ZB0923; dilution:1:10,000).

Data quantification. The signal was amplified using streptavidin-
conjugated horseradish peroxidase (HRP), which binds to the second-
ary antibody and catalyzes biotinylated tyramide to form insoluble
biotinylated phenols. The signals were then made visible by asecondary
streptavidin-conjugated HRP and DAB colorimetric reaction. Subse-
quently, the slides were scanned and analyzed and their quantification
was performed using ArrayPro Analyzer software (MediaCybernetics)
to generate spot intensity (L1 data)®.

Data normalization. Our previously developed SuperCurve GUI tool
was used to estimate relative protein levels (in log, scale). A fitted
curve or ‘supercurve’ was generated with signal intensities on the y axis
and relative log, quantities of each protein on the x axis using a non-
parametric, increasing B-spline model®, Before model fitting, raw spot
intensity datawere adjusted to correct spatial bias using ‘control spots’
spread across slides®’. Each slide generated a QC metric to determine
its quality and only slides with a score greater than 0.8 on a 0-1scale
were considered for further processing®. For duplicate slides, the one
with the highest QC score was chosen for analysis (L2 data). Protein
measurements were then corrected for loading as detailed®*®° using
bidirectional median centering across samples and antibodies (L3
data). They were also debatched using technically replicated control
samples for normalization across RPPA core sets (L4 data)'.
RPPA QC. Following our standard data processing pipeline’*?
(Extended Data Fig. 1b), we quantified and normalized the RPPA data
of-500 proteins for ~-8,000 TCGA patient samples and ~900 CCLE cell
line samples. We had QC metrics at each step to ensure a high quality
ofthe data.

Slide-level QC. Using the 96 replicates of mixed lysates, we generated
QC metricsto determine the quality of each RPPA slide following stain-
ing. Importantly, we printed additional slides for each sample run to
replaceslides that failed QC and to have slides to assess newly validated
antibodies. The replicate slide can be used with the same antibody or,
if necessary, with another antibody validated for the same protein or
phosphoprotein. Thus, high QC metrics serve to remove ‘bad’ data,
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aswellasindicate slides that need to be replaced with anewly stained
replicate slide.

Sample-level QC. We assessed the total protein contentineach sample
by computing the median value across all stained proteins. That median
served as an estimator for the total protein content in the sample. If
the total protein content was too low, we considered it as an ‘outlier’
sample and discarded it from the report. From prior experience with
TCGA data (-8,000 samples), amedian value less than -3 (log,) signi-
fies alow-quality outlier.

RPPA protein expression clustering analysis. We performed an
unsupervised clustering analysis for TCGA and CCLE RPPA data using
ConsensusClusterPlus®. The dendrogram was generated by the R pack-
age Circlize®®. Protein markers showing significant lineage-specific
differential expression were identified as lineage-specific RPPA mark-
ers. The supervised clustering heat map was generated using Com-
plexHeatmap®. The network view was generated using Cytoscape’.
Each node represents an RPPA marker or cell line lineage. The node
size was determined on the basis of the number of edges linking to it.
For survival analysis, we used a log-rank test to assess the differential
survival probability between RPPA clusters within each cancer under
FDR < 0.1. For each cancer-cluster pair (for example, KIRC, RPPA_K10
versus RPPA_K7), we further performed differential expression analysis
to identify significant protein markers on the basis of Wilcoxon test
Pvalues and mean fold changes. To assess the associations between
RPPA clusters and gene-level somatic alterations, we performed enrich-
ment analysis (chi-squared test) for each gene-cluster pair under
FDR < 0.1. To further adjust for covariates, we added the cancer types
as the strata and performed Cochran-Mantel-Haenszel chi-squared
tests with FDR < 0.1to identify significant gene-cluster pairs.

PPI and protein-mRNA coupling. To identify PPIs using both mRNA
and RPPA data, wefirst calculated protein-protein correlations using
RPPA500 protein and RNA sequencing (RNA-seq) mRNA data in each
cancer type. The significant correlations (FDR < 0.1) were further
mapped to the physical interactions obtained from the STRING data-
base (https://string-db.org). The matched interactions were used to
generate the Venn diagram and density curves shown in Fig. 2e,f. To
assess the protein-mRNA coupling across cancer types, we first cat-
egorized samples in each cancer type into the altered and unaltered
groups on the basis of alterations of each driver gene. Driver event
status was obtained from a TCGA pan-cancer study on genetic altera-
tionsinoncogenic signaling pathways”. Within each group, we further
performed analysis to assess the correlations between the expression
of each protein and its corresponding mRNA expression. For each
driver event, the changes in the global protein-mRNA coupling were
evaluated by examining the difference in protein-mRNA correlations
between the altered and wild-type groups. P values were determined
using an analysis of variance (ANOVA) to consider both the effects of
cancer type and the changes in protein-mRNA correlations.

Cancer dependency analysis. The correlation analysis between gene
dependency and RPPA or mRNA was performed by Pearson’s correlations,
withFDR < 0.1. The CCLE mutation datawere used togroup celllinesinto
the wild type and TP53 mutants. The residue position of each mutation
was used to map each cellline onto the P53 protein domains. To test TP53
differential expression in TCGA, we first calculated log, fold changes of
TP53mRNA and RPPA between TP53wild-type and mutant tumor samples
ineach cancertype, followed by differential analysis between mRNA and
RPPA using the Wilcoxon test. To evaluate the differential expression pat-
ternof c-ABLinfusion and wild-type celllines, we first quantified log, fold
changesbetween BCR-ABLI fusion and wild-type blood cancer celllines,
after whichwe performed pairwise Wilcoxon tests among c-ABLmRNA,
total protein and phosphorylated protein expressions.

Mutant construction and cell viability assays. The BRAF mutation
candidates were obtained from CCLE and TCGA mutation data. We
constructed the lentivirus vector of wild types, mutations and con-
trols with pHAGE-EF1a-GFP or pHAGE-EF1a-PURO backbone using
the high-throughput mutagenesis and molecular barcoding (HiTM-
MoB) technique, as described previously’>”*. Cell viability assays
were performed as previously described**®. Briefly, we used two
growth factor-dependent cell models, Ba/F3 and MCF10A. Both cell
types die in the absence of the required factor(s). Mutations and
their corresponding wild-type counterparts were assessed in paral-
lelin the same experiment, the latter of which determined the basal
activity of the genes in the cell models. For each experiment, pHAGE
constructs of mutants and wild-type genes were freshly prepared
fromasingle colony and used for generating lentivirus for Ba/F3 and
MCF10A transductions. The cell viability of Ba/F3 and MCF10A cells
was measured at four time points (at intervals of 3 or 4 days) during
the 3-week assay period. The functional annotations of mutations were
based on a comparison to the corresponding wild-type clones. The
final annotation was made on the basis of consensus calls of the two
celllines. To further classify BRAF mutations into different ‘activating’
groups, the calls were based on comparison to PIK3CA mutations of
known activity that were run in each experiment. Strong activating
ones were equal or greater in activity compared to a strongly activat-
ing PIK3CA mutation (K1047R). Moderate activating ones were equal
to or greater than a moderate activating PIK3CA mutation (M1043I).
Weak activating ones were greater than the wild type but less than a
moderate activating PIK3CA mutation.

Analysis of synthetic lethality pairs. To predict synthetic lethality
pairs, wefirst performed a differential analysis ongene dependencies
of a protein between two sample groups defined by the median RPPA
expression of another protein. Pvalues were calculated by the Wilcoxon
test. We selected the protein pairs by considering both the direction
of the difference A and the FDR, where A is the difference between
the mean values of gene dependency scores in cell lines with high and
low RPPA expressions. The selected protein pairs were further tested
against patient survival and predicted as synthetic lethality pairs if
they (1) showed significance for both log-rank and Cox proportional
hazard tests and (2) the patient group with low RPPA of both proteins
had better survival than others. To validate the predictions, we matched
the syntheticlethality pairs to the targets of the drug combination set
obtained from the GDSC drug combination data portal. A protein pair
was marked as synergisticif it showed synergy in at least one combina-
tion and cell line pair. To generate the background set, we randomly
sampled the same number of drug pairs from the combination set and
counted the number of synergistic pairs. For each synergistic pair, we
further defined the synergy rate as the number of cell lines showing
synergy divided by the number of tested cell lines. The synergy rates of
the predicted syntheticlethality pairs and all the other nonoverlapped
synergy pairsin the drug combination set were used to evaluate differ-
ential synergy rates between predicted and other synergistic pairs by
the Wilcoxon test. Validated synergistic pairs were then used to gener-
ateasynthetic lethality network using Cytoscape’, inwhich each node
represented a protein and each edge linked a synthetic lethality pair. To
assess the associationbetween EGFR gene dependency and PKAA pro-
teinexpression, we performed Wilcoxon tests between three groups of
celllines (low, medium and high) defined by the terciles of PKAA RPPA
levels. Toidentify PKAA-associated drugs, we performed a correlation
analysis between drug sensitivity data and PKAA RPPA expression by
Pearson’s correlation test under FDR < 0.1. Fisher’s exact test was used
to evaluate the enrichment of EGFR inhibitorsin drugs resistant to high
PKAA RPPA levels. To assess whether high PKAA was associated with
high pCREB in LUAD samples from TCGA and CCLE, we normalized
pCREBDby itstotal protein expression by calculating log, fold changes
and performed differential analysis using a one-tailed t-test.
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In vitro validation of synthetic lethality. Cell lines. LentiX-293T cells
(Clontech) used to generate lentivirus were cultured in complete DMEM
(10% FBS and 50 U per ml penicillin-streptomycin), the human LUAD
celllines A549 and H226 cells were cultured incomplete RPMI medium.
All cell lines were propagated at 37 °Cand 5% CO, ina humidified atmos-
phere. All cell lines were authenticated by short tandem repeat analysis
atthe MD Anderson Cancer Center and all cells were periodically moni-
tored for Mycoplasma contamination using the universal mycoplasma
detection kit (American Type Culture Collection).

ShRNA KD. The pKLO.1 shRNA plasmids for PKAA KD were pur-
chased from Sigma-Aldrich (shRNA 3: TRCNO000018369, shRNA 4:
TRCN0O000039939, shRNA 5: TRCNO000039942). Lentivirus pro-
duction and transduction of A549 and H226 cells were described
previously*®. Briefly, LentiX-293T cells were transfected with the
pKLO.1-PKAA shRNA and packaging plasmids (psPAX2 and pMD2.G)
using Lipofectamine 3000 (Invitrogen). Lentivirus was collected 3 days
after transfection and used to transduce the respective cells by spin-
oculationat1,000gfor 3 hinthe presence of 8 pg ml™ polybrene. The
transduced cells were selected in a puromycin-supplemented medium
(1-2 pg mlI™) for 7 days, as described previously™”.

Drug response and PKA activity assays. To test the effect of PKAA
expression on EGFRi sensitivity, control and PKAA-KD A549 and H226
cellswereseeded in 96-well plates (2,500 cells per well) overnight and
thentreated with DMSO or four differentinhibitors (afatinib, gefitinib,
erlotinib and osimertinib) at nine threefold serial dilutions for 72 h. The
cell viability was determined using the CellTiter-Glo 2.0 cell viability
assay (Promega). Allinhibitors were purchased from Selleck Chemicals.
Toassess the PKA activity level in PKAA-KD and control A549 and H226
cells, the PKA colorimetric activity kit (Invitrogen) was used according
to the manufacturer’sinstructions.

Analysis of proteins associated with metastatic potential. The
metastasis potential scores were obtained from MetMap. We assessed
the Spearman’srank correlations between the total metastasis poten-
tial scores ‘all5” with CCLE RPPA500 and identified significant pro-
tein markers with FDR < 0.1. The proteins with positive or negative
correlations were defined as prometastasis or antimetastasis pro-
tein markers, respectively. The two heat maps show the detailed cor-
relations between protein makers and the metastasis potential of
each specific target organ (that is, lung, liver, kidney, brain and bone;
Fig. 6a). To evaluate the correlations between the identified protein
markers and patient survival data in TCGA cohorts, we used the Cox
proportional hazard model to select the significant protein-cancer
pairswith FDR < 0.1and obtained the hazard ratio for each significant
pair. AWilcoxon test was then performed to evaluate the significance
of the difference between the log hazard ratio of prometastasis and
antimetastasis RPPA markers. The metastatic status of both ACC and
SARC patients was extracted from TCGA clinical data to assess the
predictive power of GCLM and CHK1 RPPA expression. For survival
analysis, to control potential clinical confounding factors, we further
performed a multivariate Cox regression analysis by including available
clinical variables (that is, age, sex and stage) in the regression model
and generated forest plots for visualization.

In vitro validation of a metastasis-related protein. Cell lines and
SiRNA transfections. A549 and MDA-MB-231 cells (3.5 x 10°) were seeded
onsix-well plates overnight. Gene KD was achieved by transiently trans-
fecting the cells with two CDK9-specific siRNAs (25 nM; Sigma, siRNA
1: SASI_Hs01_00112405, siRNA 2: SASI_Hs01_00112407) using Lipo-
fectamine 3000 (Thermo Fisher Scientific). Universal negative control
1(Sigma, SICO01) was used as control. Then, 48 h after transfection, KD
efficiencies were confirmed by real-time gPCR and cells were seeded
for further experiments. CDK9 primer sequences were as follows:

forward, GAAGCTGGCAGACTTTGGGC; reverse, ACCAGAGTGTCA
CCACACGG.

Migration assays. For migration assays, control and CDK9 siRNA-
transfected cells (5 x 10*) were seeded onto transwell inserts (Corning;
8.0 um, 24-well) in serum-free medium. Serum-supplemented medium
inthe bottom chamber was used asachemoattractant. Cells were allowed
tomigrateinresponse tothe chemoattractant for 24 h, at whichtime the
cellsonthelower side of the transwell were fixed and stained with crystal
violet. A total of10-15 cell-containing fields were imaged for each siRNA
and Image)” software was used to count migrated cells.

Wound-healing assays. For wound-healing assays, cells were seeded
onto 96-well plates (7 x 10*) and grown as a confluent monolayer. Cell
monolayers were manually scratched using sterile pipette tips to gen-
erate wounds. Cell layers were washed with PBS to remove debris,
supplemented with 2% FBS-containing medium and imaged every2 h
to monitor wound closure. Image)” was used for analysis.

Statistical analysis and data visualization. The sample collection
for RPPA profiling was obtained from TCGA and CCLE projects and
the data were not randomized. For in vitro assays, cell lines were ran-
domly assigned to different treatment or control groups to ensure
an unbiased assessment of drug responses and gene KD effects. No
statistical methods were used to predetermine sample sizes but our
sample sizes are similar to those reported in previous publications.
Data collection and analysis were not performed blind to the condi-
tions of the experiments. Samples that did not meet the QC metrics
were excluded from the analysis. All differential analyses were tested
by the Wilcoxon test or ¢-test. Multiple tests were corrected by FDR.
Pearson’s or Spearman’s rank correlation analyses were performed to
test the associations between continuous variables. Survival analyses
were performed using the survival package in R; the significance was
assessed by either the Cox proportional hazards regression model or
thelog-rank test, as determined by the type of the tested variables. The
multivariate Cox proportional hazards model was used to assess the
potential bias introduced by confounding factors. Data distribution
was assumed to be normal but was not formally tested; nonparametric
tests were used wherever possible. Detailed descriptions of the statisti-
caltestsare provided inthe Methods and the respective figure legends.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The RPPA dataset generated in this study is accessible through TCPA
dataportal (https://tcpaportal.org). This portalincludes one subplat-
form for TCGA patient tumor samples and another for CCLE cell lines.
The ‘dataset summary’ module provides detailed information about the
number of samples for each type of cancer or cell line lineage (related
to Fig. 1). In TCGA patient subplatform, several analysis modules are
available, including protein-protein correlation analysis, differential
analysis and survival analysis (related to Fig. 2). Data related to the
CCLE cell lines are hosted at the MD Anderson Cell Lines Project, a
subplatform under TCPA. The analyses include protein-protein cor-
relation analysis, protein-drug correlation analysis, protein-mutation
correlation analysis and protein-dependency correlation analysis
(related to Figs. 3-5). Furthermore, the comprehensive annotation
for each antibody is available in the ‘my protein’ module on both sub-
platforms. Eachentryinthis module correspondsto a protein marker,
showing relevant gene information, as well as the validation status of
the antibody and its origin, source, catalog number and RRID.

We obtained CCLE-related data from DepMap (https://depmap.
org/portal/), including the genomic (mutations, copy number and
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DNA methylation), transcriptomic (RNA-seq and microRNA), MS, drug
sensitivity, gene dependency and metabolomics data. Additional drug
sensitivity datawere downloaded from GDSC (https://www.cancerrx-
gene.org), PRISM (https://depmap.org/repurposing/) and GDSC drug
combinations (https://gdsc-combinations.depmap.sanger.ac.uk). The
metastatic potential data were downloaded from MetMap (https://
depmap.org/metmap/). For TCGA samples, we downloaded molecular,
tumor purity and clinical data from TCGA PanCanAtlas (https://gdc.
cancer.gov/about- data/publications/pancanatlas). The annotations
of hallmark gene sets were downloaded from Gene Set Enrichment
Analysis (http://www.gsea-msigdb.org).

All other data supporting the findings of this study are available
from the corresponding author on reasonable request. Source data
are provided with this paper.

Code availability

All the software tools used for analysis in this study are accessible in
publicrepositories. We used Rto process the dataand perform the com-
putational analysis. SuperCurve canbe found at https://bioinformatics.
mdanderson.org/public-software/supercurve/. Cytoscapeis available
athttps://cytoscape.org. ComplexHeatmap® and ConsensusCluster-
Plus® are R packages available on Bioconductor. We used BioRender
(https://www.biorender.com) to generate the schematic diagrams and
ggplot2 (ref. 77) to generate the data analysis plots. No custom code
was generated in the course of this analysis.
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Extended Data Fig. 1| Quality control of RPPA data. (a) Summary of antibody
selection and validation process. (b) Overview of RPPA data normalization, with
rigorous QC parameters or controls at each step. (c) Comparison of protein
markers in Phase I and Phase | &II. (d) Boxplots showing differential correlations
of RPPA-based IFN-gamma response pathway score and that reported by
literature in Phase land Phase I &II. N = 32 represents the number of cancer
types. (e) Comparison of correlations between RPPA and MS/RNA-seq in Phase |
(N =204) and Phase Il (N = 243). (c-e) P-values are based on paired Wilcoxon tests.
N represents the number of protein markers. (f) The distributions of the lineage-
specific expression correlations of RPPA-based proteins with RNA-seq-based
mRNA (top panel), MS-based total proteins (middle panel), and correlations
between MS-based total proteins and RNA-seq-based mRNA (bottom panel).

00
Pearson's R
Total RPPA vs RNAseq  Total RPPA vs Total mass spectrometry

= PTM RPPA vs RNAseq = PTM RPPA vs Total mass spectrometry

= Total mass spectrometry vs RNAseq
.

I R=0.7,p=23x10% N=38

10.0-
95~

9.0

HSP27_pS82 MS

85-

8.0- ; z
1 2

o
HSP27_pS82 RPPA
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(g) Ascatter plot showing the correlation between the sample sizes and the mean
correlations across different lineages. N = 49 represents the number of mean
correlations. (h) The distribution of expression correlations between RPPA-based
and MS-based phosphorylated proteins in NCI60 cell lines. (i) A scatter plot
showing arepresentative example of the phosphoprotein, HSP27_pS82, between
the RPPA and the MS data. N = 38 represents the number of cell line samples.

(c-e) The middlelinein the box is the median, the bottom and top of the box are
the first and third quartiles, and the whiskers extend to the 1.5x interquartile
range of the lower and the upper quartiles, respectively. (g, i) Shaded areas
denote the 95% confidence intervals. The p-values are based on Spearman’s
correlation coefficient test.
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Extended Data Fig. 4 | Differential effects of BRAF mutations on MEK1/2
mRNA and protein expression. (a) A scatter plot showing the correlation
between MEK1/2_pS2175221 RPPA and BRAF gene dependency in melanoma cell
lines (N =36). Shaded areas denote the 95% confidence intervals. (b-c) Box plots
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thel.5x interquartile range of the lower and the upper quartiles, respectively.
Nrepresents the number of cell line samples. (d) Enrichment of EGFR inhibitors
indrugs resistant to high PKAA levels. The p-value is based on Fisher’s exact
test. (e, f) Relative mRNA level of PKAA in PKAA-KD A549 or H226 cells.N =2
independent replicates were examined for each condition. (g-1) Drug response
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concentrations). N = 3independent replicates were examined for each
treatment and perturbation. Data are shown as mean + SEM. The p-values
arebased on ANOVA.
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Extended Data Fig. 6 | Evaluation of metastasis markers in cancer cell lines
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Data are shown as mean + SEM. (d, e) ROC curves showing predictive powers
of GCLM expressionin ACC patients (N = 44) (d) and CHK1in SARC patients

(N =223) (e) between metastatic and non-metastatic primary tumor samples.
Nrepresents the number of patients. (f) A pie chart showing the distribution of
drug development levels for all the identified pro-metastasis protein markers.
The annotation data was obtained from the Pharos database. N represents the
number of protein markers in each group (Tclin: N = 6; Tchem: N =13; and
Tbio:N=15).
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The sample sizes for both cell lines and patient tumors were predefined in the RPPA phase | study. The details were included in the original
marker papers from CCLE and TCGA projects (PMIDs: 24037243, 24871328, 31201206, 31068700).

Data exclusions  In each analysis, samples were filtered by considering both the quality and availability across different molecular and phenotype datasets.
Replication Replicate samples were used to merge different RPPA slides to minimize the batch effects. All attempts at replication were successful.

Randomization  Sample randomization were performed when arranging the samples on each RPPA array to control the confounding factors. The detailed
information was documented in previous publications.

Blinding The investigators were not blinded to the sample information during the study. However, this lack of blinding did not impact the data
collection and generation phases, as sample information was not utilized in these initial steps. Instead, specific details such as cell line lineage
and patient clinical data were only applied in the downstream analyses, where blinding is less critical due to the objective nature of the
analytical methods used.
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Materials & experimental systems Methods

Involved in the study
™ Antibodies

Eukaryotic cell lines

Clinical data

XX XXX 0] &
OO000O0OKXD

n/a | Involved in the study

|Z |:| ChiIP-seq
|:| Flow cytometry

Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms

Dual use research of concern

Plants
Antibodies
Antibodies used Biotinylated Goat anti-Rabbit IgG H+L (Invitrogen, Cat#: 31822, Lot#: XC3537505, dilution: 1:1000)
Biotinylated Goat anti-Mouse 1gG H+L (Vector Laboratories, Cat#: BA-9200, Lot#: ZD0801, dilution: 1:10000)
Biotinylated Rabbit anti-Goat IgG H+L (Fisher Scientific, Cat#: NC9376096, Lot#: ZB0923, dilution: 1:10000)
Validation Each antibody was assessed based on the protein expression obtained from cultured cell lines or tumor tissues. Antibodies with a

good correlation Western blot were considered as valid.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s)

Authentication

Mycoplasma contamination

Commonly misidentified lines
(See ICLAC register)

Plants

The MDA-MB-231 and NCI-H226 cell lines were obtained from the MD Anderson Characterized Cell Line Core Facility. The
A549 cell line was purchased from American Type Culture Collection. Lenti-X293T cells were obtained from Dr. Gordon B.
Mills” laboratory.

All cell lines were authenticated using short tandem repeat analysis at the MD Anderson Characterized Cell Line Core Facility.

Cell lines were routinely tested and were negative for mycoplasma contamination.

No misidentified cell lines were used in this study.

Seed stocks n/a

Novel plant genotypes  n/a

Authentication n/a
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