
Article https://doi.org/10.1038/s41467-025-57430-4

DrBioRight 2.0: an LLM-powered
bioinformatics chatbot for large-scale cancer
functional proteomics analysis

Wei Liu1,9, Jun Li 1,9, Yitao Tang 1,2, Yining Zhao1, Chaozhong Liu3, Meiyi Song4,
Zhenlin Ju1, ShwethaV. Kumar1, Yiling Lu5, RehanAkbani 1, GordonB.Mills 6 &
Han Liang 1,2,7,8

Functional proteomics provides critical insights into cancer mechanisms,
facilitating the discovery of novel biomarkers and therapeutic targets.Wehave
developed a comprehensive cancer functional proteomics resource using
reverse phase protein arrays, incorporating data from nearly 8000 patient
samples fromTheCancer GenomeAtlas and approximately 900 samples from
the Cancer Cell Line Encyclopedia. Our dataset includes a curated panel of
nearly 500 high-quality antibodies, covering all major cancer hallmark path-
ways. To enhance the accessibility and analytic power of this resource, we
introduce DrBioRight 2.0 (https://drbioright.org), an intuitive bioinformatic
platform powered by state-of-the-art large language models. DrBioRight
enables researchers to explore protein-centric cancer omics data, perform
advanced analyses, visualize results, and engage in interactive discussions
using natural language. By streamlining complex proteogenomic analyses, this
tool accelerates the translation of large-scale functional proteomics data into
meaningful biomedical insights.

Over the last decade, remarkable progress has been achieved in the
generation of cancer omics data, particularly at the DNA and RNA
levels in patient tumors. Landmark initiatives such as The Cancer
Genome Atlas (TCGA)1 and the Cancer Cell Line Encyclopedia (CCLE)2

have played pivotal roles in this transformative era. Despite these
strides, a critical gap persists in our understanding of the translational
and post-translational landscape of human cancers, especially across
many cancer lineages. To fill this critical gap, reverse phase protein
arrays (RPPAs) provide a powerful platform for large-scale functional
proteomics data of cancer samples in a sensitive, high-throughput,
cost-effective manner3–5. Previously, we used this platform to profile
approximately 8000 samples from TCGA patient tumors and

900 samples from CCLE cell lines, focusing on over 200 clinically
relevant protein markers2,6. To facilitate a broad community to capi-
talize on these data, we built a user-friendly data portal, TCPA7–9, for
exploring the data in a rich context.

However, two notable challenges limit the immediate utility of
TCPA. First, the previous RPPA data have limited coverage of protein
markers (~200only). Second, the data portal only provides several pre-
defined analytic modules, with little flexibility for user-defined ana-
lyses. To address these challenges, we have recently expanded our
RPPA protein panel to approximately 500 high-quality antibodies10.
This expansion has enabled the development of a comprehensive,
high-quality pan-cancer functional proteomics compendium, termed
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RPPA500, integrating data from both TCGA and CCLE samples.
Alongside with our expanded proteomic dataset, here we introduce
DrBioRight 2.0 (https://drbioright.org), a cutting-edge chatbot pow-
ered by large language models (LLMs). This tool is designed to lower
technical barriers, enabling seamless analysis of complex omics data.
Users with diverse backgrounds can easily access, analyze, and visua-
lize data seamlessly through intuitive natural language queries.

Results
Using the well-established data processing pipeline6,11 and following
the guidelines established in the community3, our RPPA500 compen-
dium encompasses a total of 9000 samples, comprising both patient
tumor and cancer cell line samples10. The TCGA cohort dataset
includes protein expression profiles from 7828 patient tumors across
32 distinct cancer types (Fig. 1). Predominant tissue types in this
dataset include breast (BRCA, n = 881), kidney (KIRC/KIRP/KICH,
n = 756), and lung (LUAD/LUSC, n = 693). The CCLE cohort dataset
covers 878 cancer cell lines, with lung, blood, lymphocyte, and color-
ectal lineages, each over 50 distinct cell lines (Fig. 1). Most of these cell
lines have parallel functional data such as gene dependency, meta-
static potential, and drug sensitivity data12–19. The final RPPA500 pro-
tein set contains 447 proteinmarkers, including 357 total proteins and
90 post-translationally modified (PTM) proteins (e.g., phosphorylated
proteins), and it is highly enriched in therapeutic targets and bio-
markers (Supplementary Data 1). To underscore the expanded cover-
age of cancer-related pathways, we aligned the protein markers with
hallmark gene sets20. Our RPPA500 protein panel comprehensively
covers all 50 hallmark gene sets (Supplementary Fig. 1), including a
robust coverage for apoptosis (n = 43), PI3K-Akt-mTOR signaling
(n = 34), estrogen response (n = 32), hypoxia (n = 31), IL6-JAK-STAT3
signaling (n = 31), apical junction (n = 29), interferon response (n = 26),
EMT (n = 18), G2M checkpoint (n = 18), P53 pathway (n = 17), KRAS
signaling (n = 12), and DNA repair (n = 7). Compared to our previous
protein panel6, there is a significant increase of 115% in the number of
total proteins and a 67% increase in the number of PTMproteins across
these gene sets, highlighting a substantially increased capacity to
comprehend cancer biology at the protein level.

Recent breakthroughs in LLM-based generativeAI have ushered in
a transformative era for data analytics21–23. In this study, we have
developed a new LLM-based chatbot, DrBioRight 2.0, empoweredwith

natural language processing, enabling users to explore, analyze, and
visualize the above RPPA data intuitively and intelligently (Fig. 1).
Specifically, we first generated a unified multi-omics dataset with
standardization and normalization of patient clinical data, molecular
profiling data at DNA, RNA, and RPPA500-based protein levels, as well
as cell line phenotypic datasets. Collectively, over 1 billion data values
were curated and restructured under the HDF5 format in a No-SQL
database hosted on an I/O efficient cloud-based server. Addressing the
long-standing challenge of non-standard protein annotation, we
thoroughly reviewed protein markers and cross-referenced them with
external databases to comprehensively annotate proteins at indivi-
dual, pathway, functional, and disease levels. This detailed annotation
facilitates user-friendly analysis of data with biologically driven ques-
tions. DrBioRight has several features that are not available in con-
ventional analytics platforms, including natural language
understanding, transparency and reproducibility, and user friendli-
ness. These features are supported by several key cutting-edge tech-
niques: (i) Chat UI: a real-time conversational-based chatting interface;
(ii) Prompts: highly customizable LLM-oriented domain-knowledge-
specific prompts; (iii) LLMs: LLM-empowered generative AI; (iv) Code
generation: seamless code-generation-correction cycle; (v) Plugins:
deep-nested interactive plugins provide a unique suite of tools for
enhanced effective data visualization and analysis, such as interactive
clustering heatmaps24.

To demonstrate its utility, we present an illustrative example
where users can easily query, “Please generate a heatmap for protein
expression data of the current dataset.” In response, DrBioRight
dynamically processes the data and calls the corresponding heatmap
plugin to generate an interactive heatmap (Fig. 2A). Similar to other
interactive plugins we have implemented, the heatmap plugin can
efficiently handle large datasets. It offers a comprehensive global
overview along with numerous features (such as selection, zoom in/
out, searching, 2D/3D scatter plots, pathway mapping, and linking to
external resources) to facilitate effective data exploration. For a more
detailed analysis, users can further ask, “Could you please showme the
correlation between AKT2PS474 and IL6 expression?”DrBioRight then
extracts the data, performs the corresponding statistical analysis, and
presents the results in a clear scatter plot. Leveraging the samedataset,
users can conduct a survival analysis by inquiring about the correlation
between a protein and the patient survival time, followed by
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Fig. 1 | Overview of the data integration workflow and key innovations in
DrBioRight 2.0. A workflow illustrates the complete process of data integration
and technical features in DrBioRight 2.0, covering several key stages: starting with
the sample cohorts, attributing data types, detailing the HDF5-based data format

structure, and introducing three features. The features are supported by five
cutting-edge technological components: conversational AI, domain-specific
prompts, large language models (LLMs), automatic code generation, and inter-
active smart visualization. Source data are provided as a Source Data file.
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visualization through Kaplan-Meier plots. In contrast to the previous
analytic modules at TCPA, DrBioRight distinguishes itself by offering
versatile analyses, including customizable interactions with the chat-
bot. For instance, after performing a survival analysis across all the
samples in the full cohort, users can further investigate specific asso-
ciations within male or female patients or change the colors in a plot.
Another noteworthy feature of DrBioRight is its seamless transition
between analytics-driven and general questions. As depicted in Fig. 2A,
users can request the chatbot to summarize the results. Moreover,
DrBioRight allows users todownload the corresponding project report
in an R markdown file and run it in RStudio locally to reproduce the
analysis (Supplementary Fig. 2A). These features collectively position
DrBioRight as a highly convenient analytic tool, providing unparalleled
flexibility and customization in data analysis.

The system architecture of DrBioRight 2.0 comprises three inte-
gral components: (i) a No-SQL database, (ii) a back-end LLM-powered
analytics module, and (iii) an interactive chat interface (Fig. 2B). To
start an analysis, a user simply begins by selecting a disease (e.g., lung
adenocarcinoma [LUAD]). Then, the chatbot automatically links rele-
vant multi-omics data to the user’s project space, making it ready for
querying and analysis. The back-end LLMs will predict user’s intent,
distinguishing between general inquiries and questions requiring code
generation or bioinformatics analysis. DrBioRight outputs a logical
flow based on a chain-of-thought approach to enhance user under-
standing. In the back end, LLMs generate text-based answers or pro-
gramming scripts on the fly. Before submission to the job queue, the
platform reviews and validates codes, autonomously correcting com-
mon errors like missing libraries or incompatible package versions.
Following successful result generation, the user-friendly chat interface
displays the outcomes. For ongoing improvements, we integrate a

rating function that allows users to evaluate analytic results, and the
user feedback together with the expert manual evaluations will then
guide iterative refinements to fine-tune LLMs through the reinforce-
ment learning from human feedback (RLHF)25–28.

To maximize the performance of DrBioRight 2.0, we have imple-
mented cutting-edge techniques to enhance the LLMs (Fig. 3A). Overall,
we incorporated a multi-agent workflow to build hierarchical agent
teams using a graph architecture (Supplementary Fig. 2B). This frame-
work can better organize the multi-agent system and streamline the
development process (Methods). Each team consists of one or more
agents or tools. For example, the multi-omics data analysis team uses a
heatmap to provide a dataset overview and a survival analysis tool to
link proteins with patient survival data. A correlation analysis tool per-
forms association analyses between features including protein expres-
sion,mutations, and clinical variables. A supervisor routes team-specific
questions to appropriate tools for task execution and analytic results.
Each agent is powered by a model coupled with task specific prompts.
These prompts include a mini knowledge base on our RPPA500 data, a
summary of our meta-data, and general analysis information. To fine-
tune LLMs, we curated and standardized thousands of user queries
through expert review, creating both training and test datasets. Using
the training dataset, we performed model fine-tuning through three
steps: (i) initial supervised fine-tuning. The basemodel was initially fine-
tuned using prompt and response pairs to learn domain-specific con-
texts. (ii) based on the fine-tuned model, we developed an evaluation
system to allow domain experts to rank the AI responses (Supplemen-
tary Fig. 3). The evaluation datasets were further used to train a reward
model. (iii) the optimization step was performed by the PPO (proximal
policy optimization) trainer from Hugging Face. To evaluate its per-
formance, we tested our platform using an independent test set of
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queries not used in the fine-tuning process. Only 26% of the questions
could be addressed by our classic TCPA platform (Fig. 3B), highlighting
amajor need for a versatile and customizable tool for such analyses.We
then test the same questions using GPT-4 and achieved a 58% success
rate, underscoring the limitations of a general LLM in addressing
domain-specific questions through natural language-based data analy-
tics. However, when employing the fine-tunedmodels under the graph-
based workflow using LangGraph on the same set of questions, we
achieved an impressive 90% success rate (Methods). This emphasizes
the impact of incorporating domain-specific knowledge, fine-tuning
process, and multi-agent workflow.

Discussion
DrBioRight 2.0 represents a major advancement for researchers
engagingwith cancer proteomics data, achieving three keymilestones.
First, it broadens the protein space for the most commonly used
cohorts of cancer patients and cell lines, providing a unique and
valuable resource for biomedical researchers. Second, the LLM-
empowered chatbot, DrBioRight, offers an intuitive, versatile, and
highly customizable platform, effectively lowering entry barriers and
enabling researchers from diverse backgrounds to analyze data effi-
ciently without extensive domain knowledge. Third, the deep inte-
gration between the data resource and the LLMs significantly amplifies
the utility of such a resource. This integration not only increases data
accessibility but also features a learn-by-use design, accelerates the
user-developer feedback loop, and offers enhanced customization
options. In contrast to traditional tools that often entail substantial
efforts for integration and harmonization during development and
iteration, DrBioRight adeptly addresses these challenges with its
unique combination of a comprehensive data resource and advanced
LLMs. We anticipate that similar efforts like DrBioRight will spearhead
a paradigm shift in the next generation of data analysis and sharing
platforms, ultimately fostering a comprehensive ecosystem tailored
for biomedical researchers.

Methods
Compilation of RPPA500 dataset
Antibody validation was in accordance with the established RPPA
pipeline, as outlined in our prior works3,4,6. The entire process of
generating RPPA data from cell line and patient tumor samples from
the CCLE and TCGAprojects was described in our recent study10. Level
1 RPPA data were from the images using ArrayPro software, primarily
consisting of protein signal intensities. Level 2 data were obtained
from Level 1 data through a curve fitting analysis using the SuperCurve
algorithm29. Level 3 data were obtained from Level 2 data through
median-centering normalization. Finally, to ensure the data quality and

consistency, we generated Level 4 data by applying a replicate-based
normalizationmethod to Level 3 data. All the subsequent analyses and
input data for DrBioRight are based on Level 4 data. The proteins were
associated with pathways by aligning their corresponding gene iden-
tifiers with the member genes of the gene sets obtained from the
Human Molecular Signature Database (MSigDB20), and the network
visualization was based on the RCy330 package.

Curation and preprocessing of other data
We integrated all molecular, functional, and clinical data and the cor-
responding metadata from TCGA (https://portal.gdc.cancer.gov) and
CCLE (https://depmap.org/portal/), subsequently converting them
into HDF5 format. This conversion facilitates efficient and effective
real-time data extraction and analysis. Additionally, we comprehen-
sively annotated the protein markers within the RPPA500 dataset to
enable users to search and analyze the protein markers effectively.

Platform architecture
The DrBioRight 2.0 platform consists of two major components: (i) a
client web interface and (ii) a backend server system. Specifically, the
front-end web interface was built based on React (https://react.dev)
and MUI. The backend system includes (i) Graph-based agentic work-
flows (LangGraph and LangChain), which provides multi-agents fra-
mework to process, evaluate, and analyze user requests. (ii) LLM APIs
generate responses based on different types of requests, including
text/code generation (e.g., OpenAI/GPT series and Llama 3 models),
and sentence classification (injection attack detection models); (iii)
Code execution environment (including customized packages, such as
DrBioRight’s survival, network, and report generation packages), and
(iv) No-SQL database (MongoDB) for user and data management.

Training and test data
We curated a collection of >10,000 user queries including the feed-
back from>250DrBioRight uniqueusers, rigorous internal testing, and
contributions from domain experts. This dataset formed the core of
our training and test sets. To prevent potential overfitting and ensure
robustness, the training and test sets were obtained from different
user pools. This approach ensures that the model does not simply
memorize user-specific patterns.

Prompt engineering
In the fine-tuning process, we utilized the training set in conjunction
with custom-designed prompts. These prompts were specifically
crafted to align with the tasks related to those different analyses.
Specifically, on the top level, we used prompts to facilitate routing the
original user queries to their related analytic agents. For each agent,
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the prompt defines how it processes and analyzes the user queries and
outputs the final responses. To optimize each agent-specific prompt,
we first designed multiple initial prompts and tested against same set
of user queries. After manual evaluation from experts, we chose those
prompts with the best performance as the final agent prompts. All the
selected prompts are version-controlled and deposited in our prompt
repository. Thus, the prompts were improved through an iterative
approach.

Model finetuning and alignment
The overall platform architecture allows us to utilize multiple models
during the entire workflow including both public and internally fine-
tuned models. For example, to obtain initial training and evaluation
datasets, we utilized OpenAI GPT4/4o and Llama 3 models to generate
responses for user questions. To fine-tune models, we used python
libraries fromHuggingFace. Specifically,modelswere initiallyfinetuned
based on SFTTrainer for supervised fine-tuning. The reward model was
trained based on expert scored prompt-response pairs (chosen vs
rejected). Based on the reward model and initial fine-tuned model, we
further performed optimization by PPO Trainer. The model was then
detoxified by a second round of PPO training with a toxicity evaluation
model facebook/roberta-hate-speech-dynabench-r4-target model.

Model evaluation
Model evaluation was performed routinely before each public release.
The evaluation samples were selected from a user pool independent
from that of the training set. We developed an evaluation pipeline to
automatically submit user queries to DrBioRight and generate the
response reports in a PDF format. Based on the reports, our experts
manually reviewed the content. To estimate the successful rate for our
classic TCPA platform, we consider whether those analyses can be
performed by themodules available on our classic TCPA platform. The
user queries not covered by the classic TCPA include general con-
versations, new, and customized analysis (e.g., changing colors, labels,
and choosing user defined sample cohorts). To assess the successful
rate for OpenAI/GPT-4o, for a fair comparison, we provided it with a
system-level prompt describing all the information of the associated
data types and their meta-data.

Defense strategies
To minimize security vulnerabilities, we implemented several defense
strategies: (i) Input sanitization. To enhance security against potential
injection attacks, a prompt injection identification model from Hug-
ging Facewas integrated (protectai/deberta-v3-base-prompt-injection-
v2). We tested its performance by challenging our platform with >100
injection attack prompts, all of which were successfully identified. For
example, when a user attempted to inject code to delete all the system
files, our platform successfully detected and blocked the malicious
command. (ii) Rate limit. DrBioRight monitors query frequency per
user to prevent load attacks. DrBioRight would pause for a user if
he/she submits concurrent queries in a pre-defined short time interval.
(iii) Environment isolation. This effort ensures that all code executions
occur in an isolated environment under a non-root user account,
thereby minimizing the impact of harmful code and safeguarding
other system components.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the RPPA data are available for download from the website (https://
drbioright.org/resources/). Additionally, the complete molecular
datasets can be downloaded from TCGA (https://portal.gdc.cancer.

gov) and DepMap (https://depmap.org/portal/). Source data are pro-
vided with this paper.

Code availability
The compiled software and detailed description of the code’s func-
tionality is available at https://drbioright.org. Supplementary Data 2
provides the list of key modules/packages used in this study.
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