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Biosynthetic energy cost for amino acids decreases
in cancer evolution
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Han Liang 3,6 & Jian Lu 1

Rapidly proliferating cancer cells have much higher demand for proteinogenic amino acids

than normal cells. The use of amino acids in human proteomes is largely affected by their

bioavailability, which is constrained by the biosynthetic energy cost in living organisms.

Conceptually distinct from gene-based analyses, we introduce the energy cost per amino acid

(ECPA) to quantitatively characterize the use of 20 amino acids during protein synthesis in

human cells. By analyzing gene expression data from The Cancer Genome Atlas, we find that

cancer cells evolve to utilize amino acids more economically by optimizing gene expression

profile and ECPA shows robust prognostic power across many cancer types. We further

validate this pattern in an experimental evolution of xenograft tumors. Our ECPA analysis

reveals a common principle during cancer evolution.
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Cancer development is a multiple-step evolutionary process
in which cancer cells acquire a selective advantage in their
competition with neighboring cells1–3. With the

advancement of high-throughput genomic characterization
technologies, extensive studies have systematically elucidated the
molecular basis of human cancers4,5. One striking observation is
the tremendous diversity of distinct molecular mechanisms
among different cancer types, among different samples of the
same cancer type, and even within a single tumor6. Regardless of
the specific molecular changes occurring in each cancer, cancer
cells must adapt to their microenvironment for rapid
proliferation6,7 and metabolic adaptation is the key to this
process8,9. Indeed, metabolic reprogramming has been proposed
as a hallmark of cancer cells6,7,10. However, quantitative char-
acterization of metabolic adaptation at the cellular level remains
challenging.

Amino acids (AAs), the building blocks of proteins, are an
essential class of metabolites. As the composition of cellular
biomass is dominated by proteins11, the regulation of protein
synthesis and AA usage is particularly important for cancer cells,
which have an enhanced demand for AAs to support their rapid
growth12,13. Mammalian cells can endogenously synthesize only
11 AAs, known as nonessential AAs (NEAAs)14 and have to
obtain the remaining 9 AAs, known as essential AAs (EAAs),
from the diet15 or microbes16. However, the endogenous synth-
esis of NEAAs might not be sufficient for the proliferation of
cancer cells, as the reduced exogenous supply of NEAAs such as
glutamine can impair the survival or tumorigenic potential of
malignant cells10,17–19. Importantly, recent metabolic profiling
experiments have demonstrated that cancer cells obtain EAAs
and some NEAAs from external sources for protein synthesis11,20.
Despite the importance of AAs to the proliferation of tumor cells,
it remains unclear how the usage of AAs in protein synthesis
affects cancer progression.

The use of different AAs in proteomes is presumably con-
strained by their biosynthetic energy cost, which varies greatly
regarding the high-energy phosphate bonds consumed in bio-
synthesis in living organisms. In autotrophs (bacteria, yeast, and
plants), which can synthesize all 20 proteinogenic AAs, bio-
synthetically inexpensive AAs are preferentially utilized over
“expensive” AAs in the proteomes21–26. The anticorrelation
between the biosynthetic cost and usage (termed C–U antic-
orrelation hereafter) of AAs appears to be driven by natural
selection for bioenergetic efficiency in the autotrophs22. Intrigu-
ingly, although animals can synthesize only 11 NEAAs14, sig-
nificant C–U anticorrelations have been observed for all 20 AAs
in humans and other animals when the cost of AA biosynthesis in
bacteria23,24,27 or yeast28 is employed. A reasonable explanation
is that EAAs and most NEAAs in animal cells are ultimately
taken from the autotrophs in which the bioavailability of an AA is
constrained by its biosynthetic cost23,24,28. Based on this
hypothesis, the biosynthetic cost of AAs, combined with gene
expression profiles, should well reflect how cells manage the
expenditure of all 20 AAs in protein synthesis.

In this study, we introduce the concept of energy cost per AA
for a gene (ECPAgene) to measure the average biosynthetic cost of
AAs in a gene/protein. Based on ECPAgene and the overall gene
expression profile of a sample, we calculate ECPAcell, which is a
quantitative index for the average biosynthetic cost of AAs in the
proteomes of the cells. As the EAAs and most NEAAs in human
cells are ultimately taken from the autotrophs, neither ECPAgene

nor ECPAcell measures the actual energy human cells invest to
synthesize the AAs endogenously. Instead, these parameters can
be treated as the average price tag for the AAs in a protein or the
proteome, respectively. Therefore, lower ECPA values indicate
reduced relative usage of expensive AAs and vice versa. Using

these two parameters, we investigate how cancer cells evolve to
utilize AAs more economically by optimizing gene expression
profiles.

Results
The biosynthetic cost underlies AA usage in human proteomes.
Previous studies have demonstrated the C–U anticorrelation in a
limited number of species (108 genomes23 and 43 genomes24). To
test whether this is a general pattern, we examined the relation-
ship between the biosynthetic cost and usage of AAs in
11,253 species spanning bacteria, archaea, protists, plants, fungi,
invertebrates, and vertebrates (see Methods). Taking humans as
an example, we counted the number of each AA in all the protein
sequences (Fig. 1a) and conducted a correlation analysis between
the occurrence (log2) of AAs and the biosynthetic cost (Supple-
mentary Table 1) that was normalized by the AA decay rate as
previously described23 (Fig. 1b). As expected23,24,28, we detected
significant C–U anticorrelation using the biosynthetic costs of
AAs in bacteria (B20, Pearson’s r=− 0.89, P= 1.3 × 10−7) or
yeast (Y20, r=− 0.89, P= 1.8 × 10−7) (Fig. 1b). Our analyses in
other species reveal that Pearson’s r ranges from − 0.95 to − 0.5
(P < 0.05 in > 99% of the species), with a median value <− 0.8,
suggesting that the C–U anticorrelation is universal across all
seven clades. As the AA biosynthetic cost is highly conserved
between bacteria (B20) and yeast (Y20, Supplementary Table 1),
in each species, the analyses with B20 and Y20 yielded nearly the
same results (Fig.1b–d).

Next, we questioned whether the C–U anticorrelation existed if
we focused only on the 11 NEAAs that can be endogenously
synthesized in human cells. As the biosynthetic pathway of
NEAAs might be different in humans compared with yeast or
bacteria29, we calculated the biosynthetic cost for each NEAA in
humans (H11) following previous studies in bacteria22 or
yeast21,26, while taking into account the differences (Supplemen-
tary Methods, Supplementary Table 1 and Supplementary
Figures 1–3). We see that the relative costs for NEAAs are very
similar among humans, bacteria, and yeast (Fig. 1e), and still
observe significant C–U anticorrelations in humans (Fig. 1b) and
other animals (Fig. 1c) with the H11 metric. It is not surprising
that the correlations obtained with H11 are weaker than those
obtained with B20 or Y20 (Fig. 1c, f), as only 11 AAs were used in
the analyses. We further confirmed the C–U anticorrelations in
humans and five other species with permutation tests by
randomly shuffling the cost (B20, Y20, or H11) of AAs 10,000
times and conducting correlation analysis (Supplementary Fig. 4).
Taken together, the universal C–U anticorrelation suggests that
the biosynthetic cost underlies the usage of AAs not only in
autotrophs but also in heterotrophs, such as humans.

Despite its prevalence, the C–U anticorrelation has not been
verified with experimental data in autotrophs nor in heterotrophs.
Herein, we provide evidence that the abundance of AAs
hydrolyzed from proteomes of bacteria30 or yeast31 is signifi-
cantly anticorrelated with the B20 or Y20 cost metric, respectively
(Supplementary Fig. 5a, 5b). Moreover, the abundances of AAs
hydrolyzed from proteins in whole bodies of rats, sheep, pigs, and
chickens32 show significant anticorrelations with the biosynthetic
cost of all 20 AAs (B20 or Y20) or the 11 NEAAs (H11)
(Pearson’s r ≤− 0.63, P < 0.05 in each test; Supplementary
Fig. 5c). Our permutation analysis (Methods) further confirmed
these patterns (Supplementary Table 2). To our knowledge, we
provide the first experimental evidence that the biosynthetic cost
governs the composition of AAs in proteomes of autotrophs and
animals.

Human intracellular AAs come from two sources: (1) NEAAs
endogenously synthesized in human cells or other animal cells
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(obtained through the food chain), both of which are shaped by
the H11 cost metric, presumably due to metabolic efficiency; and
(2) AAs ultimately taken from autotrophs, which are constrained
by the B20 or Y20 cost metric. Although it is difficult to
determine the relative contribution of each source to the total
AAs, our simulations (Supplementary Methods) suggest that the

mixtures of AAs from the two sources always yield significantly
negative correlations between the overall abundance and cost of
all 20 AAs in autotrophs (Fig. 2a and Supplementary Fig. 6).
Furthermore, the experimental data show that the cost is
significantly anticorrelated with the abundance of free AAs in
the livers of humans, chimpanzees, rhesus monkeys, and
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Fig. 1 Biosynthetic cost of AAs is correlated with AA usage in protein sequences. a Proportions of 20 AAs in human proteins. Bar plot on the left shows the
biosynthetic cost of each AA (Y20). b The relationship between AA occurrences (log2) in all human protein sequences and cost of AAs (red point, blue
triangle and green square for B20, Y20, and H11, respectively). Pearson’s correlation test was performed. c Boxplots showing the distribution of Pearson’s r
for the C–U correlation in seven major taxonomic groups in all domains of life. Phylogenetic tree at left shows the evolutionary relationship between the
seven groups. The number of species in each of the seven groups is presented and the number of species showing significant C–U anticorrelation (P <
0.05) is given in parentheses. Due to the conservation of cost metric or food chain, significant C–U anticorrelation was observed in all domains of life with
three cost metrics (B20, Y20, and H11). Center line, median; box limits, upper and lower quartiles; whiskers, 1.5 times the interquartile range. d Pearson’s r
for C–U correlation in animals based on Y20 (x axis) is highly correlated with the corresponding value obtained with B20 (y axis). The red line indicates
where y= x. e Correlation between the biosynthetic costs of NEAAs in humans (y axis) against those in yeast (x axis). The nine AAs that can be
synthesized from basic metabolites produced during glycolysis and TCA cycle (Ala, Asp, Asn, Arg, Gln, Glu, Gly, Pro, and Ser) are shown in red. The red
line shows the results of the linear regression of biosynthetic costs of the nine AAs in humans against those in yeast. Biosynthesis of cysteine (Cys) and
tyrosine (Tyr) depends on EAAs methionine and phenylalanine, respectively, and are displayed in gray. A significant correlation was still observed when
incorporating Cys and Tyr in the analysis (Pearson’s r= 0.79 and P= 0.004 for all 11 NEAAs). f C–U anticorrelation in animals is weaker using H11 metric
compared with Y20 metric (Wilcoxon’s signed-rank test, P= 3 × 10−61). The red line indicates where y= x
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mice33,34, as well as in human serum35 and mouse kidney34

(Pearson’s r ≤− 0.72, P < 0.05 for B20, Y20, or H11 in each
sample; Fig. 2b, Supplementary Fig. 5d). Therefore, our model
suggests that the biosynthetic costs of all 20 AAs constrain the
relative abundances of free AAs in human cells, which further
shape AA usage in the proteomes by optimizing protein
sequences and gene expression levels during evolution (Fig. 2a).

Profound impact of AA energy costs on gene expression. Using
messenger RNA (27 tissues) or protein (30 tissues or cell types)
expression data from normal human tissues, we confirmed very
strong negative correlations between the biosynthetic cost and
expression-normalized abundance of AAs in each tissue
(Pearson’s r <− 0.80, P < 10−4 in each test; Supplementary
Fig. 7a for Y20 and Supplementary Table 3 for B20 and H11).
Therefore, incorporating gene expression information further
justified the impact of biosynthetic energy costs on the usage of
AAs in human proteomes of different tissues. Next, we

investigated whether and how the biosynthetic cost of AAs
affects human gene expression profiles by introducing the
ECPAgene parameter (Fig. 3). For each gene, we calculated
ECPAgene based on its protein sequence and the biosynthetic
cost (B20, Y20, or H11) of individual AAs (Fig. 3a). Due to the
difference in AA content, ECPAgene varied considerably from
gene to gene (Fig. 3a), with the genes with lower ECPAgene

significantly enriched in the pathways constitutively expressed
in the cell types, and the genes with higher ECPAgene sig-
nificantly enriched in the pathways such as gene regulation
(Supplementary Table 4). Intriguingly, we detected significant
negative correlations between ECPAgene and gene expression
levels in each tissue after we grouped the expressed genes into
100 bins with increasing expression levels in that tissue (with
Y20 metric, Spearman’s ρ ranges from − 0.766 to − 0.345, P <
0.001 in each tissue for mRNA data, and ρ ranges from − 0.622
to − 0.198, P < 0.05 in the tissues, except for fetal gut and
platelets for protein data, Fig. 3c and Supplementary Fig. 8; see
Supplementary Table 5 for results based on B20 and H11). Of

Mouse kidney
(Takach et al. 2014)

Human liver (female)
(Blekhman et al. 2014)

B20 Y20 H11

Free amino acid abundance (log2) in tissue/serum

E
ne

rg
y 

co
st

 (
lo

g 2
)

b

5

7

9

3.8 4.0 4.2

4

6

8

10

4.0 4.1 4.2 4.3 4.4

r = –0.74, P = 2.0×10–4

r = –0.73, P = 2.3×10–4

r = –0.78, P = 0.0045

r = –0.81, P = 1.3×10–5

r = –0.80, P = 2.8×10–5

r = –0.82, P = 0.0019

r = –0.74, P = 1.8×10–4

r = –0.76, P = 1.0×10–4

r = –0.75, P = 0.0077

r = –0.83, P = 5.1×10–6

r = –0.81, P = 1.5×10–5

r = –0.71, P = 0.013

r = –0.75, P = 2.1×10–4

r = –0.76, P = 1.7×10–4

r = –0.76, P = 0.01
r = –0.69, P = 7.2×10–4
r = –0.65, P = 0.0017

r = –0.67, P = 0.023

4

6

8

10

5 6 7 8 9 10

4

6

8

10

4 6 8 10

4

6

8

10

2 4 6 8

Chimp liver (female)
(Blekhman et al. 2014)

3

5

7

9

3.8 4.0 4.2 4.4

Rhesus liver (female)
(Blekhman et al. 2014)

Mouse liver
(Takach et al. 2014)

a

AA usage in
proteome

Human cell
G
A
P
E
V
L
I
R
Q
S
T
D
N
F
K
H
Y
M
C
W

Energy cost in 
autotrophs

Energy cost

G
A

P
E

R

Q
S

D

y

C

Energy cost
in heterotrophs

N

NEAAs
endogenously
synthesized

G
A
P
E
V
L
I
R
Q
S
T
D
N
F
K
H
Y
M
C
W

All free AAs

NEAAs + EAAs
 by autotrophs

G
A
P
E
V
L
I
R
Q
S
T
D
N
F
K
H
Y
M
C
W

AA abundance

AA usage

NEAAs by
heterotrophs

Human serum
(Derezinski et al. 2017)´

Fig. 2 Biosynthetic cost of AAs constrains their usage in mammalian proteomes. a A model that explains anticorrelation between the usage of AAs in
human proteomes and their cost in autotrophs (B20 or Y20) and heterotrophs (H11). Free AA pool in human cells comes from two sources: (1) NEAAs that
are endogenously synthesized in human or other animal cells, which are constrained by H11 cost metric; and (2) AAs ultimately taken from autotrophs,
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note, in the above analysis, the correlation between ECPAgene

and protein abundance is in general weaker than that between
ECPAgene and mRNA abundance (Fig. 3c and Supplementary
Fig. 8), presumably because gene expression measured by
mRNA sequencing (mRNA-Seq) is more comprehensive and
accurate than the proteomic abundance quantified by mass
spectrometry36. Overall, our results suggest that the genes
highly expressed in human tissues tend to avoid the AAs that
would require more energy to synthesize or which are at rela-
tively lower abundance from exogenous supplies.

We extended this analysis to the mRNA expression data of The
Cancer Genome Atlas (TCGA)5 and confirmed similar significant
negative correlations in both normal and cancer samples (only
cancer types with > 10 matched normal–tumor sample pairs were
analyzed; Fig. 3d and Supplementary Fig. 7b for Y20, and
Supplementary Table 6 for B20 and H11 results). In 9 of the 15
cancer types surveyed, the negative correlation patterns were
significantly stronger in cancer compared with normal tissues
(another 4 cancer types showed similar trends, but the differences
were not statistically significant; Fig. 3d). Previous results suggest
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cancer patients usually have dysregulated AA levels in blood37–39

or tumor tissues40,41. However, we observed similar negative
correlations between the cost and abundance of the free AAs in
tumor and matched normal tissues for a variety of cancer types
(Supplementary Fig. 9 and Supplementary Table 7). These results
suggest that cancer cells may more efficiently manage protein
synthesis using the AAs available within their microenvironment.

Consistent prognostic power of ECPAcell across cancer types.
We next questioned whether cancer cells utilize AA for protein
synthesis in a way that is more economical than that of normal
cells. We analyzed the relationship between ECPAgene and the
fold-change in protein abundance in invasive breast carcinoma
relative to matched normal samples that were measured with
quantitative mass spectrometry in a previous study42. After
grouping proteins into equal-sized bins based on increasing dif-
ference, we found that the change in protein abundance in the
tumor relative to normal cells is inversely correlated with
ECPAgene for tumors with (Spearman’s ρ=− 0.42, P= 0.0023) or
without (Spearman’s ρ=− 0.32, P= 0.022) lymph node metas-
tasis (Supplementary Fig. 10). These results support the hypoth-
esis that cancer cells utilize AAs for protein synthesis more
economically by (1) preferentially downregulating or (2) avoiding
upregulating the genes rich in biosynthetically expensive AAs, or
by both mechanisms.

To more generally study the impact of managing AA usage in
various cancer types, we performed a pan-cancer analysis based
on ECPAcell (Fig. 3b) using TCGA mRNA-Seq expression data of
33 cancer types (Supplementary Fig. 11). Of note, ECPAcell, which
measures the virtual average cost of proteinogenic AAs in the
cells, not only considers the composition of AAs in the protein
sequences but also incorporates the gene expression levels. As
TCGA mRNA-Seq expression data were quantified at the tissue
level, the ECPAcell value represents the average virtual cost of
proteinogenic AAs across all the cells present in that sample. We
obtained very similar results with the B20, Y20, or H11 cost
metric in the analyses. In the following, we primarily focused on
the results based on Y20, as it included all 20 AAs. In 11 of the 15
cancer types that have mRNA expression data available for at
least 10 normal samples, ECPAcell was significantly lower in
tumors than in normal tissues (Fig. 4a), suggesting that reducing
the usage of more expensive AAs in protein synthesis is a general
trend for cancer cells. Within a cancer type, the gene expression
profiles of different patients are highly heterogeneous. Hence, we
analyzed the ECPAcell of tumor samples from different subtypes
of breast carcinoma43, which has the largest number of samples in
TCGA data. Compared with the normal samples, all tumor
subtypes have significantly lower ECPAcell (Supplementary
Fig. 12), suggesting that the reduced ECPAcell in cancer cells is

robust with respect to tumor subtype. To assess the influence of
the heterogeneous cellular composition in the cancer samples6,
we performed ECPAcell analysis on previously published single-
cell RNA sequencing (RNA-Seq) data of melanoma44 and ovarian
carcinoma cells45. For both cancer types, the cancer cells have
significantly lower ECPAcell values than the immune or stromal
cells (Supplementary Fig. 13), suggesting that the reduced
ECPAcell in tumors is mainly influenced by the malignant cells
rather than the immune and stromal cells within the tumor
microenvironment. As the number of AA changes caused by
somatic mutations in a cancer sample is small (20~100)5, such
AA changes have negligible effects on the observed difference in
ECPAcell values between the normal and cancer samples. Indeed,
we validated this hypothesis by considering the somatic
mutations and calculating the ECPAcell values in each tumor
sample (Supplementary Fig. 14).

To test whether the cancer samples with reduced usage of
expensive AAs (i.e., lower ECPAcell) are more aggressive, we
compared the ECPAcell of tumor samples from patients diagnosed
at different pathologic stages (from I to IV, see Methods). We
found negative correlations between ECPAcell and tumor stage in
16 of the 19 cancer types that have pathological stage information
available, 9 of which were statistically significant (Fig. 4b). We
further confirmed significant negative correlations between
ECPAcell and pathologic stages in the 9 cancer types (empirical
P < 0.05 for each cancer type, Supplementary Fig. 15) with
permutation tests by shuffling ECPAcell among samples 10,000
times and repeating the correlation analysis (Methods). There-
fore, utilizing AAs more economically in protein synthesis
confers a greater proliferation advantage upon cancer cells.

Next, we considered whether ECPAcell is associated with
patient survival time. Focusing on 17 cancer types with sufficient
samples and events (Methods and Supplementary Fig. 11), we
found that patients with lower ECPAcell showed significantly
worse survival probability compared with those with higher
ECPAcell in nine cancer types and we did not find a significantly
reversed pattern in any cancer type (split by the median ECPA
value, log-rank test, Fig. 4c, d). Further, a lower ECPAcell was
significantly associated with poor survival using a univariate Cox
proportional hazards model in the nine cancer types. Collectively,
in 11 of the 17 cancer types surveyed, lower ECPAcell showed a
significant correlation with poorer patient prognosis by either
log-rank test or Cox model (see additional cancer types in
Supplementary Fig. 11). To confirm the statistical significance of
the observed pattern, we performed permutation tests on cancer
samples and found that the number of cancer types with
consistent survival correlation was much higher than the random
expectation (at most five in permutations, P < 2 × 10−4, Supple-
mentary Fig. 16a). Importantly, in six cancer types, the

Fig. 3 Impact of ECPAgene on the expression of individual genes in normal and cancer tissues. a Schematic diagram showing the calculation of ECPAgene. For
each gene, ECPAgene is the average of the biosynthetic cost of AAs weighted by the occurrence of each AA in the protein sequence. ACTB gene is used as
an example. The histogram on the right shows the distribution of ECPAgene of 19,571 unique protein-coding genes in humans. b Illustration of ECPAcell

calculation with mRNA-Seq data of sample TCGA-AB-2803-03 from TCGA study of acute myeloid leukemia (LAML). ECPAcell is an average of ECPAgene of
all expressed genes weighted by lengths regarding encoded AAs and expression levels of those genes. c Correlations between ECPAgene and gene
expression level in 12 normal human tissues with both mRNA-Seq and proteomic data available. For each tissue, genes were divided into 100 groups based
on their expression levels (spectral count for proteomic data and RPKM for mRNA-Seq), and the median expression level (log10) and median ECPAgene in
each group were used in the correlation analysis. Two representative correlations are magnified for more detail. d Correlations between ECPAgene and gene
expression level across different cancer (colored) and normal tissues (gray) using TCGA mRNA-Seq data. For each sample of each cancer type, genes were
divided into 100 groups based on their expression levels and, the median expression level and median ECPA in each group were used in the correlation
analysis. Error bars indicate the 95% confidence intervals of ρ. The number of tumor and normal tissue samples for each cancer type can be found in
Supplementary Table 6. For each cancer type, the significant difference in the correlation coefficient (Spearman’s ρ) between tumor and related normal
samples is marked as *P < 0.05; **P < 0.01; and ***P < 0.001. Two representative correlations for tumor and normal samples of STAD are magnified for
more detail
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Fig. 4 Clinically relevant patterns of ECPAcell across cancer types. a Boxplot showing ECPAcell of tumor samples and matched normal tissue samples in 15
cancer types for which mRNA-Seq data of > 10 normal samples were available. The number of tumor samples (T), the number of normal samples (N), and
Wilcoxon’s rank-sum test P-values are displayed in the plot. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5 times the interquartile
range. b Bar plot showing Spearman’s correlation coefficient of ECPAcell and the pathologic stage for patients with 19 cancer types. The numbers of tumor
samples (n) and Spearman’s rank correlation P-values are displayed in the plot. *Colon and rectal adenocarcinoma are merged as colorectal carcinoma
(CRC) in the analysis. c Associations between ECPAcell and the patients’ survival times using either log-rank tests or Cox proportional hazards model in 17
cancer types that have≥ 75 samples and≥ 25% events. Sample size and results for additional cancer types are provided in Supplementary Fig. 11. Circle
size indicates the significance of the correlation; color indicates correlation direction. d Kaplan–Meier plots showing the survival probability of patients with
lower ECPAcell or higher ECPAcell in ten cancer types. For each cancer type, patients were divided into two equal groups based on ECPAcell of the patients’
tumor samples. P-values of log-rank and univariate Cox tests are shown
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association with ECPAcell remained significant even when the
pathologic tumor stage and patient age were considered in the
multivariate analysis (Fig. 4c), which suggests that ECPAcell

provides additional prognostic power over clinical variables. For
comparison, we stratified patients by the expression level of
individual genes and tested their associations with the patholo-
gical stage or patient survival time. Among 18,919 genes
surveyed, only one gene (LOX) showed a comparable, consistent
association with both pathological stage and survival analysis, and
the probability of a gene with similar prognostic power across
multiple cancers was 2.1 × 10−4 (Supplementary Fig. 16b).
Indeed, when examining a set of known cancer therapeutic
targets or biomarker genes46, none of them showed such a
consistent prognostic pattern as ECPAcell (Supplementary
Fig. 16c). Notably, we also repeated the whole pan-cancer
analytical procedures with B20 or H11 and obtained overall
patterns that were very similar to those for Y20 (Supplementary
Figures 17–20). As tumors often experience hypoxia47 and thus
obtain part of their cellular energy via fermentation48, we also
repeated the pan-cancer association analysis with anaerobic costs
of AAs and found that our conclusions still held (Supplementary
Figures 21–23). Overall, our results indicate that tumors with
lower ECPAcell tend to be more aggressive, and patients with such
tumors have shorter survival times across a broad range of cancer
types. These results also highlight the feasibility of ECPAcell as a
potential prognostic marker for patient stratification.

Reduced ECPA in experimental evolution of xenograft tumors.
Based on our observations, we argue that lower ECPAcell may be
an important feature shaped by natural selection at the systemic
and cellular level, and the trend will be enhanced during the
evolution of a tumor. To test this hypothesis, we analyzed the data
generated in an experimental evolution of xenograft tumors in
which an early transformed cell population was first obtained by
introducing a mutated oncogene, HRASV12, into a normal human
breast epithelial cell line (MCF10A)49. These MCF10A-HRAS
cells were xenografted into mice to form the first-stage xenograft
tumor (XT1), the subsequent second-stage xenograft tumor
(XT2), then XT3…, until the metastatic tumor was detected in the
mouse carrying XT8. The sequential cell samples collected from
MCF10A-HRAS, XT1 to XT8, and the two metastatic tumors,
XT8_M1 and XT8_M2, represent the full evolutionary process
from tumor initiation to metastasis. We analyzed the mRNA-Seq
data of the nine primary tumors (Methods) and found that
ECPAcell is reduced in the xenograft tumors (XT1 to XT8)
compared with the ancestral MCF10A-HRAS cells. Strikingly, we
observed a clear decreasing trend of ECPAcell in a temporal order
of the eight xenograft tumors (XT1 to XT8) (Pearson’s r ≤− 0.81,
P < 0.05 for each cost metric; Fig. 5a). This in vivo experimental
study supports that ECPAcell is selected for reduction during
tumor evolution.

To examine the key factors affecting the evolutionary process
for managing AA usage, we conducted simulations on the
evolution of the ECPA of a single cancer cell population, in which
the ECPAcell of the cells varied at a rate of v (per generation). We
then sampled them to the next generation based on their fitness
values given a selective strength of s (Methods, Fig. 5b and
Supplementary Fig. 24). We found that higher v and stronger s
can lead to a quicker decrease in ECPAcell, whereas the speed of
the decrease is largely determined by s (Fig. 5c, d). We note that
the reduction in ECPAcell is not necessarily linearly correlated
with the selective advantages in this simulation. Collectively, both
our experimental evolution and simulations suggest that reduced
ECPAcell is an important feature of tumor cells during cancer
progression.

Biological themes related to reduced ECPAcell in tumors. To
test whether the reduced ECPAcell in cancer cells occurs by
expression level changes of genes of certain pathways or at the
genome-wide level, we systematically searched for genes that had
expression levels correlated with ECPAcell among the samples for
31 TCGA cancer types that have at least 50 samples available
(Methods). As expected, for each cancer type, the positively
correlated genes overall have higher ECPAgene, and the negatively
correlated genes tend to have lower ECPAgene (Fig. 6a, Supple-
mentary Fig. 25, Supplementary Tables 8 and 9). For most can-
cer types, the positively correlated genes are significantly enriched
in the pathways related to the mitochondrion (Fig. 6b, Supple-
mentary Table 10). The negatively correlated genes are over-
represented in pathways that tend to have lower ECPAgene

compared to the genomic background (Fig. 6c, Supplementary
Table 10), and the power of ECPAcell in the pan-cancer analysis
was considerably compromised when we excluded these pathways
(Supplementary Fig. 26 and Supplementary Table 11). These
results suggest that the pathways rich in expensive AAs are not
upregulated overall in cancer cells so that expensive AAs are
economically used. However, we did not find such patterns for
the pathways enriched with positively correlated genes (Supple-
mentary Table 11), suggesting that reduced ECPAcell in tumor
cells is not the direct consequence of the downregulation of genes
in specific pathways.

Tumor suppressors and cancer drivers4, as well as genes
involved in AA biosynthesis and transport50,51, are often
dysregulated in tumor cells. Accordingly, we identified numerous
genes in those functional categories that are differentially
expressed in tumor cells (Fig. 6d and Supplementary Fig. 27a–d).
Nevertheless, the dysregulation of these genes is unlikely to

predominantly affect ECPAcell in tumors, as they have ECPAgene

that is similar to the background level (Supplementary Fig. 27e);
and importantly, the results of the overall pan-cancer analysis
remain intact after we excluded each category from the analysis
(Supplementary Table 11). The expression levels of proliferation-
related genes52 are increased in tumors compared to the matched
normal samples (Supplementary Fig. 28a). Although the
proliferation-related genes have lower ECPAgene than the
genomic background (Supplementary Fig. 28b), the results of
pan-cancer analyses are only slightly affected by these genes
(Supplementary Fig. 29 and 30). Furthermore, the reduction of
ECPAcell during experimental evolution of xenograft tumors still
holds when the proliferation-related genes were excluded
(Supplementary Fig. 31). These results suggest that the associa-
tion between ECPAcell and cancer progression is unlikely to be
caused by changes in proliferation-related genes alone. To test
whether cancer cells preferably express proteins with lower total
biosynthetic cost, we calculated the total energy cost of each
protein (ECgene) as the sum of the biosynthetic cost of AAs in
each protein sequence. As expected, genes with higher ECgene

tend to have lower expression levels in both normal tissues and
tumors (Supplementary Fig. 32a), and be under-represented in
the upregulated genes in cancer cells (Supplementary Fig. 32b).
Moreover, the ECcell values, which are calculated as the average
ECgene of genes weighted by their expression levels (Methods), are
significantly lower in tumors than in normal tissues (Supple-
mentary Fig. 33). Nevertheless, the pathological stage of tumors
or the survival time of patients is generally not associated with the
ECcell parameters in the pan-cancer analysis (Supplementary
Fig. 33), suggesting that ECcell is not suitable for a prognostic
marker of cancer progression. Taken together, our results suggest
that the economical use of AAs in protein synthesis in cancer cells
is achieved by (1) avoiding upregulation of pathways enriched for
expensive AAs and (2) the cumulative effect of downregulating
individual genes that are enriched for expensive AAs. We
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conclude that the efficient use of AAs in cancer cells is achieved
by the coordinated regulation of gene expression at the whole-
transcriptome level. Although specific pathways might contribute
to this process, none of them is overwhelmingly dominant in this
process.

The predictive power of ECPAcell for immunotherapy. Check-
point inhibitor immunotherapy is one of the most exciting
developments in cancer treatment53. The expression levels of PD-
1 (PDCD1) or PD-L1 (CD274) are associated with the response to
checkpoint blockade therapy54,55. Although PD-1 and PD-L1 are
usually dysregulated in tumors compared to normal tissue sam-
ples (Supplementary Figs. 34a and 35a), the expression level of
neither gene showed consistent association with the pathological
stage of tumors or patient survival time (Supplementary Fig. 34
and 35). We questioned whether ECPAcell can predict response to
immunotherapy and hypothesized explicitly that higher ECPAcell

is associated with a better clinical outcome. We applied our
method to a recent study on anti-PD-1 therapy in metastatic

melanoma56 in which the mRNA-seq data for patient samples are
available. Indeed, ECPAcell for patients in the responding group
was significantly higher than that of patients in the non-
responding group (one-sided t-test, P= 0.032, Fig. 7a). By con-
trast, we did not find significant differences in the expression
levels of PD-1 (t-test, P= 0.85) or PD-L1 (t-test, P= 0.49)
between patients in the responding group and the non-
responding group, which is consistent with a recent study57.
These results suggest that tumors with low ECPAcell can survive
better than those with high ECPAcell when undergoing a T-cell
attack and therefore become more resistant to immunotherapies.
To further confirm that the observed significant pattern is due to
the biosynthetic costs of different AAs, we randomly permutated
the biosynthetic energy costs of AAs 1000 times, repeated the
above analysis between the two response groups, and visualized
the obtained P-values and ECPAcell differences [log2(responding/
non-responding)] using a volcano plot (Fig. 7b). We found that
the ECPAcell difference obtained from using the real biosynthetic
energy costs of AAs was significantly larger than that obtained
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from using the shuffled energy costs (empirical P= 0.012,
Fig. 7b).

We further examined whether ECPAcell can improve the
predictive power of clinical variables in response to immu-
notherapy using the common machine learning method of
random forests58 with leave-one-out cross-validation (Fig. 7c).
We split the candidate features into four groups: (i) clinical
variables (i.e., gender, age, pretreatment, and pathologic stage);
(ii) mutation status of three well-known melanoma driver genes
(BRAF, NRAS, and NF1); (iii) mutation load; and (iv) ECPAcell.
Without ECPAcell, the mutation load alone achieved the best
accuracy (0.58) among all the models. After adding ECPA as
candidate features into the models, there was significantly
improved predictive power across the models (median accuracy
0.69 [with ECPAcell] vs. 0.42 [without ECPAcell]; one-sided
paired t-test, P= 0.003). The best predictive model was the
combination of clinical variables and ECPAcell, with a
predictive accuracy of 0.77. These results show that tumors
with high ECPAcell are more responsive to anti-PD-1 immu-
notherapy, and this feature can significantly improve the
predictive power of any combination of clinical data, signature
genes, and mutation load. Thus, ECPAcell represents a novel,

simple, and promising metric for predicting the response to
checkpoint inhibitor immunotherapy.

Discussion
Cancer cells employ multiple strategies to acquire AAs10, such as
the endogenous synthesis of NEAAs11,19,20,59,60, upregulation of
AA transport50,51,59, or through micropinocytosis61. Besides
protein synthesis, certain AAs, such as asparagine19,59,60, gly-
cine20, glutamine11,18,62, histidine63, leucine64, proline65, and
serine66, participate in various cellular processes such as
nucleotide synthesis, cellular signaling, and regulation of gene
expression67,68. Of note, recent studies have demonstrated that
protein synthesis is the cellular process that consumes the most
AAs11. As the use of all 20 AAs in human proteomes is con-
strained by their synthetic costs in living organisms, our ECPA
concept effectively reflects how cancer cells optimize gene
expression profiles for AA usage adaptation. We revealed a
common principle governing cancer evolution: cancer cells evolve
to use AAs more economically by downregulating genes that are
rich in costly AAs. This trend is evident through the comparison
between tumor and normal tissue samples, the within-disease
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analysis across a diversity of cancer types, and the in vivo
experimental evolution of a xenograft tumor. Thus, our study
provides novel insights into how efficient usage of AAs benefits
cancer cells from an evolutionary perspective and at the systemic
level. Moreover, the ECPAcell metric we developed shows good
prognostic power (compared to individual genes) across many
cancer types and can also help predict the tumor response to anti-
PD-1 therapy for patients with metastatic melanoma.

As the ECPAcell metric is designed to quantify the usage of AAs
in protein synthesis based on their biosynthetic costs, by defini-
tion the most appropriate approach for calculating ECPAcell

should be the rate of protein synthesis. In this study, we calcu-
lated ECPAcell using RNA-Seq data, as recent studies based on
ribosome profiling have demonstrated a high correlation between
mRNA and the rate of protein synthesis69. To further validate our
analysis, we retrieved the ribosome profiling data of normal (n=
6) and tumor (n= 10) samples of human kidney tissue65 and
calculated ECPAcell with the ribosome-protected fragments
(Supplementary Methods). Consistent with the observation using
TCGA mRNA-Seq data, we found that ECPAcell in the tumor
samples is significantly lower than that in the normal samples
whenever we used the Y20, B20 or H11 metric (Supplementary
Fig. 36). Hence, our ECPA analysis based on mRNA-Seq data
provides a simple and powerful method that informs how eco-
nomically AAs are utilized during cancer evolution.

Conceptually, our ECPA study is fundamentally novel to the
field and represents a substantive departure from the status quo,
namely, gene-based analyses. We emphasize the management of
the overall AA expenditures by summarizing the effects of all the
genes in the cell, because individual changes that accumulate at
the systemic level collectively define the cellular properties that
are evident through natural selection in tumor evolution. From
this point of view, our study emphasizes the importance of holism
in understanding cancer evolution and improving cancer
medicine.

Methods
Biosynthetic energy costs of AAs. The biosynthetic cost of each AA, Ci (i= 1 to
20), measured by the number of high-energy phosphate bonds required for
synthesis, was obtained from previous studies in bacteria22 and yeast21,26. The
detailed procedures for calculating the biosynthetic cost for each of the 11 NEAAs
in humans (H11) are presented in Supplementary Figures 1–3 and the Supple-
mentary Methods. For each biosynthetic cost metric (B20, Y20, or H11), the decay
rate-normalized biosynthetic cost of an AA, Wi (i= 1 to 20 for B20 and Y20, and i
= 1 to 11 for H11), was calculated as the product of the biosynthetic cost and the
decay rate for each AA, i.e.,Wi= Ci·Di (i= 1 to 20 for B20 and Y20, and i= 1 to 11
for H11), as described previously23.

The anaerobic biosynthetic cost of AAs in yeast was obtained from previous
studies21,26. The anaerobic biosynthetic cost of AAs in bacteria or humans was
calculated by counting only the number of high-energy phosphate bonds that are
directly consumed or produced during AA biosynthesis as performed previously26.
The decay rate-normalized anaerobic cost of AAs in yeast, bacteria or humans was
calculated as described above.

The C–U correlation analysis based on protein sequences. All the protein
sequences in seven taxonomic divisions (archaea, bacteria, protists, plants, fungi,
invertebrates, and vertebrates) annotated in the Swiss-Prot and TrEMBL databases
were downloaded from the UniProt website (www.uniprot.org). Species with more
than 500 unique protein sequences were analyzed. In each species, Pearson’s r
between the occurrence of AAs (log2) and the cost of AAs (B20, Y20, or H11) was
calculated. We performed permutation tests by randomly shuffling the cost of AAs
(B20, Y20, or H11) 10,000 times and repeating the correlation analysis in
Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana, Drosophila mela-
nogaster, Mus musculus, and humans.

The relationship between in vivo concentrations and biosynthetic costs of
AAs. The in vivo concentrations of AAs hydrolyzed from proteins of bacteria,
yeast, and whole bodies of different animals (Supplementary Fig. 5), as well as the
in vivo concentrations of free AAs in tissues/blood of humans and other mammals
(Fig. 2a), were extracted from previous studies and are summarized in Supple-
mentary Table 12. For each sample, Pearson’s r between the concentrations (log2)

and cost (log2) of AAs (B20, Y20, or H11) was calculated. We also performed
permutation tests by randomly shuffling the costs of AAs (B20, Y20, or H11)
10,000 times and repeating the correlation analysis in each sample.

Calculating the energy cost per AA. The ECPA for a gene, ECPAgene, was cal-

culated with the formula ECPAgene ¼
Pk

i¼1
Wi � Ni=

Pk

i¼1
Ni , where Ni is the number of

the AA i in the protein sequence of that gene (k= 20 for B20 and Y20, and k= 11
for H11). The total energy cost of AAs in a protein sequence was thus calculated as

ECgene ¼
Pk

i¼1
Wi � Ni . The ECPA for a sample, ECPAcell, was calculated with the

formula ECPAcell ¼
Pn

j¼1
ECPAj � Lj �mj

� �
=
Pn

j¼1
mj � Lj

� �
, where Lj is the total

number of AAs in the protein sequence of gene j, n is the number of genes
expressed in each sample, mj is the abundance of gene j in the sample, and ECPAj is
ECPAgene for gene j with B20, Y20, or H11. Similarly, the average ECgene for a

sample, ECcell, was calculated as ECcell ¼
Pn

j¼1
ECj �mj

� �
=
Pn

j¼1
mj� To control for the

influence of DNA mutations in tumors, we obtained somatic mutation data of
tumor samples from TCGA data portal (tcga-data.nci.nih.gov). For each tumor
sample, the peptide sequence of each mutation-containing gene was corrected
based on somatic mutations before calculating Ni, the number of the AA i in the
protein sequence of a gene. Then the same formula presented above was used to
calculate ECPAcell for the sample.

Correlation between ECPAgene and gene expression levels. The quantification
of mRNA expression in 27 human tissues (Supplementary Table 3) was obtained
from Fagerberg et al.70. Protein abundances (spectral counts) of 30 human tissues
and cells (Supplementary Table 5) were taken from Kim et al.71. The level-3 gene
expression quantification in different cancer types (i.e., rsem.genes.normal-
ized_results, except RPKM for acute myeloid leukemia [LAML] and stomach
adenocarcinoma [STAD]) was downloaded from TCGA data portal (tcga-data.nci.
nih.gov). For each gene, the principal splice isoform annotated by APPRIS (appris.
bioinfo.cnio.es, 2016_06.v17) was employed. The proteomic data for breast cancer
were taken from Pozniak et al.42. In the mRNA-Seq analysis, the RefSeq coding
sequences (www.ncbi.nlm.nih.gov/refseq/, 2016-07-28) were translated into pro-
teins, and the relative abundance of a protein was assumed in scale to its mRNA.
For each sample, the expressed genes were divided into 100 groups based on
increased expression levels, and Spearman’s rank correlation coefficient ρ between
the median expression level (log10) and median ECPAgene in each group was cal-
culated. For TCGA mRNA-Seq data, in each cancer type, we compared the ρ-
values in the tumor samples versus those in the normal tissue samples with the
Wilcoxon’s rank-sum test.

Analysis of clinical relevance of ECPA in TCGA datasets. We compared the
ECPAcell difference between tumor and normal tissue samples using Wilcoxon’s
rank-sum tests for all cancer types that had at least ten noncancerous samples from
the related tissues. We retrieved the PAM50 intrinsic subtype72 data of breast
cancer samples from Ciriello et al.43. We obtained the clinical information of the
patients, including pathological stage, vital status, and survival time from TCGA
data portal. As different pathological stage terms were provided for different cancer
types or even within the same cancer type, we merged them into the same major
stage groups: stage I (stage I, stage IA, stage IB), stage II (stage II, stage IIA, stage
IIB), stage III (stage III, stage IIIA, stage IIIB, stage IIIC), and stage IV (stage IV,
stage IVA, stage IVB, stage IVC). Skin cutaneous carcinoma was excluded from this
analysis by stage group since most such samples were not from primary tumors73.

We assessed the association of ECPA with pathological stage using Spearman’s
rank correlation. The survival time of patients used in the analysis was the number
of days until death or until the last follow-up for patients who were still alive at the
time of censoring. We assessed the association of ECPAcell with patient survival
times using log-rank tests (patients were split into two groups based on the median
ECPAcell value) or the univariate Cox proportional hazards model with the survival
package74. We performed the analysis in 33 cancer types. Due to the limited sample
size and shorter follow-up time, the analysis for some cancer cohorts might have
had low statistical power to detect significant correlations. Therefore, we focused
on 17 cancer types that had ≥ 75 cases and ≥ 25% events (Fig. 4c, d, Supplementary
Fig. 14c and Supplementary Fig. 15c). We used multivariable Cox proportional
models (survival ~ stage+ ECPA, survival ~ age+ stage+ ECPA) to assess the
additional prognostic power of ECPAcell. To evaluate statistical significance, we
randomly shuffled the sample labels within each cancer type 1000 times and
repeated the analyses to infer the background distribution. The significance of the
observed cancer types associated with patient survival (P < 0.05 in the log-rank test
or univariate Cox model or in both tests with the same direction) was calculated
based on the background distribution. We performed a similar analysis by
stratifying patients based on the expression level of each gene. Besides using all the
expressed genes, we focused on only the therapeutic targets or biomarker genes46.

All the analyses mentioned above were performed with the Y20, B20, and H11
metrics separately.
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Analysis of single-cell RNA-Seq data. The processed single-cell RNA-Seq data
and the classification of cell types were obtained from Gene Expression Omnibus
(GEO) under accession GSE72056 for the melanoma dataset44 and from figshare
(figshare.com/s/711d3fb2bd3288c8483a) for the ovarian cancer ascites dataset45.
For both datasets, the gene expression levels of each cell were quantified as tran-
script per million by the original studies and directly used to compute ECPAcell

values. The differences in ECPAcell between different cell types in each dataset were
compared with Wilcoxon’s rank-sum tests.

Analysis of experimental evolution of xenograft tumor. The experimental
evolution of xenograft tumor was described previously49. For MCF10A-HRAS,
XT1, XT2, XT3, XT4, XT5, XT6, XT7, and XT8, and the two metastatic tumors,
XT8_M1 and XT8_M2, the Poly(A)+mRNA sequences were downloaded from
the Sequence Read Archive (accession number PRJNA268433). Based on the gene
RPKM values, we calculated ECPAcell values for the nine primary tumor samples
and conducted linear regression of ECPAcell against the generation number of the
eight derived primary tumor samples (XT1 to XT8).

Computational simulation of ECPA-based cancer cell evolution. The evolution
of the cancer cell population was simulated with an initial population size N(0)=
10,000 cells. The growth of the population follows a Gompertz growth function so

that the population size at generation g is N gð Þ ¼ N 0ð Þ � eαβ 1�e�
22
24βg

� �
, where α is the

initial proliferation rate and β is the rate of exponential decay of this proliferation
rate. The experimentally fitted parameters are α= 0.56 and β= 0.0719 for cancer
cell growth per day75. The growth time (day) was converted to the number of
generations in this study (22 h for a cell cycle duration).

The initial ECPA for each cell was set to 143 (based on the mean ECPAcell of all
the TCGA samples), and the optimal ECPA was arbitrarily set at 140 based on the
bottom 10% quantile of ECPAcell for all the TCGA samples (we also used other
quantile values and observed similar patterns). At each generation, the fitness (f) of

a cell is f ¼ e
�s

ECPAcell�ECPAopt
ECPAopt

���
���
, where s (set at 0.01, 0.1, 0.2, 0.5 and 1.0) is the model

selection strength on ECPA.
The cell population in generation g was sampled to generation g+ 1 based on

cellular fitness given a selective coefficient s. In each generation, the ECPA of a cell
k, ECPAg,k has a probability v (10−6 – 10−2) of mutating to a value ECPA’g,k.
ECPA’g,k follows a gamma distribution with mean equal to ECPAg,k and variance
equal to 3.12 (calculated based on ECPA of all TCGA samples, except for liver
cancer because the ECPA of these samples is much higher than that of the others).
Each simulation process was replicated 200 times.

Analysis of gene categories dysregulated in tumors. The list of cancer driver
genes was taken from Vogelstein et al4., and the list of tumor suppressors was from
TSGene database (https://bioinfo.uth.edu/TSGene/). Annotation for genes related
to AA biosynthesis and transport was downloaded from Molecular Signature
Database GO gene sets (http://software.broadinstitute.org/gsea/msigdb/). The list
of 530 proliferation-related genes whose expression are significantly positively
associated with growth rates was obtained from Waldman et al.52. For each cancer
type that has at least ten normal samples in TCGA datasets, the normalized counts
(or normalized RPKM for LAML and STAD) of genes were averaged for tumor
samples and normal tissue samples, respectively. Genes with average RPKM < 1
(for STAD and LAML) or average normalized read count < 20 (for other cancer
types) in tumor or normal tissue samples were excluded. Wilcoxon’s signed-rank
tests were conducted to test whether there is a significant difference in the mean
expression levels of genes in each of the four categories (cancer driver genes, tumor
suppressors, and genes related to AA biosynthesis or transport) between tumor and
normal tissue samples in this cancer type. We also excluded genes in each of the
four categories and repeated the pan-cancer analysis of ECPA with the remaining
genes.

Analysis of genes and pathways correlated with ECPA. To identify pathways
enriched in genes with high ECPAgene or low ECPAgene, we ranked all the human
protein-coding genes based on decreasing ECPAgene and performed gene-set
enrichment analyses for the top 6000 genes with highest ECPAgene or the bottom
6000 genes with lowest ECPAgene using DAVID (https://david.ncifcrf.gov/).

To identify genes whose expression levels were associated with ECPAcell, we
calculated Spearman’s rank correlation between ECPAcell and the normalized
expression level of each gene in each of the 31 cancer types that have at least
50 samples available. In each cancer type, genes with normalized read count < 20
were excluded from the correlation analysis. Many positively or negatively
correlated genes (false discovery rate-adjusted P-value < 0.05) are presented in
Supplementary Table 8. To identify the gene sets over-represented in positively or
negatively correlated genes, we focused on the 20 cancer types that have lower
ECPAcell in tumors or have ECPAcell associated with the pathological stage of
tumors or patient survival time (Fig. 4), and performed gene-set enrichment
analysis with DAVID for genes that had expression levels that correlated with
ECPAcell among samples in the same direction in at least 9 of the 20 cancer types.
Positively correlated genes and negatively correlated genes were analyzed
separately. Wilcoxon’s rank-sum tests were conducted to compare the ECPAgene of

positively or negatively correlated genes in each over-represented pathway to that
of the genomic background.

Analysis of ECPA with tumor response in anti-PD-1 treatment. We obtained
the patients’ treatment response data and the normalized gene expression data
from Hugo et al.56. We used a one-sided t-test to assess whether the ECPAcell

values of the responding group were significantly higher than those of the non-
responding group. To further assess the statistical significance of the observed
ECPAcell difference, we shuffled the biosynthetic costs of 20 AAs 1000 times and
repeated the analysis. The empirical P-value of the true ECPAcell difference was
calculated by the number of permutations with a more significant P-value and a
larger fold difference in ECPAcell (responding/non-responding) than the true
observation. To examine whether ECPAcell can improve the predictive power of
clinical variables, we performed model construction using random forests58 with
leave-one-out cross-validation. We considered four groups of candidate features: (i)
clinical variables (gender, age, pretreatment, and pathologic stage); (ii) mutation
status of the three melanoma driver genes (BRAF, NRAS, and NF1); (iii) mutation
load (the number of non-synonymous mutations per patient); and (iv) ECPAcell.
We first built models using each of the first three feature sets or their combination
and then included ECPAcell as an additional feature. We examined the improve-
ment in predictive power between models with and without ECPAcell using a paired
t-test.

Processing of ribosome profiling data. The ribosome profiling data for kidney
tumors (six samples of normal and ten samples of tumor kidney tissues) was
downloaded from GEO under accession GSE5982165. The next-generation
sequencing reads were mapped to hg19 using hisat2 (https://ccb.jhu.edu/software/
hisat2/index.shtml) based on the genome annotation from ENSEMBL (www.
ensembl.org). In each sample, the reads mapped to coding sequence (CDS) region
of protein-coding genes were counted using HTSeq-count (https://github.com/
simon-anders/htseq) with the parameter “-i gene_id -t CDS”, and the RPKM value
for each gene was calculated as n/L/N × 109, where n is total reads uniquely
mapped to CDS region of that gene, L (nt) is the CDS length of longest transcript of
that gene, and N is the total number of reads uniquely mapped to protein-coding
genes in this library.

Code availability. No software was used for data collection. The following software
was used to analyze data in this study: R statistical software (v3.3), survival R
package (v2.39), bowtie2 (v2.2.1), DAVID (v6.7), hisat2 (v2.0.4), and HTSeq-count
(v0.6.1). Custom scripts used in this study are available upon request.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.
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