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Outline

1. Thesis Research
I prospective incorporation of historical data from a small

number of historical studies

2. Platform-based designs for effective screening multiple agents
in Phase II
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Bayes Theorem

I The general Bayesian approach involves combining “prior
knowledge” about the distributions of the unknown model
parameters with observed data to provide direct estimation of
“evidence” for the parameter of interest

I Prior distributions may summarize our preexisting understanding or
beliefs regarding unknown model parameters θ = (θ1, . . . , θK )

I Inference is conducted on the posterior distribution of θ given the
observed data y = (y1, . . . , yN)′, via the Bayes theorem

p(θ|y) =
p(θ, y)

p(y)
=

f (y|θ)p(θ)∫
f (y|θ)p(θ)dθ

.

I Hierarchical models specify priors distributions in stages conditional
on a set of hyperparameters: p(θ|η)

I In contrast, frequentist hypothesis-tests based on P-values offer
indirect evidence for the parameters of interest that is based on
conditional probabilities of the observed data given a fixed values of
the parameters
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Frequentist Operating Characteristics

I Frequentist operating characteristics refer to statistical properties of
Bayesian procedures

I Assess “posterior performance” under fixed values of the model
parameters characterizing true states of nature, θtr

I λtr < −δ implies failure,
I −δ ≤ λtr ≤ δ implies equivalence
I λtr > δ implies efficacy

Decision rules:

p(λ < −δ|y) > 0.95, failure

p(λ ∈ [−δ, δ]|y) > 0.90, equivalence

p(λ > δ|y) > 0.95, efficacy

otherwise, inconclusive

I φ(|θtr ) denote the prob. of a decision rule given θtr , i.e.

φ(λ < −δ|θtr ) =

∫
I {p(λ < −δ|y) > 0.95} f (y|θtr )dy
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Thesis Research

Commensurate Prior Methodology

Brian P. Hobbs, Bradely P. Carlin, Daniel J. Sargent

I Proposed a framework of Bayesian hierarchical models for
incorporating historical data into the analysis of a prospective trial
from a small number of historical studies.

Papers:

I Hobbs, B.P., Carlin, B.P., Mandrekar, S., and Sargent, D.J. (2011).
Hierarchical commensurate and power prior models for adaptive
incorporation of historical information in clinical trials, to appear
Biometrics

I 2010 John Van Ryzin Award (ENAR)

I Hobbs, B.P., Sargent, D.J., and Carlin, B.P. (2011). Commensurate
priors for incorporating historical information in clinical trials using
general and generalized linear models. Bayesian Analysis (in process)
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Pocock’s “Acceptability” Criteria for Historical Controls
Ingelfinger (1973): “...ethical, as well as scientific, considerations require
that medicine depend on the most reliable and the best controlled data
available –the kind of data that is sought by randomized clinical study.”

Pocock (1976): “...presence of acceptable historical data cannot be
ignored in the full comparative evaluation of a new treatment.”

1. Precisely defined, identical therapies

2. Historical group part of a recent clinical study which contained
identical requirements for patient eligibility

3. Uniform treatment evaluation

4. Distributions of important patient characteristics comparable

5. Same organization with largely the same clinical investigators

6. No other indications leading one to expect differing results,

I i.e. enthusiasm of investigators (patient accrual rates)

I The model must account for unknown bias in the historical controls
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Example: Randomized Controlled Colorectal Cancer Trials

I Two successive randomized controlled colorectal cancer trials:

Saltz et al. (2000) trial randomized N0 = 683: May 1996 and May 1998

1. Irinotecan alone (arm A)

2. Irinotecan and bolus Fluorouracil plus Leucovorin (arm B; IFL)
significantly longer progression free survival

3. Fluorouracil and Leucovorin (arm C; 5FU/LV) standard therapy

Goldberg et al. (2004) trial randomized N = 795: May 1999 and April 2001

1. Irinotecan and bolus Fluorouracil plus Leucovorin (IFL) regulatory
standard in March 2000

2. Oxaliplatin and infused Fluorouracil plus Leucovorin (FOLFOX) new
regimen

3. Irinotecan and Oxaliplatin (IROX) new regimen
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Randomized Controlled Colorectal Cancer Trials (cont’d)

Incorporate IFL from Saltz trial prospectively, into Goldberg analysis

Consider acceptability criteria:

I Identical therapies: (doses in mg/m2) IFL was irinotecan 125 and
bolus FU 500 plus LV 20 weekly for 4 weeks every 6 weeks

I Inclusion Criteria:

I histologically proven unresectable colorectal adenocarcinoma
I Eastern Cooperative Oncology Group performance status ≤ 2
I adequate organ function

I Exclusion Criteria:

I Prior therapy for metastatic disease
I Adjuvant fluorouracil in previous 12 months

I Identically measured baseline and time-varying prognostic factors

I Tumor measurements at regular 6-week cycles
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Randomized Controlled Colorectal Cancer Trials (cont’d)
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Boxplots of age (left) and ld tumor sum (right) at baseline for the Saltz
et al. and Goldberg et al. trials.



Intro Thesis Platform Background Meta-analysis Commens Sims Example

Randomized Controlled Colorectal Cancer Trials (cont’d)

I Uniformly defined disease progression

I 25% or greater increase in measurable tumor or the
appearance of new lesions

I 1 year from end of Saltz to start of Goldberg

I 5 years between initiation of Saltz to completion of Goldberg

Conventional Methodology: Random Effects Meta-analysis

I Synthesis of information about population average effects from
multiple sources

I Not intended for small number of sources (< 4), (Gelman 2006)

I yields no meaningful gain in precision in this context

I Consequently, historical data incorporated by assuming Homogeneity
a priori risking subjective analysis with highly biased results!
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Motivation

Prospective Trial’s Objective:

I to evaluate the treatment comparison in the current analysis,
incorporate historical evidence prospective if it emerges as
commensurate.

Define commensurate “lack of strong evidence for heterogeneity”

Formulate prior distribution:

I Not necessarily to reflect our prior beliefs before the trial ...

I To deliver desirable frequentist operating characteristics

I Facilitate alternative, more desirable bias-variance trade-offs than
those offered by pre-existing methodologies for incorporating
historical data from a small number of historical studies.
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Background

Consider general case without covariates:

I compare novel treatment to a previously studied control

current trial: yi = µ+ diλ+ εi , εi ∼ N(0, σ2)

I di is an indicator of novel treatment

historical trials: y0,h
iid∼ N(µ0,h, σ

2
0,h),

I h = 1, ...,H historical studies

I λ is of primary interest for treatment evaluation

I historical data is incorporated into the analysis of the current trial
for purpose of facilitating more precise estimate of λ
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Conventional Random-effects Meta-analytic Approach
Random-effects meta-analysisa assumes exchangeability:

µ0,1, ..., µ0,H , µ ∼ N(ξ, η2)

I between-study heterogeneity and within-study variability

I ξ and η2 characterize the population mean and between-study
variance

I shrinkage parameter

B = σ2/(σ2 + η2),

weight placed on the prior mean ξ for the posterior mean µ

I denote unknown biases by ∆h = µ− µ0,h,

I parameter vector θ = (λ, ∆, σ2, σ2
0,1, ..., σ

2
0,H), and

Y = (y, y0,1, ..., y0,H) denote the collection of response data

a = Spiegelhalter et al., 2004
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Common “noninformative” and “weakly-informative” priors for η2

prior form

uniform variancea p(η2) = U(0, a), a = 100

inverse gammaa p(η2) = Γ−1(ε, ε), ε = 0.001

uniform standard deviationa p(η) = U(0,
√

a)

half-Cauchyb p(η) ∝ (η2 + b)−1, b = 25

uniform shrinkagec p(η2) ∝ σ2/{(σ2 + η2)2}, σ2
0,h = σ2,

a = Spiegelhalter et al., 2004; b = Gelman, 2006; c = Daniels, 1999
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Prior & posteriors for log(η2) under full homogeneity: ∆tr = 0, for n =
180, n0 = 60, and σ2 = σ2

0,h = 1. Parens = stand dev on the scale of η2

∝
∫

Y

{∫
θ

η2p(η2,θ)L(Y|θ)dθ

}
L(Y|θtr )dY
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Commensurate Prior Model: One Historical Study

I commensurate prior for µ (HCMS, 2011)

µ ∼ N(µ| µ0, 1/τ)

I µ is a “non-systematically biased” representation of µ0

I unknown bias: ∆ = µ− µ0

I initial prior, p(µ0), characterizes info. before observing hist. data

I one-to-one relationship between τ and η2: τ = 1/(2η2)

I joint posterior: q(θ|τ, y, y0) ∝

N(µ| µ0, 1/τ)p(µ0)p(σ, σ0)
n0∏
j=1

N(y0j | µ0, σ
2
0)

n∏
i=1

N(yi | µ+ diλ, σ
2)

I Pocock (1976) repeated analysis under several fixed values of 1/τ

I HCMS (2011) consider fully Bayesian approaches as well as
alternative fully Bayesian power prior formulations
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Commensurate Prior Model: Multiple Historical Studies

I assume homogeneity among the hist. studies (or fixed degree of
heterogeneity): µ0,1, ..., µ0,H = µ0

I commens. prior for µ cond. on the hist. pop. mean

I constraining the H historical means, µ0,h, to be equal to each other
but perhaps not to µ inserts an asymmetry into the model that is
not present in the usual exchangeability model

Relationship between τ and η2 is more complex

I denote ω0,h = σ2
0,h/n0,h, and let ω = σ2/(n −

∑
di )

I τ−1 characterizes the meta-analytic between-study variability, plus
the diff. between the summed variability among the sample means,
and the pop. mean when heterogeneity is estimated η2 versus when
full homogeneity is assumed,

τ−1 = η2+

{
1/(ω + η2) +

H∑
h=1

1/(ω0,h + η2)

}−1

−

(
1/ω +

H∑
h=1

1/ω0,h

)−1
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Estimation of τ

I. Parametric empirical Bayesian (EB)

I EB inference for θ proceeds by replacing the scalar hyperparameter
τ with its marginal maximum likelihood estimate (MMLE)

m(y, y0|τ) ∝ N

{
∆̂ 0,

σ2

n − nd
+ v0 +

1

τ

}

I known sampling variances

I nd =
∑n

i=1 di , ȳd =
∑n

i=1 diyi/nd , µ̂ = nȳ−nd ȳd
n−nd

I v0 = (
∑H

h=1 1/ω0,h)−1, µ̂0 = v0

(∑H
h=1 ȳ0,h/ω0,h

)
I ∆̂ = µ̂− µ̂0
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Estimation of τ (cont’d)

I. Parametric empirical Bayesian (EB) (cont’d)

I fix ν∗ = 1/τ∗ at the value that MMLE restricted to a pre-specified
interval, 0 < lν < uν , capturing the “effective range of borrowing of
strength”

ν∗ = arg max
ν∈[lν ,uν ]

{m(y, y0 | 1/ν)}

= max

[
min

{
∆̂2 − σ2

n − nd
− v0, uν

}
, lν

]
I bounding precludes full homogeneity when evidence for

heterogeneity is not strong

I select limits via formal evaluation of the induced frequentist
operating characteristics and bias-variance trade-offs in context

I paper uses ν∗ ∈ [2(0.052), 2(102)] equiv. to η ∈ [0.05, 10] for one
hist. study
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Estimation of τ (cont’d)

II. Fully Bayesian approaches

I EB procedure yields approximate full homogeneity when evidence
for heterogeneity is not strong

I EB inference typically “underestimates” variability in θ, since
posterior uncertainty in ν∗ is unacknowledged in the analysis

I fully Bayesian approaches take full account of uncertainty in the
parameter estimates

I we consider two families of priors

1. conditionally conjugate gamma distribution
2. a variant of the “spike and slab” distribution introduced for

variable selection (Mitchell and Beauchamp, 1988)
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Estimation of τ (cont’d)

II. Fully Bayesian approaches (cont’d)

1. Gamma prior: p(τ) = Γ(c τ̃ , c)

I conjugate full conditional posterior:

q(τ | θ, y, y0) ∝ Γ
(
c τ̃ + 1/2, ∆2/2 + c

)
.

I τ̃ > 0, is prior guess at τ
I c > 0, represents “degree of confidence”, with a smaller value

corresponding to weaker prior belief
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Estimation of τ (cont’d)
II. Fully Bayesian approaches (cont’d)

2. “Spike and Slab” prior

I locally uniform between 0 ≤ Sl < Su
I except for a bit of prob. mass concentrated at point, K > Su

Pr(τ < Sl) = 0,

Pr(τ < u) = p0 {(u − Sl) / (Su − Sl)} , Sl ≤ u ≤ Su
and Pr(τ > Su) = Pr(τ = K) = 1− p0

I where p0 denotes the prior prob. that Sl ≤ τ ≤ Su

In presence of lack of evidence for heterogeneity,

I marginalized likelihood prefers a large value for τ ,

I but is virtually flat over a vast portion of the parameter space,
providing little information to distinguish among values.

I one carefully selected large value of τ (a “spike”), may characterize
commensurability
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Point Estimation of λ

I current trial’s objective is to compare a novel treatment to the
previously studied control therapy

I posterior inference on the novel treatment effect parameter, λ, is of
primary interest

I evaluate the proposed models for estimating λ under squared error
loss (SEL)

I ignoring historical data yields marg. posterior:

q(λ|y) ∝ N
[
(ȳd − ȳ) / (1− nd/n) , σ2/ {nd (1− nd/n)}

]
I otherwise let D = (y, y0), it follows as

q(λ, τ |y, y0) ∝ ∝ τN
(
λ λ̂τ ,Vτ

)
N

{
∆̂ 0,

σ2

n − nd
+ v0 +

1

τ

}
p(τ)



Intro Thesis Platform Background Meta-analysis Commens Sims Example

Point Estimation of λ (cont’d)

I where

Vτ =

{( n

nd

)2(σ2

n
+ v0 +

1

τ

)}−1

+
nd(1− nd/n)

σ2

−1

,

and

λ̂τ =

 ȳ − µ̂0(
n
nd

)(
σ2

n + v0 + 1
τ

) +
ȳd − ȳ

σ2/nd

 /V −1
τ
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Point Estimation of λ (cont’d)
I let θtr = (λtr , ∆tr , σ2

tr , v tr
0 ), denote a set of fixed parameters

I preposterior risk under squared error loss (Carlin and Louis, 2000)

ED|θtr

[{
Eλ|D(λ)− λtr

}2
]

I expected bias is ED|θtr

[
Eλ|D(λ)

]
− λtr

inference Eλ|D(λ)

no borrowing λ̂0

fully Bayesian
∫
λ̂τq(τ |D)dτ

emp. Bayes λ̂1/ν∗

full homogeneity λ̂∞
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Comparison to Meta-analysis

Compare frequentist properties of our proposed commensurate
prior models with results for the meta-analysis models for the case
when sampling level variances are unknown

I results are shown for H = 1, 2, and 3 historical studies

I σtr = σtr
0,1 = ... = σtr

0,H = 1

I n = 180, nd = 90, and n0,h = 60, h = 1, ..,H

I under no borrowing the marginal posterior for λ|y follows as

q(λ|y) ∝ t

{
n − 2, (ȳd − ȳ)/(1− nd/n),

s2 + 1/(1/n − 1/nd)(ȳ − ȳd)2

nd(n − 2)(1− nd/n)

}
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Percent change from no borrowing in preposterior risk under SEL

∆tr = 0 ∆tr = 0.25 ∆tr = 0.5
H = 1 2 3 H = 1 2 3 H = 1 2 3

unif. var. −1 0 0
unif. shrink −4 −2 0

unif. sd −4 −1 1
half-Cauchy −3 −1 1
inv. gamma −12 −1 8
emp Bayes

spike & slab
Γ(1, 0.01)

homog. −19 25 152

Expected Bias
unif. var. 0.00 0.00 0.00

unif. shrink 0.00 0.01 0.01
unif. sd 0.00 0.01 0.01

half-Cauchy 0.00 0.01 0.01
inv. gamma 0.00 0.03 0.03
emp Bayes

spike & slab
Γ(1, 0.01)

homog. 0.00 0.10 0.19
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Percent change from no borrowing in preposterior risk under SEL

∆tr = 0 ∆tr = 0.25 ∆tr = 0.5
H = 1 2 3 H = 1 2 3 H = 1 2 3

unif. var. −1 0 0
unif. shrink −4 −2 0

unif. sd −4 −1 1
half-Cauchy −3 −1 1
inv. gamma −12 −1 8
emp Bayes −13 7 8

spike & slab −13 1 9
Γ(1, 0.01) −16 0 25

homog. −19 25 152

Expected Bias
unif. var. 0.00 0.00 0.00

unif. shrink 0.00 0.01 0.01
unif. sd 0.00 0.01 0.01

half-Cauchy 0.00 0.01 0.01
inv. gamma 0.00 0.03 0.03
emp Bayes 0.00 0.03 0.02

spike & slab 0.00 0.03 0.02
Γ(1, 0.01) 0.00 0.05 0.07

homog. 0.00 0.10 0.19
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Percent change from no borrowing in preposterior risk under SEL

∆tr = 0 ∆tr = 0.25 ∆tr = 0.5
H = 1 2 3 H = 1 2 3 H = 1 2 3

unif. var. −1 −3 −11 0 0
unif. shrink −4 −9 −14 −2 0

unif. sd −4 −14 −21 −1 1
half-Cauchy −3 −14 −21 −1 1
inv. gamma −12 −20 −25 −1 8
emp Bayes −13 −17 −22 7 8

spike & slab −13 −17 −22 1 9
Γ(1, 0.01) −16 −22 −24 0 25

homog. −19 −28 −32 25 152

Expected Bias
unif. var. 0.00 0.00 0.00 0.00 0.00

unif. shrink 0.00 0.00 0.00 0.01 0.01
unif. sd 0.00 0.00 0.00 0.01 0.01

half-Cauchy 0.00 0.00 0.00 0.01 0.01
inv. gamma 0.00 0.00 0.00 0.03 0.03
emp Bayes 0.00 0.00 0.00 0.03 0.02

spike & slab 0.00 0.00 0.00 0.03 0.02
Γ(1, 0.01) 0.00 0.00 0.00 0.05 0.07

homog. 0.00 0.00 0.00 0.10 0.19
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Percent change from no borrowing in preposterior risk under SEL

∆tr = 0 ∆tr = 0.25 ∆tr = 0.5
H = 1 2 3 H = 1 2 3 H = 1 2 3

unif. var. −1 −3 −11 0 −1 −1 0 1 4
unif. shrink −4 −9 −14 −2 −2 −1 0 3 7

unif. sd −4 −14 −21 −1 1 3 1 8 14
half-Cauchy −3 −14 −21 −1 0 5 1 7 16
inv. gamma −12 −20 −25 −1 4 9 8 20 31
emp Bayes −13 −17 −22 7 11 20 8 9 16

spike & slab −13 −17 −22 1 5 11 9 10 11
Γ(1, 0.01) −16 −22 −24 0 5 8 25 35 38

homog. −19 −28 −32 25 61 86 152 337 475

Expected Bias
unif. var. 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.02

unif. shrink 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.02 0.03
unif. sd 0.00 0.00 0.00 0.01 0.03 0.04 0.01 0.03 0.04

half-Cauchy 0.00 0.00 0.00 0.01 0.03 0.05 0.01 0.02 0.04
inv. gamma 0.00 0.00 0.00 0.03 0.05 0.07 0.03 0.05 0.07
emp Bayes 0.00 0.00 0.00 0.03 0.04 0.05 0.02 0.02 0.03

spike & slab 0.00 0.00 0.00 0.03 0.03 0.04 0.02 0.02 0.02
Γ(1, 0.01) 0.00 0.00 0.00 0.05 0.06 0.07 0.07 0.08 0.08

homog. 0.00 0.00 0.00 0.10 0.14 0.17 0.19 0.28 0.34
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Linear Regression Models

In the context of two successive clinical trials that identically measure
p − 1 covariates:

y0 ∼ Nn0 (X0β0, σ
2
0) and y ∼ Nn(Xβ + dλ, σ2)

I X0 and X denote n0 × p and n × p design matrices

I λ is the (scalar) novel treatment effect

I formulate linear model by replacing τ with a vector τ = (τ1, ..., τp)
containing a commensurability parameter, τg , for each associated
pair of parameters in βg and β0g ,

p(βg |β0g ) ∝ N
(
βg |β0g , τ

−1
g

)
,

for g = 1, ..., p

I βg s are assumed a-priori independent
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Linear Regression Models (cont’d)

I let β̂λ = (XTX )−1XT (y − dλ) and β̂0 = (XT
0 X0)−1XT

0 y0,

I precision matrix that results from averaging over the hist. likelihood:

Vτ = diag{τ} − diag{τ}
(
XT

0 X0/σ
2
0 + diag{τ}

)−1
diag{τ}

Flat initial prior yields cond. posterior β|y, y0, λ, σ
2, σ2

0 , τ ,

∝ Np

(
β

(
Vτ +

XTX

σ2

)−1(
Vτ β̂0 +

XTX

σ2
β̂λ

)
,

(
Vτ +

XTX

σ2

)−1
)
,

I τg →∞, for all g = 1, ..., p, Vτ → XT
0 X0/σ

2
0 , “fully borrowing”

I τ → 0, the marginal posterior for β converges “no borrowing”

I HSC (2012) considers General and Generalized Linear Mixed Models
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Simulation Study

Simulate freq. and Bayesian OC for case of one historical study:

I unknown bias, ∆ = µ− µ0

I inference on novel treatment effect, λ

I Gaussian data:

I compare to no borrowing, half-Cauchy meta-analytic, and
homogeneity models

I n0 = 90 hist. patients and equal allocation of n = 180
I fixed true parameters µtr = 0, and σtr = σtr

0 = 1

I Exponential data:

I compare to no borrowing and homogeneity models
I µtr = 2, n0 = 200, and equal allocation of n = 100
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Coverage and width of 95% HPD intervals for λ by ∆tr or exp(∆tr ) for
Gaussian and exponential data for one historical study.
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Simulation Study (cont’d)
True states of nature: (Freedman et al., 1984)

I λtr < −δ implies failure,

I −δ ≤ λtr ≤ δ implies equivalence

I λtr < δ implies efficacy

Decision rules:

q(λ < −δ|y, y0) > 0.95, failure

q(λ ∈ [−δ, δ]|y, y0) > 0.90, equivalence

q(λ > δ|y, y0) > 0.95, efficacy

otherwise, inconclusive

I φ(|θtr ) denote the prob. of a decision rule given θtr , i.e.

φ(λ < −δ|θtr ) =

∫
I {q(λ < −δ|Y) > 0.95} L(Y|θtr )dY.



Intro Thesis Platform Background Meta-analysis Commens Sims Example

Simulation Study (cont’d)
Compare prob. allocated to the correct and incorrect decision spaces for
fixed true values δ = 0.33, σtr = σtr

0 = 1, and µtr
0 = 0

M(c) =

∫ −δ

−∞

∫ ∞
−∞

φ(λ < −δ|∆tr , λtr )p(∆tr )p(λtr )d∆trdλtr

+

∫ δ

−δ

∫ ∞
−∞

φ(λ ∈ [−δ, δ]|∆tr , λtr )p(∆tr )p(λtr )d∆trdλtr

+

∫ ∞
δ

∫ ∞
−∞

φ(λ > δ|∆tr , λtr )p(∆tr )p(λtr )d∆trdλtr

−
∫ −δ

−∞

∫ ∞
−∞

φ(λ > −δ|∆tr , λtr )p(∆tr )p(λtr )d∆trdλtr

−
∫ δ

−δ

∫ ∞
−∞

φ(λ < −δ ∪ λ > δ|∆tr , λtr )p(∆tr )p(λtr )d∆trdλtr

−
∫ ∞
δ

∫ ∞
−∞

φ(λ < δ|∆tr , λtr )p(∆tr )p(λtr )d∆trdλtr

− c

∫ ∞
−∞

∫ ∞
−∞

φ(inconclusive|∆tr , λtr )p(∆tr )p(λtr )d∆trdλtr

I metric M(c) ∈ [−1, 1], a generalized version of expected 0− 1 loss
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Results M(1/2) ∈ [−1, 1] for p(∆tr ) = N(0, s2), and p(λtr ) = N(0, 1/4)

s=0
M +Eff +Fail +Eq −Eff −Fail −Eq −Inc/2

no borrow 0.19 0.13 0.13 0.20 0.00 0.00 0.01 0.26
half-Cauchy 0.20 0.13 0.14 0.20 0.00 0.00 0.01 0.26
emp. Bayes 0.29 0.14 0.15 0.24 0.00 0.00 0.01 0.23

homog. 0.32 0.15 0.15 0.25 0.00 0.00 0.01 0.22

s=1

no borrow 0.19 0.13 0.13 0.20 0.00 0.00 0.01 0.26
half-Cauchy 0.21 0.13 0.14 0.20 0.00 0.00 0.01 0.25
emp. Bayes 0.24 0.14 0.15 0.21 0.00 0.00 0.02 0.24

homog. 0.14 0.14 0.15 0.12 0.00 0.00 0.07 0.21

s=30

no borrow 0.19 0.13 0.13 0.20 0.00 0.00 0.01 0.26
half-Cauchy 0.21 0.13 0.14 0.20 0.00 0.00 0.01 0.25
emp. Bayes 0.23 0.14 0.14 0.21 0.00 0.00 0.02 0.24

homog. 0.07 0.14 0.14 0.08 0.00 0.00 0.07 0.21
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Example: Randomized Controlled Colorectal Cancer Trials

I Two successive randomized controlled colorectal cancer trials:

Saltz et al. (2000) trial randomized N0 = 683: May 1996 and May 1998

1. Irinotecan alone (arm A)

2. Irinotecan and bolus Fluorouracil plus Leucovorin (arm B; IFL)
significantly longer progression free survival

3. Fluorouracil and Leucovorin (arm C; 5FU/LV) standard therapy

Goldberg et al. (2004) trial randomized N = 795: May 1999 and April 2001

1. Irinotecan and bolus Fluorouracil plus Leucovorin (IFL) regulatory
standard in March 2000

2. Oxaliplatin and infused Fluorouracil plus Leucovorin (FOLFOX) new
regimen

3. Irinotecan and Oxaliplatin (IROX) new regimen

Incorporate IFL from Saltz trial prospectively, into Goldberg analysis
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Randomized Controlled Colorectal Cancer Trials (cont’d)

Compare disease progression rates for FOLFOX and IFL using Weibull reg.

I historical data: arm B (IFL) from the Saltz trial, n0 = 224

I current data: IFL, n = 176, and FOLFOX in the Goldberg trial,
n = 186

I covariate: sum of the longest diameter (ld) in cm of 1 to 9 tumors
at baseline (ld sum)
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Randomized Controlled Colorectal Cancer Trials (cont’d)
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Separate Kaplan-Meier survival curves corresponding subjects on IFL in
the Saltz et al. trial (left), IFL in the Goldberg et al. trial (center), and
FOLFOX in the Goldberg et al. trial.

Suggests survival experience for subjects on IFL was similar in both the
Saltz et al. and Goldberg et al. trials, and FOLFOX is associated with
prolonged time-to-progression.
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Randomized Controlled Colorectal Cancer Trials (cont’d)

Scale-Shape commensurate prior for Weibull reg. (Time-to-Event)

I triples (t0j , δ0j ,X0j) for j = 1, ..., n0 and (ti , δi ,Xi ) for i = 1, ..., n

I t0j , ti > 0 are obs. failure times; δ0j , δi are noncensoring indicators

I log-linear models, (Kalbfleisch and Prentice, 2002)

y0 = log(t0) = X0β0 + σ0e0, where e0 = (y0 − X0β0)/σ0

y = log(t) = Xβ + dλ+ σe, where e = (y − Xβ − dλ)/σ

I Weibull regression assumes e0 and e follow the extreme value dist.

f (u) = exp [u − exp (u)]

I we assume commensurate priors for both the regression coefficients,
β, and log transformation of the shape parameters, σ
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Randomized Controlled Colorectal Cancer Trials (cont’d)

Weibull model fits to colorectal cancer data n0 = 224, n = 362

Separate analyses Pooled analysis
Historical Current

est sd est sd est sd

Intercept 5.503 0.058 5.555 0.067 5.533 0.045
BL ldsum −0.043 0.051 −0.115 0.045 −0.092 0.034
FOLFOX – – 0.417 0.092 0.453 0.077

log(σ) −0.291 0.060 −0.153 0.039 −0.186 0.033
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Randomized Controlled Colorectal Cancer Trials (cont’d)

Commensurate prior Weibull model fits to colorectal cancer data n0 = 224,
n = 362

EB spike & slab Gamma(1, 0.01)
est sd est sd est sd

Intercept 5.541 0.054 5.547 0.058 5.546 0.058
BL ldsum −0.100 0.040 −0.103 0.042 −0.105 0.042
FOLFOX 0.435 0.085 0.431 0.086 0.432 0.085

log(σ) −0.152 0.038 −0.158 0.038 −0.158 0.038
τ1 200 − 153.2 84.4 124.8 107.3
τ2 200 − 153.8 83.9 123.8 106.7
τ3 40.0 − 126.1 96.1 102.5 93.7
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Discussion

Before applying this methodology in practice one must consider carefully:

I bias-variance trade-off in the context of other important factors
such as,

I disparities in the sample sizes among the historical and current
studies

I width of the equivalence region
I priors on ∆tr and λtr

I the design (ie, randomized versus single-arm) of the historical
study

I differences in patient populations between the historical and new
study and other known/unknown confounding factors that can be
potential sources of bias when borrowing from the historical data.
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Platform clinical trial designs for efficient drug
development strategies

Brian P. Hobbs and J. Jack Lee

Goal: Develop randomized trial designs that process multiple agents
simultaneously for effectively screening drugs in phase IIB,
identifying biomarkers and predictive markers for guided targeted
therapy, and treating more patients with more effective treatments
during the trial

Methodology: Bayesian group sequential design incorporating
decision rules to add treatment arms as well as drop poorly (Fail)
or well (Graduate) performing treatment arms. Simulation is used
to compare the design’s operating characteristics under Equal
Randomization (ER) and three adaptive randomization methods
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Background
Motivation: Berry, D. A., (2004) Statistical Science, p.184

“The greatest room for innovation and for improving drug development is
effectively dealing with the enormous numbers of molecules that are

available as potential drugs...... building the foundation for a phase II
trial for evaluating drugs that is more a process than a trial.”

Lee, J. J. and Feng, L. (2005) J. Clinical Oncology

I Drug development programs that screen drugs one-at-a-time are
inefficient:

I multiple protocols involves operational “white space”
I excessive number of patients are assigned standard therapy

Platform Design:

I A “process” involving a single protocol for continuous monitoring of
outcomes for the purpose of efficient screening of multiple
treatment regimens for efficacy for further evaluation in phase III
and identification of biomarkers for targeted agent therapy

I involves “seamless” modifications to the study arms as poorly and
well performing arms are replaced by new regimens
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Model

Compare a standard regimen to p experimental regimens

Model: Logistic Regression

I Y = scalar indicator of successful treatment

I β = (β1, ..., βp) exp. regimens trt effects, α = intercept

Y ∼ Bernoulli(πj), logit(πj) = α + βj

where j = 0, ..., p and β0 = 0

I Denote the number of patients assigned to the jth regimen by nj

Priors:

I πj ∼ Beta(0.5, 0.5), j = 0, ..., p

Posterior: Denote the posterior by q(α,β|Y )
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Model (cont’d)

I t = study time, 0 < t < T , and let pt = # of exp. regimens at t

I nj,t = # of patients assigned to the jth regimen at t

I Yj,t = 1× nj,t response vector for jth regimen at t

I Yt = (Y0,t , ...,Ypt ,t) and nt = (n0,t , ..., npt ,t)

Decision Criteria: Thall, P. F. and Simon, R. (1994) Biometrics

I Interim adaptive decision will be based on posterior probability

λj(δ,Yt) = Pr(πj > π0 + δ|Yt) =

∫ logit(1−δ)

−∞

∫ ∞
β∗

q(α,β|Yt)dαdβ,

where β∗ = log
{

(π0+δ)(1−π0)
(1−π0−δ)π0

}
Design Parameters:

I N init = min. # required to evaluate jth regimen

I N fail ,Ngrad = min. # required to Fail or Graduate jth regimen

I Nmax = max. # treated with the jth regimen
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Model (cont’d)

I pL, pU ∈ [0, 1] = posterior probability decision cutoffs

Decision Rules: At time t

I If λj(δ,Yt) ≥ pU and nj,t ≥ Ngrad , Graduate jth regimen

I If λj(δ,Yt) ≤ pL and nj,t ≥ N fail , Fail jth regimen

I If pL ≤ λj(δ,Yt) ≤ pU and

I nj,t < Nmax , treat another patient with jth regimen
I nj,t ≥ Nmax , declare jth regimen Inconclusive
I Inconclusive 6= Equivalence

Lookahead Rules:

I If N init ≤ nj,t ≤ N fail and λj(δ,Y
′
t) ≤ pL, where

Y′j,t = (Yj,t , 1N fail−nj,t ) Fail the jth regimen

I If pL ≤ λj(δ,Y∗t,0), λj(δ,Y
∗
t,1) ≤ pU , where Y∗j,t,0 = (Yj,t , 0Nmax−nj,t )

and Y∗j,t,1 = (Yj,t , 1Nmax−nj,t ), declare jth regimen Inconclusive
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Simulation Study

Run platform design for a period of 5 years

Design Parameters:

I Assume enrollment rate of 10 patients per month (≈ 600 total)

I Fix π0 = 0.2, randomly generate πj ∼ Unif (0.095, 0.605) for each
exp. regimen, j > 0

I δ = 0.1, pL = 0.2, and pU = 0.9

I Require n0,t ≥ 10 before evaluating decision criteria

I N init = 2, required to evaluate decision criteria for exp. regimens

I Nmax = 78, provides 90% power for two-sided test of π0 = 0.2 vs
πj = 0.4 given Type I error = 0.1

I N fail = 14, commonly used for 1st stage of two-stage design

I Ngrad = 20, allow promising regimens to remain in platform longer



Intro Thesis Platform Model Movies

Simulation Study (cont’d)

Cycle in new regimens: After decision at time t if{
T − t

120/365
−

pt∑
j=1

max(N fail − nj,t , 1)

}
≥ N fail ,

I Unresolved exp. regimens at time T are considered Inconclusive

Objective: Identify “optimal”

1. Randomization method (Equal Rz + 3 adaptive methods)

2. Number of experimental regimens evaluated (simulated 1 to 7)

Operating Characteristics:

I Frequentist properties: probability of decision rules

I Total number of successful responses and arms evaluated

I Time to decision
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Simulated Platform Design: Equal Randomization (ER)
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Bayesian Adaptive Randomization (BAR)

Thall, P. F. and Wathen, J. K. (2007) EJC; Lee, J. J., Gu, X., and Liu, S.

(2010) Clinical Trials (incorporate biomarkers)

I Consider randomizing a new patient at time t to standard regimen
or pt experimental regimens

I Let Yt− and nt− , denote the data for all active regimens prior to t

I c = scalar tuning parameter

I Randomize new patient to the jth regimen with probability,

φBARj (Yt− ,nt−) =
Pr
(⋂pt

k 6=j βk < βj |Yt− ,nt−

)c
∑pt

m=0

{
Pr
(⋂pt

k 6=m βk < βm|Yt− ,nt−

)c}

I Following suggestion of Thall and Wathen (2007) we fix c = 1/2 in
the simulation study
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Simulated Platform Design: BAR
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Randomization Methods

Summary of example simulation results

(S0, n0) Total Enrollment Overall Success Weeks
ER (20, 145) 351 0.26 161

BAR (4, 17) 135 0.39 60
PAR (15, 68) 233 0.34 101

WBAR (5, 24) 160 0.32 69

Decisions for experimental arms

Exp. 4 Exp. 1 Exp. 6 Exp. 2 Exp. 3 Exp. 5
π = 0.1 π = 0.2 π = 0.3 π = 0.4 π = 0.5 π = 0.6

ER Fail Fail Inconcl Grad Grad Grad
BAR Fail Fail Grad Grad Grad Grad
PAR Fail Fail Inconcl Grad Grad Grad

WBAR Fail Fail Fail Grad Grad Grad
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