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Summary. A dynamic regime is a function that takes treatment and covariate history and baseline co-
variates as inputs and returns a decision to be made. Murphy (2003, Journal of the Royal Statistical Society,
Series B 65, 331–366) and Robins (2004, Proceedings of the Second Seattle Symposium on Biostatistics, 189–
326) have proposed models and developed semiparametric methods for making inference about the optimal
regime in a multi-interval trial that provide clear advantages over traditional parametric approaches. We
show that Murphy’s model is a special case of Robins’s and that the methods are closely related but not
equivalent. Interesting features of the methods are highlighted using the Multicenter AIDS Cohort Study
and through simulation.
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1. Introduction
In a study aimed at estimating the mean effect of a treat-
ment on a time-dependent outcome, it may be argued that
dynamic treatment regimes are the most logical and ethical
protocols to consider. A dynamic treatment regime is a func-
tion which takes in treatment and covariate history as ar-
guments and outputs an action to be taken, providing a list
of decision rules for how treatment should be allocated over
time. A subject’s interval-specific treatment is not known at
the start of a dynamic regime, since treatment depends on
subsequent time-varying variables that may be influenced by
earlier treatment.

The problem of finding the optimal dynamic regime is one
of sequential decision making, where an action which appears
optimal in the short term may not be a component of the
optimal regime (Lavori, 2000). We define a regime as optimal
if it maximizes the mean response at the end of the final time
interval.

There are many examples of adaptive intervention strate-
gies in health care, ranging from treatment of AIDS to en-
couraging participation in mammography screening for breast
cancer (see, e.g., Robins, 1994). Yet there is a dearth of ran-
domized trials that have implemented dynamic treatment pro-
tocols, due perhaps to the historical lack of theory for the de-
sign and analysis of such a trial. Recent work in the area has
provided better insight into issues of randomization and sam-
ple size calculations (Lavori and Dawson, 2001; Dawson and
Lavori, 2004; Murphy, 2004). Design considerations for multi-
center, sequentially randomized trials with adaptive random-
ization have been addressed in a Bayesian framework (Thall,

Millikan, and Sung, 2000; Thall and Wathen, 2005). Along-
side the theoretical innovations, within-person sequentially
randomized trials are being performed for treatment of mental
illness (Schneider et al., 2001; Rush et al., 2003) and cancer
(Thall et al., 2000). However, the protocols for some of these
trials call for analyses which do not take advantage of their
sequential nature, but rather treat each phase as a separate
trial.

Dynamic programming, also called backwards induction,
is a traditional method of solving sequential decision prob-
lems (Bellman, 1957; Bertsekas and Tsitsiklis, 1996). In the
dynamic regimes context, it requires modeling the longitudi-
nal distribution of all covariates and outcome. The knowledge
needed to model this is often unavailable and, by misspeci-
fying the distribution, treatment may be incorrectly recom-
mended when no treatment effect exists. Murphy’s (2003)
and Robins’s (2004) methods do not suffer from this serious
limitation.

Lavori et al. (1994) assessed the optimal treatment discon-
tinuation time via a causal approach using propensity scores
to adjust for time-varying covariates. Thall et al. (2000) pro-
duced a likelihood-based approach to analyze sequentially
randomized trials for optimal regimes for prostate cancer
treatment, where randomization probabilities changed as in-
formation from patients accrued.

The purpose of this article is to provide a clearer under-
standing of the models and methods proposed in the op-
timal dynamic regime literature—Murphy’s iterative mini-
mization and Robins’s g-estimation—and to demonstrate the
similarities between what may appear to be very different
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approaches. The following section introduces our motivat-
ing example: the effect of AZT initiation on 12-month CD4
counts. In Section 3, the procedure for estimating an optimal
dynamic regime is described, beginning with models and the
optimal treatments which they imply, followed by an explana-
tion of g-estimation and iterative minimization. The section
concludes by contrasting the two approaches. The methods
are demonstrated using the Multicenter AIDS Cohort Study
(MACS) in Section 4, alongside simulations that highlight in-
teresting features of the methods.

2. Context of the Problem and Motivating Example
To examine the work of Murphy (2003) and Robins (2004)
in a simple, two-interval example, we consider a subset of
the MACS data (Kaslow et al., 1987), a longitudinal ob-
servational study accumulating information from over 5000
HIV-1-infected homosexual and bisexual men in four U.S.
cities from 1984. Participants were invited to return for
a follow-up questionnaire and physical examination every
6 months. We restrict our attention to the 2179 HIV-positive,
AIDS-free men recruited after March 1986, when zidovudine
(AZT) became available. Of those men, 38 (1.7%) were lost to
follow-up before 1 year and 10 (0.5%) had initiated AZT be-
fore study entry; these were excluded from the analysis. We
follow Hernán, Brumback, and Robins (2000) in using last
observation carried forward to account for missed follow-up
visits.

To minimize notation, we consider only two intervals—
baseline to 6 months and 6 to 12 months into study—and
use a single status variable, CD4 count, to determine the op-
timal rule for prescribing AZT at each interval. However, our
development extends to the general case.

2.1 Notation
Treatments are given at two fixed times, t1 and t2. X1 and X2

are the status variables measured prior to treatment at the
beginning of the first and second intervals, respectively, i.e.,
at t1 and t2. In particular, X1 represents baseline covariates
and X2 includes time-varying covariates which may depend
on treatment received in the first interval. Aj , j = 1, 2, is the
treatment given subsequent to observing Xj . Y is the outcome
observed at the end of the second interval; larger values of
Y are deemed preferable. Thus, the order of occurrence is
(X1, A1, X2, A2, Y ) and the data can be depicted by a tree
when X and A are categorical (Figure 1a). Let Hj denote the
treatment and covariate history up to the beginning of the jth
interval not including treatment in interval j, so H1 = X1 and
H2 = (X1, A1,X2). Specific values are denoted in lowercase,
e.g., h1 = x1. Dj(Hj) denotes treatment at tj that depends on
history.

In our example, X1, X2, and Y are CD4 cell counts at,
respectively, baseline, 6 months, and 12 months. Treatment
is the indicator of AZT commencement so that A1 = 1 if
AZT therapy was initiated between baseline and 6 months and
A2 = 1 the equivalent for AZT between 6 and 12 months.
Rules to be estimated are for starting of AZT (Figure 1b).

Throughout this article, models use potential outcomes, the
value of a status or final response variable that would result
if a person were assigned to different treatments. Let X2(a1)
denote a person’s potential covariate status at the beginning
of the second interval if treatment a1 is received by that person
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Figure 1. Illustration of data for two intervals: (a) generic
and (b) MACS.

and Y (a1, a2) denote the potential end-of-study outcome if he
follows regime (a1, a2).

Potential outcomes adhere to the axiom of consistency:
X2(a1) = X2 whenever treatment a1 is actually received and
Y (a1, a2) = Y whenever a1 and a2 are received. That is, the
actual and counterfactual status are equal when the regime
in question is the regime actually received and similarly for
outcome.
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2.2 Assumptions
To estimate the effect of a dynamic regime (optimal or not),
we require the following.

(1) Stable unit treatment value assumption (SUTVA): a sub-
ject’s outcome is not influenced by other subjects’ treat-
ment allocation (Rubin, 1978).

(2) No unmeasured confounders: for any regime (a1, a2),
A1 ⊥ (X2(a1), Y (a1, a2)) |H1 and A2 ⊥ Y (a1, a2) |H2

(Robins, 1997).

Assumption 2 (also called sequential ignorability) always holds
under sequential randomization, that is, when treatment is
randomly assigned at each interval with fixed probabilities
(which may be a function of history).

Without further assumptions the optimal regime may only
be estimated from among the set of feasible regimes (Robins,
1994): let pj(aj | hj) denote the conditional probability of
receiving treatment aj given history hj and let f(·) de-
note the density function of h2 = (x1, a1, x2). Then for all
h2 with f(h2) > 0, a feasible regime (d1(h1), d2(h2)) satisfies
p1(d1(h1) | h1) × p2(d2(h2) | h2) > 0. That is, feasibility requires
some subjects to have followed regime (d1(h1), d2(h2)) for the
analyst to be able to estimate its performance nonparametri-
cally. In terms of a decision tree, no (nonparametric) inference
can be made of the effect of following a particular branch if no
one followed that path. In particular, we cannot make infer-
ence about AZT discontinuation in the MACS data set since
no discontinuations were observed in the first year of study
(Figure 1b).

It is unlikely that SUTVA is violated in the MACS example,
as participants were drawn from four large cities. A rich model
was used for the probability of initiating AZT, so it is plausible
that there are few or no other variables that confound the
association between CD4 and AZT initiation.

3. Steps to Finding the Optimal Regime
We define optimal rules recursively: dopt

2 (h2) = maxd2 E[Y (a1,
d2(h2)) |H2 = h2], and dopt

1 (h1) = maxd1 E[Y (d1(h1), d
opt
2 (h1,

d1(h1),X2(h1, d1(h1)))) |H1 = h1]. Optimal regimes are defined
for any sequence of treatment and covariate history, even a
sequence h2 that might not be possible to observe had the op-
timal regime been followed by all participants from the first
interval. Thus, an optimal regime provides information not
only on the best treatment choices from the beginning but
also on treatment choices that maximize outcomes from a
later time, even if a suboptimal regime had been followed up
to that point.

Robins (1986, 1994, 1997) pioneered the field of dynamic
treatment regimes. However, Murphy (2003) gave the first
method to estimate optimal regimes semiparametrically. Fol-
lowing this, Robins (2004, p. 209–214) produced a number of
estimating equations for finding optimal regimes using struc-
tural nested mean models (SNMM). The three key steps to
identifying the optimal dynamic treatment regime are (i) def-
inition of the model, (ii) finding the optimal rule implied by
the model, and (iii) estimation of model parameters. For (i),
Robins uses “blip” models; Murphy uses “regrets.” Both are
variants of the SNMMs. For (iii), Robins uses g-estimation,
while Murphy uses iterative minimization.

3.1 Step 1: Model Definition
An SNMM defines an expected difference between a person’s
counterfactual responses on a specific treatment regime from
tj + 1 onward and on another specific regime from tj condi-
tional on history. We consider a particular class of SNMMs,
those with optimal blip functions:

Define an optimal blip-to-reference function to be the
expected difference in outcome when using a refer-
ence regime dref

j = dref
j (hj) instead of aj at tj , in per-

sons with treatment and covariate history hj who subse-
quently receive the optimal regime. At the first interval,

γ
dref
j

1 (h1, a1) = E[Y (a1, d
opt
2 (h1, a1,X2(a1))) − Y (dref

1 , d
opt
2 (h1,

dref
1 ,X2(d

ref
1 ))) |H1 = x1], and at the second, γ

dref
j

2 (h2, a2) =
E[Y (a1, a2) − Y (a1, d

ref
2 (h2)) |H2 = (x1, a1, x2)]. The term “op-

timal” refers to treatment subsequent to tj ; what is optimal
subsequent to tj may depend on the treatment received at tj .
At the second interval, there are no subsequent treatments,
so the blip is simply the expected difference in outcomes for
having taken treatment a2 as compared to dref

2 among people
with history h2.

Two special cases of optimal blip-to-reference functions
have been used in the dynamic regimes literature and
applications:

The optimal blip-to-zero function, suggested by Robins
(2004, p. 217), takes the reference regime to be the “zero”
regime at time j, a substantively meaningful regime such as
placebo or standard care. Denote this by γj(hj , aj).

Murphy (2003) modeled the regret function, which
is the negative of the optimal blip where the refer-
ence regime is the optimal treatment at tj : µ1(h1,
a1) = E[Y (a1, d

opt
2 (h1, a1,X2(a1))) − Y (dopt

1 (h1), d
opt
2 (h1, d

opt
1 ,

X2(d
opt
1 ))) |H1 = x1], and µ2(h2, a2) = E[Y (a1, a2) − Y (a1,

dopt
2 (h2)) |H2 = (x1, a1, x2)]. The regret at tj is the expected

difference in the outcome had the optimal treatment been
taken at tj instead of treatment aj , in participants who
followed regime a up to tj and the optimal regime from tj+1

onward.
Optimal blip functions and regrets are mathematically

equivalent. For binary treatment and continuous outcome, the

correspondence is µj(hj , aj) = maxa γ
dref
j

j (hj , a) − γ
dref
j

j (hj , aj)

and γ
dref
j

j (hj , aj) = µj(hj , d
ref
j ) − µj(hj , aj). It is apparent from

the equations that a regret that is smooth in its arguments
(or parameters) implies a smooth optimal blip; the converse
does not hold (see Robins, 2004, Section 6.1 for discussion
of this correspondence). Optimal blips and regrets compare
potential outcomes in which treatment at tj+1 and thereafter
is optimal; regrets additionally posit that treatment at tj is
optimal. Henceforth, take “optimal blips” to mean optimal
blip-to-zero (dref

j = 0) functions.
While Robins advocates optimal blip-to-zero functions and

Murphy regrets, they are equivalent. However, it is impor-
tant to be aware that simple forms for either model can
lead to complex (perhaps unlikely) forms for observables.
For example, if Y (dopt

1 , d
opt
2 ) depends linearly on status vari-

ables, Xj , and we assume a linear blip or (equivalently) a
piecewise linear regret, this implies that the observed out-
come, Y (a1, a2), is piecewise linear in Xj and not necessarily
continuous.
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3.2 Step 2: Identification of the Optimal Rules
Given the true optimal blip or regret parameterized by ψ, it is
straightforward to identify the optimal regime dopt

j (hj , aj ;ψ) =
arg maxaj γj(hj , aj ;ψ) for all j, or the regime dopt

j (hj , aj ;ψ)
such that µj(hj , d

opt
j (hj , aj ;ψ)) = 0.

Define Dj(γ) to be the set of rules, dopt
j , that are op-

timal under the optimal blip function model γj(hj , aj ;ψ)
as ψ is varied: Dj(γ) = {dj(·) | dj(hj) = arg maxaj γj(hj , aj ;
ψ) for some ψ}. Dj(µ) is the set of optimal rules that are
compatible with regret µj(hj , aj ;ψ): Dj(µ) = {dj(·) |µj(hj ,
dj(hj);ψ) = 0 for some ψ}. Dj(γ) = Dj(µ) when the blip and
regret are equivalent.

Murphy (2003, p. 345) models the regret for a discrete de-
cision by a smooth approximation, expit(x) = ex (ex + 1)−1, to
facilitate estimation. Using an approximation, µ̃j(hj , aj), to
the true regret model, µj(hj , aj), let Dj(µ̃) = {dj(·)|dj(hj) =
arg minaj µ̃j(hj , aj ;ψ) for some ψ} denote the set of optimal
rules that are compatible with µ̃j(hj , aj). The approximate re-
gret may not equal zero at the optimal regime.

Problems may arise using either method of estimation if
parameterization of the true SNMM is poor. For example,
suppose the true regret is µj(hj , aj) = |ψ0 + ψ1xj | × (aj −
I[ψ0 + ψ1xj > 0])2 with treatment aj binary and Dj(µ) =
{I[ψ0 + ψ1xj > 0]}. Further suppose ψ1 > 0 so that treat-
ment is beneficial if Xj is above the threshold β = −ψ0/ψ1

(note that the threshold given by Robins, 2004, p. 245, is
incorrect; numerator and denominator are transposed). We
may reparameterize the regret to obtain the threshold, β,
by µ∗

j(hj , aj) = |xj − β| × (aj − I[xj − β > 0])2, which gives
Dj(µ∗) = {I[xj − β > 0]}. However, if ψ1 < 0 so that now sub-
jects should be treated when xj < β, µ∗

j(hj , aj) = |xj − β| ×
(aj − I[xj − β < 0])2, then Dj(µ∗) = {I[xj − β < 0]}. Thus,
using the reparameterized regret (or the corresponding blip)
requires knowing in advance whether it is optimal to treat for
high- or low-status values. Incorrectly specifying the direc-
tion can lead to false conclusions such as failure to detect a
treatment effect. This can be overcome by using a richer class
of models, such as the two-parameter regret in this example.
(See reply to discussion in Murphy, 2003.)

3.3 Step 3: Estimation
3.3.1 g-estimation. Robins (2004, p. 208) proposes find-

ing the parameters ψ of the optimal blip-to-zero function
or regret function via g-estimation. Define H1(ψ) = Y +∑2

j=1[γj(hj , d
opt
j ;ψ) − γj(hj , aj ;ψ)],H2(ψ) = Y + γ2(h2, d

opt
2 ;

ψ) − γ2(h2, a2;ψ). Hj(ψ) is a patient’s actual outcome
adjusted by the expected difference between the average
outcome for someone with treatment and covariate history
hj who is treated optimally from time tj and someone with
history (hj , aj) who is subsequently treated optimally from
time tj+1.

Under additive local rank preservation, Hj (ψ) corresponds
to a counterfactual outcome:H1(ψ)=Y (dopt

1 (x1), d
opt
2 (x1, d

opt
1 (x1),

X2(d
opt
1 (x1)))) and H2(ψ) = Y (a1, d

opt
2 (x1, a1, x2)) (Robins,

2004, p. 204). Loosely, local rank preservation states that the
ranking of patients’ counterfactual outcomes under a partic-
ular regime is the same as their ranking under the observed
regime, conditional on history. Local rank preservation is ad-
ditive if the difference in a person’s counterfactual outcome

should he be treated with one regime instead of another given
history equals the expected difference. Note that this is a
counterfactual difference since it is not directly observable,
as it is a difference between two potential outcomes for an in-
dividual. Rank preservation provides a simplistic situation in
which the parameters of an SNMM may be interpreted at the
individual level. SNMMs may be used without this assump-
tion via a population-level interpretation in terms of average
causal effects.

For the purpose of estimation, specify Sj(aj) = sj(aj , hj) ∈
R
dim(ψj ) which depends on variables which are thought to

interact with treatment to influence outcome. For exam-
ple, if the optimal blip at the second interval is linear,
γ2(h2, a2) = a2(ψ0 + ψ1x2 + ψ2a1 + ψ3x2a1), the analyst may
choose S2(a2) = ∂

∂ψ
γ2(h2, a2) = a2(1, x2, a1, x2a1)

T . Let

U(ψ, s) =

2∑
j=1

Hj(ψ){Sj(Aj) −E[Sj(Aj) |Hj ]}, (1)

with the probability of being treated modeled (perhaps non-
parametrically) by pj(aj | hj ;α). E[U(ψ, s)] = 0 is an unbiased

estimating equation from which consistent estimates ψ̂ of ψ
may be found. The estimates are asymptotically Normal un-
der standard regularity conditions provided the treatment
model is correct and the optimal regime is unique (though
see Robins, 2004, p. 219, Appendix 1, for discussion of when
this fails to hold). Equation (1) is unbiased since potential
outcomes under different treatment regimes at tj and hence
Hj (ψ) are independent of any function of actual treatment
conditional on past treatment and covariates (Assumption 2).
The estimators are not efficient.

Robins (2004, p. 212) refined equation (1) to gain efficiency.
Let

U †(ψ, s, α̂) =

2∑
j

(Hj(ψ) −E[Hj(ψ) | hj ])

×{Sj(Aj) −E[Sj(Aj) | hj ]}. (2)

The inclusion of E[Hj(ψ) | hj ] in (2) gives estimates which
are more efficient than those found using (1) even if its
model is misspecified (Robins et al., 1995). Robins proves
that estimates found by (2) are consistent provided either
E[Hj(ψ) | hj ] or pj(aj | hj) is correctly modeled, and thus are
said to be doubly robust. These estimates are still not effi-
cient; semiparametric efficient estimates can be found with
good choice of S(Aj ), although its form is often complex.

Correct specification of E[Hj(ψ) | hj ] requires know-
ing the functional dependence of outcome on history.
Consider the case of binary treatment. As noted ear-
lier, γj(hj ;ψ) = ajf(xj ;ψ) and µj(hj , aj) = |f(xj ;ψ)| × (aj −
I[f(xj ;ψ) > 0])2 specify the same SNMM so that if γj(hj ;ψ) is
linear in hj , µj(hj , aj) is piecewise linear. Expressing Hj (ψ) as

Y +
∑2

m=j µm(hm, am), we see that if the mean of Y depends
linearly on hj , then E[Hj(ψ) | hj ] is piecewise linear with dis-
continuities and changes in slope occurring at optimal rule
thresholds.
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3.3.2 Recursive, closed-form g-estimation. In general,
search algorithms are required to find the values of ψ̂ to satisfy
the g-estimating equation. Exact solutions can be found when
optimal blips are linear in ψ and parameters are not sta-
tionary (shared between intervals). An example of blip
functions that are linear in ψ but do have common param-
eters between intervals is γ1(x1, a1) = a1(ψ0 + ψ1x1) and
γ2(h2, a2) = a2(ψ0 + ψ1x2 + ψ2a1), since ψ0 and ψ1 appear in
the blip functions of both intervals.

Modifications Hmod,1(ψ) = Y − γ1(h1, a1;ψ) + [γ2(h2, d
opt
2 ;

ψ) − γ2(h2, a2;ψ)] and Hmod,2(ψ) = Y − γ2(h2, a2;ψ) can be
used in (1) or (2) without changing the consistency of the
resulting g-estimates. Under additive local rank preservation,
we have the following interpretation: Hmod,1(ψ) = Y (0, dopt

2 (x1,
0,X2(0))),Hmod,2(ψ) = Y (a1, 0). This modification allows
recursive estimation when parameters are not shared: find
first ψ̂2 at the last interval then plug ψ̂2 into Hmod,1(ψ) to

find ψ̂1 (Robins, 2004, p. 219). Postulating models for Y
(conditional on hj) and γj(hj ;ψ) is sufficient to determine
the form of E[Hmod,j(ψ) | hj ].

3.3.3 Iterative minimization for optimal regimes (IMOR).
Murphy (2003) developed a method that estimates the param-
eters of the optimal regime, ψ, by searching for (ψ̂, ĉ) which
satisfy for all (ψ∗, c∗)

2∑
j=1

Pn

[
Y + ĉ+

2∑
l=1

µl(hl, al; ψ̂) −
∑
a

µj(hj , a; ψ̂)pj(a |hj ; α̂)

]2

≤
2∑
j=1

Pn

[
Y + c∗ +

2∑
l=1,l�=j

µl(hl, al; ψ̂) + µj(hj , aj ;ψ∗)

−
∑
a

µj(hj , a;ψ∗)pj(a |hj ; α̂)

]2

, (3)

where Pn(f) = n−1
∑n

i=1 f(Xi) is the empirical average. The
scalar c improves stability of the minimization but is not re-
quired. IMOR estimates are consistent for ψ provided the
treatment allocation models, pj(aj | hj), are correctly speci-
fied. See the next section for a discussion of efficiency.

Murphy (2003) described an iterative method for finding
solutions to (3): select an initial value of ψ̂, say ψ̂(1), and then
minimize the right-hand side (RHS) of the equation over (ψ∗,
c∗) to obtain a new value of ψ̂, ψ̂(2), and repeat this until con-
vergence. This may not produce a monotonically decreasing
sequence of RHS values of equation (3) and may not converge
to a minimum; profile plots of the RHS of (3) for each param-
eter about its estimate provide a useful diagnostic tool.

3.4 Relating the Methods for Two Intervals
Suppose X1, A1, X2, A2, and Y are observed where Aj is
binary and Xj , Y are univariate for j = 1, 2. Further suppose
that parameters are not shared across intervals. Robins (2004,
Corollary 9.2) proves that for an optimal blip γj(hj , aj ;ψj),
the unique function q(hj , aj) minimizing

E

[{
Y − q

(
hj , aj

)
+

2∑
m=j+1

(
γm

(
hm, d

opt
m ;ψm

)
− γm

(
hm, am;ψm

))

−E

[
Y − q

(
hj , aj

)
+

2∑
m=j+1

×
(
γm

(
hm, d

opt
m ;ψm

)
− γm

(
hm, am;ψm

)) ∣∣∣∣∣ hm

]}2 ]

(4)

subject to q(hj , 0) = 0 is γj(hj , aj ;ψj). To use (4) to estimate

ψ1, ψ̂2 must have already been found—i.e., estimation is re-
cursive, not simultaneous.

At each interval, g-estimation is equivalent to minimiz-
ing (4) by setting its derivative to zero. At the minimum,
q(hj , aj) = γj(hj , aj ;ψj) and so

Y − q(hj , aj) +

K∑
m=j+1

[
γm

(
hm, d

opt
m ;ψm

)
− γm

(
hm, am;ψm

)]
= Hmod,j(ψj).

With S(aj) = − ∂
∂ψj

q(hj , aj), equation (4) leads to g-
estimating equation (2) using the modified version of Hj (ψ).

IMOR is another method of recursive minimization. At any
interval j, taking q(hj , aj) = γj(hj , aj ;ψj) = µj(hj , 0;ψj) −
µj(hj , aj ;ψj) in (4) leads to the RHS of (3) with
−c = E[Hmod,1(ψ) | h1] + µ1(h1, 0;ψ1) −E[µ1(h1, a1;ψ1) | h1] in
the first interval and −c = E[Hmod,2(ψ) | h2] + µ2(h2, 0;ψ2) +
µ1(h1, a1; ψ̂1) −E[µ2(h2, a2;ψ2) | h2] in the second. The param-
eter c in (3) is not interval specific, so the methods are not
identical. This is a critical difference: IMOR does not model
E[Hmod,j(ψ) | hj ] explicitly, but rather captures the quantity
through regrets and c, which does not vary with covariates in
hj . It is clear that, under the null hypothesis of no treatment
effect, c = E[Hmod,j(ψ)] = E[Y ], thus IMOR and g-estimation
(2) modeling E[Hmod,j(ψ) | hj ] with a constant are equivalent.

Regarding relative efficiency of the methods, we make the
following points:

(i) IMOR is a special case of g-estimating equation (2)
under the null hypothesis of no treatment effect, mod-
eling E[Hmod,j(ψ) | hj ] by a constant.

(ii) Under regularity conditions, estimates from equa-
tion (2) are the most efficient among the class of
g-estimates that use a given function S(aj ) (here,
− ∂
∂ψj

q(hj , aj)) when the treatment and expected

counterfactual models are correctly specified (Robins,
2004, Theorems 3.3(ii) and 3.4).

(iii) In general, equation (2) does not satisfy regularity
conditions due to nondifferentiability of the estimat-
ing equation in a neighborhood of ψ = 0. How-
ever, the conditions hold for constant blip functions,
γj(aj ) = ajψj , which posit no treatment interactions.
(See E. E. M. Moodie and T. S. Richardson, unpub-
lished manuscript and Robins, 2004, p. 225 for further
discussion.)
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Table 1
AZT initiation and CD4 cell counts: g-estimation and IMOR for 1000 data sets of sample sizes 500 and 1000

Correct model for pj(a | hj ; α̂) Incorrect model for pj(a | hj ; α̂)

Estimate ψ ψ̂ SE rMSE Cov.∗ ψ̂ SE rMSE Cov.∗

n = 500
g-estimation ψ10 = 250 225.76 304.96 407.10 96.5 2782.53 478.10 2577.95 0.0
equation (1) ψ11 = −1.0 −0.967 0.735 0.984 96.2 −8.648 1.398 7.776 0.0

ψ20 = 720 744.87 406.15 549.3 95.1 3172.1 799.21 2584.39 4.9
ψ21 = −2.0 −2.060 0.773 1.046 94.9 −7.085 1.671 5.363 4.0

g-estimation† ψ10 = 250 247.03 24.29 32.78 94.9 197.49 21.05 58.23 34.8
equation (2) ψ11 = −1.0 −0.995 0.052 0.071 94.5 −0.870 0.055 0.144 35.8

ψ20 = 720 721.34 82.35 114.34 92.4 563.92 79.63 183.48 50.6
ψ21 = −2.0 −2.003 0.131 0.183 92.4 −1.724 0.141 0.321 51.4

g-estimation‡ ψ10 = 250 250.01 17.17 23.18 95.1 250.81 17.02 25.17 89.4
equation (2) ψ11 = −1.0 −1.000 0.038 0.051 95.2 −1.002 0.048 0.064 95.4

ψ20 = 720 720.30 24.05 33.56 92.6 719.18 28.52 41.23 89.3
ψ21 = −2.0 −2.001 0.041 0.056 93.0 −1.999 0.054 0.076 92.2

IMOR ψ10 = 250 242.63 98.11 123.7 98.5 −38.79 122.18 316.73 32.2
ψ11 = −1.0 −0.986 0.213 0.265 98.8 −0.720 0.261 0.416 86.5
ψ20 = 720 716.61 142.34 187.35 96.4 479.47 193.99 345.69 73.7
ψ21 = −2.0 −1.995 0.223 0.295 95.9 −1.797 0.328 0.485 88.3

n = 1000
g-estimation ψ10 = 250 237.09 211.23 288.04 94.3 2770.40 335.93 2542.86 0.0
equation (1) ψ11 = −1.0 −0.980 0.511 0.697 94.1 −8.587 0.981 7.651 0.0

ψ20 = 720 720.04 284.26 380.78 95.2 3051.94 558.22 2399.22 0.0
ψ21 = −2.0 −2.006 0.540 0.724 94.8 −6.824 1.163 4.965 0.0

g-estimation† ψ10 = 250 247.74 16.85 23.10 93.6 198.08 14.96 54.46 12.9
equation (2) ψ11 = −1.0 −0.996 0.036 0.050 93.9 −0.871 0.039 0.135 10.1

ψ20 = 720 720.82 60.12 82.74 93.0 562.77 59.65 170.63 25.8
ψ21 = −2.0 −2.002 0.096 0.132 93.1 −1.723 0.106 0.300 24.0

g-estimation‡ ψ10 = 250 249.45 12.16 16.68 94.9 250.00 12.04 17.71 89.3
equation (2) ψ11 = −1.0 −0.999 0.027 0.037 94.2 −1.000 0.034 0.046 95.3

ψ20 = 720 720.29 17.22 23.73 93.5 720.28 20.30 29.28 90.0
ψ21 = −2.0 −2.001 0.029 0.040 94.3 −2.001 0.038 0.054 92.8

IMOR ψ10 = 250 245.16 69.46 86.78 98.4 −35.38 87.44 299.31 4.8
ψ11 = −1.0 −0.991 0.150 0.186 98.8 −0.727 0.186 0.345 71.3
ψ20 = 720 720.57 101.76 134.35 95.7 464.94 139.89 303.99 53.0
ψ21 = −2.0 −2.001 0.159 0.211 95.9 −1.770 0.236 0.379 83.2

∗Coverage of 95% Wald-type confidence intervals.
†E[Hmod,j(ψ) |hj ] linear in hj (incorrect model).
‡E[Hmod,j(ψ) |hj ] piecewise linear (correct model).

In conclusion, we may say that if the null hypothesis holds
and we estimate a constant blip model (which trivially is
correctly specified), then g-estimation is more efficient than
IMOR when E[Hmod,j(ψ) | hj ] = E[Y | hj ] depends on hj and
is correctly specified in (2). If E[Hmod,j(ψ) | hj ] is constant,
IMOR and g-estimation (2) are efficient within the class of
g-estimates that use S(aj) = − ∂

∂ψj
q(hj , aj) when the treat-

ment and expected counterfactual models are correctly spec-
ified and E[Hmod,j(ψ) | hj ] is constant. In other cases, the situ-
ation is not clear; the violation of regularity conditions is an
issue in both approaches.

4. Examples
4.1 Simulation Results
Via simulations, we compare the performance of the methods
discussed, and illustrate the double-robustness of g-estimating
equation (2). Suppose that patients are accrued in a trial

so as to estimate the optimal rule for AZT initiation. Pa-
tients will be randomized to either no treatment or AZT at
baseline and those who did not receive treatment at base-
line will be re-randomized at 6 months to receive either no
treatment or AZT. (Clearly, such a trial would be unlikely
given the current understanding of the beneficial effects of
AZT!)

Variables are as described in Section 2.1 and were gen-
erated as follows: baseline CD4: X1 ∼ N (450, 150); 6-month
CD4: X2 ∼ N (1.25X1, 60); and 1-year CD4: Y ∼ N (400 +
1.6X1, 60) − µ1(H1, A1) − µ2(H2, A2). Treatments A1, A2 were
randomly assigned with equal probability and optimal blips
are linear: γ1(h1, a1) = a1(ψ10 + ψ11x1), γ2(h2, a2) = a2(ψ20 +
ψ21x2) with corresponding regrets, µj(hj , aj). As noted be-
fore, the outcome is not linear in X1 and X2. We use
Sj(aj) = ∂

∂ψ
γj(hj , aj) in g-estimation for greater similarity to

IMOR.
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Figure 2. Profiles of the RHS of equation (3) for the IMOR approach from a single simulation. The dashed line is the
IMOR estimate, the dashed-and-dotted line from g-estimation (2) using the correct, piecewise model for E [Hmod,j(ψ) | hj ], and
the thick black line the truth. For ψ10 and ψ20, neither the g-estimate nor the true value occurs within the range plotted; for
ψ11, IMOR and the g-estimate nearly coincide.

Two models were considered for E[Hmod,j(ψ) | hj ] for
g-estimation with (2). The first incorrectly assumed that
E[Hmod,j(ψ) | hj ] depends linearly on all of hj . The second,
correct model allowed the mean function to be piecewise, dis-
continuous linear with inflections at the optimal rule thresh-
olds (see Web Appendix). Results are in Table 1; diagnostic
plots for IMOR are in Figure 2.

The efficiency gained by using the g-estimating equa-
tion (2) instead of (1) is considerable. An incorrect model for
E[Hmod,j(ψ) | hj ] reduces efficiency in (2). In these simulations,
efficiency of IMOR estimates is less than that of g-estimates
from (2), and much better than that from (1).

Suppose now that physicians broke protocol, so that the
probability of initiating AZT is higher in patients with low

CD4 counts: Aj ∼ Binom(pj ), where p1 = expit(2 − 0.006X1)
and p2 = expit(0.8 − 0.004X2). The new randomization
scheme depends only on the observed variable CD4. If the ana-
lyst incorrectly assumed complete randomization, only equa-
tion (2) using the correct model for E[Hmod,j(ψ) | hj ] yields
unbiased estimates (Table 1). In this example, using a linear
model for E[Hmod,j(ψ) | hj ] in (2) on average yields optimal de-
cision thresholds (95% CI) not too far from the truth: begin
AZT at baseline for patients with CD4 counts below 226 (194,
258), and begin therapy at 6 months if counts are below 325
(271, 378) as compared to the true thresholds of 250 and 360
counts at the first and second interval, respectively. IMOR
and g-estimation (1) are not at all robust to misspecification
of the treatment model, as expected.
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4.2 Multicenter AIDS Cohort Study Results
Turning our attention to the MACS data: 142 (6.7%) partici-
pants initiated AZT in the first 6 months of the study; a fur-
ther 166 (7.8%) began treatment between 6 and 12 months.
Initial plots show little difference in 12-month CD4 counts
between those who were treated and those who were not
(Figure 3).

Initially, treatment was fit as a function of CD4 at the pre-
vious visit only. It is unlikely that this scenario reflects the
true decision-making process of physicians, so the analysis was
repeated using richer treatment models which were selected
using the Bayesian Information Criterion. The richer models
found year of study entry and presence of symptoms at base-
line as well as baseline CD4 to predict treatment in the first
6 months of study. Six-month CD4, use of Pneumocys-
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Figure 3. MACS: (a) CD4 at 12 months versus baseline
and (b) CD4 at 12 versus 6 months for those who were not
treated in the first interval.

tis carinii pneumonia prophylactics in the first 6 months of
study, and presence of symptoms at 6 months were predic-
tive of AZT initiation between 6 and 12 months. Neither g-
estimation nor IMOR detected any effect of AZT initiation at
any time in the first year on 12-month CD4 counts (Table 2).
This analysis should not undermine the usefulness of AZT as
a treatment for HIV. It may suggest that 1-year CD4 counts
are not sufficient to capture beneficial effects of the therapy
or are not a good surrogate for HIV-patient health.

A naive linear regression of 12-month CD4 on baseline CD4,
6-month CD4, and treatments A1 and A2 picks up a strong
association between AZT initiation in the second interval and
outcome (p < 0.001): participants who started AZT between
6 and 12 months had, on average, 12-month CD4 that was
74 (44, 104) cell counts lower than those who did not initiate
AZT. A nonsignificantly lower mean CD4 count was also ob-
served for AZT initiation between 0 and 6 months. Residual
plots suggested heteroscedasticity; log-transforming outcome
did not remove the strong statistical significance of the asso-
ciation, nor did including the covariates from the richer treat-
ment model, nor interaction terms.

The negative association between treatment in the second
interval and 1-year CD4 in linear regression can reasonably be
explained by confounding: patients with low CD4 counts were
more likely to use AZT. This example demonstrates the utility
of dynamic regimes in general, particularly the importance
of causal models that are correctly specified under the null
hypothesis.

5. Conclusion
Our article has clarified the connections between both the
models and the methods used to make inference in the context
of dynamic treatment regimes. We have provided formulae for
transforming between blips and regrets, and elucidated the
similarities between IMOR and g-estimation.

The methods discussed here, along with the advances
in theory needed to implement clinical studies of dynamic
regimes mentioned in Section 1, have the potential to con-
tribute greatly to the design of treatment protocols for a va-
riety of medical conditions. Murphy and Robins developed
methods in the general, K-interval case that are widely ap-
plicable although sample size requirements may be infeasible
with a large number of treatments unless stationarity is as-
sumed. We conclude with a word of caution: model choice
should be driven by practical considerations; however, it is
important to be aware of the (perhaps implausible) implied
models for observables.

6. Supplementary Materials
The Web Appendix referenced in Section 4.1 and sam-
ple code for the simulations are available under the Pa-
per Information link at the Biometrics website http://www.

tibs.org/biometrics.
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Table 2
AZT initiation and its effects on 12-month CD4 cell counts in the MACS where (a) the

treatment model depends only on prior CD4 and (b) a richer treatment model is assumed.
For details of the model for E [Hmod,j(ψ) | hj ], see Section 4.2.

g-estimate equation (2) IMOR

ψ ψ̂ 95% CI ψ̂ 95% CI

(a) ψ10 −16.61 (−64.37, 31.16) −103.79 (−308.43, 100.85)
ψ11 −0.019 (−0.152, 0.114) 0.177 (−0.457, 0.811)
ψ20 −39.32 (−85.43, 6.79) −116.76 (−294.80, 61.27)
ψ21 −0.063 (−0.192, 0.067) 0.134 (−0.313, 0.581)

(b) ψ10 1.40 (−53.10, 55.90) −129.43 (−316.44, 57.57)
ψ11 −0.046 (−0.183, 0.092) 0.182 (−0.340, 0.705)
ψ20 −14.44 (−62.30, 33.42) 197.65 (−2635.69, 3031.00)
ψ21 −0.105 (−0.236, 0.026) −0.442 (−3.103, 2.219)
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