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Summary. A Bayesian sequential dose-finding procedure based on bivariate (efficacy, toxicity) outcomes
that accounts for patient covariates and dose-covariate interactions is presented. Historical data are used to
obtain an informative prior on covariate main effects, with uninformative priors assumed for all dose effect
parameters. Elicited limits on the probabilities of efficacy and toxicity for each of a representative set of
covariate vectors are used to construct bounding functions that determine the acceptability of each dose for
each patient. Elicited outcome probability pairs that are equally desirable for a reference patient are used
to define two different posterior criteria, either of which may be used to select an optimal covariate-specific
dose for each patient. Because the dose selection criteria are covariate specific, different patients may receive
different doses at the same point in the trial, and the set of eligible patients may change adaptively during
the trial. The method is illustrated by a dose-finding trial in acute leukemia, including a simulation study.
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1. Introduction
Two useful extensions of methods for sequentially adaptive
dose finding based on toxicity (T) in phase I clinical trials have
been proposed in recent years. The first extension accounts for
the effects of patient prognostic covariates, Z = (Z1, . . . ,Zq),
as well as dose, x, on the probability of toxicity, πT (x, Z).
This provides a basis for “patient-specific” dosing (Babb and
Rogatko, 2001), also called “individualized” dosing (Ratain
et al., 1996; Cheng et al., 2004), wherein the dose is chosen
for each patient based on his/her Z vector (Mick and Ratain,
1993; Wijesinha and Piantadosi, 1995; Piantadosi and Liu,
1996; O’Quigley, Shen, and Gamst, 1999). Methods for find-
ing tolerable doses within ordinal prognostic subgroups have
been proposed by O’Quigley and Paoletti (2003), Yuan and
Chappell (2004), and Ivanova and Wang (2006). For example,
accounting for Z addresses the well-known problem that a pa-
tient’s risk of toxicity from a cytotoxic agent increases with
the patient’s age (Estey et al., 1989). The second extension
utilizes efficacy (E) as well as T to choose doses. A wide variety
of approaches to this problem have been proposed (O’Quigley,
Hughes, and Fenton, 2001; Braun, 2002; Ivanova, 2003; Thall
and Cook, 2004; Bekele and Shen, 2005). The general objec-
tive is to choose x to obtain a desirably large value of πE(x)
while also controlling πT (x). Trials using such methods are
often called “phase I/II” because they combine elements of
conventional phase I and phase II trials.

In this article, we present a new family of methods that
combine these two extensions by basing dose finding on both E
and T while also accounting for each patient’s covariates. Our

models and dose-finding procedures extend the methodology
of Thall and Cook (2004) by accounting for covariate effects.
As we will show, constructing a method that does this reliably
involves much more than simply including Z in the underlying
regression model.

Let πk(x, Z, θ) denote the marginal probability of out-
come k = E or T for a patient with covariates Z treated with
dose x, where θ is the model parameter vector. Our approach
focuses on the probability pair, π(x, Z, θ) = {πE(x, Z, θ),
πT (x, Z, θ)}, which we will denote by π for brevity when
no meaning is lost. We require an informative prior on co-
variate effect parameters, obtained from a preliminary fit of
historical data. The physician must provide a lower limit on
πE and an upper limit on πT for each of a set of covariate
vectors ranging over the domain of Z. These limits are used
to construct bounding functions that vary with Z, one func-
tion for πE , and one for πT , which together determine the
acceptability of each x for each patient. For a reference Z∗,
the physician also must specify several equally desirable tar-
get values of π that are used to construct two different types
of posterior criteria, either of which may be used to compare
doses.

Because each patient’s selected dose depends on his/her Z
vector, different patients may receive different doses at the
same point in the trial, and the trial’s entry criteria may
change dynamically as the data accumulate. For example, fa-
vorable interim outcomes may expand the entry criteria to
include patients for whom entry was not permitted initially.
On completion of the trial, rather than choosing one dose for
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all patients, the method uses the trial’s final data to select
covariate-specific doses for future patients.

In Section 2, we present a family of regression models and
explain how priors may be established. In Section 3, we define
the criteria for determining the acceptability and desirability
of each x for each Z, and provide rules for trial conduct. Nu-
merical methods are discussed in Section 4. In Section 5, we
describe application of the method to an acute leukemia trial,
including a simulation study, and we close with a discussion
in Section 6.

2. Probability Models
2.1 Bivariate Regression Models
We focus on the case of bivariate binary outcomes Y = (YE ,
Y T ), where Y k is the indicator of the event k = E, T. Denot-
ing suitably normalized doses of the experimental agent by
x1 < x2 < · · · < xJ , the data from the first n patients in the
trial take the form Dn = {(Yi, Zi, x[i]), i = 1, . . . ,n}, where
x[i] denotes the ith patient’s dose. Similarly, we denote the
data from nH historical patients by H = {(Yi, Zi, τ [i]), i =
1, . . . ,nH}, where {τ 1, . . . , τm} are the historical treatments
and τ [i] denotes the ith patient’s treatment. For convenience,
we denote either a given dose or historical treatment by un-
subscripted τ , so that the joint outcome probabilities of a
patient with covariates Z treated with τ are πa,b(τ , Z, θ) =
Pr(YE = a, YT = b | τ,Z,θ), for a, b ∈ {0, 1}, and the marginal
probabilities are πE(τ,Z,θ) = Pr(YE = 1 | τ,Z,θ) = π1,1(τ ,
Z, θ) + π1,0(τ , Z, θ) and πT (τ,Z,θ) = Pr(YT = 1 | τ,Z,θ) =
π1,1(τ , Z, θ) + π0,1(τ , Z, θ).

Denote the linear terms ηk = g(πk) for k = E, T , where g
is a suitable link function. Our modeling strategy will be to
determine the πa,b’s in terms of the marginals πE = g−1(ηE)
and πT = g−1(ηT ) and one association parameter, ψ, so that

πa,b = πa,b(πE , πT , ψ) = πa,b{g−1(ηE), g−1(ηT ), ψ}. (1)

There are many models of this form, including the Gumbel
(cf. Prentice, 1988),

πa,b = πaE(1 − πE)1−aπbT (1 − πT )1−b

+(−1)a+bψπE(1 − πE)πT (1 − πT ), a, b = 0, 1, (2)

where −1 � ψ � 1, which was used by Thall and Cook (2004)
in the simpler case without Z. Copulas (cf. Joe, 1997) provide
a general class of models for constructing bivariate distribu-
tions with given marginals. A tractable model is given by the
Gaussian copula

Cψ(u, v) = Φψ(Φ−1(u),Φ−1(v)), 0 � u, v � 1, (3)

where Φψ denotes the bivariate standard normal cumulative
distribution function (cdf) with correlation ψ and unsub-
scripted Φ denotes the univariate standard normal cdf. In the
present setting, (3) gives

π0,0 = Φψ(Φ−1(1 − πE),Φ−1(1 − πT )), (4)

which determines the remaining πa,b’s to be π1,0 = 1 −
πE − π0,0, π0,1 = 1 − πT − π0,0, and π1,1 = πE + πT +
π0,0 − 1. Under the probit link πk = Φ(ηk), the model (4)
takes the simpler form π0,0 = Φψ(−ηE , −ηT ). In practice, the
choice of a particular form for (1) is motivated by models giv-
ing a good fit to H and the need for tractability, because the

model must be fit many times to simulate and conduct the
trial.

Given a particular bivariate model for πa,b{g−1(ηE),
g−1(ηT ),ψ}, we focus on parametric forms for ηE(τ , Z, θ)
and ηT (τ , Z, θ) that provide a basis for using historical data
about covariate effects while also accounting for the joint ef-
fects of x and Z on πE and πT based on the current data, Dn,
from the trial. To do this, we assume the general linear form

ηk(τ,Z,θ) = βkZ +

m∑
j=1

(µk,j + ξk,jZ)1(τ = τj)

+ {fk(x,αk) + γkZ}1(τ = x), (5)

for k = E, T, where 1(A) is the indicator of the event A, lin-
ear combinations of vectors are denoted by juxtaposition, for
example, βkZ = βk,1Z1 + · · · + βk,qZq, and fE(x, αE) and
fT (x, αT ) characterize the main dose effects on πE and πT .
For each k, the covariate main effects are βk = (βk,1, . . . ,βk,q),
interactions between Z and historical treatment τ j are
ξk,j = (ξk,j,1, . . . , ξk,j,q) and, similarly, γk = (γk,1, . . . , γk,q)
are dose–covariate interactions. For the historical data, the
general expression (5) takes the form

ηk(τj ,Z,θ) = µk,j + βkZ + ξk,jZ,

for j = 1, . . . ,m and k = E,T, (6)

where µk = (µk,1, . . . ,µk,m) are the historical main treatment
effects. For the data obtained during the trial, (5) takes the
form

ηk(x,Z,θ) = fk(x,αk) + βkZ + xγkZ, for k = E,T. (7)

The particular forms of fE and fT should be chosen to re-
flect the application at hand. For a trial of a cytotoxic agent,
fk(x, αk) = αk,0 + αk,1x with Pr(αk,1 > 0) = 1 yields πk(x,
Z, θ) increasing in x. The more flexible quadratic function
fk(x, αk) = αk,0 + αk,1x + αk,2x

2 allows πk to be nonmono-
tone in x, which may be appropriate for biologic agents, be-
cause with increasing dose πE(x, Z, θ) may reach a plateau
and possibly decrease thereafter. A nonmonotone fT (x, αT )
also may be needed, depending on how toxicity is defined,
because new agents sometimes have effects not predicted by
preclinical data. For example, in a trial of an antigraft-versus-
host disease agent in allogeneic stem cell transplantation, if
“toxicity” includes systemic infection (“sepsis”), and if higher
doses of the agent help resolve sepsis, then πT (x, Z, θ) may
decrease with x.

2.2 Establishing Priors
Denoting α = (αE , αT ), µ = (µE , µT ), β = (βE , βT ),
γ = (γE , γT ), and ξ = (ξE,1, ξT,1, . . . , ξE,k, ξT,k), the vector
of all model parameters is θ = (µ, β, ξ, ψ, α, γ). A prelimi-
nary fit of H yields informative distributions on µ, β, ξ, and
ψ. For the purpose of dose finding, µ and ξ are nuisance pa-
rameters, but the informative marginal posterior p(β, ψ |H) =∫
p(µ,β, ψ |H) dµ plays a key role in our method, because it

is the prior on (β, ψ) at the start of the trial. In contrast, be-
cause α and γ account for effects of the experimental agent,
their priors should be noninformative. For prior means, we
set E(γ) = 0, and obtain prior E(α) by eliciting means of
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πE(xj , Z∗, θ) and πT (xj , Z∗, θ) at two or more values of
xj and solving for E(α). If the number of elicited means is
larger than dim(α), least squares (LS) may be used to solve
for E(α), as in Thall and Cook (2004).

To determine prior variances, the following two-step heuris-
tic may be used. For the first step, assume that all entries of α
and γ have the same prior variance, say σ2

0, and calibrate σ2
0

to control the effective sample size (ESS) of the prior p{πk(xj ,
Z∗, θ)} for all combinations of k = E, T , and xj . A practical
method for doing this is to match the first two moments of
each πk(xj , Z∗, θ) with a beta(ak,j , bk,j) and approximate
the ESS of p{πk(xj , Z∗, θ)} by

ak,j + bk,j =
E
{
πk

(
xj ,Z∗,θ

)}[
1 −E

{
πk

(
xj ,Z∗,θ

)}]
var

{
πk

(
xj ,Z∗,θ

)} − 1.

To reflect limited prior knowledge about dose effects and al-
low p(β, ψ |H) and the trial’s data, rather than the prior on
(α, γ), to dominate the method’s decisions, all ak,j + bk,j
should be small. One may use σ2

0 as a tuning parameter to
ensure this. However, a priori, the model also must control
σ2(αk,2x

2) = var(αk,2x
2) relative to σ2(αk,1x) = var(αk,1x)

for each k in order to avoid the quadratic effect αk,2x
2 be-

ing too large relative to the first-order effect αk,1x and thus
misrepresenting the true form of fk. In terms of the stan-
dard deviations (SDs), first fixing σ(αk,1) = σ0, one may ex-
amine the effects of values of the ratio σ(αk,2x

2)/σ(αk,1x) =
xσ(αk,2)/σ(αk,1) = xσ(αk,2)/σ0 in the range 0.1–1.0 on the
design’s operating characteristics (OCs), as described in Sec-
tion 5.4, and choose a value of σ(αk,2) that ensures good OCs
as well as reasonable prior ESS values.

3. Patient-Specific Dose Finding
At any interim point in the trial when a patient’s dose must be
chosen, the likelihood for the current trial data is the product

L(Dn | θ) =

n∏
i=1

1∏
a=0

1∏
b=0

{
πa,b

(
x[i],Zi,θ

)}1{Yi=(a,b)}
.

During the trial, quantities computed from the successive pos-
teriors

p(α,γ,β, ψ | H ∪ Dn) ∝ L(Dn | θ)p(α,γ)p(β, ψ |H) (8)

are used as a basis for choosing doses adaptively. To con-
struct a dose-finding method that accounts for both x and Z,
we first define two different kinds of criteria. The first crite-
rion determines whether a given x is acceptable for given Z.
The second criterion quantifies the desirability of each π =
(πE , πT ) in terms of a subjective tradeoff between πE and
πT , which provides a basis for comparing acceptable doses,
and thus selecting the best dose for each patient. Both cri-
teria require covariate-specific information elicited from the
physician.

3.1 Constructing Bounding Functions for Dose Acceptability
First, specify a representative set of covariate vectors,
{Z(1), . . . ,Z(K)}, varying over the domain of Z. For each Z(j),

elicit the smallest probability of efficacy, π
¯

(j)
E , and the largest

probability of toxicity, π̄
(j)
T , that the physician wishes to al-

low for a patient with covariates Z(j). These 2K elicited
limits are used to construct functions of Z that provide

a lower bound on πE(x, Z, θ) and an upper bound on
πT (x, Z, θ), which are used to determine whether each x
is acceptable for a patient with covariates Z. In general,
K > q, but K must be small enough so that elicitation
is practical. Denote ζk(Z) = E(βk | H)Z. To construct the
bounding function for πE(x, Z, θ), we treat the K pairs

{ζE(Z(1)), π
¯

(1)
E }, . . . , {ζE(Z(K)), π

¯
(K)
E } of estimated linear terms

and corresponding elicited lower bounds on πE like regression
data, fit a curve to these points using LS with ζE(Z(j)) the

predictor and π
¯

(j)
E the outcome variable, and denote the LS es-

timate by π̂
¯E

(ζE). In practice, a linear function π̂
¯E

(ζE) = a +
bζE or quadratic π̂

¯E
(ζE) = a + bζE + cζ2

E works well. Other
functions may be used, provided that 0 � π̂

¯E
(ζE) � 1 on

the domain of ζE values considered. We define the efficacy
lower bounding function to be π

¯E
(Z) = π̂

¯E
◦ ζE(Z). For ex-

ample, if the fitted LS curve is π̂
¯E

(ζE) = â + b̂ζE + ĉζ2
E then

π
¯E

(Z) = â + b̂ζE(Z) + ĉ{ζE(Z)}2. Similarly, we fit a curve to

the K pairs {ζT (Z(1)), π̄
(1)
T }, . . . ,{ζT (Z(K)), π̄

(K)
T }, obtain an

LS estimate ˆ̄πT (ζT ), and define the toxicity upper bounding
function to be π̄T (Z) = ˆ̄πT ◦ ζT (Z). In this way, we utilize
E(βE | H) and E(βT | H) to define the composite functions

Z
ζE−→ R1 π̂

¯E−→ [0, 1] and Z
ζT−→ R1 ˆ̄πT−→ [0, 1] (9)

from the q-dimensional covariate space to the one-dimensional
real domain R1 of βEZ and βTZ, and then to the
probability domain of πE and πT . When constructing
these functions, it is useful to plot the scattergram of
(ζ

(1)
E , π

¯
(1)
E ), . . . , (ζ

(K)
E , π

¯
(K)
E ) with its fitted function π̂

¯E
(ζE), and

likewise plot (ζ
(1)
T , π̄

(1)
T ), . . . , (ζ

(K)
T , π̄

(K)
T ) with ˆ̄πT (ζT ). Because

the goal is to obtain bounds on πE(x, Z, θ) and πT (x, Z,
θ) as Z is varied, which fulfils the physician’s requirements,

these plots allow the physician to adjust any π
¯

(j)
E or π̄

(j)
T val-

ues if desired. Figure 1a and b illustrate the scattergrams
and bounding functions for the acute myelogenous leukemia
(AML) trial design, details of which will be provided in Sec-
tion 5. The following definition uses π

¯E
(Z) and π̄T (Z) to pro-

vide criteria for deciding adaptively which doses may be given
to each new patient.

Definition 1: Given current trial data Dn and fixed cutoffs
pT and pE , the set An(Z) of acceptable doses for a patient with
covariates Z consists of all x ∈ {x1, . . . ,xJ} such that

Pr{πE(x,Z,θ) < π
¯E

(Z) | Dn ∪H} < pE (10)

and

Pr{πT (x,Z,θ) > π̄T (Z) | Dn ∪H} < pT . (11)

The cutoffs pT and pE should be calibrated to obtain good
OCs, with values around 0.90 typically giving good designs.
For a patient with covariates Z, (10) says that x is not likely to
be inefficacious. Similarly, (11) says that x is not likely to be
too toxic. If An(Z) = φ, then no dose is acceptable for that
patient. If An(Z) consists of a single dose, then that dose
is used by default. If An(Z) contains more than one dose,
however, then a criterion for choosing a dose from An(Z) is
needed.
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Figure 1. Bounding functions for determining dose acceptability as a function of Z. Each circle represents a pair
(ζE(Z(j)), π

¯
(j)
E ) in the left-side plot and a pair (ζT (Z(j)), π̄

(j)
T ) in the right-side plot. In both figures the triangle corresponds

to a 58-year-old-patient with poor cytogenetics, and the diamond corresponds to a 48-year-old-patient with intermediate
cytogenetics.

3.2 Dose Desirability
To select one dose from An(Z), we will define criteria for
comparing doses in terms of a target contour, C, in the two-
dimensional set of π values. One may construct C in several
ways. A general method (cf. Thall, Wooten, and Shpall, 2006)
is to elicit several target probability pairs π∗

1, . . . ,π
∗
c that the

physician considers equally desirable for a reference patient
with Z = Z∗ and fit a smooth curve to the elicited points so
that, considering πT as a function of πE , dπT /dπE > 0, that
is, this function is strictly increasing on the relevant domain
of πE values. One may define C to be the fitted curve. An al-
ternative method for constructing C (Thall, Cook, and Estey,
2006) is to elicit exactly c = 3 target pairs, with π∗

1 in the in-
terior of [0, 1]2, π∗

2 = (π∗
E,2, 0) with π∗

E,2 the smallest value of
πE that makes π∗

2 as desirable as π∗
1, and π∗

3 = (1, π∗
T,3) with

π∗
T,3 the largest value of πT that makes π∗

3 as desirable as π∗
1

and π∗
2. Under the admissibility conditions π∗

E,2 < π∗
E,1 < 1

and 0 < π∗
T,1 < π∗

T,3, the Lp norm distance from π to the
ideal point (1,0) with the axes scaled by π∗

E,2 and π∗
T,3 is

‖π − (1, 0)‖p =

{(
πE − 1

π∗
E,2 − 1

)p

+

(
πT − 0

π∗
T,3 − 0

)p}1/p

.

Because, given d, there is a unique p > 0 such that Cd = {π :
‖π − (1, 0)‖p = d} passes through π∗

1, π∗
2, and π∗

3, one may
define C = Cd.

Given C and trial data Dn, the desirability of a dose x for a
patient with covariates Z may be defined in several ways. We
will consider two definitions. The first uses posterior proba-
bilities of the set PC = {π : πE � π′

E and πT � π′
T ∃ π′ ∈ C}

of π pairs at least as desirable as a pair on C.

Definition 2: Given observed data Dn, the posterior prob-
ability (PP) desirability of dose x for a patient with covariates
Z is δ

(PP)
n (x, Z) = Pr{π(x,Z,θ) ∈ PC | H ∪ Dn}.

For the second, alternative definition, given π we denote by πC
the point where the straight line segment Lπ in [0, 1]2 passing

through π and the ideal point (1,0) intersects C. Denoting
Euclidean distance by ‖·‖, we define the geometric desirability
of π to be

rC(π) = exp

{
− ‖π − (1, 0)‖
‖πC − (1, 0)‖

}
.

As π moves away from (1,0) along any Lπ, rC(π) decreases
from its maximum value rC{(1, 0)} = 1, and rC(π) = e−1 for
all π ∈ C. Thus, the geometric desirability rC(π) determined
by C may be used to compare π pairs. Our second definition
evaluates this function at the posterior mean of π(x, Z, θ).

Definition 3: Given observed data Dn, the posterior mean
(PM) desirability of dose x for a patient with covariates Z is
δ

(PM)
n (x,Z) = rC(E{π(x,Z,θ) | H ∪ Dn}).

Using either criterion δ
(PP)
n (x, Z) or δ

(PM )
n (x, Z), the best

acceptable dose for a patient with covariates Z is the x maxi-
mizing the desirability. In general, the desirability of x given
Z is obtained as a composite function

(x,Z) −→ π(x,Z,θ) −→ δn(x,Z), (12)

where the second function exploits the Bayesian model and
geometry of C, using either rC or PC , by averaging over θ.

3.3 Trial Design and Conduct
When planning the trial, the historical data first must be an-
alyzed to choose a model and compute the posterior p(β, ψ |
H), and the priors on α and δ must be determined. Addition-
ally, the doses to be studied, maximum sample size, N , the
set {Z(1), . . . ,Z(K)}, of representative covariate vectors, and
acceptability and desirability criteria all must be established.
During the trial, when a new patient with covariates Z is en-
rolled, An(Z) is computed based on the current posterior and
the following decision rules are applied. Let δn(x, Z) denote
the desirability criterion being used.

1. If An(Z) = φ, do not treat the patient on protocol.
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2. If An(Z) �= φ, treat the patient using the dose x that
maximizes δn(x, Z).

3. If An(Z(j)) = φ for all j = 1, . . . ,K, stop the trial and
declare the new agent unacceptable at any dose.

4. After the trial has been completed with final data DN ,
use the acceptability and desirability criteria based on
p(θ | H ∪ DN ) to select doses for future patients.

If no dose is acceptable for a patient with covariates Z,
under rule (1) the patient must either be given a different
treatment off protocol or may have such poor prognosis that
no treatment is reasonable. This provides a formal basis for
decisions that often must be made subjectively by the physi-
cian. Because the acceptability criteria (10) and (11) depend
on Z, x, and Dn, whether a patient with a particular Z has
any acceptable dose and thus may be enrolled may change
adaptively over the course of the trial. Rule (3) is a combined
futility and safety stopping rule, because if no dose is both ac-
ceptably safe and acceptably efficacious for any Z(1), . . . ,Z(K)

in the representative covariate set, then the trial is stopped.

4. Numerical Methods
Markov chain Monte Carlo (MCMC) with Gibbs sampling
(Robert and Cassella, 1999) was used to compute all poste-
rior quantities. To generate each MCMC series of parame-
ter vectors during the trial, for each update of the posterior
an approximate posterior mode was first determined by sam-
pling iteratively around the mode of the previous posterior.
MCMC convergence was monitored by comparing the Monte
Carlo standard error (MCSE) to the SDs of πE(x, Z∗, θ) and
of πT (x, Z∗, θ) evaluated at the highest and lowest doses,
with sufficiently small values of MCSE/sd{πE(x, Z∗, θ)} and
MCSE/sd{πT (x, Z∗, θ)} indicating convergence.

5. Application
5.1 A Dose-Finding Trial in Acute Leukemia
We illustrate the method with a trial combining an exper-
imental chemo-protective agent (CPA) with the standard
drugs idarubicin (IDA) and cytosine arabinoside (ara-C) in
patients under age 60 with untreated AML. The therapeu-
tic goal is to produce a complete remission (CR), defined
by recovery of circulating blood cells and immature cells in
the bone marrow to normal levels, a necessary condition for
survival. Although the CR rate may be increased by higher
doses of IDA, this also increases the risk of mouth ulcers
(“mucositis”) and desquamatation of the intestinal lining,
which increase the risk of sepsis, severe diarrhea, and death.
The CPA is postulated to decrease the risk of IDA-induced
mucositis and diarrhea, which would allow higher IDA doses
and thus, hopefully, yield higher CR rates. In this trial, the
ara-C and CPA doses are fixed at 1.5 grams/m2 of ara-C and
2.4 mg/kg of CPA, both given daily on days 1–4. Using the
covariate-specific dose selection method, each patient will be
given one of five IDA doses: 12 (the standard dose), 15, 18,
21, or 24 mg/m2 daily for 3 days. Efficacy is defined as the
event that the patient is alive and in CR 42 days (6 weeks)
after beginning treatment. Toxicity is defined as severe (NIH
grade 3 or 4) mucositis, diarrhea, pneumonia, or sepsis within
42 days. For example, a patient who dies before day 42 has
outcome (YE , Y T ) = (0,1), whereas a patient who achieves

the efficacy outcome but suffers a nonfatal toxicity has (YE ,
Y T ) = (1,1). For a patient with no toxicity, (YE , Y T ) =
(1,0) if efficacy is achieved and (YE , Y T ) = (0,0) if not.

It is well known that the CR rate with chemotherapy in
AML varies greatly with the patient’s age and type of cyto-
genetic abnormality found in the leukemia cells. Three cyto-
genetic (“Cyto”) prognostic subgroups can be distinguished:
an inversion of chromosome 16 or a translocation between
chromosomes 8 and 21 (Cyto = good), abnormalities of chro-
mosomes 5 and/or 7 (Cyto = poor), with all other cytoge-
netic findings comprising an intermediate group. To account
for the effects of these covariates, we defined Z1 = 0.01(age −
45) for numerical stability, with Z2 = 1(Cyto = good) and
Z3 = 1(Cyto = poor), so that q = 3.

5.2 Analysis of Historical Data
We began by analyzing historical data from 693 untreated
AML patients with age < 60, given chemotherapy in the
Department of Leukemia at M.D. Anderson Cancer Center
(MDACC) during the period from January 2000 to December
2004. These patients received one of three different histor-
ical treatments: ara-C + IDA ± other drugs, ara-C + flu-
darabine ± other drugs, and ara-C ± other drugs not includ-
ing either IDA or fludarabine. The definitions of E and T in
the historical data are identical to those given above for the
planned trial. Frequencies of the four elementary outcomes,
within each of the nine representative prognostic subgroups,
are given in Table 1. We fit a total of nine models to the
historical data, obtained from three different bivariate dis-
tributions πa,b{πE ,πT ,ψ} and three different forms for the
linear terms ηk(τ j , Z, θ). The distributions were a Gaus-
sian copula with probit link, a Gumbel model with logit link,
and a Gumbel with complementary log-log (c-l-l) link. The
three linear terms were (1) µk,j + βkZ + ξk,jZ, which in-
cludes historical treatment–covariate interactions, (2) µk,j +
βkZ, which assumes homogeneous covariate effects, and (3)
µk + βkZ, which assumes both homogeneous covariate ef-
fects and no difference between historical treatments. For all
fits of the historical data, we assumed the following nonin-
formative prior. Because −1 � ψ � 1 for all models, we as-
sumed (ψ + 1)/2 followed a beta(1,1) prior, and all other
model parameters followed independent normal priors with
mean 0 and variance 144. To select a model from these

Table 1
Frequency (row %) of each elementary outcome for each of

nine prognostic subgroups in the historical data

(YE , Y T )

Age Cyto (1,0) (1,1) (0,0) (0,1) Total

14–41 Good 42 (81) 6 (12) 4 (8) 0 (0) 52
14–41 Intermediate 63 (46) 30 (22) 27 (20) 17 (12) 137
14–41 Poor 7 (25) 4 (14) 11 (39) 6 (21) 28
42–52 Good 16 (59) 6 (22) 3 (11) 2 (7) 27
42–52 Intermediate 64 (37) 35 (20) 36 (21) 38 (22) 173
42–52 Poor 7 (15) 6 (13) 16 (33) 19 (40) 48
53–59 Good 4 (44) 3 (33) 2 (22) 0 (0) 9
53–59 Intermediate 45 (30) 40 (26) 36 (24) 31 (20) 152
53–59 Poor 9 (13) 8 (12) 23 (34) 27 (40) 67
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Table 2
Fit of the historical data under the bivariate Gaussian copula

model with probit link. Cytogenetic abnormality (Cyto) is
classified as prognostically good if I-16 or t(8:21), poor if

−5/−7, and otherwise intermediate.

Posterior values based
on the historical data

Effects on Effects on
Pr(efficacy) Pr(toxicity)

Variable Meansd Pr(β > 0) Meansd Pr(β > 0)

Intercept 0.262.060 – −0.232.059 –
0.01 (Age = 45) −1.309.461 0.002 1.619.458 1.000
Cyto = good 0.818.186 1.000 −0.542.170 0.000
Cyto = poor −0.785.127 0.000 0.148.121 0.889
Association −0.097.063 0.062

nine possibilities, we used the Akaike (AIK), Bayes (BIC)
and Deviance information criteria (DIC; Spiegelhalter et al.,
2002). Denoting the maximum likelihood estimator (MLE)
by θ̂MLE , number of model parameters by p, and sam-
ple size by n, these are AIK = −2log{L(H | θ̂MLE)} + 2p,
BIC = −2log{L(H | θ̂MLE)} + p log(n), and DIC = pD + D̄,
where pD = D̄ – D(θ̄) is the effective number of parameters,
D̄ is the PM deviance, and D(θ̄) is the deviance evaluated
at the PM θ̄ = E(θ | H). For each of the three bivariate dis-
tributions, each of the three criteria was by far the smallest
for the completely homogeneous linear terms ηk(τ j , Z, θ) =
µk + βkZ, indicating that there was no substantive difference
among the historical treatment effects on either πE or πT .
Next comparing the three bivariate models fit with this lin-
ear term, all three criteria were the smallest for the Gaussian
copula with probit link. Numerical details of these analyses
are given in Web Appendix Supplementary Table 1. Conse-
quently, we assumed this model to construct a trial design.
The fitted model is summarized in Table 2, which shows the
strong effects of age and cytogenetics on the outcomes of AML
patients undergoing chemotherapy. For each of the nine rep-
resentative Z vectors, Table 3 gives the PMs and SDs of the
πk(Z, θ)’s and ηk(Z, θ)’s, and the corresponding desirabil-

Table 3
Posterior mean outcome probabilities and linear terms for E and T under the bivariate Gaussian copula model with probit link,
and desirability values evaluated at the posterior means of π(Z, θ), based on the historical data, and the corresponding elicited

bounds π
¯ E

(Z) on πE(Z, θ) and π̄T (Z) on πT (Z, θ), for each of nine representative covariate vectors

Posterior meansd Elicited bounds

Age Cyto πE(Z, θ)sd πT (Z, θ)sd ηE(Z, θ)sd ηT (Z, θ)sd rC(π) π
¯E

(Z) π̄T (Z)

27 Good 0.902.031 0.147.038 1.316.184 −1.065.166 0.73 0.80 0.25
27 Intermediate 0.690.037 0.301.036 0.497.105 −0.523.105 0.45 0.60 0.40
27 Poor 0.388.056 0.355.053 −0.288.147 −0.375.144 0.28 0.25 0.45
48 Good 0.847.041 0.237.049 1.041.178 −0.725.161 0.60 0.75 0.30
48 Intermediate 0.588.023 0.427.024 0.222.060 −0.183.060 0.33 0.50 0.50
48 Poor 0.288.038 0.486.042 −0.563.111 −0.035.105 0.21 0.15 0.55
58 Good 0.814.051 0.290.060 0.910.194 −0.563.177 0.53 0.70 0.35
58 Intermediate 0.536.032 0.492.032 0.091.082 −0.021.081 0.29 0.45 0.60
58 Poor 0.246.038 0.550.045 −0.693.121 0.127.114 0.18 0.10 0.65

ities rC(π) evaluated at the PMs π = E{π(Z(j),θ) | H} for
j = 1, . . . ,K. The fit of this data set illustrates how the values
of rC(π) may be used as a one-dimensional index for compar-
ing the representative prognostic covariates {Z(1), . . . ,Z(K)}
in terms of their associated historical PM-CR and toxicity
probabilities.

5.3 Trial Design
A maximum of 60 patients will be enrolled in the trial. The
target contour C was obtained by fitting a quadratic to the
four target pairs (0.75, 0.50), (0.30, 0), (1, 0.60), (0.40, 0.12)
corresponding to a patient with Z∗ =(48, intermediate).
These targets were considered equally desirable improve-
ments over the historical mean E{π(Z∗,θ) | H} = (0.59, 0.43).
This yielded the target curve πT = − 0.5605 + 2.1226πE
−0.9591π2

E , and C was defined to be the set of π satisfying
this equation for 0.30 � πE � 1, where the fitted curve is
strictly increasing. Based on this C, the PM criterion δ

(PM )
n (x,

Z) will be used to quantify desirability. The trial acceptabil-
ity bounding functions were constructed using the elicited
covariate-specific acceptability bounds given in the last two
columns of Table 3, and are given by the quadratics

π
¯E

(Z) = 0.4063 + 0.4078ζE(Z) − 0.0806{ζE(Z)}2

and

π̄T (Z) = 0.5890 + 0.4739ζT (Z) + 0.1403{ζT (Z)}2,

where ζE(Z) and ζT (Z) are obtained from the fitted val-
ues given in Table 3. The bounding functions are plotted in
Figure 1, where for illustration the bounds π

¯E
(58,poor) =

0.10 and π̄T (58,poor) = 0.65 for a 58-year-old patient with
poor Cyto are denoted by a triangle, and the bounds
π
¯E

(48, intermediate) = 0.50 and π̄T (48, intermediate) = 0.50
for a 48-year-old patient with intermediate Cyto are denoted
by a diamond. Using these bounding functions, the accept-
ability criteria (10) and (11) will be applied with pE = pT =
0.90.

Based on the fits of the historical data, the assumed
model underlying the method will be the Gaussian cop-
ula with probit link, and to ensure flexibility both dose-
outcome functions will be assumed to follow a quadratic form,
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fk(x, αk) = αk,0 + αk,1x + αk,2x
2, for k = E, T . The

elicited prior means of π(xj ,Z∗) for the five IDA dose lev-
els were the historical mean (0.59, 0.43) for the standard dose
12 mg/m2, and the respective pairs for 15, 18, 21, 24 mg/m2

were (0.70, 0.50), (0.75, 0.55), (0.85, 0.70), (0.90, 0.90). Using
the normalized values x = −2, −1, 0, 1, 2 for the five IDA
doses in the model, a LS fit of the linear terms yielded prior
means (0.773, 0.262, 0.0077) for (αE,0, αE,1, αE,2) and (0.098,
0.344, 0.1025) for (αT,0, αT,1, αT,2). The prior means of all in-
teraction parameters γE and γT were set equal to 0. Using the
methods described in Section 2 with a maximum ESS value of
1.3, each parameter in αE , αT , γE , and γT was given prior
SD 1.33, except for the quadratic coefficients αE,2 and αT,2,
which were set equal to 0.2 × 1.33 = 0.266.

5.4 Simulation Study
We studied the design’s behavior under a wide variety of
dose-outcome scenarios. Each scenario was specified in terms
of fixed values of the 10 marginal probabilities {πE(xj , Z∗),
πT (xj , Z∗), j = 1, . . . , 5} at reference Z∗ and fixed interaction
parameters γ = (γE , γT ). In each simulated trial, each pa-
tient’s Z vector was sampled from H. To obtain fixed values
of πa,b(xj , Z) for each sampled Z to use as a basis for sim-
ulating the outcome [Y |Z], for each k and xj we solved the
equation g{πk(xj , Z∗)} = ηk(xj , Z∗) = βkZ∗ + fk(xj) + xj
γkZ∗ for fk(xj), substituting the historical means E(βk | H)
for βk. This in turn yielded the fixed marginals πk(xj , Z) =
g−1{βkZ + fk(xj) + xj γkZ} for the given Z, and the bivari-
ate probabilities πa,b(xj , Z) were then obtained under the
Gaussian copula with probit link by substituting the histori-
cal mean E(ψ | H) = −0.097 for ψ.

To assess the comparative advantage of accounting for Z
using our proposed model and method, under each scenario
we also simulated the trial using (1) our proposed method
but assuming the reduced model with no dose–covariate in-
teractions, γ ≡ 0, and (2) a greatly simplified version of
our method that ignores Z completely. For this method, the
model is reduced by assuming β ≡ 0 and γ ≡ 0 so that
ηk(x, Z, θ) = fk(x, αk), using the same acceptability bounds
π
¯E

(Z∗) and π̄T (Z∗) for all patients, so that An(Z∗) is used
regardless of the patient’s Z vector and, similarly, the dose
desirability criterion is based on the simplified model π(x, θ)
that ignores Z. For brevity, we denote these three methods by
Z − INT, Z − No INT, and No Z, respectively.

To evaluate how well each method selected xj for a patient
with covariates Z under each scenario, in addition to tabulat-
ing selection probabilities for each xj and Z(r), we computed
the following statistic. Given Z and Dn, unless An(Z) = φ,
let x(Z, Dn) denote the covariate-specific dose selected by
the method. One may compute the true value of π(x(Z, Dn),
Z) under the scenario and thus the geometric desirability
rC{π(x(Z,Dn),Z)} at the selected dose for the given Z. Thus,
a simple criterion for comparing x(Z, Dn) to the best possible
dose that could have been selected for a patient with covari-
ates Z is

ρ(Z) =
rC{π(x(Z,Dn),Z)}
max
j=1,...,5

rC{π(xj ,Z)} , (13)

the ratio of the geometric desirability of the selected dose to
maximum desirability that could have been achieved. This
takes on values between 0 and 1, with ρ(Z) = 1 if the best
possible dose was selected.

Simulation results for patients with Z = (27, good), (48, in-
termediate), and (58, poor) are summarized in Table 4. Under
simulation scenario 1, the geometric desirability rC(πE , πT ) in-
creases with dose for each Z, and for each dose the numerical
values of rC(πE , πT ) change dramatically with Z, similar to
what was seen in the historical data. Scenario 2 is obtained
from scenario 1 by adding dose-covariate interactions, γE,2 =
γE,good = 0.6, γE,3 = γE,poor = −0.8, γT,2 = γT,good = −0.6, and
γT,3 = γT,poor = 0.8, with no interactions between dose and pa-
tient age. This says that, with higher x, the interactions lead to
larger πE(x, Z, θ) and smaller πT (x, Z, θ) for patients with
good cytogenetics, whereas the interactions have the oppo-
site effect on patients with poor cytogenetics. The particular
numerical values of the interaction parameters were chosen
to produce effects of reasonable magnitudes on the probabil-
ity domain. This is shown by Figure 2, which illustrates the
effect of patient prognosis on πE and πT under scenario 2,
and shows that higher doses are more desirable for patients
with good or intermediate cytogenetics but lower doses are
more desirable for patients with poor cytogenetics. This sce-
nario reflects what might be anticipated to occur in actual
treatment of AML. In scenario 3, πT (x, Z, θ) and hence
rC(πE , πT ) is nonmonotone in dose, with rC(πE , πT ) largest
at the middle-dose level. Scenario 4 is obtained from scenario
3 by adding the same interaction parameters as assumed in
scenario 2.

The simulation results show that the method based on the
full model including dose–covariate interactions does a very
reliable job of selecting the most desirable doses within pa-
tient prognostic subgroups. The results for scenarios 2 and 4
are quite striking, because they show that the method very re-
liably detects treatment–covariate interactions and selects the
doses that are most desirable within each subgroup. For exam-
ple, under scenario 4, the higher doses that are most desirable
for (27, good) patients are selected with high probability for
those patients, the middle doses that are most desirable for
(48, intermediate) patients are selected with high probability
for those patients, and the lower doses that are most desir-
able for (58, poor) patients are selected with high probability
for those patients. In terms of the desirability of the selected
dose relative to the best possible dose, the values of ρ for
Z − INT, Z − No INT, and No Z are virtually identical un-
der the no-interaction scenarios 1 and 3, which reflects the
fact that the dose acceptability limits change with patient
prognosis (Figure 1). In contrast, under the dose–covariate
interaction scenarios 2 and 4, the Z − No INT method that
assumes a model ignoring interactions has ρ values substan-
tially lower than those for Z − INT, and the ρ values for the
No Z method are extremely low for (58, poor) patients. Thus,
either ignoring treatment–covariate interactions or ignoring
covariates entirely produces a method with greatly inferior
properties.

Additional simulations under other scenarios are summa-
rized in Web Appendix Supplementary Table 2. In par-
ticular, the additional simulations show that the method
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Table 4
Simulation results for the AML trial. Dose-covariate interactions γ = (γE,1, γE,2, γE,3, γT,1, γT,2, γT,3) correspond to

Z = (age, good cyto, poor cyto)

Dose level

Scenario 1 γ = (0,0,0,0,0,0) 1 2 3 4 5 None ρ

27, good πE , πT 0.57, 0.04 0.70, 0.06 0.89, 0.07 0.96, 0.08 0.97, 0.09
rC(πE , πT ) 0.52 0.61 0.79 0.84 0.84

Z – INT % Selected 1 4 53 29 13 0 0.95
Z – NO INT % Selected 0 2 35 34 29 0 0.97
NO Z % Selected 0 1 37 33 25 4 0.97
48, intermediate πE , πT 0.18, 0.20 0.28, 0.24 0.55, 0.28 0.74, 0.31 0.79, 0.33

rC(πE , πT ) 0.25 0.28 0.38 0.47 0.49
Z – INT % Selected 0 2 32 37 29 0 0.91
Z – NO INT % Selected 0 1 31 32 35 0 0.92
NO Z % Selected 0 1 37 33 25 4 0.90
58, Poor πE , πT 0.03, .30 0.07, 0.35 0.21, 0.40 0.39, 0.43 0.46, 0.45

rC(πE , πT ) 0.18 0.18 0.21 0.26 0.27
Z – INT % Selected 10 11 14 23 42 0 0.88
Z – NO INT % Selected 4 9 19 25 43 0 0.90
NO Z % Selected 0 1 37 33 25 4 0.89

Scenario 2 γ = (0,.6,−0.8,0,−0.6,0.8) 1 2 3 4 5 None ρ

27, good πE , πT 0.15, 0.30 0.46, 0.16 0.89, 0.07 0.99, 0.02 1.00, 0.01
rC(πE , πT ) 0.22 0.39 0.79 0.95 0.99

Z – INT % Selected 0 0 29 40 31 0 0.93
Z – NO INT % Selected 7 15 51 16 10 1 0.74
NO Z % Selected 1 4 50 26 14 5 0.85
48, intermediate πE , πT 0.18, 0.20 0.28, 0.24 0.55, 0.28 0.74, 0.31 0.79, 0.33

rC(πE , πT ) 0.25 0.28 0.38 0.47 0.49
Z – INT % Selected 1 3 43 29 23 0 0.88
Z – NO INT % Selected 7 14 47 17 13 2 0.79
NO Z % Selected 1 4 50 26 14 5 0.86
58, Poor πE , πT 0.41, 0.02 0.24, 0.12 0.21, 0.40 0.14, 0.73 0.04, 0.93

rC(πE , πT ) 0.42 0.30 0.21 0.13 0.09
Z – INT % Selected 74 21 4 1 0 0 0.91
Z – NO INT % Selected 26 26 23 11 14 0 0.62
NO Z % Selected 1 4 50 26 14 5 0.41

Dose level

Scenario 3 γ = (0,0,0,0,0,0) 1 2 3 4 5 None
27, good πE , πT 0.43, 0.03 0.76, 0.07 0.94, 0.12 0.90, 0.17 0.65, 0.31

rC(πE , πT ) 0.43 0.66 0.79 0.70 0.42
Z – INT % Selected 0 8 82 10 0 0 0.97
Z – NO INT % Selected 0 12 81 5 1 1 0.97
NO Z % Selected 0 5 79 8 0 8 0.98
48, intermediate πE , πT 0.10, 0.15 0.35, 0.28 0.68, 0.38 0.58, 0.47 0.24, 0.65

rC(πE , πT ) 0.24 0.29 0.40 0.31 0.16
Z – INT % Selected 0 9 82 8 0 1 0.96
Z – NO INT % Selected 0 11 81 6 0 2 0.95
NO Z % Selected 0 5 79 8 0 8 0.96
58, poor πE , πT 0.01, 0.23 0.10, 0.40 0.33, 0.50 0.24, 0.60 0.05, 0.76

rC(πE , πT ) 0.19 0.18 0.22 0.17 0.11
Z – INT % Selected 13 32 42 9 4 0 0.89
Z – NO INT % Selected 8 26 55 8 3 0 0.91
NO Z % Selected 0 5 79 8 0 8 0.97

Scenario 4 γ = (0,0.6,−0.8,0,−0.6,0.8) 1 2 3 4 5 None
27, good πE , πT 0.08, 0.24 0.54, 0.20 0.94, 0.12 0.97, .06 0.94, 0.04

rC(πE , πT ) 0.21 0.42 0.79 0.89 0.88
Z – INT % Selected 0 0 46 46 8 0 0.95
Z – NO INT % Selected 2 43 54 1 0 0 0.70
NO Z % Selected 0 11 78 3 1 7 0.85
48, intermediate πE , πT 0.10, 0.15 0.35, 0.28 0.68, 0.38 0.58, 0.47 0.24, 0.65

rC(πE , πT ) 0.24 0.29 0.40 0.31 0.16
Z – INT % Selected 0 14 77 7 1 1 0.94
Z – NO INT % Selected 3 36 57 1 1 2 0.88
NO Z % Selected 0 11 78 3 1 7 0.95
58, poor πE , πT 0.28, 0.01 0.31, 0.14 0.33, 0.50 0.07, 0.85 0.00, 0.99

rC(πE , πT ) 0.35 0.32 0.22 0.10 0.07
Z – INT % Selected 38 58 4 0 0 0 0.93
Z – NO INT % Selected 31 37 27 2 3 0 0.83
NO Z % Selected 0 11 78 3 1 7 0.64
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Figure 2. Simulation scenario 2 in terms of the fixed marginal outcome probabilities πE(xj , Z) (shown as circles) and
πT (xj , Z) (shown as triangles) for nine different patient covariate Z vectors. Solid (open) points correspond to acceptable
(unacceptable) doses.

terminates accrual with no dose selected with high proba-
bility in subgroups where toxicity is excessive for all doses.
Simulations (not shown) using the PP desirability criterion

δ
(PP)
n (x, Z) in place of δ

(PM )
n (x, Z) showed that the PM-based

method has slightly better performance than the PP-based
method in the cases studied.

6. Discussion
We have proposed a dose-finding method suitable for phase
I–II clinical trials that chooses doses based on efficacy and
toxicity while accounting for each patient’s prognostic covari-
ates (Figure 3). Our proposed method is very complex, and
it requires a substantial effort on the part of both the statis-
tician and the physicians planning the trial. Our simulation
study shows that this complexity is justified. In terms of the
probabilities of selecting acceptably safe and efficacious doses
that are most desirable for each patient, our method provides
substantial improvements over simpler versions that either ig-

nore dose–covariate interactions (scenarios 2 and 4, Table 4)
or that ignore covariates entirely (scenarios 1 and 3, Table 4).
A general implication is that established dose-finding methods
that ignore patient heterogeneity run a high risk of assigning
inferior doses to particular patient subgroups. Given the com-
plexity of our method, however, when entry criteria ensure
that patients are reasonably homogeneous, it may be more
appropriate to use simpler methods not adjusting patient
covariates.

The method is computationally intensive and requires spe-
cialized software. To facilitate application of the method, com-
puter programs needed for implementation are available from
the second author on request.

7. Supplementary Materials
Web Appendices referenced in Section 5 are available un-
der the Paper Information link at the Biometrics website
http://www.biometrics.tibs.org.
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Figure 3. Illustration of the proposed method by the outcome of a single trial in terms of final posteriors of πE(xj , Z) and
πT (xj , Z) and the desirability values rC{π(xj ,Z)} for doses x1, . . . ,x5, for Z = (27, good), (48, interm), and (58, poor).
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