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Summary. Most phase I clinical trials are designed to determine a maximum-tolerated dose (MTD) for
one initial administration or treatment course of a cytotoxic experimental agent. Toxicity usually is defined
as the indicator of whether one or more particular adverse events occur within a short time period from
the start of therapy. However, physicians often administer an agent to the patient repeatedly and monitor
long-term toxicity due to cumulative effects. We propose a new method for such settings. It is based on the
time to toxicity rather than a binary outcome, and the goal is to determine a maximum-tolerated schedule
(MTS) rather than a conventional MTD. The model and method account for a patient’s entire sequence
of administrations, with the overall hazard of toxicity modeled as the sum of a sequence of hazards, each
associated with one administration. Data monitoring and decision making are done continuously throughout
the trial. We illustrate the method with an allogeneic bone marrow transplantation (BMT) trial to determine
how long a recombinant human growth factor can be administered as prophylaxis for acute graft-versus-host
disease (aGVHD), and we present a simulation study in the context of this trial.

Key words: Bone marrow transplantation; CRM; Dose escalation; KGF; Maximum-tolerated dose; Phase I
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1. Introduction
In an allogeneic bone marrow transplant (BMT), a subject
(host) receives the bone marrow (graft) donated by another
subject. The graft contains crucial T and natural killer cells
that coordinate a positive immune response to any resid-
ual leukemia, called a graft-versus-leukemia (GVL) effect, yet
also coordinate a negative immune response against host tis-
sue, called graft-versus-host disease (GVHD). Acute GVHD
(aGVHD) leads to substantial damage to the host’s skin, liver,
and/or gastrointestinal (GI) tract and remains a leading cause
of morbidity and mortality in BMT patients.

Preclinical studies have shown that recombinant hu-
man keratinocyte growth factor (KGF) markedly reduces
chemotherapy- or radiation-induced injury to the mucosal lin-
ing of the lower GI tract (Farrell et al., 1998). These results
suggest that KGF can shield the GI tract of allogeneic BMT
recipients from the detrimental effects of aGVHD while pre-
serving the beneficial GVL effect (Panoskaltsis-Mortari et al.,
1998; Krijanovski et al., 1999). However, KGF carries the
risk of several toxicities, including skin-related events such
as rash, flushing, and edema, as well as increases in amy-
lase and lipase, both of which are indicators of pancreas
dysfunction.

A phase I study in colorectal cancer patients found that
40 mg/kg of KGF could be safely administered on each of 3
consecutive days (Meropol et al., 2003). In a phase I study in
BMT, each patient received 60 mg/kg of KGF on each of the
2 days prior to BMT, and on the day of BMT. After 4 days of
rest with no KGF, the patient received KGF for 3 more days.
Thus, KGF was administered using the 10-day schedule (3-
days-on/4-days-off/3-days-on), which we denote by (3+, 4−,
3+). Toxicity was monitored for 28 days, motivated by the
assumption that any adverse effect due to a single adminis-
tration of KGF is certain to occur within 18 days. Although
one course of KGF using the (3+, 4−, 3+) schedule is consid-
ered safe, investigators believed that this may not be sufficient
prophylaxis for aGHVD, which may take up to roughly 100
days after BMT to develop. Consequently, the investigators
wished to study the safety of multiple courses of KGF, with
4 days of rest between consecutive courses, and focus on tox-
icity associated with the entire period of therapy. Thus, two
courses would consist of the 24-day schedule (3+, 4−, 3+, 4−,
3+, 4−, 3+) and so on.

Conventional phase I studies determine the maximum-
tolerated dose (MTD) for a single administration or course
by characterizing a patient’s outcome as a binary variable
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indicating whether toxicity occurs within a relatively short
time period from the start of therapy. Generally, the MTD
is considered the highest dose that does not present a prac-
tical limitation to therapy (Storer, 1989; Goodman, Zahurak,
and Piantadosi, 1995; Babb, Rogatko, and Zacks, 1998). This
approach has seen widespread use largely because it facili-
tates adaptive dose-finding methods that use the doses and
outcomes of previous patients to select doses for successive pa-
tients. However, such methods are inadequate for trials where
the agent is administered repeatedly over time and evaluation
of long-term effects is important, because they (1) base dose
finding on one, initial administration or course of therapy, and
(2) require that toxicity be evaluated quickly enough to allow
for adaptive dose assignment. One exception is the time to
event continual reassessment method (TiTE CRM) (Cheung
and Chappell, 2000), which evaluates long-term toxicity with-
out delaying accrual, although the TiTE CRM does not ac-
commodate settings where treatment continues past the first
course.

Our proposed method uses patient’s time to toxicity as the
outcome, with the hazard of toxicity modeled as the sum of
a sequence of hazards, each associated with one administra-
tion. We determine the maximum-tolerated schedule (MTS)
that the patient may receive based on the risk of toxicity oc-
curring within a specified follow-up period that includes the
maximum schedule being considered. Patient accrual, data
monitoring, and outcome-adaptive decision making are done
continuously throughout the trial under a Bayesian formula-
tion. Each time a new patient is accrued, the most recent data
are used to evaluate criteria that define the optimal schedule,
which is assigned to the new patient.

Section 2 establishes notation and presents the probability
model. Section 3 describes a method for prior elicitation, and
Section 4 describes the trial design. Section 5 describes the
application of the method to the KGF trial, and presents a
computer simulation study to assess the design’s performance.
We conclude with a discussion in Section 6.

2. Probability Model for Toxicity
2.1 Preliminary Notation
Let t∗ denote any given time from the start of the trial when
one evaluates the data and makes a decision, n∗ the number of
patients enrolled up to t∗, and ei the study time when patient
i is enrolled, for i = 1, . . . ,n∗. Let Ti be the actual, possibly
unobserved, time after study entry when patient i experiences
toxicity. At study time t∗, we denote the amount of time that
patient i has been observed by

Yi =

{
Ti if ei + Ti ≤ t∗,

t∗ − ei if ei + Ti > t∗,

and we define δi = 1 if Yi = Ti and δi = 0 if Yi �= Ti , that is,
δi is the indicator that patient i has had toxicity by t∗.

Let si = {si,1, . . . , si,mi } denote the successive patient times
at which the ith patient receives the agent, where si,1 co-
incides with study entry. Under this general notation, the
agent can be administered whenever and as frequently as
desired to each patient, and an arbitrary number of differ-
ent treatment sequences can be studied. This allows some of
a patient’s actual administration times to deviate from his/

her scheduled times. We assume that the investigators wish
to study k treatment sequences, s(1), . . . , s(k), where s(j) =
(s1, s2, . . . , sm(j)) and that the jth sequence has a total of m(j)

administrations. Furthermore, s(j) is a subsequence of s(j+1)

for each j = 1, . . . , k − 1, so that the duration of therapy in-
creases with j and m(1) <m(2) · · ·<m(k). In the KGF trial, one
course of the (3+, 4−, 3+) schedule corresponds to s(1) = (1, 2,
3, 8, 9, 10), two courses correspond to s(2) = (1, 2, 3, 8, 9,
10, 15, 16, 17, 22, 23, 24) = (s(1), s(1) + 14), and so on, with
BMT at day 3 in any case.

Let mi denote the index of the last administration received
by patient i at interim study time t∗. Although m(j) admin-
istrations are planned for a patient assigned to schedule s(j),
at t∗ it may be the case that mi < m(j) either due to ad-
ministrative censoring or because patient i had toxicity at
study time ei + si,mi and thus received no further adminis-
trations. Let τ denote the fixed maximum length of follow-up
for each patient. This should be chosen by the physicians for
clinical reasons, but must be large enough to accommodate
the longest sequence, s(k). In the KGF trial, τ = 100 days. A
fixed target probability, pτ , is elicited from the physician and
is defined as the targeted threshold probability of toxicity at
any time from enrollment to τ .

2.2 Toxicity Distribution
Temporarily suppress the patient index i. Consider a single
patient, and assume that the same dose of the agent is given
at each administration. Let h(u |θ) be the hazard of toxicity
attributed to a single administration, where θ is the model
parameter vector. We define the total hazard of toxicity at
time t∗ for a patient treated with schedule s to be

λ(Y |θ, s) =

m∑
�=1

h(Y − s� |θ), (1)

with h(u |θ) = 0 if u < 0. Under this definition, the patient’s
risk of toxicity at t∗ depends on three quantities: (1) Y, the
patient’s time on study, (2) m, the number of administrations
received up to t∗, and (3) s, the times at which the treat-
ment was administered. We assume that the form of h(·) does
not change with successive administrations, although this as-
sumption can be relaxed.

The patient’s cumulative hazard function (CHF) at t∗ is

Λ(Y |θ, s) =

∫ Y

0

m∑
�=1

h(u− s� |θ) du,

=

m∑
�=1

H(Y − s� |θ), (2)

where

H(Y − s� |θ) =

∫ Y 0

0

h(u− s� |θ) du.

From equation (2), the cumulative distribution function
(c.d.f.) and probability density function (p.d.f.) at t∗ are

F (Y |θ, s) = 1 − exp{−Λ(Y |θ, s)},

f(Y |θ, s) = λ(Y |θ, s)exp{−Λ(Y |θ, s)}.

(3)
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2.3 Specifying the Single-Administration Hazard Function
The single-administration hazard h(u |θ) can be quite gen-
eral, provided that it reasonably reflects the risk of toxicity
for the agent under study and is sufficiently tractable to facil-
itate the necessary computations. In general, because certain
toxicities may be hard to identify before the trial, one can
include in the definition of toxicity any adverse event suffi-
ciently severe that it precludes further administration of the
agent. We assume that the hazard of toxicity from a single ad-
ministration has a finite duration and vanishes to zero within
θ3 days. In the KGF trial, based on the physicians’ experience,
the hazard vanishes after θ3 = 18 days.

Because we assume that h(·) has finite duration, we cannot
model h(·) as the hazard of a typical parametric lifetime distri-
bution, such as the gamma or Weibull, unless h(·) is truncated
appropriately. As a simple, practical alternative, we assume
that h increases linearly to a maximum and decreases linearly
thereafter. Specifically, we define

h(u |θ) =




θ2
u

θ1
, 0 ≤ u ≤ θ1,

θ2
θ3 − u

θ3 − θ1
, θ1 < u ≤ θ3,

0, u > θ3 or u < 0.

(4)

Thus, θ = (θ1, θ2, θ3), with θ1 the time at which h(u |θ)
reaches its maximum, θ2, and θ3 the time when h(·) vanishes
to zero. Figure 1 illustrates this function. Initially, we assumed
that h(·) had only the two parameters θ1 and θ2, with θ3 fixed
and assumed known. However, we found that fixing θ3 severely
hindered the method’s ability to locate the optimal schedule
when the actual duration of h(·) was much longer than the
assumed value of θ3.

Other forms for h(u |θ) are possible, depending on the
particular application. For example, the Weibull hazard
h1(u |θ) = θ1θ2(θ1u)θ2−1 allows the risk of toxicity to con-
tinue indefinitely, with the shape parameter θ2 determining
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Figure 1. Parametric hazard function for a single adminis-
tration of an agent.

whether the risk increases, decreases, or remains constant
over time. One also could vary the hazard of toxicity for
each administration. For example, in our application, one
may believe that each administration has a hazard that is
proportional to its proximity to BMT. Because each patient
has their BMT at time s3 and the last possible adminis-
tration would occur 77 days later, an extended version of
(1) is λ(Y |θ, s) =

∑
�
h�(Y − s� |θ), where h�(Y − s� |θ) =

α(s�)h(Y − s� |θ), and

α(s�) = 2 −
∣∣∣ s� − s3

77 − s3

∣∣∣
is an inflation factor that is largest at s3 and decreases linearly
as the time of administration moves away from s3.

2.4 Likelihood and Posterior
The most recent data at study time t∗ collected on patient i,
for i = 1, 2, . . . ,n∗, are Di = (si, Yi, δi). The optimal treat-
ment sequence assigned to patient n∗ + 1 who enters the trial
at t∗ is based on the posterior of θ given the data available at
t∗, which we denote by D∗ = (t∗,D1,D2, . . . ,Dn∗). The likeli-
hood at t∗ is

L(D∗ |θ) =

n∗∏
i=1

{f(Yi |θ, si)}δi{1 − F (Yi |θ, si)}1−δi , (5)

and, denoting the prior by p(θ), the posterior of θ is

g(θ | D∗) =
L(D∗ |θ)p(θ)∫
L(D∗ |θ)p(θ) dθ

.

Because the above integral cannot be obtained analytically
under our assumed model, we compute posterior quantities
via Markov chain Monte Carlo (MCMC) methods (Robert
and Casella, 1999). Our computer code (in the C program-
ming language) for the MCMC computations is available by
request.

3. Establishing Prior Distribution for θ

3.1 Eliciting Prior Parameters from Investigators
The prior p(θ) must be sufficiently uninformative so that it is
dominated by the data in order to allow the schedule-finding
algorithm to provide a safe and reliable design. We specify
the prior distribution of θ1 conditional on θ3 because θ1 ≤ θ3.
Because no such restriction is necessary for θ2, we assume a
priori that θ2 is independent of both θ1 and θ3. Thus, p(θ) =
p3(θ3)p1(θ1 | θ3)p2(θ2).

To develop p(θ), we first ask the investigator to specify a
range [T �, Tu ] of plausible values for the duration of h(·), as
well as µθ3 , the anticipated average duration. We assume that
θ3 follows the generalized beta distribution

p3(u) =
(u− T�)

a3−1(Tu − u)b3−1

(Tu − T�)a3+b3−1B(a3, b3)
, T� ≤ u ≤ Tu,

where B(a, b) =
∫ 1

0 xa−1(1 − x)b−1dx, a3 = k3(µθ3 − T�), and
b3 = k3(Tu − µθ3). The tuning constant k3 scales the val-
ues of a3 and b3 and modulates the variability of p3(u), which
will increase as k3 decreases. For example, in the KGF trial,
if the investigators believed that the duration of the hazard
could range from 4 to 100 days, but was 18 days on aver-
age, a3 ∝ 14 and b3 ∝ 82. Through preliminary simulations,
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an appropriate value for k3 may be determined so that p3(u)
is sufficiently sensitive to the data collected on the first few
patients.

Next, we assume that θ1 | θ3 follows the generalized beta
distribution

p1(u | θ3) =
ua1−1(θ3 − u)b1−1

θa1+b1−1
3 B(a1, b1)

, 0 ≤ u ≤ θ3,

where the parameters a1 and b1 are determined similarly to
a3 and b3 above. However, a different approach for determin-
ing a1 and b1 is appropriate when the investigator summarizes
the range of plausible values as the interval µθ1 ± d. View-
ing this as a 95% credible interval and assuming approximate
symmetry about E(θ1 | θ3) = µθ1 , we obtain the equations
var(θ1 | θ3) = θ2

3a1b1/{(a1 + b1)
2(a1 + b1 + 1)} = d2/4 and

µθ1 = θ3a1/(a1 + b1), which yield the prior parameters

a1 =
µθ1

θ3

[
4µθ1(θ3 − µθ1)

d2 − 1

]
,

b1 =
θ3 − µθ1

θ3

[
4µθ1(θ3 − µθ1)

d2 − 1

]
.

Conventional methods for developing priors that are alterna-
tives to the two approaches given above are given by Robert
(2001, Chapter 3).

To determine p2(u), the investigator must select the sched-
ule, s∗, from the set {s(1), . . . , s(k)} that (s)he believes a pri-
ori to be the MTS. Recall that each patient is followed for
up to τ days, and pτ is the targeted probability of toxicity
by τ . From the a priori hypothesis of the optimal schedule,
we determine µθ2 = E(θ2) as the value for which s∗ satisfies
F (τ | θ2 = µθ2 , θ1, θ3 = θ∗3, s∗) = pτ , where θ∗3 is a fixed
value of θ3. A fixed value of θ1 is unnecessary because the
triangle in Figure 1 has area θ2θ3/2, making the cumulative
hazard (and cumulative probability) of toxicity independent
of θ1. For example, in the KGF trial, if the investigators se-
lect s∗ = s(2) as optimal with θ∗3 = 18, then each administra-
tion has cumulative hazard 9µθ2 . Because there are 12 ad-
ministrations, the entire schedule has a cumulative hazard
of 108µθ2 and, as a result, pτ = 1 − exp(−108µθ2), yielding
µθ2 = − log(1 − pτ )/108.

Because θ2 is the height of the single-administration hazard,
it is qualitatively different from θ1 and θ3, which are on the
time domain. Therefore, we do not restrict the upper bound of
p2(u), and assume that θ2 has a Gamma prior with parameters
a2 = k2 and b2 = k2/µθ2 , where k2 is a tuning constant used
to modulate var(θ2) = µ2

θ2
/k2.

3.2 Calibrating the Prior Distribution of θ
The ability of the data to dominate the prior distribution of θ
is heavily influenced by the variances of p3(θ3), p1(θ1 | θ3), and
p2(θ2), as quantified by the tuning constants k2 and k3, and d,
the width of the credible interval for θ1. Thus, it is essential to
carefully evaluate the design’s sensitivity to these parameters.
By simulating the toxicity times of a small number of patients,
one can compare the prior means for θ to their respective
posterior values and evaluate the effects of a small amount
of data on p(θ). For example, if p(θ3) reflects the belief that

toxicity is unlikely beyond 25 days after administration, by
simulating a few patients to have toxicities that occur far
beyond 25 days, one can determine whether the prior allows
the posterior mean of θ3 to shift beyond its prior mean and
reflect the data appropriately. If not, k2, k3, and d may be
calibrated and the exercise repeated until the desired effect is
achieved.

The prior variances cannot be made arbitrarily large, as
is usually done with Bayesian analyses of large data sets. In
any small-scale clinical trial using adaptive methods, very few
data are available, especially early in the trial. If there is sub-
stantial prior probability mass over too broad a range, this of-
ten cannot be overcome by a small amount of data, depending
on the particular model, data structure, and decision-making
algorithm. In the present setting, unduly large prior variances
would severely hinder the algorithm’s ability to assign opti-
mal schedules during the trial and select an optimal MTS at
the end.

It also is important to examine the prior on F (τ |θ, s(j))
for each s(j) to determine whether p(θ) may be producing
pathological behavior by causing too much of the probability
mass of a given F (τ |θ, s(j)) to be placed near 0 or 1. That is,
it is not p(θ) or p(θ | data) per se that matter, but rather the
consequent distributions of the F (τ |θ, s(j))’s. For example,
suppose that one assumes a priori that 4 ≤ θ3 ≤ 100 days,
with a mean E(θ3) = 18 days, while 0 ≤ θ1 ≤ 4. If schedule 2
is optimal a priori for the targeted threshold of pτ = 0.20 for
τ = 100 days, this motivates the assumption that θ2 has a
Gamma distribution with mean 0.0021. In this example, we
also define k2 = k3 = 1 based upon a preliminary calibration,
the methods of which were discussed above. Figure 2 displays
the resulting priors of F (100 |θ, s(j), 100) for j = 1, . . . , 6. As
desired, E{F (100 |θ, s(j), 100)} is closest to 0.20 for j = 2;
also, the dispersion of F (100 |θ, s(j), 100) increases with j due
to the cumulative nature of the schedules.

4. Trial Conduct
A maximum of N patients are enrolled in the trial, with each
patient assigned a treatment administration sequence upon
arrival. The first patient is assigned the shortest sequence,
s(1). Each patient is followed for up to τ days, with treatment
terminated if toxicity is observed. Given a desired threshold
pτ for F (τ |θ, s(j)), we will consider two alternative criteria
for choosing each patient’s sequence.

Criterion 1. At time t∗, for each j = 1, . . . , k, compute

F ∗
j (τ) = E

{
F

(
τ |θ, s(j)

)
| D∗}. (6)

The best sequence is defined as that having F ∗
j(τ) closest

to pτ , that is, minimizing |F ∗
j(τ) − pτ |. This criterion, as

a function of treatment sequence, is analogous to the CRM
criterion (O’Quigley, Pepe, and Fisher, 1990) based upon the
posterior mean probability of the more usual binary toxicity,
as a function of dose.

Criterion 2. At time t∗, for each j = 1, . . . , k, compute

φj(τ) = Pr
{
F

(
τ |θ, s(j)

)
> pτ

∣∣D∗}. (7)

Because F (τ |θ, s(j)) is monotone increasing in j, it follows
that φ1(τ) ≤ φ2(τ) ≤ · · · ≤ φk(τ). Given a fixed upper limit, p̄,
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Figure 2. Empirical prior distributions for cumulative probability of toxicity by day 100 for each schedule. Each histogram
is based upon 5000 observations. The solid vertical line represents the mean of the distribution.

the best sequence is defined as the longest sequence for which
φj(τ) < p̄.

The second criterion is similar to the acceptability criteria
used by Thall and Russell (1998) for dose finding based on
both efficacy and toxicity, and it also is similar to the cri-
terion for overdose control proposed by Babb, Rogatko, and
Zacks (1998). Under either Criterion 1 or Criterion 2, the best
sequence is assigned to patient n∗ + 1. At the end of the trial,
the MTS is defined as the best sequence based on the final
data.

To protect patient safety, we impose the additional con-
straint that only incremental schedule escalation is permit-
ted. Formally, if s(j) is determined to be the best schedule,
the next patient is assigned s(j) only if each of the sched-
ules s(1), . . . , s(j−1) previously has been assigned to at least
M patients, for a predetermined M ≥ 1. Otherwise, the next
patient enrolled is assigned to the longest schedule that meets
this criterion. In our application, we have set M = 1, although
larger values of M are possible. However, an important prac-
tical consideration is that larger values of M will slow the
speed of schedule escalation, so that the trial will take longer

to accrue patients on longer schedules. Schedule deescalation
is permitted per the criterion without any constraint.

5. Application
5.1 Simulation Study Design
In the KGF trial, the investigators wished to study k = 6
schedules corresponding to 2, 4, 6, 8, 10, or 12 weeks of ther-
apy. Because aGVHD is defined to occur during the first
100 days after transplant, the maximum period to monitor
toxicity was specified to be τ = 100 days. Per the adaptive
design, a schedule is specified for each patient, and KGF is dis-
continued if the patient experiences toxicity before 100 days.
The goal is to determine how long a BMT patient can re-
ceive KGF as prophylaxis for aGVHD while controlling the
probability of toxicity within 100 days to be 20%.

The investigators believed a priori that the hazard of tox-
icity for a single administration vanishes after an average of
18 days, with a range of 4–100 days. They also believed that
θ1, the time when the hazard of toxicity from one administra-
tion of KGF is largest, should be at most 4 days. Using the
methods described in Section 3, we derived parameters a3 and
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Table 1
Probability of toxicity within 100 days for each schedule under each of the simulation scenarios

Schedule (weeks)
Duration of

Scenario hazard (days) 1000θ2 1 (2) 2 (4) 3 (6) 4 (8) 5 (10) 6 (12)

1 18 4.13 0.20 0.36 0.49 0.59 0.67 0.74
50 1.49 0.20 0.36 0.49 0.59 0.67 0.72

2 18 2.07 0.11 0.20 0.28 0.36 0.43 0.49
50 0.74 0.11 0.20 0.28 0.36 0.42 0.47

3 18 1.38 0.07 0.14 0.20 0.26 0.31 0.36
50 0.50 0.07 0.14 0.20 0.26 0.31 0.35

4 18 1.03 0.05 0.11 0.15 0.20 0.24 0.28
50 0.37 0.05 0.11 0.15 0.20 0.24 0.27

5 18 0.83 0.04 0.09 0.13 0.16 0.20 0.24
50 0.30 0.04 0.09 0.13 0.17 0.20 0.23

6 18 0.69 0.04 0.07 0.11 0.14 0.17 0.20
50 0.26 0.04 0.08 0.11 0.15 0.18 0.20

7 18 1.60 0.08 0.16 0.23 0.29 0.35 0.40

8 n/a n/a 0.07 0.14 0.20 0.26 0.31 0.36

b3 for p(θ3) and a1 and b1 for p(θ1 | θ3). Based upon the results
of an earlier trial, the rate of toxicity on the lowest schedule
of KGF was very low, and the investigators believed that even
12 weeks of KGF would not cause appreciably more toxicity,
leading us to assume that p(θ2) was a Gamma distribution

Table 2
Performance of the design with 30 patients, assuming the single-administration hazard duration is 18 days.
Each entry is the schedule’s selection percentage, with number of patients assigned to that schedule given in
parentheses. Values within one schedule of the true MTS are given in boldface. The final column is the mean
absolute deviation (in percentage points) across all 1000 simulations of the cumulative probability of toxicity

of the selected MTS and the threshold pτ .

Schedule (no. of weeks)

Scenario 1 (2) 2 (4) 3 (6) 4 (8) 5 (10) 6 (12) ∆pτ

Criterion 1 1 86.6 13.3 0.1 0.0 0.0 0.0 2.0
(20.9) (6.4) (1.4) (0.6) (0.3) (0.3)

2 27.8 53.5 16.4 2.0 0.2 0.1 0.8
(8.9) (11.8) (4.8) (1.9) (1.5) (1.1)

3 7.9 33.0 37.1 14.4 4.9 2.7 1.3
(4.3) (7.0) (9.4) (3.8) (3.4) (2.1)

4 1.7 21.0 23.2 32.6 10.9 10.6 1.9
(2.7) (4.7) (6.6) (6.9) (6.2) (3.0)

5 0.8 10.8 23.7 24.2 26.3 14.2 3.5
(2.1) (4.8) (4.7) (5.9) (9.1) (3.4)

6 0.1 5.7 16.9 18.6 20.1 38.6 4.1
(1.7) (3.7) (4.5) (3.8) (5.0) (11.3)

Criterion 2 1 93.3 6.4 0.3 0.0 0.0 0.0 1.1
(p̄ = 0.60) (21.9) (4.6) (1.7) (0.8) (0.5) (0.5)

2 40.1 41.9 14.0 3.0 0.8 0.2 1.9
(8.9) (10.4) (4.8) (2.3) (2.2) (1.4)

3 14.2 28.6 31.4 14.6 5.6 5.6 1.2
(5.0) (6.5) (7.5) (5.6) (3.0) (2.4)

4 4.7 16.6 20.1 24.8 20.2 13.6 1.1
(2.8) (4.7) (5.2) (7.4) (6.0) (3.9)

5 1.9 9.8 14.0 18.4 39.1 16.8 2.6
(2.3) (3.2) (3.6) (5.0) (10.8) (5.1)

6 0.4 3.9 9.9 13.4 19.0 53.4 3.1
(1.6) (2.6) (3.4) (3.3) (5.3) (13.8)

with mean 0.0007. Through a detailed sensitivity analysis, we
determined that k3 = 0.1 and k2 = 0.2 allowed the data to
have adequate influence on the posterior of θ.

After studying Criterion 2 with 0.20 ≤ p̄ ≤ 0.80, we found
that p̄ = 0.60 worked best. Values of p̄ > 0.60 tended to make
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Table 3
Performance of the design with 30 patients, assuming the single administration hazard duration is 50 days.
Each entry is the schedule’s selection percentage, with number of patients assigned to that schedule given in
parentheses. Values within one schedule of the true MTS are given in boldface. The final column is the mean
absolute deviation (in percentage points) across all 1000 simulations of the cumulative probability of toxicity

of the selected MTS and the threshold pτ .

Schedule (no. of weeks)

Scenario 1 (2) 2 (4) 3 (6) 4 (8) 5 (10) 6 (12) ∆pτ

Criterion 1 1 83.3 11.4 0.3 0.0 0.0 0.0 0.9
(20.4) (6.0) (1.8) (0.8) (0.5) (0.5)

2 25.8 50.9 18.1 4.2 0.9 0.1 0.0
(7.6) (10.9) (5.5) (2.5) (2.2) (1.3)

3 6.3 31.9 34.0 17.9 6.1 3.8 0.5
(3.5) (6.9) (8.1) (4.3) (4.7) (2.5)

4 1.7 13.4 26.7 30.4 15.6 12.2 1.0
(2.4) (4.9) (5.3) (6.5) (7.6) (3.3)

5 0.9 7.9 20.1 21.0 32.2 17.9 2.7
(1.9) (3.9) (4.6) (5.1) (11.0) (3.5)

6 0.3 4.9 14.6 15.6 19.9 44.7 3.6
(1.6) (3.4) (4.4) (3.7) (4.4) (12.5)

Criterion 2 1 96.4 3.4 0.2 0.0 0.0 0.0 0.6
(p̄ = 0.60) (21.7) (4.1) (1.9) (1.0) (0.7) (0.6)

2 39.2 44.0 11.8 3.1 1.4 0.5 1.7
(8.2) (10.1) (4.5) (3.0) (2.6) (1.6)

3 13.0 29.1 30.7 13.5 6.7 7.0 0.8
(4.6) (5.9) (7.7) (5.3) (3.9) (2.6)

4 5.5 18.7 21.6 23.2 18.8 12.2 1.7
(3.1) (4.5) (5.8) (8.3) (4.8) (3.5)

5 2.6 6.4 15.7 22.6 37.9 14.8 2.6
(2.1) (3.1) (3.8) (5.8) (11.0) (4.2)

6 0.9 5.2 11.8 12.8 15.1 54.2 3.2
(1.8) (2.6) (3.1) (3.3) (4.4) (14.7)

the algorithm unacceptably conservative, frequently selecting
an MTS at schedules lower than the true MTS, while p̄ <
0.60 caused the algorithm to select overly toxic schedules too
often. We studied the design with a maximum sample size
of 30 patients, which is feasible but sufficient to determine
the MTS with reasonable accuracy. Patient interarrival times
were assumed to be uniformly distributed from 12 to 16 days.
In each simulation, posterior values were based upon 2000
MCMC samples from the posterior of θ preceded by a burn-
in of 2000 samples.

We first examined the design’s performance using both
Criterion 1 and Criterion 2 (with p̄ = 0.60) under each of six
scenarios, with schedule s(j) optimal under the jth scenario.
The times to toxicity were simulated assuming that θ1 oc-
curs 2 days after administration and that θ3 is either 18 or
50 days. The results are summarized in Tables 2 and 3. We
also examined the design’s performance, using Criterion 1,
under two additional scenarios. In scenario 7, the duration
of the hazard was 18 days, but the actual MTS was located
between schedules 2 and 3. In scenario 8, schedule 3 was the
MTS, but the form of F (·) deviated from that used in our
model, with toxicity occurring uniformly over the interval
[10 + 14(j − 1), 10 + 14j] under s(j). This leads to rela-
tively late-onset toxicities, and is very different from our as-
sumed additive triangular hazard model. Results for scenarios
7 and 8 are given in Table 4. In the first seven scenarios, the
value of θ2 is varied to reflect which schedule is optimal; those

Table 4
Performance of the design with 30 patients under two

additional settings. Each entry is the schedule’s selection
percentage, with number of patients assigned to that schedule

given in parentheses. In scenario 7, the actual MTS is
in-between schedules 2 and 3. In scenario 8, schedule 3 is the

MTS, but times to toxicity deviate from the assumed
triangular hazard.

Schedule (no. of weeks)

Scenario 1 (2) 2 (4) 3 (6) 4 (8) 5 (10) 6 (12)

7 11.2 48.0 28.3 8.1 3.0 1.4
(5.2) (10.7) (6.5) (3.2) (1.7) (2.8)

8 2.0 24.3 37.1 20.5 9.1 7.0
(2.4) (5.7) (6.1) (4.5) (3.1) (8.2)

values are shown in Table 1, which also contains the actual
day 100 probabilities of toxicity for each schedule under all
eight scenarios.

5.2 Simulation Results
Tables 2 and 3 display how frequently each schedule was se-
lected as the MTS, and the mean number of patients assigned
to each schedule. In interpreting the selection percentages
given in these tables, it is important to bear in mind that
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the difference in toxicity probabilities between neighboring
schedules generally decreases across the six scenarios, making
location of the MTS most difficult in scenario 6. To quantify
this, the final columns in Tables 2 and 3 display the aver-
age absolute deviation between the toxicity probability of the
selected MTS and the desired threshold pτ = 0.20. Larger val-
ues of this statistic indicate greater difficulty in locating the
MTS.

When θ3 = 18 days, Table 2 shows that the algorithm using
Criterion 1 selected the MTS within one schedule of the opti-
mum MTS 99.9%, 97.7%, 84.5%, 66.7%, 64.7%, and 58.7% of
the time for scenarios 1–6, respectively. The algorithm tends
to err conservatively, in that it is more likely to select sched-
ules shorter than the MTS over schedules longer than the
MTS. In addition, in all six scenarios more patients are as-
signed to the MTS than to any of the other schedules. Similar
conclusions are reached when using Criterion 2 with p̄ = 0.60,
where the algorithm selected the MTS within one schedule of
the optimum MTS in 99.7%, 96.0%, 74.6%, 65.1%, 74.3%, and
72.4% of the time for scenarios 1–6.

Criterion 2 was more likely than Criterion 1 to correctly
identify the MTS when the true MTS was one of the short-
est or longest schedules, and Criterion 1 outperformed Crite-
rion 2 when the true MTS was in the middle of all the sched-
ules. Note that θ1 has no impact upon each course’s estimated
cumulative probability of toxicity. Instead, θ1 influences the
time at which each patient experiences toxicity and the pro-
cess of escalation and deescalation during the study. This was
supported by additional simulations (not shown) in which we
found the prior distribution for θ1 had negligible impact on
the results shown in Table 2.

The prior belief that the longest schedule, s(6), was opti-
mal was reflected in the prior mean of θ2. Given that the
algorithm was conservative despite the fact that the longest
schedule was the a priori optimum MTS, the first five scenar-
ios supply evidence that the method reliably shifts the pos-
terior distribution of θ2 away from a misspecified prior mean,
even with the limited sample size of 30 patients.

Table 3 contains results analogous to those in Table 2 when
the true duration of the toxicity hazard for a single admini-
stration is extended to θ3 = 50 days. Because p(θ3) has a
mean of 18 days, here toxicities can occur much later than the
prior distribution anticipates. If p(θ3) is not sufficiently flexi-
ble, dose escalation will move too rapidly, essentially because
the algorithm places insufficient weight on any “late-onset”
toxicities when computing the posterior of θ. As a result, one
might expect the algorithm to be liberal, i.e., likely to identify
the MTS at a schedule longer than the optimum MTS, as well
as assigning too many patients to overly toxic schedules. How-
ever, Table 3 shows that the algorithm is relatively insensitive
to the fixed value of θ3 in all six scenarios. We also found that,
with either Criterion 1 or Criterion 2, the algorithm is slightly
more likely to identify the MTS at higher schedules when the
true θ3 is larger than expected (simulations not shown). This
finding is most apparent for scenarios 5 and 6, where the al-
gorithm correctly identifies the MTS more often when θ3 =
50 than when θ3 = 18.

The first two lines of Table 4 summarize the algorithm’s
performance when the true MTS lies between schedules 2
and 3. The algorithm performs well in this setting, with ei-

ther schedule 2 or schedule 3 selected 76.3% of the time. The
last two lines of Table 4 summarize the algorithm’s perfor-
mance under scenario 8, where schedule 3 is the MTS but the
actual times to toxicity have a uniformly late onset and do
not follow the assumed additive triangular hazard model. The
algorithm’s performance is similar to that under scenario 3,
for which the true toxicity distribution matches that of the
model. In scenario 8, more subjects are assigned to the longest
schedule than they are in scenario 3. This slight skewness to-
ward longer schedules is likely from influence of the prior and
indicates that late-onset toxicities affect schedule assignment
during the study without substantively changing the final de-
cision of the algorithm.

6. Concluding Remarks
While we have focused on a fixed number of nested schedules,
the threshold probability pτ could be attained by schedules
that are not included in s(1), . . . , s(6). Regardless, investigators
often select schedules that are nested in this way and easy to
apply in clinical practice. For example, it is unlikely that the
schedule (1, 3, 4, 5, 10, 12) would be preferred over (1, 2, 3,
8, 9, 10), because the second schedule is simpler and easier
to implement. One may envision a statistical approach that
optimizes one of our criteria over all possible schedules. While
this may be interesting from a statistical viewpoint, it may
be difficult to implement. In clinical application, s(1), . . . , s(k)

are likely to be determined by practical considerations, rather
than from a desire to obtain “best” statistical properties.

An alternate design for this study was recently published by
Braun, Levine, and Ferrara (2003), who treated each sched-
ule as a “dose” and determined the MTS using the TiTE
CRM with study-specific modifications. However, by consid-
ering each schedule to be a dose, patients who received an
incomplete schedule were only evaluated up to the point of
their last fully completed schedule. Furthermore, the doses
overlapped, leading to some ambiguity as to which dose con-
tributed to a late-onset toxicity. Our method avoids both of
these limitations by accounting for each administration sepa-
rately in the model. These limitations also underscore the fact
that the TiTE CRM is well suited to identify a single optimal
dose, but it is not intended to identify an optimal sequence
of doses. Choosing a schedule rather than a dose may be re-
garded as a paradigm shift, and our model and method are
motivated to more closely reflect administration of the agent,
whose cumulative effects could lead to toxicity, possibly of
late onset.

Our method may be extended to accommodate a wider
range of applications. One important generalization is to
model the single administration hazard so that the dose ad-
ministered on each day can vary within each patient, and be-
tween patients. One also may allow the hazard to vary with
patient characteristics, so that the schedules may be chosen
more specifically for each patient. Our model parameteriza-
tion relies on a strong homogeneity assumption about the
hazard of toxicity over the sequence of treatment times. For
example, under our model, one could observe nothing other
than patients who receive the shortest sequence, s(1), learn
about θ, and make predictions about the risk of toxicity for
a patient who is scheduled to receive any s(j), j ≥ 1. How-
ever, this is a feature of any parametric regression model that
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is assumed to hold over a given domain of covariates, which
in this case are the s(j)’s. If this assumption is considered
invalid in a particular setting, then a more general model ac-
counting for inhomogeneity across schedules would be needed.
Currently, we are investigating these generalizations.
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